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On the numerical evaluation of stress intensity factors for aninterface crack of a general shapeJohan HelsingDepartment of Solid Mechanics, Royal Institute of Technology,SE-100 44 Stockholm, SwedenandDepartment of Scienti�c ComputingUppsala UniversitySE-751 04 Uppsala, SwedenFebruary 20, 1998, revised June 17, 1998AbstractA numerical algorithm is presented for the problem of a crack along the interfaceof an elastic inclusion embedded in an elastic plane subjected to uniform stress atin�nity. The algorithm is based on a Fredholm integral equation of the second kind andallows for fast and accurate solutions to geometries of great complexity. In an examplecrack opening displacement and stress intensity factors are computed for a crack in theinterface of an inclusion with nineteen protruding arms.1 IntroductionOver the years much work has been devoted to the evaluation of stress intensity factorsfor composite materials with interface cracks. For two simple con�gurations { one interfacecrack between either a circular elastic inclusion or an elliptical rigid inclusion, and an elasticplane { closed form solutions are available [1, 2, 3]. Numerical algorithms are needed forinterface cracks with more complicated shapes.The problem of constructing an e�cient general algorithm for the numerical computa-tion of stress intensity factors in cracked composites is indeed a formidable one. The leadingnumerical algorithm, until now, may very well be the so called \body force method" usedrecently by Chen and Nakamichi [4]. The authors solve the problem of a crack in the inter-face of an elastic ellipse in an elastic plane. The implementation is based on a fundamentalsolution for a point-force outside an ellipse. The relative error in the computations is of theorder of one per cent.In this paper we present a Fredholm integral equation for the interface crack problem.We solve the integral equation numerically with a Nystr�om algorithm. Our work improveson that of the state of the art in the �eld in several ways:- by using an abstract layer potential (avoiding geometry-speci�c fundamental solu-tions) we are able to treat an elastic inclusion of a general shape1



- by solving for an unknown density that is related to the crack opening displacement(not to its derivative) we can retrieve the crack opening displacement with great ease- by using an integral equation of Fredholm's second kind (not of Fredholm's �rst kind)we get a numerically stable algorithm. Roughly speaking, this means that we canget the same accuracy for quantities related to the solution, such as stress intensityfactors, as we get for quantities related to the geometry itself, such as the arclengthof the crack.The paper is organized as follows: Section 2 presents our original choice of complexrepresentation for the stress �eld in the material along with a �rst kind Fredholm integralequation for an unknown layer potential. This integral equation is transformed into asecond kind integral equation in Section 3. An alternative representation is introduced inSection 4 leading to a slightly simpler integral equation. Section 5 discusses the numericalevaluation of singular integral operators and Section 6 concerns the calculation of quadratureweights. In section 7 certain weights are factorized out from the layer potential so that thesolution to the integral equation becomes a smooth function. Section 8 explains how toextract stress intensity factors and crack opening displacement from this solution. Section 9contains numerical results along with timings. For simple shapes of interfaces and crackswe get convergence to about twelve digits in IEEE double precision arithmetic. A typicalcalculation takes around three seconds on a SUN Ultra 1 workstation.2 Complex potentials and integral operatorsLet U