The course and end-points of Alzheimer’s disease according to sociodemographics, apolipoprotein E genotype and cognitive ability.

Wattmo, Carina; Londos, Elisabet; Minthon, Lennart

2017

Document Version:
Publisher’s PDF, also known as Version of record

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
THE COURSE AND END-POINTS OF ALZHEIMER’S DISEASE ACCORDING TO SOCIODEMOGRAPHIC, APOLOPROTEIN E GENOTYPE AND COGNITIVE ABILITY

Conclusions

This study shows that interaction effects between sociodemographic characteristics and clinical factors affect the course and end-points of Alzheimer’s disease (AD). Despite similar cognitive ability at AD diagnosis, younger patients exhibited longer time to nursing home placement (NHP) and lower cognitive status at the time of admission than older individuals. In the ≤77 year old groups, a significantly longer survival time in nursing homes (NHP) –5 years), and thereby higher cost of care, might be expected in females, mild AD patients and apolipoprotein E ε4-carriers. Younger persons with moderate AD showed remarkably low cognitive ability at NHP (mean Mini-Mental State Examination (MMSE) score 12); these individuals might need increased support.

Background

The prognosis of AD might be influenced by many sociodemographic and clinical factors, for example, age at AD diagnosis, sex, APOE genotype, living alone, and cognitive performance. End-points, such as NHP and death, and the associated costs of care, may depend on these patient characteristics. Most earlier studies have investigated the main effects of various critical predictors that could affect the course of AD, but few have analysed potential interactions. This presentation aims to study long-term cognitive outcomes, time to NHP, survival time in NHP, and life expectancy by interactions between the above-mentioned factors in cholinesterase inhibitor (ChEI)-treated AD patients.

Methods

The Swedish Alzheimer Treatment Study (SATS) is a prospective, observational, multicentre study for the longitudinal evaluation of ChEI therapy in clinical practice. This presentation includes all 224 deceased SATS participants diagnosed with mild-to-moderate AD (MMSE score 10–26 at the initiation of ChEI treatment, i.e., at the time of diagnosis) who were admitted to NHs during the study period. Sociodemographic characteristics, APOE genotype, dates of NHP and death were recorded. Cognitive abilities, e.g., MMSE scores, were assessed at the start of ChEI therapy (baseline) and semi-annually over 3 years. Chi-square tests (Table 1) were performed to analyse categorical variables. Independent-samples t tests (Table 1) and one-way analysis of variance (ANOVA) with Bonferroni correction (Figures 1–4) were used to compare differences between the means obtained for two and four groups, respectively.

Results

Table 1. Sociodemographic and clinical characteristics by age at AD diagnosis, median cut-off 78 years (n = 224).

Results

Conclusions

The Swedish Alzheimer Treatment Study (SATS) is a prospective, observational, multicentre study for the longitudinal evaluation of ChEI therapy in clinical practice. This presentation includes all 224 deceased SATS participants diagnosed with mild-to-moderate AD (MMSE score 10–26 at the initiation of ChEI treatment, i.e., at the time of diagnosis) who were admitted to NHs during the study period. Sociodemographic characteristics, APOE genotype, dates of NHP and death were recorded. Cognitive abilities, e.g., MMSE scores, were assessed at the start of ChEI therapy (baseline) and semi-annually over 3 years. Chi-square tests (Table 1) were performed to analyse categorical variables. Independent-samples t tests (Table 1) and one-way analysis of variance (ANOVA) with Bonferroni correction (Figures 1–4) were used to compare differences between the means obtained for two and four groups, respectively.

Background

The prognosis of AD might be influenced by many sociodemographic and clinical factors, for example, age at AD diagnosis, sex, APOE genotype, living alone, and cognitive performance. End-points, such as NHP and death, and the associated costs of care, may depend on these patient characteristics. Most earlier studies have investigated the main effects of various critical predictors that could affect the course of AD, but few have analysed potential interactions. This presentation aims to study long-term cognitive outcomes, time to NHP, survival time in NHP, and life expectancy by interactions between the above-mentioned factors in cholinesterase inhibitor (ChEI)-treated AD patients.

Methods

The Swedish Alzheimer Treatment Study (SATS) is a prospective, observational, multicentre study for the longitudinal evaluation of ChEI therapy in clinical practice. This presentation includes all 224 deceased SATS participants diagnosed with mild-to-moderate AD (MMSE score 10–26 at the initiation of ChEI treatment, i.e., at the time of diagnosis) who were admitted to NHs during the study period. Sociodemographic characteristics, APOE genotype, dates of NHP and death were recorded. Cognitive abilities, e.g., MMSE scores, were assessed at the start of ChEI therapy (baseline) and semi-annually over 3 years. Chi-square tests (Table 1) were performed to analyse categorical variables. Independent-samples t tests (Table 1) and one-way analysis of variance (ANOVA) with Bonferroni correction (Figures 1–4) were used to compare differences between the means obtained for two and four groups, respectively.