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Abstract

A numerical algorithm is presented for the problem of a crack along the interface
of an elastic inclusion embedded in an elastic plane subjected to uniform stress at
infinity. The algorithm is based on a Fredholm integral equation of the second kind and
allows for fast and accurate solutions to geometries of great complexity. In an example
crack opening displacement and stress intensity factors are computed for a crack in the
interface of an inclusion with nineteen protruding arms.

1 Introduction

Over the years much work has been devoted to the evaluation of stress intensity factors
for composite materials with interface cracks. For two simple configurations — one interface
crack between either a circular elastic inclusion or an elliptical rigid inclusion, and an elastic
plane — closed form solutions are available [1, 2, 3]. Numerical algorithms are needed for
interface cracks with more complicated shapes.

The problem of constructing an efficient general algorithm for the numerical computa-
tion of stress intensity factors in cracked composites is indeed a formidable one. The leading
numerical algorithm, until now, may very well be the so called “body force method” used
recently by Chen and Nakamichi [4]. The authors solve the problem of a crack in the inter-
face of an elastic ellipse in an elastic plane. The implementation is based on a fundamental
solution for a point-force outside an ellipse. The relative error in the computations is of the
order of one per cent.

In this paper we present a Fredholm integral equation for the interface crack problem.
We solve the integral equation numerically with a Nystrom algorithm. Our work improves
on that of the state of the art in the field in several ways:

- by using an abstract layer potential (avoiding geometry-specific fundamental solu-
tions) we are able to treat an elastic inclusion of a general shape



- by solving for an unknown density that is related to the crack opening displacement
(not to its derivative) we can retrieve the crack opening displacement with great ease

- by using an integral equation of Fredholm’s second kind (not of Fredholm’s first kind)
we get a numerically stable algorithm. Roughly speaking, this means that we can
get the same accuracy for quantities related to the solution, such as stress intensity
factors, as we get for quantities related to the geometry itself, such as the arclength
of the crack.

The paper is organized as follows: Section 2 presents our original choice of complex
representation for the stress field in the material along with a first kind Fredholm integral
equation for an unknown layer potential. This integral equation is transformed into a
second kind integral equation in Section 3. An alternative representation is introduced in
Section 4 leading to a slightly simpler integral equation. Section 5 discusses the numerical
evaluation of singular integral operators and Section 6 concerns the calculation of quadrature
weights. In section 7 certain weights are factorized out from the layer potential so that the
solution to the integral equation becomes a smooth function. Section 8 explains how to
extract stress intensity factors and crack opening displacement from this solution. Section 9
contains numerical results along with timings. For simple shapes of interfaces and cracks
we get convergence to about twelve digits in IEEE double precision arithmetic. A typical
calculation takes around three seconds on a SUN Ultra 1 workstation.

2 Complex potentials and integral operators

Let U denote the Airy stress function for a locally isotropic two-dimensional linearly elastic
material with an inclusion and an interface crack. External forces are applied at infinity.
Since U satisfies the biharmonic equation everywhere (outside the inclusion interface) it can
be represented as
U=%Re{zd+ x}, (1)

where ¢ and x are analytic functions of the complex variable z and Re{f} denotes the
real part of the function f. For a thorough discussion of the complex variable approach to
crack problems in elasticity, see Muskhelishvili [5], Mikhlin [6], and Milne-Thompson [7].
For our purposes it is sufficient to observe a few relations that link the complex potentials
to quantities of physical interest: The displacement (u,,u,) in the material satisfies

uz-l-iuy:(i-l-%)(ﬁ—i(qu’-l-iﬁ), 2)
where 1) = ¥/, k is the two-dimensional bulk modulus, and p is the two-dimensional shear
modulus. The integral of the traction (t,,t,) along a curve I'(s) with normal (ng,n,) can
be obtained from the relation

/F(S)(t +it,)d
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where s denotes arclength. Complex differentiation of the expression (2) along the tangent
to T'(s) gives

