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On the numerical evaluation of elastostatic fields in locallyisotropic two-dimensional compositesLeslie Greengard� Johan HelsingyMarch 10, 1997AbstractWe present a fast algorithm for the calculation of elastostatic fields in locally isotropiccomposites. The method uses an integral equation approach due to Sherman, combinedwith the fast multipole method and an adaptive quadrature technique. Accurate solu-tions can be obtained with inclusions of arbitrary shape at a cost roughly proportionalto the number of points needed to resolve the interface. Large-scale problems, withhundreds of thousands of interface points can be solved using modest computationalresources.1 IntroductionAn important problem in planar elasticity concerns the calculation of elastostatic fields incomposite materials consisting of locally isotropic inclusions in a uniform background. Im-portant quantities which can be obtained from the elastic field include the e�ective elasticmoduli of the composite as well as pointwise values of the stress, strain and displacementfields. A variety of numerical methods have been used for such problems including finiteelement methods (Garboczi and Day 1995; Lukkassen, Persson and Wall 1995), bound-ary element methods (Achenbach and Zhu 1990; Eischen and Torquato 1993), collocationmethods (Jou, Leo and Lowengrub 1995), and spring-grid models (Chen, Thorpe and Davis1995). Methods applicable to special geometries, such as ellipsoids and half-planes, in-clude algebraic transformation methods (Honein and Herrmann 1990) and Fourier methods(McPhedran and Movchan 1994; Helsing 1995). Finite difference schemes can also be used,as well complex variable methods and the equivalent inclusion method (Mura 1987).Despite the many available options, however, accurate numerical solutions are difficult toobtain due to issues of storage, speed, quadrature and the imposition of periodic boundary�Courant Institute of Mathematical Sciences, New York University, New York, New York 10012. Thework of this author was supported by the Applied Mathematical Sciences Program of the U.S. Departmentof Energy under Contract DEFGO288ER25053 and by a NSF Presidential Young Investigator AwardyCourant Institute of Mathematical Sciences, New York University, New York, New York 10012. Thework of this author was supported by the Applied Mathematical Sciences Program of the U.S. Departmentof Energy under Contract DEFGO288ER25053 and by NFR, TFR, and the Knut and Alice WallenbergFoundation under TFR contract 96-977. Present address: Department of Solid Mechanics, Royal Instituteof Technology, SE-100 44 Stockholm, Sweden 1



conditions. We have chosen to concentrate on developing an approach due originally toSherman (1959), who constructed an elegant complex variable method based on the Goursator Kolosov-Muskhelishvili potentials. In particular, he showed that it is possible to rewritethe elastostatic equations as a singular integral equation for a complex-valued density. Asfar as we know, Sherman's equation has not been used in practice, although Theocaris andIoakimidis (1977) have suggested the use of a closely related approach.In this paper, we present a simple version of the Sherman equation, a high-order quadra-ture method, and a fast algorithm for solving the finite-dimensional linear system whichresults from discretization. This algorithm relies on conjugate-gradient type iterative meth-ods such as GMRES (Saad and Schultz 1986) or BCG (Lanczos 1952; Fletcher 1975), to-gether with fast multipole acceleration (Rokhlin 1985; Greengard and Rokhlin 1987; Carrieret al. 1988). The net cost is roughly proportional to the number of points on the inter-face. Related schemes have previously been developed for electrostatic interface problems(Greengard and Moura 1994; Helsing 1996) and Stokes flow (Greengard et al. 1996).The next section describes the Sherman equation, while section 3 provides an extensionof the equation to periodic problems and a collection of formulae for extracting e�ectivemoduli. We briefly discuss some numerical issues in section 4, and demonstrate the perfor-mance of the method in section 5.2 The Sherman EquationLet U denote the Airy stress function for a piecewise isotropic two-dimensional material.Since U satisfies the biharmonic equation (in each subdomain), it can be represented asU = <e f�z�+ �g ; (1)where � and � are analytic functions of the complex variable z and <effg denotes thereal part of the function f . For a thorough discussion of the complex variable approach toelasticity problems, see (Muskhelishvili 1953; Parton and Perlin 1981). For our purposes,it is sufficient to observe that the displacement (u; v) satisfiesu+ iv = � 12� + 1���� 12� �z�0 +  � ; (2)where  = �0, � is the two-dimensional bulk modulus, and � is the two-dimensional shearmodulus. The integral of the traction (tx; ty) along a curve �(s) can be obtained from therelation Z �(s)�(s0)(tx + ity)ds = �����ss0 i ��+ z�0 +  � ; (3)where s denotes arclength. Di�erentiation of the expression (2) along the tangent to a curve� with normal (nx; ny) yieldsdds(u+ iv) = i� 12� + 1���n� i2� ��n� z�0�n �	�n� ; (4)where n = nx+ iny , � = �0, and 	 =  0. Finally, di�erentiation of the expression (3) alongthe tangent yields tx + ity = �n+ �n� z�0�n� 	�n: (5)2