denote the Airy stress function for a locally isotropic two-dimensional linearly elasticmaterial with an inclusion and an interface crack. External forces are applied at in�nity.Since U satis�es the biharmonic equation everywhere (outside the inclusion interface) it canbe represented as U = <e f�z�+ �g ; (1)where � and � are analytic functions of the complex variable z and <effg denotes thereal part of the function f . For a thorough discussion of the complex variable approach tocrack problems in elasticity, see Muskhelishvili [5], Mikhlin [6], and Milne-Thompson [7].For our purposes it is su�cient to observe a few relations that link the complex potentialsto quantities of physical interest: The displacement (ux; uy) in the material satis�esux + iuy = � 12� + 1���� 12� �z�0 +  � ; (2)where  = �0, � is the two-dimensional bulk modulus, and � is the two-dimensional shearmodulus. The integral of the traction (tx; ty) along a curve �(s) with normal (nx; ny) canbe obtained from the relationZ �(s)�(s0)(tx + ity)ds = �����ss0i��+ z�0 +  � ; (3)where s denotes arclength. Complex di�erentiation of the expression (2) along the tangentto �(s) gives ddz (ux + iuy) = � 12� + 1���� 12� ��� �nnz�0 � �nn	� ; (4)2



where n = nx + iny, � = �0, and 	 = �00. Di�erentiation with respect to arclength in (3)gives tx + ity = �n+�n� z�0�n�	�n; (5)Consider now an in�nite medium with elastic moduli �1 and �1 which surrounds aninclusion with elastic moduli �2 and �2. The interface of the inclusion, �, consists of acracked segment �cr and a bonded segment �bo. We refer to �cr and �bo as crack and bond.The starting point of the crack, 
s, and the endpoint of the crack, 
e, are called crack tips.The stress at in�nity is �1 = (�xx; �yy; �xy). We would like compute the displacement andstress �elds in the material subject to three di�erent imposed stresses at in�nity, namely�1xx = (1; 0; 0), �1yy = (0; 1; 0), and �1xy = (0; 0; 1). Since the equations of elasticity aresatis�ed everywhere except for at �, and assuming the crack opening displacement is non-negative, it remains to solve a problem which consists of enforcing zero traction along thecrack and continuity of traction and displacement along the bond.A standard starting point for crack and inclusion problems is to work with (4) and (5)and to represent the upper-case potentials � and 	 as Cauchy-type integrals:�(z) = 12�i Z� 
(�)w(�)d�� � z + �2 ; (6)and 	(z) = � 12�i Z� 
(�)w(�)d��� � z � 12�i Z� ��
(�)w(�)d�(� � z)2 + �; (7)where 
 is an unknown density on � and w is a weight function, introduced for convenience,and given in (16) below.Remark 2.1 The constants � and � in (6) and (7) represent the forcing terms in ourformulation. For imposed stresses �1xx, �1yy, and �1xy the constants take the values � = 1=2and � = �1=2, � = 1=2 and � = 1=2, and � = 0 and � = i. In the following, the constant� is assumed to be real valued.Once � is assumed to take the form (6), the expression (7) for 	 enforces continuityof traction across the interface. The requirements of continuity of displacement along thebond, zero traction along the crack, closure of the crack and Lemma 2.1 below, lead to anintegral equation for 
(z):(K + CM3)
(z) = �B�� C �nn ��; z 2 �; (8)Q
 = 0: (9)Here K and M3 are integral operators given byK
(z) = A(z)w(z)
(z) + B(z)�i Z� 
(�)w(�)d�� � z ; (10)and M3
(z) = 12�i �Z� 
(�)w(�)d�� � z3



+�nn Z� 
(�)w(�)d��� � �z + Z� 
(�)w(�)d���� � �z + �nn Z� (� � z)
(�)w(�)d��(�� � �z)2 # : (11)Despite appearances, the operator M3 has a continuous integrand, while the operator K isto be interpreted in the Cauchy principal value sense. The functions A(z), B(z), and C(z)are piece-wise constant and given byA(z) = 1; z 2 �bo; and A(z) = 0; z 2 �cr;B(z) = d1; z 2 �bo; and B(z) = 1; z 2 �cr;C(z) = d2; z 2 �bo; and C(z) = �1; z 2 �cr: (12)The constants d1 and d2 are given byd1 = � 1�2 � 1�1� =� 1�2 + 1�2 + 1�1 + 1�1� ;and d2 = � 1�2 � 1�1� =� 1�2 + 1�2 + 1�1 + 1�1� : (13)The operator Q is a mapping from � into the complex numbers given byQ