S
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S

d 1 1 1 /— N — n—
—(ug +iuy)=—+—]P—— (& — —20' — —T ), 4
dz( iy) <2u m) 21 < nz n > 4)



where n = n, +in,, ® = ¢, and ¥ = x”. Differentiation with respect to arclength in (3)
gives o
ty + ity = ®n+ ®n — 2®'n — Un, (5)

Consider now an infinite medium with elastic moduli x; and @y which surrounds an
inclusion with elastic moduli k9 and po. The interface of the inclusion, I', consists of a
cracked segment I'¢, and a bonded segment I'y,,. We refer to ', and 'y, as crack and bond.
The starting point of the crack, 74, and the endpoint of the crack, v, are called crack tips.
The stress at infinity is 0°° = (044, Oyy, 0gy). We would like compute the displacement and
stress fields in the material subject to three different imposed stresses at infinity, namely
o = (1,0,0), opy = (0,1,0), and o3 = (0,0,1). Since the equations of elasticity are
satisfied everywhere except for at I', and assuming the crack opening displacement is non-
negative, it remains to solve a problem which consists of enforcing zero traction along the
crack and continuity of traction and displacement along the bond.

A standard starting point for crack and inclusion problems is to work with (4) and (5)
and to represent the upper-case potentials ® and ¥ as Cauchy-type integrals:

B() = 5 [(HDUDE 8 )
and )
1 Q(r)w(r)dr 1 T7Q(m)w(T)dT
V) = g [ DT o [T 8 ™

where € is an unknown density on I and w is a weight function, introduced for convenience,
and given in (16) below.

Remark 2.1 The constants « and 8 in (6) and (7) represent the forcing terms in our
formulation. For imposed stresses 73, ogy, and o7y the constants take the values o =1 /2
and f=—1/2, a=1/2 and § =1/2, and @ = 0 and § = i. In the following, the constant

« 1s assumed to be real valued.

Once @ is assumed to take the form (6), the expression (7) for ¥ enforces continuity
of traction across the interface. The requirements of continuity of displacement along the
bond, zero traction along the crack, closure of the crack and Lemma 2.1 below, lead to an
integral equation for Q(z):

(K + CM3)Q(2) = —Ba — C%B, Z€T, (8)
Q2 =0. (9)
Here K and M3 are integral operators given by
B Q
mi Jr T—Z

and
1 Q(r)w(r)dr

W00 = 5 | [ S



-I-@/ Q(Tz’w(i)dT -I-/ Q(T}’w(i)df N n / (r— z)_Q(Tzug(T)di' . (11)
n Jr T—Z r T—Z n Jr (T—2)

Despite appearances, the operator M3 has a continuous integrand, while the operator K is
to be interpreted in the Cauchy principal value sense. The functions A(z), B(z), and C(z)
are piece-wise constant and given by

A(z)=1, z€Tp, and  A(z) =0, zeT,
B(z) = dy, 2z € Do, and B(z) =1, z € Tgr,
C(z)=dy, z€Tly,, and C(z)=-1, zeTlq. (12)

The constants d; and dy are given by

1 1 1 1 1 1
d=(——— / —t—+—+—,
K9 K1 2 ) H1 K1

1 1 1 1 1 1
d2=<———>/<—+—+—+—>. (13)
M2 M1 K2 Ko M1 K1

The operator @ is a mapping from I" into the complex numbers given by

and

1
QN = E/FQ(z)w(z)dz (14)
Lemma 2.1 For any function f(z)
[ Msf(e)az = —Qf (15)
i Jr

Proof: The lemma, is proved by changing the order of integration in the double intergral.
O

A convenient choice for the weight function w(z) can now be made. On T it is given by
w(z) = (A(z) = B(2))(z = %)"(z = 7%e)",  z€T, (16)

where the complex exponent a is

1 7 1—-d;
=——+ -1 1
L R 0g<1+d1> (17)

The weight function w(z) is the limit from the right (relative to the orientation of I') of the
branch given by a branch cut along I' and
. a a _
Jim z(z —%)"(z = 7)* = 1. (18)
A less common option for crack problems, but one that has shown to be numerically

more efficient in the presence of inclusions [8, 9], is to work with (2) and (3) and to represent
the lower-case potentials ¢ and % in the form

b(z) = 1 /Fw(T)’U(T)dT L% Q

- 19
2mi T—2 2 2’ (19)
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T—2 27
where ¢y is a complex constant corresponding to rigid body displacement and where w is
an unknown density related to the density €2 through the relation

d
=4, W), (21)

and v is a weight function given in (31) below. We will return to this option in Section 4.