Consider now a two-component material consisting of an infinite medium D0 with elasticmoduli �1 and �1 which surrounds a finite number M of inclusions with elastic moduli �2and �2. We will refer to the infinite medium as �ller. We denote the inclusions by Dj ,j = 1; : : : ;M , the interface between D0 and Dj by �j , and the union of all interfaces by� = PMj=1 �j . We would like to compute the displacement, stress, and strain �elds inthe material subject to three di�erent imposed average displacements, namely dI = (x; 0),dII = (0; y), and dIII = (y; x). Since the equations of elasticity are satis�ed in each domain,it remains only to solve the interface problem, which consists of enforcing the continuity oftraction and displacement across inclusion/�ller boundaries.The �rst option, suggested by Sherman (1959), is to work with eq. (2) and eq. (3) andto represent the lower-case potentials � and  in the form�(z) = 12�i Z� !(�)d�� � z + �z; (6)and  (z) = 12�i Z� !(�)d�� � !(�)d�� � z � 12�i Z� ��!(�)d�(� � z)2 + �z; (7)where !(z) is an unknown density.Remark 2.1 The functions �z and �z in eqs. (6) and (7) represent the forcing terms in ourformulation. The two constants � and � take the values �1=2 and ��1 for imposed averagedisplacement dI, the values �1=2 and �1 for displacement dII, and the values 0 and 2i�1 fordisplacement dIII. Thus, � can always be assumed to be real, while � is either real or a pureimaginary number. While the displacements are clearly unbounded at in�nity, the stressesare not. If we let N1 and N2 denote the principal stresses at in�nity, and let � denote theangle made by the direction of N1 with respect to the x-axis, then it is straightforward toshow that � = 14(N1 +N2) and � = �12(N1 �N2)e�2i�.Remark 2.2 Sherman (1959) considered a slightly di�erent situation, where the �ller phaseD0 is �nite, and is subject to some speci�ed displacement on its boundary @D0. Thedi�erences between these two problems are minor, and the formulation presented above ismore readily extended to the periodic case.Once � is assumed to take the form (6), the expression (7) for  enforces the continuityacross the interface of the integral of traction. The requirement that the displacement becontinuous across the interface leads, from eq. (2), to the integral equation12 � 1�2 + 1�2 + 1�1 + 1�1�!(z) + � 1�2 � 1�1�M1!(z) + � 12�2 � 12�1�M2!(z) =� � 1�2 � 1�1��z + � 12�2 � 12�1� ���z; (8)where M1 and M2 are integral operators given byM1!(z) = 12�i Z� !(�)d�� � z ; (9)3



