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On the numerical evaluation of elastostatic fields in locally
isotropic two-dimensional composites

Leslie Greengard® Johan Helsing!
March 10, 1997

Abstract

We present a fast algorithm for the calculation of elastostatic fields in locally isotropic
composites. The method uses an integral equation approach due to Sherman, combined
with the fast multipole method and an adaptive quadrature technique. Accurate solu-
tions can be obtained with inclusions of arbitrary shape at a cost roughly proportional
to the number of points needed to resolve the interface. Large-scale problems, with
hundreds of thousands of interface points can be solved using modest computational
resources.

1 Introduction

An important problem in planar elasticity concerns the calculation of elastostatic fields in
composite materials consisting of locally isotropic inclusions in a uniform background. Im-
portant quantities which can be obtained from the elastic field include the effective elastic
moduli of the composite as well as pointwise values of the stress, strain and displacement
fields. A variety of numerical methods have been used for such problems including finite
element methods (Garboczi and Day 1995; Lukkassen, Persson and Wall 1995), bound-
ary element methods (Achenbach and Zhu 1990; Eischen and Torquato 1993), collocation
methods (Jou, Leo and Lowengrub 1995), and spring-grid models (Chen, Thorpe and Davis
1995). Methods applicable to special geometries, such as ellipsoids and half-planes, in-
clude algebraic transformation methods (Honein and Herrmann 1990) and Fourier methods
(McPhedran and Movchan 1994; Helsing 1995). Finite difference schemes can also be used,
as well complex variable methods and the equivalent inclusion method (Mura 1987).
Despite the many available options, however, accurate numerical solutions are difficult to
obtain due to issues of storage, speed, quadrature and the imposition of periodic boundary
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conditions. We have chosen to concentrate on developing an approach due originally to
Sherman (1959), who constructed an elegant complex variable method based on the Goursat
or Kolosov-Muskhelishvili potentials. In particular, he showed that it is possible to rewrite
the elastostatic equations as a singular integral equation for a complex-valued density. As
far as we know, Sherman’s equation has not been used in practice, although Theocaris and
loakimidis (1977) have suggested the use of a closely related approach.

In this paper, we present a simple version of the Sherman equation, a high-order quadra-
ture method, and a fast algorithm for solving the finite-dimensional linear system which
results from discretization. This algorithm relies on conjugate-gradient type iterative meth-
ods such as GMRES (Saad and Schultz 1986) or BCG (Lanczos 1952; Fletcher 1975), to-
gether with fast multipole acceleration (Rokhlin 1985; Greengard and Rokhlin 1987; Carrier
et al. 1988). The net cost is roughly proportional to the number of points on the inter-
face. Related schemes have previously been developed for electrostatic interface problems
(Greengard and Moura 1994; Helsing 1996) and Stokes flow (Greengard et al. 1996).

The next section describes the Sherman equation, while section 3 provides an extension
of the equation to periodic problems and a collection of formulae for extracting effective
moduli. We briefly discuss some numerical issues in section 4, and demonstrate the perfor-
mance of the method in section 5.

2 The Sherman Equation

Let U denote the Airy stress function for a piecewise isotropic two-dimensional material.
Since U satisfies the biharmonic equation (in each subdomain), it can be represented as

U=Re{Zd+ x}, (1)

where ¢ and y are analytic functions of the complex variable z and Re{f} denotes the
real part of the function f. For a thorough discussion of the complex variable approach to
elasticity problems, see (Muskhelishvili 1953; Parton and Perlin 1981). For our purposes,
it is sufficient to observe that the displacement (u,v) satisfies

u—l—iv:(%—l—%)(b—%(za—k%), (2)

where 1) = \’/, k is the two-dimensional bulk modulus, and p is the two-dimensional shear
modulus. The integral of the traction (¢,,%,) along a curve I'(s) can be obtained from the
relation

I'(s) ,

/ (ty + ity)ds = —

I(s0)
where s denotes arclength. Differentiation of the expression (2) along the tangent to a curve
I' with normal (n,, n,) yields

Ci(o4+T+7), (3)

d 1 1 = — _
E(uﬂv):i(ﬂJrg) @n—i(@n—z@’ﬁ—@ﬁ), (4)
where n = ny, +in,, ® = ¢, and ¥ = ¢’. Finally, differentiation of the expression (3) along
the tangent yields o

ty + it, = ®n + ®n — 2®'n — ¥n. (5)



Consider now a two-component material consisting of an infinite medium Dy with elastic
moduli k1 and gy which surrounds a finite number M of inclusions with elastic moduli x4
and pp. We will refer to the infinite medium as filler. We denote the inclusions by D;,
j =1,..., M, the interface between Dg and D; by I';, and the union of all interfaces by
I = Z]]\il I';, We would like to compute the displacement, stress, and strain fields in
the material subject to three different imposed average displacements, namely d; = (z,0),
dir = (0,y), and dip = (y, ). Since the equations of elasticity are satisfied in each domain,
it remains only to solve the interface problem, which consists of enforcing the continuity of
traction and displacement across inclusion/filler boundaries.