+Bz+ %0 (20)

3 A Fredholm equation

We now intend to rewrite the system (8) and (9) as one Fredholm integral equation of the
second kind. For this we need a few new functions and operators. Let

A(2) B(z)

A*(z) = 20— B2 and B*(z) = 20 -5 (22)
Let K* be an operator whose action on a function f(z) is defined by
ery . A2 f(2)  B*(2) f(r)dr
K'f(z) = w(2) i /1" w(T)(T —2)° (23)

Let P, and P, be two projection operators which project onto the crack and the bond,
respectively.

The following lemma is proved with relations in Paragraphs 107 and 117 of Ref. [10]
and with techniques used in Appendix I of Ref. [2] and in Section 4 of Ref. [9].

Lemma 3.1

K*P.B = B*(1+d\)(z+ay + ave) —w™ 'dy, (24)
K*Py,oB = —B*di(z+ avys + ave) + w'dy, (25)
QB* = 1, (26)
QoK* = 0, (27)
KoK* = 1, (28)
KoK = I—B*oQ. (29)

Theorem 1 The system given by (8) and (9) is equivalent with the following single Fred-
holm integral equation of the second kind.

(I +K*oCM3)Q(z) = —K* <Ba + C%B) , z€eT. (30)

Proof: If we apply K* to the left in (8), use (29), and incorporate (9) we get (30). If we
apply K to the left in (30) and use (28) we get back (8). If we apply @ to the left in (30)
and use (27) we get back (9). O



4 An alternative formulation

We now return to the representation (19) and (20) for the lower-case potentials ¢ and 1.
First, we need to introduce some new notation. Let v be a weight which on I' is defined by

v(z) = (A(z) = B(2))(z = %)"(z = %)’s  z€T, (31)
where ) ) L4
b=§+%log<1+di>. (32)
Let L be an operator defined by
Lw(z) = A(2)v(2)w(2) + B;j) /F w(TT)v_(7'2)d7" (33)

and let L* be an operator whose action on a function f(z) is defined by

. A*(2)f(= B*(z T)dT
RGN G 5
v(z) w  Jro(r) (T — 2)
A new smooth operator Ms is introduced as
1 T—Z 1 —— [T—2
M. = — 1 — .
(z) = 5 [ w(on)d [log T=2] + o [ Wi |22 ] (35)
The operator R is a mapping from [" into the complex numbers given by
1 d
Rw= L [ @)z (36)
i Jr v(z)
The following lemma is proved with the same methods as Lemma 3.1.
Lemma 4.1
L*PyuB = —v ldi, (37)
L*P,,B = v 'di, (38)
RB = -1, (39)
L'oL = 1, (40)
LoL* = I+ BoR. (41)

Once ¢ is assumed to take the form (19), the expression (20) for 1) enforces the continuity
of the integral of traction across the interface. The requirements of zero traction along the
crack and of continuity of displacement along the bond lead to the integral equation for
w(z)

(L + CMsy)w(z) = —Baz + CBZ + ¢y B, z€l, (42)

where ¢y is determined by the consistency condition

Ro CMsyw(z) = R(—Baz + CBz + ¢y B). (43)



Theorem 2 The system given by (42) and (43) is equivalent with the following single
Fredholm integral equation of the second kind.