and M2!(z) = 12�i Z� !(�)d �log � � z�� � �z �+ 12�i Z� !(�)d �� � z�� � �z �= 12�i "Z� !(�)d�� � z � Z� !(�)d���� � �z + Z� !(�)d��� � �z � Z� (� � z)!(�)d��(�� � �z)2 # : (10)Despite appearances, the operatorM2 is smooth, while the operatorM1 is to be interpretedin the Cauchy principal value sense (see section 4). The equation (8) is simpler thanSherman's original formulation, but mathematically equivalent.A second way to solve the inclusion problem, suggested by Theocaris and Ioakimidis(1977), is to work with eqs. (4) and (5) and to represent the upper-case potentials � and	 as Cauchy-type integrals: �(z) = 12�i Z� 
(�)d�� � z + �; (11)and 	(z) = � 12�i Z� 
(�)d��� � z � 12�i Z� ��
(�)d�(� � z)2 + �: (12)With this choice, the continuity of traction condition is automatically satis�ed. The re-quirement of a continuous displacement leads, via eq. (4), to an integral equation for 
(z):12 � 1�2 + 1�2 + 1�1 + 1�1�
(z) + � 1�2 � 1�1�M1
(z) + � 12�2 � 12�1�M3
(z) =� � 1�2 � 1�1��� � 12�2 � 12�1� �nn ��; (13)where, M1 is de�ned in eq. (9), and the operator M3 is de�ned byM3
(z) = 12�i "Z� 
(�)d�� � z + �nn Z� 
(�)d��� � �z + Z� 
(�)d���� � �z + �nn Z� (� � z)
(�)d��(�� � �z)2 # :We will work with eq. (8) rather than eq. (13) for two reasons: �rst, the operator M2is simpler than M3, and second, the density !(z) is smoother than the density 
(z). Theformer is, in fact, the integral of the latter.3 Periodic Boundary Conditions and E�ective ModuliIn order to study bulk properties of composites at �nite volume (area) fraction, we considera periodic structure which tiles the entire plane. To simplify the ensuing discussion, welimit our attention to square arrays (Fig. 1). We denote the unit cell in this structure byD0 = [�1=2; 1=2)� [�1=2; 1=2). Given M inclusions per unit cell (D1,: : : ,DM), we denotethe area fraction they occupy by p2.There are a number of ways of imposing periodic boundary conditions. One of the mostnatural, as well as one of the oldest, is the method of images (Rayleigh 1892). Let Z2denote the set of lattice points in the plane with integer coordinates,Z2 = fk1 + ik2 j k1; k2 2 Zg:4
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.  .  . .  .  .Figure 1: A square unit cell with a single inclusion and its eight nearest neighbors. The imagecells extend in all directions.and � the punctured lattice� = fk1 + ik2 j k1; k2 2 Z ; k21 + k22 6= 0g:We proceed by replacing the kernels in the operatorsM1 and M2 by their periodic analogs.In other words, instead of the Cauchy kernel 1=(� � z) in eq. (9), we use the Weierstrass �function �(�; z) = Xw2Z2 1(w+ �)� z ; (14)and instead of the kernel (� � z)=(�� � �z)2 in eq. (10), we use the function�(�; z) = Xw2Z2 (w+ �)� z(( �w + ��)� �z)2 : (15)Rectangular and hexagonal arrays can be treated in an analogous fashion, as can skewedlattices in which the unit cell is an arbitrary parallelogram (Filshtinskii 1973).Care must be taken in working with the functions �(�; z) and �(�; z), since the series(14) and (15) are only conditionally convergent. To properly de�ne these functions, we usethe Taylor expansions�(�; z) = "Xw2� 1w#+ (z � �) "Xw2� 1w2# + (z � �)2 "Xw2� 1w3# + : : : (16)and �(�; z) = "Xw2� w�w2#+ 2(�z � ��) "Xw2� w�w3#+ 3(�z � ��)2 "Xw2� w�w4#+ : : :+(z � �) "Xw2� 1�w2# + 2(z � �)(�z � ��) "Xw2� 1�w3# (17)+3(z � �)2(�z � ��)2 "Xw2� 1�w4#+ : : :5



The lattice sums which appear in these expressions are usually abbreviated bySj = Xw2� 1wj ; j � 1;and Tj = Xw2� w�wj�1 ; j � 3:S1 and T3 can simply be set to zero, while Sj , for j � 3, and Tj, for j � 5, are convergent.The conditionally convergent sums S2 and T4 are \shape-dependent", with values deter-mined by the condition that @�=@z and @�=@z be periodic. For the square array, S2 shouldbe set to �, while T4 is approximately 4:07845116116140 (Rayleigh 1892; Drummond andTahir 1984). For an e�cient algorithm to compute the convergent lattice sums, see Bermanand Greengard (1994).Once the periodic counterpart of eq. (8) has been solved for the density !, the displace-ment �eld can be computed from eq. (2). Two useful functions related to the displacementare p = �(u + iv) and q = �(u + iv). The functions p and q su�er from discontinuities(jumps) across inclusion/�ller boundaries. The magnitudes of the jumps, the inside limitminus the outside limit, will be denoted [p] and [q]. A straightforward calculation showsthat [q] = �1 + �22�2 + �12�1�!(z) + ��2�2 � �1�1�M1!(z) + ��2�2 � �1�1��z; (18)and that[p] = �1 + �22�2 + �12�1�!(z) + � �22�2 � �12�1�M2!(z)� � �22�2 � �12�1� ���z: (19)Repeated use of the divergence theorem yieldsLemma 3.1 Let �ij and �ij denote the components of the stress and strain tensors, respec-tively, and let the stress-strain relations be given by0B@ �11�22p2�12 1CA = 0B@ c1 c2 c3c2 c4 c5c3 c5 c6 1CA0B@ �11�22p2�12 1CA : (20)Let a = 1V Z�unit [q]dz and b = 1V Z�unit [p]d�z; (21)where �unit denotes the inclusion/�ller interface in the unit cell. If one imposes the averagedisplacement dI, then the e�ective moduli c�1, c�2, c�3 are given byc�1 = �1 + �1 + =mfa� bg;c�2 = �1 � �1 �=mfa+ bg;c�3 = �p2<efag: (22)6