The first option, suggested by Sherman (1959), is to work with eq. (2) and eq. (3) and
to represent the lower-case potentials ¢ and ¢ in the form

o) = 50 [T v (6)

and

2

where w(z) is an unknown density.

Remark 2.1 The functions ez and 8z in eqs. (6) and (7) represent the forcing terms in our
formulation. The two constants a and 3 take the values ky/2 and —py for imposed average
displacement dy, the values ky/2 and p; for displacement dyr, and the values 0 and 2iu, for
displacement dyrp. Thus, a can always be assumed to be real, while 3 is either real or a pure
imaginary number. While the displacements are clearly unbounded at infinity, the stresses
are not. If we let Ny and N, denote the principal stresses at infinity, and let 6 denote the
angle made by the direction of Ny with respect to the z-axis, then it is straightforward to
show that o = T(Ny + N3) and 3 = —F(Ny — Np)e 27,

Remark 2.2 Sherman (1959) considered a slightly different situation, where the filler phase
Dy is finite, and is subject to some specified displacement on its boundary dDg. The
differences between these two problems are minor, and the formulation presented above is
more readily extended to the periodic case.

Once ¢ is assumed to take the form (6), the expression (7) for ¢ enforces the continuity
across the interface of the integral of traction. The requirement that the displacement be
continuous across the interface leads, from eq. (2), to the integral equation

1(1 1 1 1) (1 1) ( 1 1 )
| —F —+ —F+ —w)+ | —— — | Mw2)+ | — — — | Mow(z) =
2 \p2 K2 1 K1 (2) Ky  Ki 1(2) 2u2 2 2(2)
1 1 1 1Y\ 5
—=—=—az+|— - —) 3z, 8
(Hz fﬁ) <2M2 2#1)ﬂ ®
where My and M, are integral operators given by
1 w(r)dr
M =— | ——
1(2) Qm'/r r—z (9)



and

Myw(z) = %/Fw(ﬂd [log 7: : j T % /Fmd [77: : z]

_L. [/FM—/FM(T)dT‘F w(T)dr _/Fw] (10)

- 2mi T—2z F—z r T—2 (7 —2)
Despite appearances, the operator M5 is smooth, while the operator M, is to be interpreted
in the Cauchy principal value sense (see section 4). The equation (8) is simpler than
Sherman’s original formulation, but mathematically equivalent.
A second way to solve the inclusion problem, suggested by Theocaris and loakimidis
(1977), is to work with eqs. (4) and (5) and to represent the upper-case potentials ® and
¥ as Cauchy-type integrals:

[}

B(z) = %/F AT, (11)
and . )
W(z) = —%/F QT(T_)iT - %/F%?(_TE; + 5. (12)

With this choice, the continuity of traction condition is automatically satisfied. The re-
quirement of a continuous displacement leads, via eq. (4), to an integral equation for £(z):

%(:—ﬁ 1.1, i) (=) + (i - i) MO(2) + (L - i) MQ(z) =

Ky H1 K1 29 24

1 1 1 1\7

(e ()t
K2 K1 22 2m/ n

where, M; is defined in eq. (9), and the operator Ms is defined by

My0(s) = 1 [/FM N @/F Q(7)dr +/FQ(T)dT N @/F (T—Z)Q(T)drl -

T2 T—z 'nJr T—z FT—Z 'n (7 — 2)2

We will work with eq. (8) rather than eq. (13) for two reasons: first, the operator My
is simpler than Ms, and second, the density w(z) is smoother than the density €(z). The
former is, in fact, the integral of the latter.

3 Periodic Boundary Conditions and Effective Moduli

In order to study bulk properties of composites at finite volume (area) fraction, we consider
a periodic structure which tiles the entire plane. To simplify the ensuing discussion, we
limit our attention to square arrays (Fig. 1). We denote the unit cell in this structure by
Do =[-1/2,1/2) x [-1/2,1/2). Given M inclusions per unit cell (Dq,...,Dps), we denote
the area fraction they occupy by ps.

