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A FLOQUET–BLOCH DECOMPOSITION OF MAXWELL’S
EQUATIONS APPLIED TO HOMOGENIZATION∗

DANIEL SJÖBERG† , CHRISTIAN ENGSTRÖM† , GERHARD KRISTENSSON† ,

DAVID J. N. WALL‡ , AND NIKLAS WELLANDER§

Abstract. Using Bloch waves to represent the full solution of Maxwell’s equations in periodic
media, we study the limit where the material’s period becomes much smaller than the wavelength. It
is seen that for steady state fields, only a few of the Bloch waves contribute to the full solution. Effec-
tive material parameters can be explicitly represented in terms of dyadic products of the mean values
of the nonvanishing Bloch waves, providing a new means of homogenization. The representation is
valid for an arbitrary wave vector in the first Brillouin zone.
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1. Introduction. The behavior of the solutions of a PDE with rapidly oscil-
lating coefficients, considered over distances large compared to the oscillations, is in
several respects similar to the solutions of a PDE with slowly varying coefficients.
The problem of homogenization is to find these slowly varying coefficients by an ap-
propriate limit process of the rapidly oscillating ones. The results of homogenization
apply to several types of PDEs that are used in the engineering sciences, such as
heat conduction, elastic deformation, flow in porous media, acoustics, and, to a lesser
extent, Maxwell’s equations.

The objective of this paper is to give a rather complete analysis of solutions to
Maxwell’s equations in periodic media and study the limit when the unit cell becomes
small. This is done by expanding the solution in Bloch waves, i.e., eigenmodes of the
material, and it is seen that only a few Bloch waves contribute to the macroscopic field.
This enables us to find explicit representations of the effective material parameters in
terms of these waves, providing an alternative means of homogenization.

The observation that the macroscopic properties of a periodic material are ob-
tained in the long-wavelength limit of the Bloch waves dates back at least to [5] and
has recently been used in the physics literature to study optical activity [20]. The
common approach to find effective material parameters for “div-grad”-type operators
using Bloch waves is through differentiation of the principal eigenvalue with respect
to the Bloch parameter k, which represents the mismatch of the wave vector with the
period of the lattice. In the case of electron dynamics in metals, this is the effective
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mass; see almost any book on solid state physics, for instance [17, p. 193]. A rigorous
study on homogenization results by Bloch waves for a scalar equation was performed
in the early 1980’s [22]. The method has received recent interest from the mathemat-
ics community [21, 8, 7, 1, 13], where the effective material is found from studying
the spectrum of the operator only.

Maxwell’s equations are more difficult to analyze than the traditional scalar el-
liptic equations. They constitute a system of PDEs, where the “principal” eigenvalue
is often degenerate, and it is not clear which one to differentiate when the degeneracy
is lifted. In this paper, we circumvent this difficulty by expressing the homogeniza-
tion primarily in terms of eigenvectors instead of eigenvalues. The main result is
Theorem 6.2, a surprisingly simple representation of the homogenized matrix, which
is applicable for any wave vector within the first Brillouin zone. It states that it is
possible to define a homogenized material matrix for a given wave vector k, and this
matrix can be represented by calculating mean values of the Bloch waves. In order to
prove this theorem, we need to make a conjecture in section 6.1.

The method used is based on constitutive relations where the permittivity and
permeability are described by symmetric, positive definite matrices. With these con-
stitutive relations, we can define differential operators which are self-adjoint, and we
are able to apply classical spectral theorems. Conductivity and dispersive constitutive
relations are at this stage not possible to include in this framework, since they lead to
non-self-adjoint operators for which a more advanced spectral theory is needed; see,
for instance, [19].

Finally, we remark that the homogenization results in this paper are ready for
implementation, provided the mean values of the Bloch waves can be computed. This
can be done analytically for some geometries such as laminates when k = 0 (since this
is just the standard homogenization case), but for arbitrary k we can so far perform
only numerical calculations. Standard computational means exist for this task, such
as photonic band gap techniques and finite elements [15, 10].

This paper is organized as follows. In section 2 we present the notation and the
different function spaces used in this paper, and a variant of the famous Bloch theorem
is given in section 3. Spectral properties for the curl operators in Maxwell’s equations
are given in section 4, and they are used in section 5 to give a representation of the
general solution to Maxwell’s equations in periodic media. Section 6 presents the
scaling arguments needed in homogenization, where we show that only a few Bloch
waves contribute to the macroscopic field. We show that the classical homogenization
technique can be obtained as a limit of our formalism and present a new representation
of the homogenized matrix for a finite wave vector. The results are discussed in
section 7.

2. Basic equations and notation. We use scaled electric and magnetic fields
and flux densities in this paper; i.e., the SI-unit fields ESI, HSI, DSI, and BSI are
related to the fields E, H, D, and B used in this paper by

ESI(x, t) = ε
−1/2
0 E(x, τ), HSI(x, t) = μ

−1/2
0 H(x, τ),(2.1)

DSI(x, t) = ε
1/2
0 D(x, τ), BSI(x, t) = μ

1/2
0 B(x, τ),(2.2)

where the permittivity and permeability of vacuum are denoted ε0 and μ0, respec-
tively. The time is scaled according to τ = c0tSI, where c0 is the speed of light
in vacuum, so that both space and time have the physical dimension length. The
corresponding relations for the current density JSI and the charge density ρSI are
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JSI(x, t) = μ
−1/2
0 J(x, τ), ρSI(x, t) = ε

1/2
0 ρ(x, τ).(2.3)

In these units, Maxwell’s equations are{
∇× E(x, τ) = −∂τB(x, τ),

∇× H(x, τ) = J(x, τ) + ∂τD(x, τ),
(2.4)

and {
∇ · B(x, τ) = 0,

∇ · D(x, τ) = ρ(x, τ).
(2.5)

2.1. Six-dimensional vectors and differential operators. We adopt a six-
dimensional notation. The fields are defined as

e(x, τ) =

(
E(x, τ)
H(x, τ)

)
, d(x, τ) =

(
D(x, τ)
B(x, τ)

)
,(2.6)

and the material parameters are

M(x) =

(
ε(x) 0
0 μ(x)

)
,(2.7)

where ε(x) and μ(x) are real, symmetric matrices with L∞ entries, and the matrix
satisfies

c|e|2 ≤ e∗ · M(x) · e ≤ C|e|2(2.8)

for all six-vectors e, with positive constants c and C independent of x. We call such
a matrix uniformly coercive. The constitutive relations between the fields are

d(x, τ) = M(x) · e(x, τ).(2.9)

This constitutive relation models only the instantaneous response of the material
constituents and neglects any dispersive effects.

In the following, we define a number of spatial differential operators, where it
helps to think of the nabla operator ∇ as a three-dimensional vector. Indeed, many
natural, bounded operators occur in the following sections by simply replacing the
∇ symbol with a three-vector, often denoted k. In many cases, the nabla operator
is multiplied by −i, in order to make the operator −i∇ self-adjoint in a sesquilinear
scalar product. Define the curl operator ∇× J in C

6,

∇× J =

(
0 −∇× I

∇× I 0

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 ∂3 −∂2

0 0 0 −∂3 0 ∂1

0 0 0 ∂2 −∂1 0
0 −∂3 ∂2 0 0 0
∂3 0 −∂1 0 0 0
−∂2 ∂1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠,(2.10)

where ∇ = ê1∂1 + ê2∂2 + ê2∂2, with ê1,2,3 being the unit vectors in three orthogonal
spatial directions and ∂1,2,3 denoting differentiation in the corresponding variable, and
I is the identity dyadic in C

3. The matrix J is

J =

(
0 −I
I 0

)
,(2.11)
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and 0 is the zero dyadic in C
3. The action on a six-dimensional vector is a new

six-dimensional vector:

∇× J · e(x, τ) =

(
−∇× H(x, τ)
∇× E(x, τ)

)
.(2.12)

The divergence of a six-dimensional vector is a two-dimensional vector:

∇ · d(x, τ) =

(
∇ · D(x, τ)
∇ · B(x, τ)

)
.(2.13)

The gradient of a two-scalar φ = (φe, φh)T is also a six-vector:

∇φ =

(
∇φe

∇φh

)
.(2.14)

The usual differential orthogonalities are

∇ · [∇× J · e(x, τ)] ≡ 0 and ∇× J · ∇φ ≡ 0.(2.15)

Maxwell’s equations can then be written (curl equations, six scalar equations)

∇× J · e(x, τ) + ∂τM(x) · e(x, τ) + j(x, τ) = 0,(2.16)

where j = (J ,0)T, supplemented by the divergence equations (two scalar equations)

∇ · [M(x) · e(x, τ)] = �(x, τ),(2.17)

where � = (ρ, 0)T is a two-scalar and satisfies
∫
�(y) dvy = 0. The last condition

means the total charge is zero, which is needed in the proofs below. Ignoring possible
boundary effects, the material’s response to an external field e0 can be considered
by using the polarization field (M − M0) · e0, where e0 is a solution in a background
medium M0, by introducing sources j = ∂τ (M−M0) · e0 and � = −∇ · [(M−M0) · e0].