If one imposes the average displacement dII, then the e�ective moduli c�2, c�4, c�5 are givenby c�2 = �1 � �1 + =mfa� bg;c�4 = �1 + �1 �=mfa+ bg;c�5 = �p2<efag: (23)If one imposes the average displacement dIII, then the e�ective moduli c�3, c�5, c�6 are givenby c�3 = =mfa� bg=p2;c�5 = �=mfa+ bg=p2;c�6 = 2�1 �<efag: (24)A useful formula, due to Hill (1964), applies to the case �1 = �2. The e�ective bulkmodulus �e� = (c�1 + c�2)=2 can then be written in closed form as�e� = �1 + (�1 + �1)(�2 � �1)p2�2 + �1 � (�2 � �1)p2 : (25)4 Numerical PreliminariesOne of the di�culties in working with integral equations is that they typically involvesingular or weakly singular kernels. Initial inspection of the representations (9) and (10)would suggest that both M1 and M2 are singular, but they are not. The kernel of M2satis�es lim�!z d �log � � z�� � �z � = 12�(z)ds; (26)and lim�!z d �� � z�� � �z � = 12�(z)e2i�ds; (27)where z(s) is a parameterization of the interface, �(z) denotes the curvature at the pointz(s), � is the argument of the tangent vector at z(s), and ds is an element of arclength.Thus, the kernel is continuous, at least for twice-di�erentiable curves. M1, on the otherhand, is a Cauchy integral, and must be interpreted in the principal value sense.4.1 Fourier discretizationIf the inclusions are disk-shaped, a very simple quadrature approach is to expand the densityon each inclusion �j as a Fourier series:!j(z) = 1Xn=1 cjnein� + djne�in�; (28)where � denotes the argument of z with respect to the center of the jth disk. All of theintegrals in eq. (8) can then be computed analytically, so that the only discretization errorcomes from truncating the Fourier representation (28).7



4.2 The trapezoidal ruleFor more general inclusions, the trapezoidal rule is commonly used with an equispaced mesh,since it achieves spectral accuracy when applied to smooth functions such as the integrandin M2!(z). If the point z lies on the interface �j , then the Cauchy integral M1!(z) over�� �j can also be computed with spectral accuracy using the trapezoidal rule. It remainsonly to consider the evaluation ofM1!j(z) � 12�i Z�j !j(�)d�� � z : (29)For this, we assume the number of points used in the discretization of �j is even. It canthen be shown that the trapezoidal rule using the odd points yields spectral accuracy atthe even points, and vice versa (Sidi and Israeli 1988).If distinct portions of the total interface � are relatively well separated, then the methodjust outlined works extremely well. This condition can be violated by a single inclusionwhose boundary folds back on itself, or by having two inclusions be close to touching. Ineither event, the trapezoidal rule performs poorly. If the underlying mesh has a spacing ofh, it requires that distinct, non-adjacent portions of the boundary be relatively far away(perhaps 10h) in order for the integrand to appear smooth, even if the density ! is well-resolved.4.3 Product integrationBoundary element methods (Jaswon and Symm 1977) are based on product integration,and are not plagued by the same di�culty. To achieve uniform second order accuracy,for example, the density ! would be approximated by a piecewise linear function and theinterface by a polygon. All integrals would then be evaluated analytically. Such a techniqueis viable, but we have chosen to use adaptive Gaussian quadrature because it is easy toimplement, it is easy to re�ne locally, and it provides us with robust a posteriori errorcontrol.4.4 Adaptive Gaussian quadratureSuppose that the boundary � is subdivided into M segments, and that on each segment weare given the nodes corresponding to K-point Gauss-Legendre quadrature in the arclengthparametrization as well as the values of ! at those nodes. Then, for smooth integrands, thecomposite K-point rule is of order 2K. Thus, if distinct portions of the boundary are notclose-to-touching, the application of the operator M2 is straightforward. If the point z lieson the interface �j , then the Cauchy integral M1!(z) over � � �j is also computed with2Kth order accuracy. For the calculation of M1!j(z), we assume that �j is parametrizedin arclength as �j = f�(s) j 0� s � j�j jg, and let z = �(t). We write M1!j(z) in the formM1!j(�(t)) = !j(�(t))2 + 12�i Z�j (!j(s)� !j(t))� 0(s) ds�(s)� �(t) : (30)Since lims!t !j(s)� !j(t)�(s)� �(t) = !0j(t)� 0(t) ;8
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3 3Figure 2: For points such as z, adaptive Gaussian quadrature is used to evaluate the integralsM1!(z) and M2!(z) over the three nearby segments Bj�1; Bj , and Bj+1. All three are re�nedonce, several subintervals are re�ned a second time, and one is re�ned a third time (indicatedby the numbers 1,2,3).the integral in (30) has a smooth kernel. The derivatives !0(t) and � 0(t) can, of course, becomputed with Kth order accuracy using the values of ! and � at the K nodes on a givensegment. Therefore, the Cauchy principal value integral can be obtained with Kth order(but not 2Kth order) accuracy.If distinct, non-adjacent portions of the interface � are close-to-touching, then we en-counter the same di�culty as we did with the trapezoidal rule. To overcome this, we usea strategy devised and discussed in some detail by Helsing (1996) in the context of electro-static problems. For illustration, consider the evaluation of M1!(z), where z is near, butnot on, three consecutive segments Bj�1; Bj ; Bj+1 in the discretization of �. We assumethat other segments are su�ciently far that the kernel d�=(� � z) appears smooth (Fig. 2).To compute 12�i ZBj�1 !(�)d�� � z ; 12�i ZBj !(�)d�� � z ; and 12�i ZBj+1 !(�)d�� � z ;we use recursive binary subdivision of each interval. The re�nement process is halted whenthe kernel d�=(� � z) is su�ciently well resolved by a K-point Gauss-Legendre mesh. Thedensity ! is then interpolated to the points of the re�ned mesh and the integral is evaluatedby (composite) Gauss-Legendre quadrature. To be more precise about this decision process,we use a heuristic rule based on examining the Legendre expansion of the kernel as a functionof arclength s: jS�j� 0(s)�(s)� z � K�1Xk=0 ckPk(s);where Pk(s) is the kth order Legendre polynomial scaled to the relevant subinterval andjS�j is the length of that subinterval. Smoothness is then well-known to correspond to rapiddecay of the coe�cients fckg (Gottlieb and Orszag 1977). We halt the re�nement processwhen jcK�2j + jcK�1j < p�, where � is the desired precision. We use p� rather than � asour \monitor function" because the approximation of the kernel is only Kth order accurate,while the quadrature rule is of order 2K.Remark 4.1 When solving the discrete version of the integral equation (8), what is neededis only the in
uence of each density value !j at each discretization point zk. The adaptive9