There are a number of ways of imposing periodic boundary conditions. One of the most
natural, as well as one of the oldest, is the method of images (Rayleigh 1892). Let ZZ
denote the set of lattice points in the plane with integer coordinates,

Z? = {ky +iky| k1, ko € Z}.
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Figure 1: A square unit cell with a single inclusion and its eight nearest neighbors. The image
cells extend in all directions.

and A the punctured lattice
A= {ky +iky| ki ko € Z, k7 + k3 #0}.

We proceed by replacing the kernels in the operators My and My by their periodic analogs.
In other words, instead of the Cauchy kernel 1/(7 — z) in eq. (9), we use the Weierstrass ¢

function
1

((r,2)= Y, ———, (14)
e (w+7T)—2

and instead of the kernel (7 — 2)/(7 — 2)? in eq. (10), we use the function

_ (w+7T)—2
n(r,z) = w§2 (w+7)—2)2 (15)

Rectangular and hexagonal arrays can be treated in an analogous fashion, as can skewed
lattices in which the unit cell is an arbitrary parallelogram (Filshtinskii 1973).

Care must be taken in working with the functions ((7,2) and 5(7, 2), since the series
(14) and (15) are only conditionally convergent. To properly define these functions, we use
the Taylor expansions

C(T,Z)I[Z%]—I—(Z—T) [ZF]‘I'(Z_T)Q [ZE]—I_ (16)

wEA wEA

and

n(r,z) = [Z %1 +2(2—7) [Z %1 +3(2 —7)* [Z %1 +...

wEA wEA wEA
e[z g e[S k]
wEA wEA
+3(z — 7)(z — 7)? [Z %l +
wEA



The lattice sums which appear in these expressions are usually abbreviated by

and w
Ty=>Y" —= j>3.
wEA

S1 and T3 can simply be set to zero, while S, for j > 3, and 77, for 7 > 5, are convergent.
The conditionally convergent sums S5 and Ty are “shape-dependent”, with values deter-
mined by the condition that 0(/dz and dn/dz be periodic. For the square array, o should
be set to m, while T4 is approximately 4.07845116116140 (Rayleigh 1892; Drummond and
Tahir 1984). For an efficient algorithm to compute the convergent lattice sums, see Berman
and Greengard (1994).

Once the periodic counterpart of eq. (8) has been solved for the density w, the displace-
ment field can be computed from eq. (2). Two useful functions related to the displacement
are p = k(u 4+ ) and ¢ = p(u + iv). The functions p and ¢ suffer from discontinuities
(jumps) across inclusion/filler boundaries. The magnitudes of the jumps, the inside limit
minus the outside limit, will be denoted [p] and [¢q]. A straightforward calculation shows

that
13 H1 K2 p1 M2
= {14+ —=+— — - — M AL 1
4] ( * ) * 21@1) () + (Hz Hl) w(z)+ (Hz Hl) o (18)
and that
) K1 ) K1 ) K1 =
= 1—|———|——)wz—|—<———)sz—<———) Z. 19
7] ( 22 2 (2) 22 2 2(2) 2u2 2 & (19)

Repeated use of the divergence theorem yields

Lemma 3.1 Let 0;; and €;; denote the components of the stress and strain tensors, respec-
tively, and let the stress-strain relations be given by

a11 €1 €2 C3 €11
0929 = Cy €4 Cy €929 . (20)

V2015 3 €5 Cg V2e19
Let 1 1
a= V/Fum [q]dz and b= V/Fum [p]dz, (21)

where U'yniy denotes the inclusion/filler interface in the unit cell. If one imposes the average
displacement dr, then the effective moduli ¢, c.o, ci3 are given by

1 = K1+ w1+ Smfa — b},
k1 — py — Sm{a + b},
3 = —V2Re{a}. (22)



If one imposes the average displacement driy, then the effective moduli ¢y, e, Co5 are given
by

Ceo = K1 — i1+ Sm{a— b},
K1+ p — Sm{a + b},
s = —V2Re{a}. (23)

If one imposes the average displacement diry, then the effective moduli c.3, .5, cwg are given
by

— Sm{a—0}/V2,

Cx3
cxs = —Sm{a+b}/V2,
e = 2u1 — RNefal. (24)

A useful formula, due to Hill (1964), applies to the case pqy = pz. The effective bulk
modulus Ker = (€41 + €x2)/2 can then be written in closed form as

(g1 + K1)(K2 — K1)p2

. 25
Ko + p1 — (K2 — K1)p2 (25)

Keff = K1 +

4 Numerical Preliminaries

One of the difficulties in working with integral equations is that they typically involve
singular or weakly singular kernels. Initial inspection of the representations (9) and (10)
would suggest that both M; and My are singular, but they are not. The kernel of M,
satisfies

. T —2z 1

lim d [log — z] = §m(z)ds, (26)
and )

lim d [77: : z] = §H(Z)€2i€d8, (27)

where z(s) is a parameterization of the interface, x(z) denotes the curvature at the point
z(s), @ is the argument of the tangent vector at z(s), and ds is an element of arclength.
Thus, the kernel is continuous, at least for twice-differentiable curves. My, on the other
hand, is a Cauchy integral, and must be interpreted in the principal value sense.