For developing the representation of the solution to Maxwell’s equations in sec-
tion 5.1, we assume only the sources j and � are square integrable in space. However,
when discussing homogenization in section 6, we assume that the frequency spec-
trum of the sources is band limited. Since the sources are usually generated by some
electronic equipment where we can control the time dependence, this is a reasonable
assumption. A further discussion of the band limited frequency spectrum, and its
consequences to homogenization, is found in Remark 5 in section 6.

2.2. Function spaces for periodic media. We further assume the medium is
periodic. The unit cell is denoted by U , and the periodic material satisfies M(x+xn) =
M(x), n ∈ Z

3, where xn = n1a1 + n2a2 + n3a3 and ai, i = 1, 2, 3, are the basis
vectors for the lattice. The reciprocal unit cell is denoted by U ′, and a vector in the
reciprocal lattice is kn = n1b1 +n2b2 +n3b3, where b1 = 2π

|U |a2×a3, b2 = 2π
|U |a3×a1,

b3 = 2π
|U |a1×a2, and |U | = a1 · (a2×a3). This implies ai ·bj = 2πδij , where δij is the

Kronecker delta. For more on the description of periodic media, see the introductory
chapters in most books on solid state physics, for instance [17].

We need some standard function spaces defined as below, where C∞
# (U ; C6) and

C∞
# (U ; C2) are the spaces of infinitely differentiable periodic functions on U with
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values in C
6 and C

2, respectively:

L2
#(U ; C6) = the completion of C∞

# (U ; C6) in the L2 norm,(2.18)

L2
#(U ; C2) = the completion of C∞

# (U ; C2) in the L2 norm,(2.19)

H#(rot) = {v ∈ L2
#(U ; C6) : −i∇× J · v ∈ L2

#(U ; C6)},(2.20)

H1
#(U ; C2) = {φ ∈ L2

#(U ; C2) : −i∇φ ∈ L2
#(U ; C6)}.(2.21)

In sections 4.2 and 4.3, we also introduce the more specialized spaces H#(divk ∝ �̃)
and H#(divk M ∝ �̃), which are closed subspaces of L2

#(U ; C6).
Due to the periodic boundary conditions, these spaces contain functions which

are constants. The L2 spaces are equipped with either the ordinary L2 scalar product

(u, v) =

∫
U

u · v∗ dvx(2.22)

and its induced norm or the weighted scalar product (u,M · v) and its induced norm.
The norms are equivalent due to (2.8).

We often use the mean value of a quantity defined in the unit cell. This is the
integral over the unit cell,

〈f〉 ≡ 1

|U |

∫
U

f(x) dvx.(2.23)

3. The Floquet–Bloch theorem. In this section we present a version of the
celebrated Floquet–Bloch theorem, first given in a one-dimensional setting by Flo-
quet [12] and later rediscovered by Bloch [4]. The proof is given since these references
may be difficult to find, and we need to reference the explicit representations of the
Bloch amplitude later in the paper.

Theorem 3.1. Any function u(x) ∈ L2(R3; C6) can be represented as

u(x) =

∫
U ′

eik·xũ(x,k) dvk,(3.1)

where the Bloch amplitude ũ(x,k) is U -periodic in x and has the representations

ũ(x,k) =
∑

n∈Z3

û(k + kn)eikn·x =
|U |

(2π)3

∑
n∈Z3

u(x + xn)e−ik·(x+xn),(3.2)

where û(k) is the Fourier transform of u(x).
Proof. An L2 function can be represented with its Fourier transform û(k) accord-

ing to

u(x) =

∫
R3

û(k)eik·x dvk.(3.3)

The integral can be divided into blocks of U ′,

(3.4)

∫
R3

û(k)eik·x dvk =
∑

n∈Z3

∫
k∈U ′

û(k + kn)ei(k+kn)·x dvk

=

∫
U ′

eik·x
∑

n∈Z3

û(k + kn)eikn·x dvk =

∫
U ′

eik·xũ(x,k) dvk.
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This proves the first representation of the Bloch amplitude. The second is shown

by using the Dirac delta distribution δ(k − k′) = |U |
(2π)3

∑
n∈Z3 e−i(k−k′)·(x+xn) (see

Appendix A for a derivation), and the Bloch amplitude can be written

(3.5)

ũ(x,k) =

∫
U ′

δ(k−k′)ũ(x,k′) dvk′ =
|U |

(2π)3

∑
n∈Z3

∫
U ′

e−i(k−k′)·(x+xn)ũ(x+xn,k
′) dvk′

=
|U |

(2π)3

∑
n∈Z3

e−ik·(x+xn)

∫
U ′

eik′·(x+xn)ũ(x + xn,k
′) dvk′

=
|U |

(2π)3

∑
n∈Z3

e−ik·(x+xn)u(x + xn),

where we used the periodicity of ũ(x,k) in the first line.
By definition of the reciprocal lattice {kn}, we have 〈eikn·x〉 = 0 for kn 	= 0. The

relation ũ(x,k) =
∑

n∈Z3 û(k + kn)eikn·x then implies that the mean value of the
Bloch amplitude is the Fourier amplitude of u for the corresponding wave vector,

〈ũ(·,k)〉 = û(k).(3.6)

Using the Bloch representation implies that all derivatives are shifted by k in the
following sense:

−i∇× J · (eik·xũ(x,k)) = eik·x(−i∇ + k) × J · ũ(x,k),(3.7)

−i∇ · (eik·xũ(x,k)) = eik·x(−i∇ + k) · ũ(x,k).(3.8)

In the following, we continue to use the terms “curl” and “divergence” when we refer
to the shifted differentials (−i∇ + k) × J · ũ and (−i∇ + k) · ũ.

One of our aims in this paper is to define expansion functions vn(x,k), called
Bloch eigenmodes, such that they can be used to represent the Bloch amplitudes as

ũ(x,k) =
∑
n

un(k)vn(x,k)(3.9)

and at the same time diagonalize Maxwell’s equations, in a manner to be made precise
in section 5. Note that the expansion coefficients un in general depend on the wave
vector k.

4. Spectral properties of the curl operator.

4.1. The vacuum eigenvectors. We expect the eigenvectors in the material
case to be similar to the vacuum case, which can be calculated explicitly. We study
the unbounded operator

(−i∇ + k) × J : L2
#(U ; C6) → L2

#(U ; C6)(4.1)

with the dense domain H#(rot). We require k ∈ U ′.
Theorem 4.1. The operator in (4.1) is self-adjoint.
Proof. The operator is symmetric in the usual L2 scalar product, and the equa-

tion [(−i∇ + k) × J ± iI] · v = w is solvable for all w ∈ L2
#(U ; C6). This is shown

through expansion in Fourier series, where the operator is replaced by the matrix
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(kn +k)× J± iI, which has an inverse bounded by 1/(1+ |kn +k|2)1/2 for all n ∈ Z
3.