calculation need only be done once to obtain the corresponding matrix entry accurately.The adaptive re�nement strategy outlined above does not increase the number of degreesof freedom.4.4.1 A posteriori re�nementOne of the principal advantages of using composite Gaussian quadrature is that it providesan extremely reliable form of error control. After solving the integral equation (8) on a givensubdivision of �, we can expand the solution ! on each segment and determine whetherit is well-resolved by looking at its Legendre expansion. Those subintervals on which ! israpidly decaying can then be left untouched, while those on which the decay is slow canbe subdivided, after which the full integral equation must be solved again. A reasonablestrategy is to use a similar re�nement criterion as above, namely that jcK�2j+ jcK�1j < �.We modify this approach by �xing the number of subdivisions added at each stage andallowing multiple subdivisions of a given interval, if deemed appropriate. We refer thereader to (Helsing 1996) for details. Given an initial subdivision structure for �, we refer theprocess of solving the integral equation and re�ning underresolved segments as a stage. Fora discussion of why such a strategy is particularly robust in an integral equation framework,see (Lee and Greengard 1997).4.5 Fast multipole accelerationDiscretization of the integral equation (8), or its periodic counterpart, results in a denselinear system, for which O(N2) work is required to generate the matrix. When the numberof unknowns is su�ciently small, direct elimination schemes can be used to solve thesesystems with a cost proportional to N3. Since the linear systems are well-conditioned,however, conjugate-gradient type iterative methods such as GMRES or BCG require theevaluation of a �xed number of matrix-vector products which depends on the error tolerance,but is independent of N . Thus, good iterative techniques require O(N2) work. The amountof work can be reduced to O(N) by making use of the fast multipole method or FMM(Rokhlin 1985; Greengard and Rokhlin 1987; Carrier et al. 1988), which is a \matrix-free" approach. We refer the reader to these papers for a description of the method andto (Greenbaum, Greengard, and Mayo 1992; Greengard et al. 1996) for its use in relatedproblems.We have been rather loose in our lack of distinction between the in�nite medium problemand the periodic problem. As noted in section 3, the transition from the in�nite mediumproblem to the periodic problem is easily made by the addition of certain lattice sums toeach matrix entry. One of the features of the FMM is that periodic boundary conditionsare easy to incorporate. We refer the reader to (Greengard and Rokhlin 1987; Berman andGreengard 1994) for details.5 ResultsThe method described above for the periodic problem has been implemented in Fortran. Toanalyze its performance, we have tested it on inclusion problems with a variety of geometries.10