4.1 Fourier discretization

If the inclusions are disk-shaped, a very simple quadrature approach is to expand the density
on each inclusion I'; as a Fourier series:

o0
wi(z) = Z ¢l e 4 df e=nd (28)
n=1
where ¢ denotes the argument of z with respect to the center of the jth disk. All of the
integrals in eq. (8) can then be computed analytically, so that the only discretization error
comes from truncating the Fourier representation (28).



4.2 The trapezoidal rule

For more general inclusions, the trapezoidal rule is commonly used with an equispaced mesh,
since it achieves spectral accuracy when applied to smooth functions such as the integrand
in Myw(z). If the point z lies on the interface I';, then the Cauchy integral Myw(z) over
I' = I'; can also be computed with spectral accuracy using the trapezoidal rule. It remains
only to consider the evaluation of
1 w;(T)dr

Miw;(2) = %/F % (29)
For this, we assume the number of points used in the discretization of I'; is even. It can
then be shown that the trapezoidal rule using the odd points yields spectral accuracy at
the even points, and vice versa (Sidi and Israeli 1988).

If distinct portions of the total interface I' are relatively well separated, then the method
just outlined works extremely well. This condition can be violated by a single inclusion
whose boundary folds back on itself, or by having two inclusions be close to touching. In
either event, the trapezoidal rule performs poorly. If the underlying mesh has a spacing of
h, it requires that distinct, non-adjacent portions of the boundary be relatively far away
(perhaps 10h) in order for the integrand to appear smooth, even if the density w is well-
resolved.

4.3 Product integration

Boundary element methods (Jaswon and Symm 1977) are based on product integration,
and are not plagued by the same difficulty. To achieve uniform second order accuracy,
for example, the density w would be approximated by a piecewise linear function and the
interface by a polygon. All integrals would then be evaluated analytically. Such a technique
is viable, but we have chosen to use adaptive Gaussian quadrature because it is easy to
implement, it is easy to refine locally, and it provides us with robust a posteriori error
control.

4.4 Adaptive Gaussian quadrature

Suppose that the boundary I' is subdivided into M segments, and that on each segment we
are given the nodes corresponding to K-point Gauss-Legendre quadrature in the arclength
parametrization as well as the values of w at those nodes. Then, for smooth integrands, the
composite K-point rule is of order 2K . Thus, if distinct portions of the boundary are not
close-to-touching, the application of the operator M, is straightforward. If the point z lies
on the interface I';, then the Cauchy integral Myjw(z) over I' — I'; is also computed with
2Kth order accuracy. For the calculation of Myjw;(2), we assume that I'; is parametrized
in arclength as I'; = {7(s) |0 < s < |I';|}, and let z = 7(¢). We write Myw;(2) in the form

le]‘(T(t)) — wj(T(t)) n L‘/F (w](s) — w](t))T/(S) dS‘ (30)

2 ) 7(s) — 7(t)
Since
i) () @)
MG =) )
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Figure 2: For points such as z, adaptive Gaussian quadrature is used to evaluate the integrals
Myw(z) and Maw(z) over the three nearby segments B;_q, B;, and B, 1. All three are refined
once, several subintervals are refined a second time, and one is refined a third time (indicated
by the numbers 1,2,3).

the integral in (30) has a smooth kernel. The derivatives w'(¢) and 7/(¢) can, of course, be
computed with Kth order accuracy using the values of w and 7 at the K nodes on a given
segment. Therefore, the Cauchy principal value integral can be obtained with Kth order
(but not 2Kth order) accuracy.