Thus, the range of (−i∇ + k) × J ± iI is all of L2
#(U ; C6), which is equivalent to the

operator in (4.1) being self-adjoint; see, for instance, [24, p. 513].
Theorem 4.2. Represent the arbitrary function v ∈ L2

#(U ; C6) with its Fourier

series v(x) =
∑

n∈Z3 v̂neikn·x. The eigenproblem in vacuum,

(−i∇ + k) × J · v = ωv,(4.2)

has the following (nonnormalized) solutions, where the index n′ ∈ Z
3 corresponds to

an enumeration of the eigenvalues and αn and βn are arbitrary constants:

ω = 0 : v̂n = αn

(
kn + k

0

)
, v̂n = βn

(
0

kn + k

)
,(4.3)

ωn′ = |kn′ + k| : v̂n = δn,n′

(
l̂

m̂

)
, v̂n = δn,n′

(
−m̂

l̂

)
,(4.4)

ωn′ = −|kn′ + k| : v̂n = δn,n′

(
l̂

−m̂

)
, v̂n = δn,n′

(
m̂

l̂

)
,(4.5)

where δn,n′ is the Kronecker delta, and l̂ and m̂ are unit three-vectors orthogonal to

kn′ + k, which satisfy l̂ × m̂ = (kn′ + k)/|kn′ + k|.
Proof. When substituting the Fourier series in the eigenvalue equation, the fol-

lowing algebraic eigenvalue problem is obtained for each Fourier coefficient vn′ corre-
sponding to a fixed wave vector kn′ in the reciprocal lattice:

(kn′ + k) × J · v̂n′ = ωv̂n′ .(4.6)

The eigenvectors and eigenvalues in the theorem are obviously the solution to this alge-
braic problem for every wave vector kn′ in the reciprocal lattice. Since every L2 func-
tion is uniquely determined by its Fourier coefficients, the proof is complete.

Remark 1. Each nonzero eigenvalue has multiplicity two, whereas for ω = 0 there
are infinitely many undetermined constants αn and βn. This means the dimension of
the kernel (null space) of (−i∇ + k) × J is infinite.

4.2. Compactness of the vacuum resolvent. Instead of explicitly construct-
ing the spectral properties of (−i∇ + k) × J, we can study its resolvent, R0(z) =
((−i∇ + k) × J + zI)−1, where I is the identity operator in C

6 and z ∈ C is chosen
such that the resolvent exists as a bounded operator. The standard procedure is to
prove that the resolvent is compact and use the spectral theorem for compact, self-
adjoint operators. However, it can be shown that the resolvent R0(z) is proportional
to the identity operator on the kernel of (−i∇ + k) × J, corresponding to ω = 0 in
Theorem 4.2, which is obviously infinite-dimensional. Since the identity operator is
compact if and only if the space is finite-dimensional, we need to work in a space
smaller than L2

#(U ; C6) to prove compactness. We choose the space where all diver-
gences are proportional to the Bloch amplitude �̃(x,k, τ) of the charge distribution
�(x, τ),

H#(divk ∝ �̃) ≡ {v ∈ L2
#(U ; C6) : ∃z ∈ C, (−i∇ + k) · v = z�̃},(4.7)

since, as we see in the following theorem, the kernel of (−i∇ + k) × J is finite-
dimensional in this space.
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Theorem 4.3. The space H#(divk ∝ �̃) is a closed linear subspace of L2
#(U ;C6);

i.e., it is a Hilbert space with the standard L2 scalar product. In this space, the kernel
of (−i∇ + k) × J has dimension 1 for k 	= 0 and dimension 7 for k = 0.

Proof. The first part of the proof concerns the closedness of the space. Any
function v ∈ L2

#(U ; C6) can be decomposed according to v = v1+v0, where (−i∇+k)·
v1 = 0 and (v1, v0) = 0. This is due to the fact that the null space of the divergence
operator (−i∇ + k) · is characterized by

v1 ∈ ker((−i∇ + k) · ) ⇔ (v1, (−i∇ + k)φ) = 0 ∀φ ∈ H1
#(U ; C2);(4.8)

i.e., it is the orthogonal complement of the image of the gradient operator (−i∇+ k)
acting on its natural domain H1

#(U ; C2). The orthogonal complement of any set is

a closed subspace, and since −i∇ : H1
#(U ; C2) → L2

#(U ;C6) is a closed operator the
image of (−i∇ + k) is also closed.

Any function v0 which is orthogonal to v1 can then be written as a gradient,
v0 = (−i∇ + k)φ0. Lax–Milgram’s theorem can be used to show that for k 	= 0
the equation (−i∇ + k) · (−i∇ + k)φ0 = �̃ uniquely determines the function φ0 ∈
H1

#(U ; C2), including possible nonzero mean values of φ0, and for k = 0 the solution
is unique if we require 〈φ0〉 = 0. In the latter case, the mean values are included in
ker(−i∇·). The space can then be written as

H#(divk ∝ �̃) = ker((−i∇ + k) · ) ⊕ {v0},(4.9)

where {v0} is the linear hull of the unique function v0. Thus, H#(divk ∝ �̃) is a direct
sum of orthogonal, closed spaces and is therefore closed in L2

#(U ; C6).
The second part concerns the dimension of the kernel of (−i∇ + k) × J. In

Appendix B, it is shown that

(4.10) (−i∇ + k) × J · v = 0 ⇒ v = 〈v〉 + (−i∇ + k)φ, k × J · 〈v〉 = 0,

〈φ〉 = 0, φ ∈ H1
#(U ; C2).

For k 	= 0, the condition k × J · 〈v〉 = 0 implies v = (−i∇ + k)(φ + Φ), where Φ is a
constant two-scalar. This corresponds precisely to the linear hull of the function v0

defined above, that is, ker((−i∇ + k) × J) = {v0}, which has dimension 1.
For k = 0, we have v ∈ ker(−i∇× J) ⇒ v = 〈v〉 − i∇φ, where 〈v〉 ∈ C

6 without
restrictions. The elliptic equation −i∇· [(〈v〉− i∇φ)] = z�̃ then provides the solutions
v = 〈v〉 − i∇zφ0, where φ0 solves −∇2φ0 = �̃. Since there are six degrees of freedom
to choose the constant six-vector 〈v〉 ∈ C

6 and we allow for all z ∈ C, we conclude
that for k = 0 we have ker(−i∇× J) = C

6 ⊕ {−i∇φ0}, which has dimension 7. Note
that for k = 0, it is necessary to require 〈�̃〉 = 0, in order for the divergence condition
to make sense, i.e., for a solution to exist.

Theorem 4.4. The resolvent operator

R0(z) = [(−i∇ + k) × J + zI]−1 : H#(divk ∝ �̃) → H#(divk ∝ �̃)(4.11)

is a compact operator for z ∈ ρ((−i∇+k)× J). Furthermore, there exists z′ ∈ R such
that R0(z

′) is a compact, self-adjoint operator in the standard L2 scalar product.
Proof. The resolvent operator is associated with the solution of a differential

equation

[(−i∇ + k) × J + zI] · v = w ⇔ v = R0(z) · w.(4.12)



FLOQUET–BLOCH HOMOGENIZATION OF MAXWELL’S EQUATIONS 157

Choosing z = i for simplicity and taking the Fourier transform of this equation, we
have

[(kn + k) × J + iI] · v̂n = ŵn.(4.13)

We introduce the decomposition v̂n = v̂n⊥ + v̂n‖, where the index ⊥ indicates com-
ponents orthogonal to kn + k. We then have

[(kn + k) × J + iI] · v̂n⊥ = ŵn⊥, iv̂n‖ = ŵn‖,(4.14)

which demonstrates that the resolvent is proportional to the identity operator for the
‖ components. This is precisely the space {v0} (or C

6 ⊕ {v0} for k = 0) used in the
previous proof. Since this is a finite-dimensional space, the resolvent is compact on
this space.