Table 1: E�ective elastic moduli for square arrays of disks with elastic moduli �2 = 135 and�2 = 225 embedded in a �ller with moduli �1 = 1 and �1 = 313 . p2 denotes the area fractionof the disks. The e�ective bulk modulus is �e� = (c�1 + c�2)=2 and the e�ective shear moduliare �1e� = (c�1� c�2)=2 and �2e� = c�6=2. NFourier denotes the number of modes needed in theFourier discretization to obtain the moduli to the number of digits shown, while Ntrap denotesthe number of points needed in the trapzoidal discretization.p2 NFourier Ntrap �e� �1e� �2e�0.1 6 22 3.8045847395 1.1971387003 1.16251637560.2 8 28 4.3910679595 1.4924686151 1.33739515330.3 8 36 5.1425863254 1.9415606008 1.54109831750.4 10 52 6.1476105376 2.6433812382 1.80139942730.5 12 76 7.5905993679 3.7984374034 2.17432653790.6 16 140 9.9699203299 5.9094871031 2.80310748550.7 24 300 15.4285904402 10.9105341255 4.28401815670.78 94 6000 44.0056413856 33.0679995249 14.62425906610.785 300 - 57.7483590340 41.5392409243 27.2770921510.78539 1000 - 59.7403738343 42.6712066524 32.46299651Example 1: Periodic arrays of disksWe �rst consider periodic arrays of disks using both Fourier discretization and thetrapezoidal rule. In order to compare our results with previous calculations (Lukkassen etal. 1995), we have selected the component moduli to be �1 = 4:3, �1 = 1:3, �2 = 48:6, and�2 = 29:2, with disk area fraction equal to 0:45. Only twenty nonzero Fourier coe�cients areneeded to obtain c�1 = 11:69212100848, c�2 = 4:423994909931 and c�6=2 = 2:458447333489.Lukkassen et al. (1995) obtained e�ective moduli c�1 = 11:7, c�2 = 4:5, and c�6=2 = 2:4.In Table 1, we provide the e�ective moduli for square arrays of elastic disks over a widerange of area fractions for greater material contrast. As the inclusions begin to approachtheir neighboring images, the number of Fourier modes grows noticeably, but the di�cultiesencountered by the trapezoidal rule are more severe. For area fractions above p2 = 0:78,several thousand points are required to compute the integrals M1!(z) and M2!(z) with asingle digit of accuracy.Example 2: A single complex inclusionFigure 3 shows a square array of nine-armed inclusions. The interface of the inclusionin the unit cell centered at the origin is parameterized byz(t) = 0:36(1 + 0:36 cos9t)eit; 0 � t < 2�: (31)Using the same component moduli as in Table 1, we obtain c�1 = 13:00586195521, c�2 =11



Figure 3: A unit cell and its nearest neighbors in an array of nine-armed inclusions, parametrizedas in eq. (31).Figure 4: For stretching in the x-direction (displacement dI), we plot the traction vector alongthe inclusion/�ller interface.3:629623366442, c�4 = 15:06532778649, and c�6 = 5:51963404857, using either the compos-ite 24-point Gauss-Legendre rule or the trapezoidal rule for discretization. We also displaythe traction along the interface in Fig. 4. It is interesting to note that for twelve digitaccuracy, Gauss-Legendre quadrature is slightly more e�cient, requiring 1200 points on theinterface where the trapezoidal rule required 1300 points. Using a Sun Ultra workstation,the setup time required to generate and store the matrices corresponding to the opera-tors M1 and M2 is less than two minutes. The subsequent solution time for each of thethree right-hand sides is approximately two and a half minutes using the iterative methodGMRES.Examples 3,4: Thin bridgesWe next consider single inclusions whose interface creates thin bridges (close-to-touchingareas). For this, we use the adaptive Gaussian quadrature method of section 4. Theseproblems are still of modest size, and we continue to generate and store the full matricescorresponding to the operators M1 and M2. The system of linear equations resulting fromeq. (8) is then solved with BCG iteration. For accuracies on the order of ten digits, wehave found 16-point Gauss-Legendre quadrature to be most e�cient, and use that in theremainder of this paper.Remark 5.1 For the sake of comparison, we �rst apply the adaptive method to the squarearray of disks at area fraction p2 = 0:78539. With 256 discretization points we obtainfour to �ve accurate digits in the e�ective moduli �e� , �1e� and �2e� . After three stages of12