If distinct, non-adjacent portions of the interface I' are close-to-touching, then we en-
counter the same difficulty as we did with the trapezoidal rule. To overcome this, we use
a strategy devised and discussed in some detail by Helsing (1996) in the context of electro-
static problems. For illustration, consider the evaluation of Myw(z), where z is near, but
not on, three consecutive segments B;_1, B;, B;41 in the discretization of I'. We assume
that other segments are sufficiently far that the kernel d7/(7 — z) appears smooth (Fig. 2).
To compute

L/B w(r)dr L/B w(T)dT7 and L./B]H w(T)dT7

. ) .
271 i T — 2 271 . T — 2 271 T —2z

we use recursive binary subdivision of each interval. The refinement process is halted when
the kernel d7/(7 — z) is sufficiently well resolved by a K-point Gauss-Legendre mesh. The
density w is then interpolated to the points of the refined mesh and the integral is evaluated
by (composite) Gauss-Legendre quadrature. To be more precise about this decision process,
we use a heuristic rule based on examining the Legendre expansion of the kernel as a function
of arclength s:

ENONES

o~ kPr(s),
T(s) —z kZ:% (s)
where Py(s) is the kth order Legendre polynomial scaled to the relevant subinterval and
|ST| is the length of that subinterval. Smoothness is then well-known to correspond to rapid
decay of the coefficients {¢x} (Gottlieb and Orszag 1977). We halt the refinement process
when |ex_a| + |ex—1| < /€, where € is the desired precision. We use /¢ rather than € as
our “monitor function” because the approximation of the kernel is only Kth order accurate,

while the quadrature rule is of order 2K.

Remark 4.1 When solving the discrete version of the integral equation (8), what is needed
is only the influence of each density value w; at each discretization point z;. The adaptive



calculation need only be done once to obtain the corresponding matrix entry accurately.
The adaptive refinement strategy outlined above does not increase the number of degrees
of freedom.

4.4.1 A posteriori refinement

One of the principal advantages of using composite Gaussian quadrature is that it provides
an extremely reliable form of error control. After solving the integral equation (8) on a given
subdivision of I', we can expand the solution w on each segment and determine whether
it is well-resolved by looking at its Legendre expansion. Those subintervals on which w is
rapidly decaying can then be left untouched, while those on which the decay is slow can
be subdivided, after which the full integral equation must be solved again. A reasonable
strategy is to use a similar refinement criterion as above, namely that |cx_o| + |cx—1] < €.
We modify this approach by fixing the number of subdivisions added at each stage and
allowing multiple subdivisions of a given interval, if deemed appropriate. We refer the
reader to (Helsing 1996) for details. Given an initial subdivision structure for I', we refer the
process of solving the integral equation and refining underresolved segments as a stage. For
a discussion of why such a strategy is particularly robust in an integral equation framework,
see (Lee and Greengard 1997).

4.5 Fast multipole acceleration

Discretization of the integral equation (8), or its periodic counterpart, results in a dense
linear system, for which O(N?) work is required to generate the matrix. When the number
of unknowns is sufficiently small, direct elimination schemes can be used to solve these
systems with a cost proportional to N3. Since the linear systems are well-conditioned,
however, conjugate-gradient type iterative methods such as GMRES or BCG require the
evaluation of a fixed number of matrix-vector products which depends on the error tolerance,
but is independent of N. Thus, good iterative techniques require O( N?) work. The amount
of work can be reduced to O(N) by making use of the fast multipole method or FMM
(Rokhlin 1985; Greengard and Rokhlin 1987; Carrier et al. 1988), which is a “matrix-
free” approach. We refer the reader to these papers for a description of the method and
to (Greenbaum, Greengard, and Mayo 1992; Greengard et al. 1996) for its use in related
problems.

We have been rather loose in our lack of distinction between the infinite medium problem
and the periodic problem. As noted in section 3, the transition from the infinite medium
problem to the periodic problem is easily made by the addition of certain lattice sums to
each matrix entry. One of the features of the FMM is that periodic boundary conditions
are easy to incorporate. We refer the reader to (Greengard and Rokhlin 1987; Berman and
Greengard 1994) for details.

5 Results

The method described above for the periodic problem has been implemented in Fortran. To
analyze its performance, we have tested it on inclusion problems with a variety of geometries.
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Table 1: Effective elastic moduli for square arrays of disks with elastic moduli y; = 135 and
ko = 225 embedded in a filler with moduli iy = 1 and xy = 3%. po denotes the area fraction
of the disks. The effective bulk modulus is Keg = (c.1 + ¢42)/2 and the effective shear moduli
are ple = (ca1 — ¢i2)/2 and p2g = ¢.6/2. Npourier denotes the number of modes needed in the
Fourier discretization to obtain the moduli to the number of digits shown, while Ny, denotes

the number of points needed in the trapzoidal discretization.