For the ⊥ components, we square the equation and obtain

(|kn + k|2 + 1)|v̂n⊥|2 = |ŵn⊥|2.(4.15)

Using the notation w⊥ =
∑

n∈Z3 eikn·yŵn⊥, we have

‖R0(i) · w⊥‖2
L2 = ‖v⊥‖2

L2 =
∑

n∈Z3

|ŵ⊥|2
|kn + k|2 + 1

.(4.16)

We define the operator SN , which restricts the number of Fourier coefficients, as

[SNv](y) =
∑

|n|≤N

v̂neikn·x.(4.17)

This means the bounded operator SNR0(i) has finite rank and is therefore compact.
We then have

‖(1 − SN )R0(i) · w⊥‖2
L2 =

∑
|n|>N

|ŵ⊥|2
|kn + k|2 + 1

≤ ‖w⊥‖2

|kN + k|2 + 1
→ 0(4.18)

uniformly for all w⊥ of unit norm, as N → ∞. This shows that R0(i) is the limit
of compact operators SNR0(i) in the operator norm and is therefore compact [24,
p. 495]. Since any function w ∈ H#(divk ∝ �̃) can be decomposed according to
w = w⊥ +w‖ and the resolvent is compact on each associated subspace, it is compact
on all H#(divk ∝ �̃).

Thus, the spectrum is a discrete subset of C, which in turn implies that R0(z)
is compact for all z in the resolvent set; see, for instance, [24, p. 516]. Furthermore,
there exists a number z′ ∈ R ∩ ρ((−i∇ + k) × J), such that R0(z

′) is a compact,
self-adjoint operator.

4.3. Compact resolvent with a material. The spectral results from the vac-
uum case can be extended to the material case, where we are interested in the eigen-
problem

M−1 · (−i∇ + k) × J · vn = ωnvn.(4.19)

We put the material dependence on the left-hand side, so that the operator M−1 ·
(−i∇ + k) × J is self-adjoint in the weighted scalar product (u,M · v). We use this
scalar product in the space

H#(divk M ∝ �̃) ≡ {v ∈ L2
#(U ; C6) : ∃z ∈ C, (−i∇ + k) · [M · v] = z�̃},(4.20)
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which is a natural generalization of H#(divk ∝ �̃). The operator defined by multipli-
cation with M,

M : H#(divk M ∝ �̃) → H#(divk ∝ �̃),(4.21)

is a bijective mapping between these spaces. It is straightforward to show that The-
orem 4.3 continues to hold for the space H#(divk M ∝ �̃), and the following theorem
generalizes Theorem 4.4.

Theorem 4.5. The resolvent operator

R(z) = [M−1 · (−i∇ + k) × J + zI]−1 : H#(divk M ∝ �̃) → H#(divk M ∝ �̃)(4.22)

is a compact operator for z ∈ ρ(M−1 · (−i∇+k)×J). Furthermore, there exists z′ ∈ R

such that R(z′) is a compact, self-adjoint operator in the weighted L2 scalar product
(u,M · v).

Proof. The resolvent can be written using the vacuum resolvent R0(z),

(4.23) R(z) = [M−1 · (−i∇ + k) × J + zI]−1 = [(−i∇ + k) × J + zI + z(M − I)]−1 · M
= [R0(z)

−1 + z(M − I)]−1 · M = [I + zR0(z) · (M − I)]−1 · R0(z) · M.

Since M is bounded, the operator R0(z) · M : H#(divk M ∝ �) → H#(divk ∝ �)
is compact. It is multiplied by [I + zR0(z)(M − I)]−1, which is bounded unless −1
is an eigenvalue of zR0(z)(M − I). This cannot occur, since from Theorem 4.2 the
eigenvalues of (−i∇ + k) × J are real, and we can assume Im(z) 	= 0. Thus, the
resolvent R(z) is compact, which implies it has a discrete spectrum. Since the operator
M−1 · (−i∇ + k) × J is self-adjoint in L2

#(U ; C6) with the weighted scalar product
(u,M · v), the arguments from the proof of Theorem 4.4 can be repeated. Thus, there
exists a real number z′ such that R(z′) is compact and self-adjoint in this space.

In conclusion, we have the following theorem.
Theorem 4.6. The set of eigenfunctions for the resolvent operator R(z′) is

countable and forms an orthogonal basis for the space H#(divk M ∝ �̃) with the scalar
product (u,M · v), and the only accumulation point for the real eigenvalues is 0. This
set of eigenvectors is equivalent to the set of eigenvectors for the original operator
M−1 · (−i∇ + k) × J, where the accumulation points for the real eigenvalues {ωn}
are ±∞.

Proof. The proof follows from Theorem 4.5 and the spectral theorem for compact,
self-adjoint operators. See also [24, p. 516].

Remark 2. The eigenvalues are continuous functions of the wave vector, i.e.,

|ωn(k) − ωn(k0)| ≤
1

c
|k − k0|,(4.24)

where c is defined in (2.8). This is clear from Theorem V-4.10 in [16], which states
that when perturbing a self-adjoint operator with a bounded, symmetric operator,
the change of the spectrum is bounded by the norm of the perturbing operator. In
our case, the operator is

M−1 · (−i∇ + k) × J = M−1 · (−i∇ + k0) × J︸ ︷︷ ︸
self-adjoint

+ M−1 · (k − k0) × J︸ ︷︷ ︸
bounded perturbation

,(4.25)

the norm of the perturbing operator is∥∥M−1 · (k − k0) × J
∥∥ ≤

(
sup
x∈U

|M−1(x)|
)
|k − k0|,(4.26)

and supx∈U |M−1(x)| ≤ 1/c.
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Remark 3. Since (−i∇ + k) · (−i∇ + k) × J ≡ 0, we have

ωn(k) 	= 0 ⇒ (−i∇ + k) · [M(x) · vn(x,k)] = 0;(4.27)

i.e., nonzero eigenvalues imply zero divergence after multiplication with M. Only
modes with ωn(k) = 0 can have nonzero divergence, which is exploited in the following
section.

5. Bloch decomposition. The Bloch eigenmodes are defined from the following
eigenvalue problem [2, 8, 7, 21]:

(−i∇ + k) × J · vn(x,k) = ωn(k)M(x) · vn(x,k), x ∈ U,(5.1)

with periodic boundary conditions and the normalization

(vn,M · vn) = |U |.(5.2)

Since M is dimensionless, this normalization means the functions {vn} are dimension-
less. The enumeration is chosen such that n = 0 corresponds to the unique function
v0(x,k) satisfying (−i∇+ k)× J · v0 = 0 and (−i∇+ k) · [M · v0] = z�̃ for some z ∈ C

(where z is determined by the normalization of v0). This means ω0(k) = 0 for all
k ∈ U ′. All other modes are enumerated by n > 0.

The following theorem is equivalent to a generalized Fourier series in Hilbert
space, and a scalar version is given in [7]. See also [3, p. 619].

Theorem 5.1. Let u ∈ L2
#(U ; C6) with ∇·u = �. The nth Bloch coefficient of u

is defined as follows for all n ∈ Z and k ∈ U ′:

un(k) =
1

(2π)3

∫
R3

e−ik·xvn(x,k)∗ · M(x) · u(x) dvx.(5.3)

Then the following inverse formula holds:

u(x) =
∑
n≥0

∫
U ′

un(k)eik·xvn(x,k) dvk.(5.4)

Further, we have Parseval’s identity:∫
R3

u(x)∗ · M(x) · u(x) dvx = (2π)3
∑
n≥0

∫
U ′

|un(k)|2 dvk.(5.5)

Finally, for all u in the domain of ∇× J, we have

∇× J · u(x) =
∑
n>0

∫
U ′

iωn(k)un(k)M(x) · vn(x,k)eik·x dvk.(5.6)

Proof. With u ∈ L2
#(U ; C6) and ∇ · u = �, it is clear that the Bloch amplitude

ũ(x,k) defined in Theorem 3.1 is in H#(divk M ∝ �̃). From Theorem 4.6 it is clear
that for each k ∈ U ′ the spectral problem (5.1) admits a discrete sequence of real
eigenvalues and a complete set of eigenvectors in the Hilbert space H#(divk M ∝ �).
The general Fourier series expansion in Hilbert spaces guarantees that for all k the
Bloch amplitude ũ(x,k) can be expanded in the corresponding eigenvectors,

u(x) =

∫
U ′

eik·xũ(x,k) dvk =

∫
U ′

eik·x
∑
n

un(k)vn(x,k) dvk(5.7)
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with

un(k) =
(vn,M · ũ)

(vn,M · vn)
=

1

|U |

∫
U

vn(x,k)∗ · M(x) · ũ(x,k) dvx.(5.8)

From Theorem 3.1 the Bloch amplitude can be written ũ(x,k) = |U |
(2π)3

∑
n∈Z3 u(x +

xn)e−ik·(x+xn), and the expansion coefficients are

(5.9) un(k) =
1

(2π)3

∑
n∈Z3

∫
U

vn(x,k)∗ · M(x) · u(x + xn)e−ik·(x+xn) dvx

=
1

(2π)3

∫
R3

vn(x,k)∗ · M(x) · u(x)e−ik·x dvx.