 = 1�i Z�
(z)w(z)dz: (14)Lemma 2.1 For any function f(z)1�i Z�M3f(z)dz = �Qf (15)Proof: The lemma is proved by changing the order of integration in the double intergral.2 A convenient choice for the weight function w(z) can now be made. On � it is given byw(z) = (A(z)�B(z))(z � 
s)�a(z � 
e)a; z 2 �; (16)where the complex exponent a isa = �12 + i2� log�1� d11 + d1� (17)The weight function w(z) is the limit from the right (relative to the orientation of �) of thebranch given by a branch cut along � andlimz!1 z(z � 
s)�a(z � 
e)a = 1: (18)A less common option for crack problems, but one that has shown to be numericallymore e�cient in the presence of inclusions [8, 9], is to work with (2) and (3) and to representthe lower-case potentials � and  in the form�(z) = 12�i Z� !(�)v(�)d�� � z + �z2 + c02 ; (19)4



and (z) = 12�i Z� !(�)v(�)d��� � z � 12�i Z� !(�)v(�)d�� � z � 12�i Z� ��!(�)v(�)d�(� � z)2 + �z + c02 ; (20)where c0 is a complex constant corresponding to rigid body displacement and where ! isan unknown density related to the density 
 through the relation
(z)w(z) = ddz (!(z)v(z)) ; (21)and v is a weight function given in (31) below. We will return to this option in Section 4.3 A Fredholm equationWe now intend to rewrite the system (8) and (9) as one Fredholm integral equation of thesecond kind. For this we need a few new functions and operators. LetA�(z) = A(z)A2(z) �B2(z) ; and B�(z) = B(z)A2(z)�B2(z) : (22)Let K� be an operator whose action on a function f(z) is de�ned byK�f(z) = A�(z)f(z)w(z) � B�(z)�i Z� f(�)d�w(�)(� � z) : (23)Let Pcr and Pbo be two projection operators which project onto the crack and the bond,respectively.The following lemma is proved with relations in Paragraphs 107 and 117 of Ref. [10]and with techniques used in Appendix I of Ref. [2] and in Section 4 of Ref. [9].Lemma 3.1 K�PcrB = B�(1 + d1)(z + �a
s + a
e)� w�1d1; (24)K�PboB = �B�d1(z + �a
s + a
e) + w�1d1; (25)QB� = 1; (26)Q �K� = 0; (27)K �K� = I; (28)K� �K = I �B� �Q: (29)Theorem 1 The system given by (8) and (9) is equivalent with the following single Fred-holm integral equation of the second kind.(I +K� � CM3)
(z) = �K� �B�+ C �nn ��� ; z 2 �: (30)Proof: If we apply K� to the left in (8), use (29), and incorporate (9) we get (30). If weapply K to the left in (30) and use (28) we get back (8). If we apply Q to the left in (30)and use (27) we get back (9). 2 5



4 An alternative formulationWe now return to the representation (19) and (20) for the lower-case potentials � and  .First, we need to introduce some new notation. Let v be a weight which on � is de�ned byv(z) = (A(z) �B(z))(z � 
s)�b(z � 
e)b; z 2 �; (31)where b = 12 + i2� log�1� d11 + d1� : (32)Let L be an operator de�ned byL!(z) = A(z)v(z)!(z) + B(z)�i Z� !(�)v(�)d�� � z ; (33)and let L� be an operator whose action on a function f(z) is de�ned byL�f(z) = A�(z)f(z)v(z) � B�(z)�i Z� f(�)d�v(�)(� � z) : (34)A new smooth operator M2 is introduced asM2!(z) = 12�i Z� !(�)v(�)d �log � � z�� � �z �+ 12�i Z� !(�)v(�)d �� � z�� � �z � : (35)The operator R is a mapping from � into the complex numbers given byR! = 1�i Z� !(z)dzv(z) : (36)The following lemma is proved with the same methods as Lemma 3.1.Lemma 4.1 L�PcrB = �v�1d1; (37)L�PboB = v�1d1; (38)RB = �1; (39)L� � L = I; (40)L � L� = I +B � R: (41)Once � is assumed to take the form (19), the expression (20) for  enforces the continuityof the integral of traction across the interface. The requirements of zero traction along thecrack and of continuity of displacement along the bond lead to the integral equation for!(z) (L+ CM2)!(z) = �B�z + C ���z + c0B; z 2 �; (42)where c0 is determined by the consistency conditionR � CM2!(z) = R(�B�z + C ���z + c0B): (43)6