P2 NFourier Ntrap Reff :u(leff :u?eff
0.1 6 22 3.8045847395  1.1971387003  1.1625163756
0.2 8 28 4.3910679595  1.4924686151  1.3373951533
0.3 8 36 5.1425863254  1.9415606008  1.5410983175
0.4 10 52 6.1476105376  2.6433812382  1.8013994273
0.5 12 76 7.5905993679  3.7984374034  2.1743265379
0.6 16 140 9.9699203299  5.9094871031  2.8031074855
0.7 24 300 15.4285904402 10.9105341255  4.2840181567
0.78 94 6000 44.0056413856 33.0679995249 14.6242590661
0.785 300 - B7.7483590340 41.5392409243 27.277092151
0.78539 1000 - 59.7403738343 42.6712066524 32.46299651

Example 1: Periodic arrays of disks

We first consider periodic arrays of disks using both Fourier discretization and the
trapezoidal rule. In order to compare our results with previous calculations (Lukkassen et
al. 1995), we have selected the component moduli to be k1 = 4.3, iy = 1.3, k3 = 48.6, and
to = 29.2, with disk area fraction equal to 0.45. Only twenty nonzero Fourier coefficients are
needed to obtain ¢,y = 11.69212100848, c,o = 4.423994909931 and c.¢/2 = 2.458447333489.
Lukkassen et al. (1995) obtained effective moduli ¢,q = 11.7, c,2 = 4.5, and ¢./2 = 2.4.
In Table 1, we provide the effective moduli for square arrays of elastic disks over a wide
range of area fractions for greater material contrast. As the inclusions begin to approach
their neighboring images, the number of Fourier modes grows noticeably, but the difficulties
encountered by the trapezoidal rule are more severe. For area fractions above p; = 0.78,
several thousand points are required to compute the integrals Myw(z) and Myw(z) with a
single digit of accuracy.

Example 2: A single complex inclusion

Figure 3 shows a square array of nine-armed inclusions. The interface of the inclusion
in the unit cell centered at the origin is parameterized by

2(t) = 0.36(1 + 0.36 cos 9t)e'’, 0 <t < 2r.

(31)

Using the same component moduli as in Table 1, we obtain ¢,; = 13.00586195521, ¢, =

11
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Figure 3: A unit cell and its nearest neighbors in an array of nine-armed inclusions, parametrized
as in eq. (31).
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Figure 4: For stretching in the z-direction (displacement dp), we plot the traction vector along
the inclusion /filler interface.

3.629623366442, ¢y = 15.06532778649, and ¢4 = 5.51963404857, using either the compos-
ite 24-point Gauss-Legendre rule or the trapezoidal rule for discretization. We also display
the traction along the interface in Fig. 4. It is interesting to note that for twelve digit
accuracy, Gauss-Legendre quadrature is slightly more efficient, requiring 1200 points on the
interface where the trapezoidal rule required 1300 points. Using a Sun Ultra workstation,
the setup time required to generate and store the matrices corresponding to the opera-
tors My and My is less than two minutes. The subsequent solution time for each of the
three right-hand sides is approximately two and a half minutes using the iterative method

GMRES.
Examples 3,4: Thin bridges

We next consider single inclusions whose interface creates thin bridges (close-to-touching
areas). For this, we use the adaptive Gaussian quadrature method of section 4. These
problems are still of modest size, and we continue to generate and store the full matrices
corresponding to the operators My and M;. The system of linear equations resulting from
eq. (8) is then solved with BCG iteration. For accuracies on the order of ten digits, we
have found 16-point Gauss-Legendre quadrature to be most efficient, and use that in the
remainder of this paper.

Remark 5.1 For the sake of comparison, we first apply the adaptive method to the square
array of disks at area fraction py; = 0.78539. With 256 discretization points we obtain
four to five accurate digits in the effective moduli ke, ulg and p2g. After three stages of
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Figure 5: A unit cell and its nearest neighbors in an array of inclusions, parametrized as in

eq. (32).

Table 2: Effective elastic moduli for Example 3 (Fig. 5). The component elastic moduli are the
same as for Example 1. The first column indicates the stage of refinement, the effective moduli
are defined as in Table 1. IV is the number of discretization points, 'lter’ is the total number
of BCG iterations for the two sets of equation that are solved at each stage, and 'Time’ is the
total elapsed computing time in minutes on a SUN Sparc10 workstation.

Stage  Ker ple T N Tter Time
1 15.9 11.1 1.64 256 141 1m
2 15.93 11.13 1.640 512 172 6m
4 15.934 11.128 1.6396 1024 195  40m
6 15.93429 11.12822 1.639619 1152 188  97m
8 15.9342890 11.1282176 1.63961932 1408 78 152m

refinement, 896 discretization points are introduced and the effective moduli are obtained
with better than ten digit accuracy.