The Parseval identity in the theorem is shown by using the Bloch representation of
u(x),

∫
R3

u(x)∗ · M(x) · u(x) dvx

(5.10)

=

∫
x∈R3

[∫
k∈U ′

eik·xũ(x,k) dvk

]∗
· M(x) ·

[∫
k′∈U ′

eik′·xũ(x,k′) dvk′

]
dvx

=

∫
x∈R3

∫
k∈U ′

∫
k′∈U ′

ei(k′−k)·xũ(x,k)∗ · M(x) · ũ(x,k′) dvk dvk′ dvx

=
∑

n∈Z3

∫
x∈U

∫
k∈U ′

∫
k′∈U ′

ei(k′−k)·(x+xn)ũ(x + xn,k)∗

· M(x + xn) · ũ(x + xn,k
′) dvk dvk′ dvx

=

∫
x∈U

∫
k∈U ′

∫
k′∈U ′

ũ(x,k)∗ · M(x) · ũ(x,k′)
∑

n∈Z3

ei(k′−k)·(x+xn) dvk dvk′ dvx

=
(2π)3

|U |

∫
x∈U

∫
k∈U ′

ũ(x,k)∗ · M(x) · ũ(x,k) dvk dvx

= (2π)3
∑
n

∫
k∈U ′

|un(k)|2 dvk,

where we used the representation |U |
(2π)3

∑
n∈Z3 ei(k−k′)·(x+xn) = δ(k−k′) of the delta

distribution, and the periodicity of ũ(x,k) and M(x). The last equality follows from
the Parseval equality for a general Fourier series expansion in Hilbert spaces when
expanding the Bloch amplitude ũ(x,k) =

∑
n un(k)vn(x,k). The factor |U | in the

denominator in the last line vanishes due to the normalization (vn,M · vn) = |U |.
The final part of the theorem, the representation of the curl operator (5.6), is an

immediate consequence of the definition of the eigenvectors. The summation is only
over n > 0 due to the multiplication with ωn.

Remark 4. Since the eigenvectors are undetermined by an arbitrary phase eiθ,
the expansion does not really make sense; i.e., the expansion coefficients un(k) may
not be continuous or even measurable as a function of k. However, in our final results
the phase always cancels, and we assume there exists a structured way of dealing with
this problem; see [27] for further details.
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5.1. Consequences for solutions of Maxwell’s equations. The solution
e(x, τ) of Maxwell’s equations, (∇×J+∂τM) ·e+ j = 0 and ∇· [M ·e] = �, is expanded
in the Bloch waves as

e(x, τ) =
∑
n≥0

∫
U ′

en(k, τ)eik·xvn(x,k) dvk.(5.11)

The following theorem demonstrates that the expansion coefficients en(k, τ) can be
controlled by choosing the time dependence of the generating current suitably. This
is exploited in the following section.

Theorem 5.2. The time-depending expansion coefficients en(k, τ) are given by

en(k, τ) = −e−iωn(k)τ 1

(2π)3

∫
R3

e−ik·xvn(x,k)∗ ·
∫ τ

−∞
eiωn(k)τ ′

j(x, τ ′) dτ ′ dvx.(5.12)

Proof. First, we multiply Maxwell’s equations (∇ × J + ∂τM) · e + j = 0 with
(eik·xvn(x,k))∗/(2π)3 and integrate over R

3. Using (5.3) and (5.6), we see that the
time-depending expansion coefficients en(k, τ) must satisfy

(iωn(k) + ∂τ )en(k, τ) = − 1

(2π)3

∫
R3

e−ik·xvn(x,k)∗ · j(x, τ) dvx,(5.13)

that is,

en(k, τ) = −e−iωn(k)τ 1

(2π)3

∫
R3

e−ik·xvn(x,k)∗ ·
∫ τ

−∞
eiωn(k)τ ′

j(x, τ ′) dτ ′ dvx,(5.14)

where we assumed en(k, τ) → 0, τ → −∞. This is the standard convolution solution
of a time-invariant differential equation.

6. Homogenization. We now assume that the unit cell U is much smaller
than the typical wavelength. The electromagnetic field is represented with its spatial
Fourier transform

e(x, τ) =

∫
R3

eik·xê(k, τ) dvk =

∫
U ′

eik·xê(k, τ) dvk +

∫
R3\U ′

eik·xê(k, τ) dvk.(6.1)

As the unit cell U shrinks to zero, the reciprocal cell U ′ fills R
3, and since ê ∈

L2(R3; C6) the integral over R
3 \ U ′ must vanish in this limit. Thus, only Fourier

amplitudes ê(k, τ) with k ∈ U ′ contribute to the field when the unit cell is small. But
as shown in section 3, these Fourier amplitudes are precisely the mean values of the
corresponding Bloch amplitudes, ê(k, τ) = 〈ẽ(·,k, τ)〉, and we have

e(x, τ) →
∫
U ′

eik·x 〈ẽ(·,k, τ)〉dvk, |U | → 0.(6.2)

This suggests that the mean value of the Bloch amplitude carries the relevant infor-
mation for the solution when the unit cell becomes small. To capture the effect of the
microstructure, we introduce the dimensionless variables y and η as

x = ay, k = a−1η,(6.3)
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Fig. 6.1. Plot of a typical band structure. The eigenvalues Ωn for the geometry in the upper left
figure (unit cell U = ]0, 1[3) are depicted as functions of the wave vector η in the reciprocal unit cell
U ′ = ]−π, π[3 in the lower left figure. The shaded area in the lower left part of the diagram indicates
the approximate validity range of classical homogenization [23]. The thin grey strip is a band gap,
where there are no eigenvalues regardless of the wave vector. Thus, in this frequency interval there
can exist no fixed frequency solutions to Maxwell’s equations. In this plot, the optical modes are
above the band gap, and the acoustic modes are below. There are only two acoustic modes, since
we do not plot the negative frequencies corresponding to propagation in the negative η-direction.
The calculations are made with the program described in [15], and the scaffold geometry is taken
from [9]. The thickness of the bars is 20% of the unit cell, and the permittivity in the bars is 12.96.

where a is a typical size of the unit cell. Using this scaling, the eigenvalue problem
can be represented in dimensionless variables as

(−i∇y + η) × J · vn(ay, a−1η)︸ ︷︷ ︸
un(y,η)

= aωn(a−1η)︸ ︷︷ ︸
Ωn(η)

M(ay)︸ ︷︷ ︸
M0(y)

· vn(ay, a−1η)︸ ︷︷ ︸
un(y,η)

.(6.4)

From this formulation we conclude that the eigenvectors un(y,η) and eigenvalues
Ωn(η) can be calculated independent of the physical size a of the unit cell. A typical
plot of the eigenvalues as functions of the wave vector is given in Figure 6.1.