Figure 5: A unit cell and its nearest neighbors in an array of inclusions, parametrized as ineq. (32).Table 2: E�ective elastic moduli for Example 3 (Fig. 5). The component elastic moduli are thesame as for Example 1. The �rst column indicates the stage of re�nement, the e�ective moduliare de�ned as in Table 1. N is the number of discretization points, 'Iter' is the total numberof BCG iterations for the two sets of equation that are solved at each stage, and 'Time' is thetotal elapsed computing time in minutes on a SUN Sparc10 workstation.Stage �e� �1e� �2e� N Iter Time1 15.9 11.1 1.64 256 141 1m2 15.93 11.13 1.640 512 172 6m4 15.934 11.128 1.6396 1024 195 40m6 15.93429 11.12822 1.639619 1152 188 97m8 15.9342890 11.1282176 1.63961932 1408 78 152mre�nement, 896 discretization points are introduced and the e�ective moduli are obtainedwith better than ten digit accuracy.Our third example is depicted in Fig 5, parameterized in the unit cell byz(t) = 0:25(1+ 0:999 cos4t)eit; 0 � t < 2�: (32)The area fraction of the inclusion is p2 = �(2 + 0:9992)=16. As a test of accuracy, we �rstchoose �1 = �2 = �1 = 1 and �2 = 1000, and test our results against Hill's formula (25).The exact e�ective bulk modulus should be �e� = 1:8318182778838, and the program gives�e� = 1:8318183 at the �rst stage of re�nement. In Table 2, we present the e�ective moduliwhen the components have the moduli of Example 1. We also show the time required as thecalculation proceeds. The solution of the integral equation at the �rst stage of re�nementrequires one minute on a SUN Sparcstation 10. At the end of stage two, six minutes haveelapsed, and at the end of stage eight, two and one half hours have elapsed.13



Figure 6: A unit cell and its nearest neighbors in an array of \rolls", parametrized as in eq. (33).Table 3: E�ective elastic moduli for the square array of rolls (Fig. 6). The component elasticmoduli are as in Table 1. The �rst row shows the number N of points required.Stage 1 Stage 2 Stage 3 Stage 4 Stage 5N 704 1008 1312 1552 1696c�1 17.95 18.0072144 18.00721389 18.0072138812 18.0072138809c�2 11.04 11.0658627 11.0658627 11.06586271 11.065862712c�3 1.9 1.948818 1.9488175 1.948817513 1.948817512c�4 16.712 16.7186922 16.71869263 16.718692679 16.7186926829c�5 1.17 1.16891 1.1689136 1.16891359 1.168913589c�6 9.03 9.0139564 9.01395633 9.013956306 9.0139563042A third example is the array of \rolls" in Figure 6. A roll has the parameterizationz(t) = 8><>: 0:58tei6�te�i�=7 0 � t < 1(0:522� 0:058ei�t)e�i�=7 1 � t < 20:464(3� t)e�i6�te�i�=7 2 � t < 3 (33)It is interesting to note that the close-to-touching points are well-resolved after only onestage of re�nement. Subsequent stages of re�nement take place primarily at the breakpointst = 0; 1; 2 in the parametrization (33), which is continuous, but not smooth. The e�ectivemoduli are presented in Table 3.Example 5: Eight elliptical inclusionsFigure 7 shows a suspension with eight equisized ellipses in the unit cell. The aspectratio of their axes is 2:1 and their area fraction is p2 = 0:7. Each ellipse interface has theparameterizationz(t) = zcent +r 0:716�ei�(2 cos t + i sin t); �� � t < �: (34)14



Figure 7: The left-hand image depicts a unit cell consisting of a suspension of eight ellipses withaspect ratio 2:1 at area fraction p2 = 0:7. The right-hand picture is a contour plot of the traceof the stress tensor when the composite is subject to a balanced biaxial average displacement(dI + dII)=2.Table 4: Center coordinates xcent, ycent, and rotations � for the eight ellipses composite depictedin Figure 7.ellipse no. xcent ycent �1 0.096558008044553 0.180606440983544 1.7930694567769032 -0.312317331860957 0.328928705317157 0.1035272368619623 0.020093822024223 -0.326279205482295 -1.6310994915552914 0.426052439830122 -0.422860540089244 -0.4731831350863235 0.323978421616729 0.254064864498771 -1.2048778406522086 -0.266711719264471 0.070034693393812 -0.1623929237882977 0.370486724007364 -0.116660224915378 0.0343006083348778 -0.254250775518318 -0.294308693171502 1.979465648427812The eight centers zcent and rotations � are given in Table 4. The e�ective elastic moduli arepresented in Table 5 as a simple, but nontrivial, benchmark for those interested in testingcodes. The trace of the stress tensor, depicted in Fig. 7, is obtained from the standardformula (Muskhelishvili 1953; Parton and Perlin 1981)�11 + �22 = 4<e ��0(z)	 :Example 6: Random dispersions of disksIn the preceding examples the entries in the matrices corresponding to M1 and M2 areprecomputed and stored { a practice whose cost in time and storage grows as N2, where Nis the number of discretization points on the interface �. For large-scale problems, we usethe iterative solver GMRES with fast multipole acceleration, as discussed brie
y in section4. 15