Theorem 2 The system given by (42) and (43) is equivalent with the following singleFredholm integral equation of the second kind.(I + L� � CM2)!(z) = L�(�B�z + C ���z); z 2 �: (44)Proof: If we apply L� to the left in (42) and use (40) we get (44). If we apply L to the leftin (44) and use (41) we get back (42) and (43). 25 Evaluation of singular integral operatorsLet us evaluate the operator K� of (23) acting on a function f on the form f(z) = C(z)g(z),where g is smooth. Using (24) and (25) one can writeK�f(z) = B�K�I f(z) + (d1 + d2)w(z)�1g(z); (45)whereK�I f(z) = �g(z)(1 + d1 + d2)(z + �a
s + a
e)� 1�i Z� (g(�) � g(z))(� � z) C(�)d�w(�) : (46)Similarly, the operator L� of (34) acting on a function f on the form f(z) = C(z)g(z)can be evaluated using (37) and (38) asL�f(z) = B�L�I f(z) + (d1 + d2)v(z)�1g(z); (47)where L�I f(z) = � 1�i Z� (g(�) � g(z))(� � z) C(�)d�v(�) : (48)Remark 5.1 The integrands in the above integrals are smooth. The weight functions arepiece-wise smooth. Therefore the integrals can be evaluated numerically to high precisionusing composite quadrature.6 QuadratureWe present a quadrature rule for a quadrature panel containing a crack tip. We chose apanel that contains the crack tip 
s and consider the weight function w(z) of (16). Othercases can be treated in a similar fashion. The singularity at 
s is governed by the exponent�a. Take the nodes xi, i = 1; : : : ; N , to be the zeros in [�1; 1] of the Legendre polynomialPN (x). After a suitable transformation of the integrand and the integration interval we arefaced with the problem of �nding complex valued weights hi, i = 1; : : : ; N , such thatZ 1�1 f(x)(x+ 1)�adx � NXi=1 f(xi)hi: (49)N � 1 order accurate weights hi can be computed by analytic integration of the Legendreinterpolating polynomial through the points (xi; f(xi)), i = 1; : : : ; N , and use of the formulaZ 1�1(x+ 1)�axndx = 2(�a+1)(�1)n nXk=0 (�2)k(k + �a+ 1) nk!: (50)7



A few digits will be lost in the numerical evaluation of the N weights hi due to cancellationin (50). For best possible accuracy we recommend quadruple precision arithmetic for thecalculation of the weights hi and regular double precision arithmetic for all other numericalcalculations. This strategy has been used in the present paper.Remark 6.1 For the case =mf�ag = 0 one can make the quadrature 2N � 1 order accurateby using the zeros of the Jacobi polynomials P (0;�0:5)N (x) as nodes, rather than the zeros ofPN (x). It is possible that Jacobi nodes would be more e�cient than Legendre nodes alsowhen =mf�ag 6= 0, but for simplicity we use Legendre nodes on all panels.7 Solving for a smooth unknown functionWhen M3 operates on any function, the result is a smooth function. When K� operateson a function C(z)g(z), where g is smooth, the result is not smooth. It follows from (45)and (30) that 
 can be represented as 
 = B�
I + (d1 + d2)w�1
II, where 
I and 
II aresmooth. For this reason we expand (30) as " I 00 I #+ " K�I � CM3 00 M3 # " B� (d1 + d2)w�1B� (d1 + d2)w�1 #! 
I
II ! = ��(z + �a
s + a
e)�K�I C �nn ��� �nn �� ! : (51)Similarly, for the lower-case potentials, we represent ! as ! = B�!I + (d1 + d2)v�1!IIand expand (44) as " I 00 I #+ " L�I � CM2 00 M2 # " B� (d1 + d2)v�1B� (d1 + d2)v�1 #! !I!II ! =  ��+ L�IC�z ���z �� !(52)Remark 7.1 It is not necessary to solve (51) and (52) as they stand. For example, (52)can be rewritten as an integral equation for !II only(I +M2 � L�C)!II(z) = �z �� + �M2B�: (53)Once this equation is solved !I can be computed from!I(z) = ��+ L�IC!II(z): (54)8 Stress intensity factors and crack opening displacementThe derivative of the opening displacement at crack � can be expressed in terms of 
(z) via(4). The stress intensity factor FI + iFII at the crack tips 
s and 
e can be de�ned as [11]FI + iFII = � ip2�gs sin(�a) limz!
sB�(z)w(z)s(z)a limz!