From (6.4) it is seen that the eigenvalues scale with the size of the unit cell as

ωn(k) =
Ωn(ak)

a
.(6.5)

For eigenvalues with Ωn(η) 	= 0 for all η, this means |ωn(k)| → ∞ when a → 0. Apart
from ω0(k), which is identically zero, only eigenvalues corresponding to the index set

I = {n > 0; |Ωn(ak)|/a < ∞, a → 0}(6.6)

remain bounded when a → 0. The modes with n ∈ I are often called the acoustic
branch in the physics literature on lattice vibrations, and n /∈ I ∪ {0} are the optical
branch; see, for instance, [17, p. 88] or [18, p. 210]. Observe that n = 0 is not included
in I, which means that n ∈ I ⇒ (−i∇ + k) · [M · vn] ≡ 0.

The following theorem shows that the steady state response to a band limited
current can consist only of acoustic modes in the limit a → 0.
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Theorem 6.1. Denote the temporal Fourier transform of the current density by

ĵ(x, ω) =

∫ ∞

−∞
eiωτ j(x, τ) dτ.(6.7)

Let ĵ(x, ω) = 0 for |ω| > ω0, where ω0 > 0 is a given constant. The steady state
electromagnetic field in the limit a → 0 is then

lim
τ→∞

e(x, τ) =
∑
n∈I

∫
U ′

en(k)ei(k·x−ωn(k)τ)vn(x,k) dvk,(6.8)

where

en(k) = − 1

(2π)3

∫
R3

e−ik·xvn(x,k)∗ · ĵ(x, ωn(k)) dvx.(6.9)

Proof. The steady state expansion coefficients are calculated by taking the limit
τ → ∞ in (5.12),

(6.10)

lim
τ→∞

en(k, τ)eiωn(k)τ = − 1

(2π)3

∫
R3

e−ik·xvn(x,k)∗ ·
∫ ∞

−∞
eiωn(k)τ ′

j(x, τ ′) dτ ′ dvx

= − 1

(2π)3

∫
R3

e−ik·xvn(x,k)∗ · ĵ(x, ωn(k)) dvx.

Since ωn(k) = Ωn(ak)/a, only the eigenvalues ωn(k) corresponding to n ∈ I∪{0} can
satisfy |ωn(k)| ≤ ω0 when a → 0. Since v0(x,k) can be written as (−i∇ + k)φ(x,k),
the expansion coefficient for n = 0 is (ω0(k) = 0)

(6.11) lim
τ→∞

e0(k, τ) = − 1

(2π)3

∫
R3

e−ik·x[(−i∇ + k)φ(x,k)]∗ · ĵ(x, 0) dvx

= − 1

(2π)3

∫
R3

[−i∇(eik·xφ(x,k))]∗ · ĵ(x, 0) dvx.

But Maxwell’s equations imply the time-harmonic continuity equation ∇ · ĵ(x, ω) =
iω�̂(x, ω), and for ω = 0 this implies ∇ · ĵ(x, 0) = 0, which is equivalent to ĵ(x, 0)
being orthogonal to all gradients. This means limτ→∞ e0(k, τ) = 0, and all expansion
coefficients with n /∈ I are zero in the limit τ → ∞. The steady state field is then

lim
τ→∞

e(x, τ) =
∑
n∈I

∫
U ′

en(k)ei(k·x−ωn(k)τ)vn(x,k) dvk,(6.12)

where en(k) = limτ→∞ en(k, τ)eiωn(k)τ .
Remark 5. The limits a → 0 and τ → ∞ in the above theorem do not have to be

taken literally. In some respect they are complementary, depending on whether the
current is limited in time or in frequency. If the current density j(x, τ) is zero after
some time T , the limit τ → ∞ is reached as soon as τ > T . But, as a consequence,
the Fourier transform ĵ(x, ω) is small but not zero for large ω (due to the “uncertainty
principle” for Fourier transform pairs), which requires an infinitesimal a in order to
make ĵ(x, ωn(k)) small enough. On the other hand, if the current is band limited in
frequency (as in the theorem), there is a finite A such that |ωn(k)| = |Ωn(ak)|/a > ω0
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for all n /∈ I ∪ {0} as soon as a < A, which implies ĵ(x, ωn(k)) = 0. But a current
limited in frequency is small but not zero for large times, requiring τ → ∞. In
practice, a tradeoff is made between these requirements, choosing τ large enough and
a small enough, but we do not go into detail here. The fact that, for currents band
limited as in the theorem, a < A is a sufficient condition for Theorem 6.1 to hold
indicates that the homogenization results presented below are actually valid for a
finite microscopic scale a, although we still phrase the results in terms of the limit
a → 0.

We are now ready to state the main result of this paper, where the index ⊥ denotes
components perpendicular to k̂ = k/|k|, which is the unit vector in the k-direction.

Theorem 6.2. Define the homogenized matrix Mh
⊥(k) as

lim
τ→∞
a→0

〈d̃(·,k, τ)〉 = lim
τ→∞
a→0

〈M(·) · ẽ(·,k, τ)〉 = Mh
⊥(k) · lim

τ→∞
a→0

〈ẽ(·,k, τ)〉 .(6.13)

For every nonzero k ∈ U ′, this matrix has the representation

Mh
⊥(k) =

∑
m∈I

〈M · vm〉 〈v∗m · M〉
〈v∗m · M〉 · 〈vm⊥〉

.(6.14)

Proof. Theorem 6.1 ensures that only modes with m ∈ I survive in the limit
τ → ∞, a → 0. Since (−i∇ + k) · [M · vm] = 0 for m ∈ I, we have k̂ · 〈M · vm〉 = 0,

which implies k̂ · 〈d̃〉 = 0. The proof is complete if we can find a matrix Mh
⊥(k) such

that 〈M · vm〉 = Mh
⊥ · 〈vm〉 for all m ∈ I. That such a matrix exists and has the above

representation is proven in Theorem 6.5. The proof is based on a conjecture.

6.1. Proof of the homogenization theorem. Some of the properties of the
mean values which are needed in this paper seem intuitively reasonable but difficult
to prove. Therefore, we state the following conjecture.

Conjecture 1. For each nonzero k ∈ U ′, precisely four eigenvectors correspond
to the index set I defined in (6.6). The mean values {〈vm⊥〉}m∈I are linearly indepen-

dent; i.e., the components orthogonal to k̂ constitute a basis in the four-dimensional
space {v ∈ C

6 : k̂ · v = 0}.
Remark 6. That I consists only of four indices and not six (the dimension of the

zero-divergence kernel of (−i∇ + k) × J at k = 0) might seem counterintuitive. This
kernel consists of six functions of the form 〈v〉 − ∇φ, and it is reasonable to believe
that all these could be continued as eigenvectors for k 	= 0. The intuitive explanation
is of a geometric nature. We first note that of the four eigenvectors corresponding
to I, two of them are associated with propagation in the −k direction. These can be
found from the other two by reversing the direction of the electric or the magnetic
field. This leaves two fundamentally independent modes, often named transverse
electric and transverse magnetic modes, for each propagation direction k. In three-
dimensional space we have three fundamental directions, which are indistinguishable
at k = 0. This leaves us with 3 × 2 = 6 independent modes corresponding to I,
which is precisely the dimension of the zero-divergence kernel of (−i∇ + k) × J at
k = 0.

The conjecture is supported by the explicit representation of the eigenvectors in
the vacuum case (Theorem 4.2) and experience from numerical calculations. Also,
since the mean values of Bloch amplitudes correspond to the Fourier amplitudes,
〈ẽ〉 = ê(k), the conjecture describes the expected behavior of the electromagnetic
field at small wavenumbers.
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To proceed we need a lemma on linear algebra.
Lemma 6.3. For a set of linearly independent (constant) vectors {wm}, there

exists αmm′ ∈ C, such that the orthogonality relations[ ∑
m′∈I

αmm′w∗
m′

]
· wm′′ = δmm′′(6.15)

hold for m,m′′ ∈ I, where δmm′′ is the Kronecker delta.
Proof. Due to the linear independence of the vectors {wm}, the square matrix with

entries Am′m′′ = w∗
m′ · wm′′ is invertible. This means the equation

∑
m′ Am′m′′am′ =

bm′′ has a unique solution am′ for each bm′′ . Fixing m and choosing bm′′ = δmm′′ ,
this uniquely determines am′ = αmm′ .