Table 5: E�ective elastic moduli for the suspension of ellipses Example 5. The componentelastic moduli are as in Table 1. N denotes the number of discretization points used at eachstage of re�nement. stage 1 stage 2 stage 3c�1 22.527428 22.527424771 22.5274247710c�2 7.840472 7.840472273 7.8404722733c�3 -0.630457 -0.630456718 -0.6304567184c�4 21.216677 21.216677187 21.2166771874c�5 -1.483319 -1.483318320 -1.4833183202c�6 11.826784 11.826785793 11.8267857932N 1280 1664 2048

Figure 8: A unit cell with a \random" suspension of 1024 disks at area fraction p2 = 0:6.16



Table 6: E�ective elastic moduli for the \random" suspension of 1024 disks in Figure 5. Thecomponent elastic moduli are as in Table 1. N denotes the number of discretization points usedat each stage of re�nement. Stage 1 Stage 2 Stage 3c�1 15.4 15.4020 15.40199076c�2 6.2 6.2333 6.23335354c�3 0.1 0.0592 0.05920050c�4 15.4 15.3804 15.38044155c�5 0.0 0.0285 0.02852952c�6 9.1 9.0653 9.06533520N 131,072 163,840 196,608Random suspensions of disks were generated with a Monte Carlo Technique (Metropolis,Rosenbluth, Rosenbluth, Teller, and Teller 1953). We began with a regular array andassigned random tentative displacements to all disks. Each disk was examined in turn. Ifits new position did not cause disks to overlap, the move was accepted. The mean size ofthe random displacements was chosen so that the probability of acceptance was 0.5. Whenall disks were examined once, we considered one simulation step to have been completed.One million simulation steps resulted in the con�guration of Fig. 8. Eight segments and131,072 points were used at the �rst stage of re�nement, and 19 GMRES iterations wereneeded for each of the three right-hand sides to solve the system with a tolerance of 10�3.The total time required on a SUN Ultra workstation was 2 hours. After two additionalstages of re�nement were completed, 28 hours had elapsed.Example 7: Random dispersions of thin ellipsesWe have also considered \random" dispersions of thin ellipses (Fig. 9), generated bya 200,000 step Monte Carlo procedure. In the solution process, 16 segments were initiallyplaced on each ellipse. Four stages of re�nement were used with 480 new segments addedper stage. The computed e�ective moduli are presented in Table 7, along with timingresults.Example 8: Highly irregular inclusionsOur �nal example consists of four highly irregular inclusions in the unit cell (Fig. 10).In the solution process, 250 segments were initially placed on each inclusion and 200 newsegments were added per stage. At stage 3, 140 GMRES iterations were needed with atolerance of 10�14, consuming about 5 hours of time on a SUN Ultra workstation. Thee�ective moduli are presented in Table 8. 17



Figure 9: A unit cell with a \random" suspension of 160 ellipses with aspect ratio 10:1 at areafraction p2 = 0:5.Table 7: E�ective elastic moduli for the \random" suspension of 160 ellipses in Figure 6. Thecomponent elastic moduli are the same as in Table 1. N denotes the number of discretizationpoints used at each stage of re�nement, `Iter' denotes the number of GMRES iterations requiredfor the accuracies displayed, and `Time' denotes the number of hours required on a SUN Ultraworkstation to solve all three interface problems, corresponding to displacements dI, dII, anddIII. Stage 1 Stage 2 Stage 3 Stage 4c�1 9.3024 9.3023926 9.3023925873 9.3023925873c�2 5.9947 5.9949691 5.9949691278 5.9949691278c�3 -0.7498 -0.7497692 -0.7497692321 -0.7497692320c�4 29.4173 29.4198727 29.4198730363 29.4198730364c�5 -3.3983 -3.3979440 -3.3979439966 -3.3979439966c�6 7.5263 7.5263686 7.5263686500 7.5263686499N 40,960 48,640 56,320 64,000Iter 50 91 120 120Time 3 hrs 8 hrs 13 hrs 16 hrs18



Figure 10: A unit cell with four irregular inclusions at area fraction p2 = 0:463.
Table 8: E�ective elastic moduli for the irregular inclusions of Example 8 (Fig. 10). Thecomponent elastic moduli are the same as in Table 1. N denote the number of discretizationpoints used at each stage of re�nement.Stage 1 Stage 2 Stage 3c�1 17.294 17.294395704 17.294395704665c�2 5.072 5.071676773 5.071676772940c�3 -0.006 -0.006236690 -0.006236690506c�4 12.880 12.879949658 12.879949658049c�5 0.057 0.057492106 0.057492106002c�6 6.605 6.604769982 6.604769981583N 22,400 25,600 28,80019
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