(I + L* o CMs)w(z) = L*(—=Baz + CBZ), z€T. (44)

Proof: Tf we apply L* to the left in (42) and use (40) we get (44). If we apply L to the left
in (44) and use (41) we get back (42) and (43). O

5 Evaluation of singular integral operators

Let us evaluate the operator K* of (23) acting on a function f on the form f(z) = C(2)g(z),
where ¢ is smooth. Using (24) and (25) one can write

K*f(2) = B*K{ f(2) + (d1 + dp)w(2) ' g(2), (45)

where

1 [ (g(1) —g(2)) C(r)dr
/F (46)

Ki f(2) = =9(2)(1 + di + do) (2 + @ + ave) — — =2  w(r)
(

z) = C(2)9(2)

Similarly, the operator L* of (34) acting on a function f on the form f
can be evaluated using (37) and (38) as

L*f(Z) = B*Likf(Z) + (dl + d2)v(z)_1g(z)’ (47)
where
st == [ S (19)

Remark 5.1 The integrands in the above integrals are smooth. The weight functions are
piece-wise smooth. Therefore the integrals can be evaluated numerically to high precision
using composite quadrature.

6 Quadrature

We present a quadrature rule for a quadrature panel containing a crack tip. We chose a
panel that contains the crack tip 75 and consider the weight function w(z) of (16). Other
cases can be treated in a similar fashion. The singularity at v is governed by the exponent
a. Take the nodes z;, i = 1,..., N, to be the zeros in [—1, 1] of the Legendre polynomial
Py (z). After a suitable transformation of the integrand and the integration interval we are
faced with the problem of finding complex valued weights h;, i = 1,..., N, such that

1 B N
/ @)+ 1) e~ Y Flhs (49)
- =1

N — 1 order accurate weights h; can be computed by analytic integration of the Legendre
interpolating polynomial through the points (x;, f(z;)),7 = 1,..., N, and use of the formula

/1 (z + 1)%z"dz = 2@+ (—1)n an (=2 (Z) (50)

-1 k=0



A few digits will be lost in the numerical evaluation of the N weights h; due to cancellation
in (50). For best possible accuracy we recommend quadruple precision arithmetic for the
calculation of the weights h; and regular double precision arithmetic for all other numerical
calculations. This strategy has been used in the present paper.

Remark 6.1 For the case 3m{a} = 0 one can make the quadrature 2N — 1 order accurate

by using the zeros of the Jacobi polynomials P](\? »—05) () as nodes, rather than the zeros of
Py (z). It is possible that Jacobi nodes would be more efficient than Legendre nodes also
when Sm{a} # 0, but for simplicity we use Legendre nodes on all panels.

7 Solving for a smooth unknown function

When Mj operates on any function, the result is a smooth function. When K* operates
on a function C(z)g(z), where g is smooth, the result is not smooth. It follows from (45)
and (30) that © can be represented as Q = B*Qr + (dy + d2)w™'Qq, where Q and Qqp are

smooth. For this reason we expand (30) as
I 0 n KI* o CMs; 0 B* (d1 + dQ)U)_l Qr _
0 I 0 M3 B* (d1 + dQ)’LUfl Qm -

< —a(z + ays + C_Vle) - KI*C%B ) . (51)

n

Similarly, for the lower-case potentials, we represent w as w = B*wy + (di + d2)v " 'wn
and expand (44) as

(l I 0 ] N [ LioCM, 0 ] [B* (dy + do)v ! D ( wy ) _ ( —a+LfCZB>
0 I 0 Mo B* (d1 +d2)1)_1 WIT zp
(52)

Remark 7.1 It is not necessary to solve (51) and (52) as they stand. For example, (52)
can be rewritten as an integral equation for wry only

(I + MQ o L*C)QJH(Z) = EB + O{MQB*. (53)
Once this equation is solved wr can be computed from

wi(z) = —a + LiCwri(2). (54)

8 Stress intensity factors and crack opening displacement

The derivative of the opening displacement at crack I" can be expressed in terms of Q(z) via
(4). The stress intensity factor F1 + iFir at the crack tips 75 and 7, can be defined as [11]

T . . %
" sin(wa) ZILH’)}SB (z)s(z)a Jim

) 1
F[ +'LFH = —



and S -
iV2m e W(2) e
o sin(ma) zll)n;e B*(2) NED Zli)n%e Q(z), (55)

Fi+1F =

where s is arclength measured from the closest crack-tip, and gs and g, are optional normal-
ization factors which may include the average applied stress. The first limits in equations
(55) can be evaluated analytically, the second limits numerically.