Lemma 6.4. There exists a matrix Mh
⊥(k), not depending on the space variable x

or the index m, such that

〈M(·) · vm(·,k)〉 = Mh
⊥(k) · 〈vm⊥(·,k)〉(6.16)

for every m ∈ I.
Proof. With {〈vm⊥〉}m∈I being linearly independent, there exist orthogonality

relations [
∑

m′∈I αmm′〈vm′⊥〉] · 〈vm′′⊥〉 = δmm′′ due to Lemma 6.3. We then have

(6.17) 〈M · vm〉 = 〈M · vm〉
[ ∑
m′∈I

αmm′ 〈vm′⊥〉
]
· 〈vm⊥〉︸ ︷︷ ︸

=1

=

⎡
⎣ ∑
m′,m′′∈I

〈M · vm′′〉αm′′m′ 〈vm′⊥〉

⎤
⎦ · 〈vm⊥〉 = Mh

⊥ · 〈vm⊥〉,

where we used the orthogonality to include the sum over m′′.
As alluded to above, Theorem 6.2 is a consequence of the following theorem,

which concludes the proof of Theorem 6.2.
Theorem 6.5. The homogenized matrix is hermitian symmetric and positive

definite, and it has the representation

Mh
⊥(k) =

∑
m∈I

〈M · vm〉 〈v∗m · M〉
〈v∗m · M〉 · 〈vm⊥〉

.(6.18)

In addition, the orthogonality relations

〈v∗m · M〉 · 〈vm′⊥〉
〈v∗m · M〉 · 〈vm⊥〉

= δmm′(6.19)

hold for each m,m′ ∈ I.
Proof. Taking the mean value of (5.1), we find

k̂ × J · 〈vm〉 =
ωm

|k| 〈M · vm〉 ,(6.20)

where k̂ = k/|k| is the unit vector in the k-direction. Introducing the homogenized

matrix Mh
⊥ and observing k̂×J·〈vm〉 = k̂×J·〈vm⊥〉, we have the algebraic generalized

eigenvalue problem

k̂ × J · 〈vm⊥〉 =
ωm

|k| M
h
⊥ · 〈vm⊥〉,(6.21)
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also known as the simultaneous diagonalization of k̂ × J and Mh
⊥. Since k̂ × J is

a real, symmetric matrix and all eigenvalues ωm/|k| are real, the matrix Mh
⊥ must

be hermitian symmetric, which is also clear from the symmetry of M(x). Using the
eigenvalue problem, we find

〈v∗m′⊥〉 · Mh
⊥ · 〈vm⊥〉 =

|k|
ωm

〈v∗m′⊥〉 · k̂ × J · 〈vm⊥〉 =
ωm′

ωm
〈v∗m′⊥〉 · Mh

⊥ · 〈vm⊥〉,(6.22)

which implies the eigenvectors 〈vm⊥〉 are mutually orthogonal over Mh
⊥ since gener-

ally we have ωm′ 	= ωm for m 	= m′. We ignore the technical problem of multiple
eigenvalues; these occur in macroscopically isotropic media and can be removed by
considering the medium as a limit of macroscopically anisotropic media, which have
distinct eigenvalues. Noting that Mh

⊥ · 〈vm⊥〉 = 〈M · vm⊥〉, we have the orthogonality
relations

〈v∗m · M〉 · 〈vm′⊥〉
〈v∗m · M〉 · 〈vm⊥〉

= δmm′ .(6.23)

This means the matrix

A =
∑
m∈I

〈M · vm〉 〈v∗m · M〉
〈v∗m · M〉 · 〈vm⊥〉

(6.24)

satisfies A · 〈vm⊥〉 = 〈M · vm〉, and therefore A = Mh
⊥. This matrix is hermitian

symmetric and positive definite by construction.
Remark 7. The homogenized matrix is computed from the mean values of the

acoustic modes only. The representation is valid for any nonzero k ∈ U ′, irrespective

of the scale of the unit cell. In the space {v ∈ C
6; k̂ · v = 0}, the matrix Mh

⊥ is
hermitian, positive definite by construction.

6.2. Interpretation of the homogenized matrix. We first comment that
there is no information on the k̂k̂ part of the homogenized matrix corresponding to
static fields. This is not surprising, since we are studying the limit of wave propagation
in a periodic medium. In wave propagation, there is no interaction with static fields,
unless nonlinear effects are taken into account. This part of the homogenized matrix
could possibly be recovered from the divergence condition built into the function space
H#(divk M ∝ �̃), but we do not proceed along those lines in this paper.

Theorem 6.2 is a statement on the mean value of the Bloch amplitudes, i.e.,
〈d̃(·,k, τ)〉 = Mh

⊥(k) · 〈ẽ(·,k, τ)〉, or, equivalently, the Fourier amplitudes d̂(k, τ) =
Mh

⊥(k) · ê(k, τ), k ∈ U ′. But what does this mean in the spatial domain? If the entire
spectral content of ê(k) is contained in the first Brillouin zone U ′ we can at least
formally invert the Fourier transform to find

d(x, τ) = [F−1
3 Mh

⊥(k)] ∗ e(x, τ),(6.25)

where ∗ indicates spatial convolution and F−1
3 is a three-dimensional inverse Fourier

transform. This is a nonlocal constitutive relation, which shows that, at least formally,
the constitutive relation exhibits spatial dispersion.

7. Discussion and conclusions. We have presented a method to compute
effective material parameters for electromagnetic waves propagating in a periodic
medium. The result is an explicit representation in terms of mean values of the Bloch
eigenvectors, which can be computed with standard photonic band gap computational
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techniques, such as described in [15], or a general finite element program [10]. There
are very few results in the literature regarding qualitative results on mean values of
eigenvectors, which indicates there is more work to be done in this field before a
proper evaluation of this new method can be done.

In spite of the latter point, we can speculate whether this new formulation of
homogenization seems to have any potential advantages compared to existing meth-
ods. We recall that the major step in classical homogenization consists in solving an
elliptic equation of the form ∇ · [ε(x) · (I − ∇χ)] = 0. In [6, 11], the accuracy and
computational time of solving the local, elliptic problem is compared to solving the
eigenvalue problem with the corresponding operator and differentiating the eigenvalue
(effective mass homogenization). It is found that there is no significant difference be-
tween the two methods from a numerical point of view, neither in accuracy nor in
computational time.

It is shown in [6] that the “Bloch approximation,” which expresses the homoge-
nized solution in terms of the first Bloch eigenvector and thus has similarities with
the method presented in this paper, is a better approximation to the exact solution
than the classical first-order corrector method, at least in the smooth coefficient case.
In our case, the first Bloch eigenvector corresponds to the acoustic modes, m ∈ I. As
we can see from Theorem 6.1, we can actually represent the full solution using only
acoustic modes under certain conditions, even when the wavelength is not necessarily
infinitely large compared to the unit cell.

One drawback of the Bloch wave method is that the spectral results deal only with
real, symmetric material matrices. This means dispersion effects and a finite conduc-
tivity cannot be handled with this method, unless additional analysis is performed
to guarantee the existence and suitable properties of eigenvalues and eigenvectors.
The finite conductivity was a vital component of the derivation of the local problem
in [26], which demonstrates that, at least at the present understanding, the two meth-
ods live in somewhat different worlds. On the other hand, one advantage of the Bloch
wave expansion is that it represents the full solution of the electromagnetic problem
in periodic media. This makes it possible to estimate the range of validity for the
homogenized result, where some first steps have been taken in [23].

Appendix A. A representation of the Dirac delta distribution. The
following representation of the delta distribution is proven here since the authors
have not succeeded in finding a suitable reference when the basis vectors a1,2,3 are
not necessarily mutually orthogonal.

Lemma A.1. The Dirac delta distribution can be represented by a sum over the
lattice points

δ(k) =
|U |

(2π)3

∑
n∈Z3

eik·xn , k ∈ U ′,(A.1)

where xn = n1a1 + n2a2 + n3a3, n1,2,3 ∈ Z, and a1,2,3 are the basis vectors for the
lattice.