Our third example is depicted in Fig 5, parameterized in the unit cell by
2(t) = 0.25(1 + 0.999 cos 4t e, 0<t<2r. (32)

The area fraction of the inclusion is py = 7(2 + 0.999?)/16. As a test of accuracy, we first
choose pi1 = p2 = k1 = 1 and ky = 1000, and test our results against Hill’s formula (25).
The exact effective bulk modulus should be reg = 1.8318182778838, and the program gives
Keft = 1.8318183 at the first stage of refinement. In Table 2, we present the effective moduli
when the components have the moduli of Example 1. We also show the time required as the
calculation proceeds. The solution of the integral equation at the first stage of refinement
requires one minute on a SUN Sparcstation 10. At the end of stage two, six minutes have
elapsed, and at the end of stage eight, two and one half hours have elapsed.
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Figure 6: A unit cell and its nearest neighbors in an array of “rolls”, parametrized as in eq. (33).

Table 3: Effective elastic moduli for the square array of rolls (Fig. 6). The component elastic
moduli are as in Table 1. The first row shows the number IV of points required.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
N 704 1008 1312 1552 1696
c«1 17.95 18.0072144 18.00721389 18.0072138812 18.0072138809
cx2  11.04 11.0658627 11.0658627  11.06586271 11.065862712
Cx3 1.9 1.948818 1.9488175 1.948817513  1.948817512
Cxa 16712 16.7186922 16.71869263 16.718692679  16.7186926829
Ces 117 1.16891 1.1689136 1.16891359 1.168913589
e 9.03 9.0139564  9.01395633  9.013956306 9.0139563042

A third example is the array of “rolls” in Figure 6. A roll has the parameterization

0.58t? 07t e=im/7 0<t<1
2(t) = { (0.522 — 0.058¢"™)e=47/7 1<t<? (33)
0.464(3 — t)e~mte=im/7 2<t<3

It is interesting to note that the close-to-touching points are well-resolved after only one
stage of refinement. Subsequent stages of refinement take place primarily at the breakpoints
t =0,1,2 in the parametrization (33), which is continuous, but not smooth. The effective
moduli are presented in Table 3.

Example 5: Fight elliptical inclusions

Figure 7 shows a suspension with eight equisized ellipses in the unit cell. The aspect
ratio of their axes is 2:1 and their area fraction is py = 0.7. Each ellipse interface has the
parameterization

Z(t) = Zeent + %em@ cost +isint), —r<t<T. (34)
T
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Figure 7: The left-hand image depicts a unit cell consisting of a suspension of eight ellipses with
aspect ratio 2:1 at area fraction p; = 0.7. The right-hand picture is a contour plot of the trace
of the stress tensor when the composite is subject to a balanced biaxial average displacement

(dI + dH)/Q.

Table 4: Center coordinates Zcent, Ycent, and rotations « for the eight ellipses composite depicted
in Figure 7.

ellipse no. Zcent Yeent «
1 0.096558008044553  0.180606440983544  1.793069456776903
2 -0.312317331860957  0.328928705317157  0.103527236861962
3 0.020093822024223 -0.326279205482295 -1.631099491555291
4 0.426052439830122 -0.422860540089244 -0.473183135086323
5 0.323978421616729  0.254064864498771 -1.204877840652208
6 -0.266711719264471  0.070034693393812  -0.162392923788297
7 0.370486724007364 -0.116660224915378  0.034300608334877
8 -0.254250775518318  -0.294308693171502  1.979465648427812

The eight centers zeent and rotations a are given in Table 4. The effective elastic moduli are
presented in Table 5 as a simple, but nontrivial, benchmark for those interested in testing
codes. The trace of the stress tensor, depicted in Fig. 7, is obtained from the standard
formula (Muskhelishvili 1953; Parton and Perlin 1981)

o1+ 022 = 4 Re {¢/(Z)} .

Example 6: Random dispersions of disks

In the preceding examples the entries in the matrices corresponding to M; and My are
precomputed and stored — a practice whose cost in time and storage grows as N2, where N
is the number of discretization points on the interface I'. For large-scale problems, we use
the iterative solver GMRES with fast multipole acceleration, as discussed briefly in section
4.
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Table 5: Effective elastic moduli for the suspension of ellipses Example 5. The component
elastic moduli are as in Table 1. NV denotes the number of discretization points used at each

stage of refinement.

stage 2

stage 3

stage 1
cy1 22.527428
Cy2  71.840472
c.3  -0.630457
Cva 21.216677
cws  -1.483319
cwe 11.826784
N 1280

22.527424771
7.840472273
-0.630456718
21.216677187
-1.483318320
11.826785793
1664

22.5274247710
7.8404722733
-0.6304567184
21.2166771874
-1.4833183202
11.8267857932
2048

Figure 8: A unit cell with a
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“random” suspension of 1024 disks at area fraction py = 0.6.