From (21) and (55) follow expressions for the stress intensity factors in terms of w

B bV/2m v(2)

Fr+iFn = m sin(mb) Zlgrgls n(z)B*(z) Sy Zlgrgyls wi(z),
and _
bv2
F+iFy=— geﬁ sin(mb) le)qyle n(z)B*(z) :((Zz)l') zli—>nvle wi(z). (56)

From (2) and (42) follows an expression for the crack opening displacement

. 1/1 1 1 1 -
duy + iduy = —3 <£ + P + " + K—1> (w(z)v(z) — (di + d2)(BzZ — Maw(2))) . (57)

9 Numerical results

In this section we will solve (51) and (52) for three different examples involving interface
cracks. The two first examples — the elastic circle and the elastic ellipse — are simple.
The purpose of solving these examples is to validate our algorithm against results in the
literature. The third example — an inclusion with nineteen protruding arms — is more
complex. The purpose of solving this example is to demonstrate the stability of our method
and to investigate which of the two formulations (51) and (52) is the most efficient.

We will solve (51) and (52) using a Nystrom algorithm with composite quadrature and
the GMRES iterative solver [12]. On quadrature panels that do not contain crack tips
we use 16 point Gaussian quadrature. On panels that do contain a crack tip we use the
quadrature described in Section 6 with N = 16. Our procedure for determining the number
of accurate digits is as follows: we start out with a given number, m say, of quadrature
panels of equal length, we solve the integral equations, and we compute the stress intensity
factors. Then we repeat this procedure for 2m panels, for 3m panels, and so on. As a
result we can see the stress intensity factors converge digit by digit to values that do not
change with further resolution. Beyond a certain level of resolution convergence stops and
we arrive at the final accuracy presented in the examples below.

9.1 A circular inclusion

Let us look at an inclusion in the shape of a disk with radius R embedded in an infinite
medium. The disk is placed at the origin of the complex plane. A uniaxial stress opy
applied at infinity. In the interface there is a crack of length 2[. The normalization factors

in (55) are chosen as

1s

_ av2m and _ avn
gS - 0_5:2(2l)a7 ge - 0'238(2l)a,



The problem of determining the stress intensity factors for this setup, with varying opening
angles and elastic moduli, has a (rather complicated) analytical solution [13, 4]. The stress
intensity factors have also been calculated numerically and tabulated for a few cases by
Chen and Nakamichi [4] using a method based on a series expansions of the fundamental
solution for a point-force outside an elliptical inclusion in an infinite plate. The relative
error in these calculations is on the order of one per cent.

For comparison we first choose a crack that starts at v3 = —iR, follows the interface
counter-clockwise, and ends at 7o = —R so that the length of the crack is 3mR/2. The
elastic moduli of the surrounding medium are x; = 2.5 and p; = 1. The elastic moduli
of the disk are k3 = 5 and us = 2. At crack tip 7 Chen and Nakamichi get F; = 0.2374
and Fir = 0.3838. With three, or more, quadrature panels each on the crack and on the
bonded interface and four iterations in the GMRES solver we get F1 = 0.2400348149934 and
Fi1 = 0.3863270862335, both with the formulation of equation (51) and the formulation of
equation (52). The computation time on a SUN Ultra 1 workstation was about one second.
In the table of Chen and Nakamichi [4] there are 36 numerical entries corresponding to
analytical solutions for different opening angles and orientations of the interface crack. We
reproduced all the digits in all the entries except for the one labeled F g, 07 = 45, w® = 45
where we suspect that the authors have confused the result of their own calulation with the
analytical result.