Proof. Represent the vector k ∈ U ′ as k = k1b1 + k2b2 + k3b3, |k1,2,3| ≤ 1/2,
where the reciprocal vectors b1,2,3 satisfy ai · bj = 2πδij and δij is the Kronecker
delta. The sum can be written

∑
n∈Z3

eik·xn =

(∑
n1∈Z

ei2πk1n1

)(∑
n2∈Z

ei2πk2n2

)(∑
n3∈Z

ei2πk3n3

)
= δ(k1)δ(k2)δ(k3),

(A.2)
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where we used the standard representation of the one-dimensional delta distribution
δ(a) =

∑
n∈Z

ei2πan, |a| < 1. Now, identifying (k1, k2, k3) as Cartesian coordinates for
a dimensionless vector η in R

3, we identify δ(k1)δ(k2)δ(k3) as the three-dimensional
delta distribution δ(η). The physical vector k is a smooth mapping k(η), and we
have the standard scaling for delta distributions composed of smooth maps δ(k(η)) =
|det k′(η)|−1δ(η); see, for instance, [14, p. 136]. Since detk′(η) = b1 · (b2 × b3) is
the volume of the reciprocal unit cell U ′, it can also be written detk′(η) = |U ′| =
(2π)3/|U |, and we have

∑
n∈Z3

eik·xn = δ(η) =
(2π)3

|U | δ(k),(A.3)

which completes the proof.
Corollary A.2. The Dirac delta distribution can be represented as

δ(k) =
|U |

(2π)3

∑
n∈Z3

eik·(x+xn), k ∈ U ′.(A.4)

Proof. The proof follows from the lemma since eik·xδ(k) = ei0·xδ(k) = δ(k).

Appendix B. The null space of the curl operator. The following lemma is
well known and is proved in, for instance, [26].

Lemma B.1. Let f ∈ H1
#(U ; R3), and assume that ∇ × f(x) = 0. Then there

exists a unique function φ ∈ H2
#(U)/R such that

f(x) = 〈f(x)〉 + ∇φ(x).(B.1)

The following lemma generalizes this result for the shifted curl operator.
Lemma B.2. Let f ∈ H1

#(U ; C3). Assume that (−i∇ + k) × f(x) = 0, where

k ∈ R
3. Then there exists a vector kn0

in the reciprocal lattice and a unique function
φ ∈ H2

#(U) such that

f(x) =
〈
e−ikn0 ·xf(x)

〉
eikn0 ·x + (−i∇ + k)φ(y)(B.2)

and 〈e−ikn0 ·xφ(x)〉 = 0. Furthermore, (kn0
+ k) × 〈e−ikn0 ·xf(x)〉 = 0.

Proof. The periodicity of the function f ∈ H1
#(U ; R3) implies that f has a Fourier

expansion

f(x) =
∑

n∈Z3

f̂neikn·x.(B.3)

The sequence f̂n belongs to (
21)
3. Due to the condition (−i∇ + k) × f = 0, the

coefficients f̂n also satisfy

(kn + k) × f̂n = 0 ∀n ∈ Z
3.(B.4)

Construct the function g(x) = f(x)− 〈e−ikn0 ·xf(x)〉eikn0 ·x, where n0 is determined
from

|kn0 + k| = min
n∈Z3

|kn + k|.(B.5)
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This new function has zero Fourier component for n = n0, i.e., ĝn0
= 0. The other

components satisfy (kn + k) × ĝn = 0, where now |kn + k| is clearly bounded from
zero. Therefore, we can write gn in the form

ĝn = (kn + k)φ̂n ∀n 	= n0.(B.6)

The coefficients φ̂n are in 
22 and

g(x) =
∑

n�=n0

(kn + k)φ̂neikn·x = (−i∇ + k)φ(x,k),(B.7)

where

φ(x,k) =
∑

n�=n0

φ̂neikn·x ∈ H2
#(U).(B.8)

Using this construction in the original equation, we find

0 = (−i∇ + k) × f(x)

= (−i∇ + k) ×
(〈

e−ikn0
·xf(x)

〉
eikn0

·x + (−i∇ + k)φ(x,k)
)

= eikn0 ·x(kn0
+ k) ×

〈
e−ikn0 ·xf(x)

〉
,(B.9)

which completes the proof.
Corollary B.3. If k ∈ U ′, the index n0 is 0. Thus, if (−i∇ + k) × f(x) = 0,

we have

f(x) = 〈f(·)〉 + (−i∇ + k)φ(x,k)(B.10)

with 〈φ〉 = 0. Furthermore, k × 〈f(·)〉 = 0.

Appendix C. Classical homogenization. We show that the classical formulas
for the homogenized material matrix (see, for instance, [25, 26]) can be obtained from
the Bloch expansion for zero wave vector k.

Theorem C.1. For k = 0, we can find six functions vm ∈ H#(div M ∝ �̃) and
a homogenized matrix Mh such that

〈M(·) · vm(·,0)〉 = Mh · 〈vm(·,0)〉,(C.1)

where the functions vm are in the kernel of ∇× J and

Mh = 〈M(·) · (I −∇χ(·))〉 =

〈(
ε(·) 0
0 μ(·)

)
·
(
I −∇χe(·) 0

0 I −∇χh(·)

)〉
(C.2)

and the six-vector potential χ(x) = [χe(x),χh(x)]T satisfies the elliptic equation

∇ · [M(x) · (I −∇χ(x))] = 0(C.3)

with periodic boundary conditions.
Proof. For k = 0 the modes in the kernel satisfy ∇ × J · vm(x,0) = 0, which

implies that (see Appendix B)

vm(x,0) = 〈vm〉 − ∇φm(x),(C.4)
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where φm(x) is a two-scalar with zero mean, and 〈vm〉 is an arbitrary constant six-
vector. From Theorem 4.3 it is clear that there exists seven independent functions
satisfying

∇ · [M(x) · (〈vm〉 − ∇φm(x))] = zm�̃, m = 0, 1, 2, . . . , 6.(C.5)

Choose z0 = 1 and 〈v0〉 = 0. The potential φ0 is then uniquely determined by the
elliptic equation −∇ · [M · ∇φ0] = �̃, and the requirement 〈φ0〉 = 0. In order for the
seven functions to be linearly independent, we must set zm = 0 for m = 1, 2, . . . , 6.
The remaining six functions are then determined by the zero divergence condition

∇ · [M(x) · (〈vm〉 − ∇φm(x))] = 0, m = 1, 2, . . . , 6.(C.6)

This elliptic problem is uniquely solvable for φm in terms of the mean value 〈vm〉, and
the solution can be represented as

∇φm(x) =

(
∇φe

m(x)

∇φh
m(x)

)
=

(
∇χe(x) 0

0 ∇χh(x)

)
· 〈vm〉 = ∇χ · 〈vm〉,(C.7)

where the six-vector χ(x) is independent of m. Since the mean values 〈vm〉 can be
chosen to span C

6, χ(x) must satisfy

∇ · [M(x) · (I −∇χ)] = ∇ ·
[(

ε(x) 0
0 μ(x)

)
·
(
I −∇χe(x) 0

0 I −∇χh(x)

)]
= 0,

(C.8)

which are 2 × 3 scalar equations that together with periodic boundary conditions
determine the solution χ(x) = [χe(x),χh(x)]T. We get

vm(x,0) = (I −∇χ(x)) · 〈vm〉.(C.9)

The homogenized matrix is then

〈M(·) · vm(·,0)〉 = 〈M(·) · (I −∇χ(·))〉︸ ︷︷ ︸
Mh

· 〈vm(·,0)〉,(C.10)

which completes the proof.
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Norm. Sup., 12 (1883), pp. 47–88.

[13] S. Guenneau and F. Zolla, Homogenization of three-dimensional finite photonic crystals,
Progress in Electromagnetics Research, 27 (2000), pp. 91–127.
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