Table 6: Effective elastic moduli for the “random” suspension of 1024 disks in Figure 5. The
component elastic moduli are as in Table 1. IV denotes the number of discretization points used
at each stage of refinement.

Stage 1 Stage 2 Stage 3
€1 15.4 154020 15.40199076
C2 6.2  6.2333  6.23335354
Ca3 0.1  0.0592  0.05920050
Cad 15.4 15.3804 15.38044155
Cu5 0.0 0.0285  0.02852952
Cx6 9.1 9.0653  9.06533520
N 131,072 163,840 196,608

Random suspensions of disks were generated with a Monte Carlo Technique (Metropolis,
Rosenbluth, Rosenbluth, Teller, and Teller 1953). We began with a regular array and
assigned random tentative displacements to all disks. Fach disk was examined in turn. If
its new position did not cause disks to overlap, the move was accepted. The mean size of
the random displacements was chosen so that the probability of acceptance was 0.5. When
all disks were examined once, we considered one simulation step to have been completed.
One million simulation steps resulted in the configuration of Fig. 8. Fight segments and
131,072 points were used at the first stage of refinement, and 19 GMRES iterations were
needed for each of the three right-hand sides to solve the system with a tolerance of 1073.
The total time required on a SUN Ultra workstation was 2 hours. After two additional
stages of refinement were completed, 28 hours had elapsed.

Example 7: Random dispersions of thin ellipses

We have also considered “random” dispersions of thin ellipses (Fig. 9), generated by
a 200,000 step Monte Carlo procedure. In the solution process, 16 segments were initially
placed on each ellipse. Four stages of refinement were used with 480 new segments added
per stage. The computed effective moduli are presented in Table 7, along with timing
results.

Example 8: Highly irregular inclusions

Our final example consists of four highly irregular inclusions in the unit cell (Fig. 10).
In the solution process, 250 segments were initially placed on each inclusion and 200 new
segments were added per stage. At stage 3, 140 GMRES iterations were needed with a
tolerance of 1071, consuming about 5 hours of time on a SUN Ultra workstation. The
effective moduli are presented in Table 8.
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Figure 9: A unit cell with a “random” suspension of 160 ellipses with aspect ratio 10:1 at area
fraction py = 0.5.

Table 7: Effective elastic moduli for the “random” suspension of 160 ellipses in Figure 6. The
component elastic moduli are the same as in Table 1. N denotes the number of discretization
points used at each stage of refinement, ‘Iter’ denotes the number of GMRES iterations required
for the accuracies displayed, and ‘Time' denotes the number of hours required on a SUN Ultra
workstation to solve all three interface problems, corresponding to displacements dy, dry, and

drr.
Stage 1 Stage 2 Stage 3 Stage 4
1 9.3024  9.3023926 9.3023925873  9.3023925873
Cx2  D.9947  5.9949691  5.9949691278  5.9949691278
cx3  -0.7498  -0.7497692 -0.7497692321 -0.7497692320
Cq  29.4173  29.4198727 29.4198730363 29.4198730364
Cxs5  -3.3983 -3.3979440 -3.3979439966 -3.3979439966
Cxg  7.D263  7.5263686  7.5263686500  7.5263686499
N 40,960 48,640 56,320 64,000
Tter 50 91 120 120
Time 3 hrs 8 hrs 13 hrs 16 hrs
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Figure 10: A unit cell with four irregular inclusions at area fraction py = 0.463.

Table 8: Effective elastic moduli for the irregular inclusions of Example 8 (Fig. 10). The
component elastic moduli are the same as in Table 1. NV denote the number of discretization
points used at each stage of refinement.

Stage 1 Stage 2 Stage 3
cx1 17.294 17.294395704 17.294395704665
Cs2 5.072  5.071676773  5.071676772940
ez -0.006 -0.006236690 -0.006236690506
cxa 12,880 12.879949658 12.879949658049
Cs5 0.057  0.057492106  0.057492106002
€46 6.605  6.604769982  6.604769981583
N 22,400 25,600 28,800
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6 Conclusions

We have developed a fast, adaptive and high-order solver for locally isotropic problems of
planar elasticity. The algorithm has an extremely simple user interface, requiring only the
location of the inclusion boundaries and the elastic moduli of the components. Complex grid
generation is avoided, and the adaptive refinement of close-to-touching areas is automatic.

The scheme can be extended in a straightforward way to biconnected composites and to
crack problems. We are also considering three-dimensional problems, for which a suitable
potential theory can be found, for example, in (Parton and Perlin 1981).
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