9.2 An elliptical inclusion

As a second comparison we look at an elastic ellipse with principal axes R, and R, and
elastic moduli ko = 10 and 2 = 4 embedded in an elastic plane with moduli k1 = 2.5 and
p1 = 1. The crack starts at v = Ry, follows the interface counter clock-wise and ends at
Yo = —R;. Chen and Nakamichi have computed stress intensity factors for this setup at
¥e for aspect ratios R,/R, = 0.5, Ry/R; = 1, and R,/R, = 2. Data for Fy is presented
graphically in the authors’ Figure 7 as Fi1 = 0.69, Fi1 = 0.69, and Fi; = 0.51 for the three
aspect ratios, respectively. With ten panels on each crack and ten iterations in the GMRES
solver we get Fi1 = 0.837747629930, F;1 = 0.6772186672348, and Fi1 = 0.5117664818436,
both with the formulation of equation (51) and the formulation of equation (52). Since
the data of Chen and Nakamichi and our computations typically only differ by a few per
cent, we speculate that there is some mistake in the plotting of the curve for aspect ratio
Ry/R; = 0.5 in their figure 7. The computation time on a SUN Ultra 1 workstation was
about three seconds per configuration.

9.3 A complex inclusion

In a more challenging example we look at a nineteen-armed inclusion parameterized by
2(t) = (14+0.2cos(19%))e,  0<t < 2m. (58)

and depicted in Figure 1. The cracks starts at s = z(0) and ends at s = z(1.7) A uniaxial
stress o,y is applied at infinity and the elastic moduli are ko = 10, po2 = 4, K1 = 2.5 and
i1 = 1 for the inclusion and for the elastic plane. As a measure of the complexity of the

geometry we first compute the arclength of the crack and of the bond: with 80 panels evenly

10



Figure 1: A crack along the interface of a nineteen-armed inclusion. The crack starts at 'S’
and ends at 'E’.

Normal component of COD

Figure 2: The normal component of the crack opening displacement versus interface parameter
t of (58) for the crack in Figure 1 subjected to a uniform stress oy at infinity.

11



distributed on the interface we get convergence of these quantities to 10 digits. With 160
panels we get 12 digits. Then we verify lemma (26) and (39) to 12 digits. This requires
100 panels. Finally, we compute stress intensity factors for crack-tip v;. With 80 panels
and 55 iterations in the GMRES solver and the formulation (52) we get convergence to
F1 = —0.0129561 and Fi; = —0.4053423. With 160 quadrature panels and 55 iterations we
get convergence to F1 = —0.0129560788 and Fi; = —0.4053422716. The normal component
of the crack opening displacement is plotted in Figure 2. Note that the opening has a
negative sign on parts of the crack. The formulation of (51) gives a few digits less for the
stress intensity factors. The computation time on a SUN Ultra 1 workstation for the largest
computation is about fifteen minutes.

10 Discussion

This paper presents an efficient algorithm for the numerical solution to the elastostatic
equation in a medium where there is an inclusion with an interface crack. The algorithm
also computes stress intensity factors. The inclusion can have an arbitrary shape. The
only user input that is needed is a parameterization of the inclusion interface. This is a
major advantage over some previous methods which rely on geometry-specific fundamental
solutions that could be very difficult to construct.

Our algorithm uses either of the two Fredholm equations (51), based on the upper-case
potentials, and (52), based on the lower-case potentials. These equations perform rather
similarly for the single interface crack, with a slight advantage for (52). The reason being
that (52) has a smoother right hand side than (51) for curved interfaces. Another advantage
with the lower-case potentials is that they give easy access to the crack opening displacement
via (57).

Our algorithm is stable. High accuracy can be achieved, if desired. The asymptotic speed
and storage requirements, however, are not completely satisfactory since, in the present
implementation, the computing time and the need for storage grow quadratically with the
number of discretization points needed to resolve the interface. Fortunately, there is a
cure for this quadratic dependence: The fast multipole method or FMM [14, 15, 16] is a
“matrix-free” approach to matrix-vector multiplication. Incorporating the FMM into the
GMRES solver leads to a need for storage and a computing time that grows only linearly
with the number of discretization points. Recently [8, 17] this was done for inclusions in
the absence of cracks and for cracks in the absence of inclusions. Incorporating the FMM
into our algorithm for an interface crack is a question of programming. We will attend to
this in future work on cracks in more complex settings.
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