s
I(z);8



and FI + iFII = ip2�ge sin(�a) limz!
eB�(z) w(z)s(z)�a limz!
e
I(z); (55)where s is arclength measured from the closest crack-tip, and gs and ge are optional normal-ization factors which may include the average applied stress. The �rst limits in equations(55) can be evaluated analytically, the second limits numerically.From (21) and (55) follow expressions for the stress intensity factors in terms of !FI + iFII = �bp2�gs sin(�b) limz!
s n(z)B�(z) v(z)s(z)b limz!
s !I(z);and FI + iFII = ��bp2�ge sin(�b) limz!
e n(z)B�(z) v(z)s(z)�b limz!
e !I(z): (56)From (2) and (42) follows an expression for the crack opening displacement�ux + i�uy = �12 � 1�2 + 1�2 + 1�1 + 1�1� �!(z)v(z) � (d1 + d2)( ���z �M2!(z))� : (57)9 Numerical resultsIn this section we will solve (51) and (52) for three di�erent examples involving interfacecracks. The two �rst examples { the elastic circle and the elastic ellipse { are simple.The purpose of solving these examples is to validate our algorithm against results in theliterature. The third example { an inclusion with nineteen protruding arms { is morecomplex. The purpose of solving this example is to demonstrate the stability of our methodand to investigate which of the two formulations (51) and (52) is the most e�cient.We will solve (51) and (52) using a Nystr�om algorithm with composite quadrature andthe GMRES iterative solver [12]. On quadrature panels that do not contain crack tipswe use 16 point Gaussian quadrature. On panels that do contain a crack tip we use thequadrature described in Section 6 with N = 16. Our procedure for determining the numberof accurate digits is as follows: we start out with a given number, m say, of quadraturepanels of equal length, we solve the integral equations, and we compute the stress intensityfactors. Then we repeat this procedure for 2m panels, for 3m panels, and so on. As aresult we can see the stress intensity factors converge digit by digit to values that do notchange with further resolution. Beyond a certain level of resolution convergence stops andwe arrive at the �nal accuracy presented in the examples below.9.1 A circular inclusionLet us look at an inclusion in the shape of a disk with radius R embedded in an in�nitemedium. The disk is placed at the origin of the complex plane. A uniaxial stress �1yy isapplied at in�nity. In the interface there is a crack of length 2l. The normalization factorsin (55) are chosen as gs = � �ap2��1yy(2l)a ; and ge = � ap2��1yy(2l)�a ;9



The problem of determining the stress intensity factors for this setup, with varying openingangles and elastic moduli, has a (rather complicated) analytical solution [13, 4]. The stressintensity factors have also been calculated numerically and tabulated for a few cases byChen and Nakamichi [4] using a method based on a series expansions of the fundamentalsolution for a point-force outside an elliptical inclusion in an in�nite plate. The relativeerror in these calculations is on the order of one per cent.For comparison we �rst choose a crack that starts at 
s = �iR, follows the interfacecounter-clockwise, and ends at 
e = �R so that the length of the crack is 3�R=2. Theelastic moduli of the surrounding medium are �1 = 2:5 and �1 = 1. The elastic moduliof the disk are �2 = 5 and �2 = 2. At crack tip 
e Chen and Nakamichi get FI = 0:2374and FII = 0:3838. With three, or more, quadrature panels each on the crack and on thebonded interface and four iterations in the GMRES solver we get FI = 0:2400348149934 andFII = 0:3863270862335, both with the formulation of equation (51) and the formulation ofequation (52). The computation time on a SUN Ultra 1 workstation was about one second.In the table of Chen and Nakamichi [4] there are 36 numerical entries corresponding toanalytical solutions for di�erent opening angles and orientations of the interface crack. Wereproduced all the digits in all the entries except for the one labeled F1B , ��C = 45, !� = 45where we suspect that the authors have confused the result of their own calulation with theanalytical result.9.2 An elliptical inclusionAs a second comparison we look at an elastic ellipse with principal axes Rx and Ry andelastic moduli �2 = 10 and �2 = 4 embedded in an elastic plane with moduli �1 = 2:5 and�1 = 1. The crack starts at 
s = Rx, follows the interface counter clock-wise and ends at
e = �Rx. Chen and Nakamichi have computed stress intensity factors for this setup at
e for aspect ratios Ry=Rx = 0:5, Ry=Rx = 1, and Ry=Rx = 2. Data for FII is presentedgraphically in the authors' Figure 7 as FII = 0:69, FII = 0:69, and FII = 0:51 for the threeaspect ratios, respectively. With ten panels on each crack and ten iterations in the GMRESsolver we get FII = 0:837747629930, FII = 0:6772186672348, and FII = 0:5117664818436,both with the formulation of equation (51) and the formulation of equation (52). Sincethe data of Chen and Nakamichi and our computations typically only di�er by a few percent, we speculate that there is some mistake in the plotting of the curve for aspect ratioRy=Rx = 0:5 in their �gure 7. The computation time on a SUN Ultra 1 workstation wasabout three seconds per con�guration.9.3 A complex inclusionIn a more challenging example we look at a nineteen-armed inclusion parameterized byz(t) = (1 + 0:2 cos(19t))eit; 0 � t < 2�: (58)and depicted in Figure 1. The cracks starts at 
s = z(0) and ends at 
s = z(1:7) A uniaxialstress �1yy is applied at in�nity and the elastic moduli are �2 = 10, �2 = 4, �1 = 2:5 and�1 = 1 for the inclusion and for the elastic plane. As a measure of the complexity of thegeometry we �rst compute the arclength of the crack and of the bond: with 80 panels evenly10
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Figure 1: A crack along the interface of a nineteen-armed inclusion. The crack starts at 'S'and ends at 'E'.
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Figure 2: The normal component of the crack opening displacement versus interface parametert of (58) for the crack in Figure 1 subjected to a uniform stress �1yy at in�nity.
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distributed on the interface we get convergence of these quantities to 10 digits. With 160panels we get 12 digits. Then we verify lemma (26) and (39) to 12 digits. This requires100 panels. Finally, we compute stress intensity factors for crack-tip 
s. With 80 panelsand 55 iterations in the GMRES solver and the formulation (52) we get convergence toFI = �0:0129561 and FII = �0:4053423. With 160 quadrature panels and 55 iterations weget convergence to FI = �0:0129560788 and FII = �0:4053422716. The normal componentof the crack opening displacement is plotted in Figure 2. Note that the opening has anegative sign on parts of the crack. The formulation of (51) gives a few digits less for thestress intensity factors. The computation time on a SUN Ultra 1 workstation for the largestcomputation is about �fteen minutes.10 DiscussionThis paper presents an e�cient algorithm for the numerical solution to the elastostaticequation in a medium where there is an inclusion with an interface crack. The algorithmalso computes stress intensity factors. The inclusion can have an arbitrary shape. Theonly user input that is needed is a parameterization of the inclusion interface. This is amajor advantage over some previous methods which rely on geometry-speci�c fundamentalsolutions that could be very di�cult to construct.Our algorithm uses either of the two Fredholm equations (51), based on the upper-casepotentials, and (52), based on the lower-case potentials. These equations perform rathersimilarly for the single interface crack, with a slight advantage for (52). The reason beingthat (52) has a smoother right hand side than (51) for curved interfaces. Another advantagewith the lower-case potentials is that they give easy access to the crack opening displacementvia (57).Our algorithm is stable. High accuracy can be achieved, if desired. The asymptotic speedand storage requirements, however, are not completely satisfactory since, in the presentimplementation, the computing time and the need for storage grow quadratically with thenumber of discretization points needed to resolve the interface. Fortunately, there is acure for this quadratic dependence: The fast multipole method or FMM [14, 15, 16] is a\matrix-free" approach to matrix-vector multiplication. Incorporating the FMM into theGMRES solver leads to a need for storage and a computing time that grows only linearlywith the number of discretization points. Recently [8, 17] this was done for inclusions inthe absence of cracks and for cracks in the absence of inclusions. Incorporating the FMMinto our algorithm for an interface crack is a question of programming. We will attend tothis in future work on cracks in more complex settings.AcknowledgementsThis work was supported by NFR, TFR, and The Knut and Alice Wallenberg Foundationunder TFR contract 96-977.
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