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ABSTRACT

One of the most challenging problems in medical imaging is to “see” a tumour embedded into tissue,  which is a turbid 
medium, by using fluorescent probes for tumour labeling. This problem, despite the efforts made during the last years, 
has not been fully encountered yet, due to the non-linear nature of the inverse problem and the convergence failures of 
many optimization techniques. This paper describes a robust solution of the inverse problem, based on data fitting and 
image fine-tuning techniques.  As a forward solver the coupled radiative transfer equation and diffusion approximation 
model is proposed and compromised via a finite element method, enhanced with adaptive multi-grids for faster and more 
accurate convergence. A database is constructed by application of the forward model on virtual tumours with known 
geometry, and thus fluorophore distribution, embedded into simulated tissues. The fitting procedure produces the best 
matching between the real and virtual data, and thus provides the initial estimation of the fluorophore distribution. Using 
this information, the coupled radiative transfer equation and diffusion approximation model has the required initial 
values for a computational reasonable and successful convergence during the image fine-tuning application.

Keywords: Fluorescence molecular imaging, radiative transfer equation, diffusion approximation, finite elements 
method, fluorescence image registration, image fine-tuning.

1. INTRODUCTION

Fluorescence molecular imaging is advancing to a very essential tool for medical imaging and diagnosis1. The combined 
progress in fluorescent probes technology and imaging modalities have encountered most of the difficulties in the noise 
dominated fluorescence signal recording. However, data quantification and processing still lacks the feasibility and time 
efficacy, despite the great advantage that the computational systems technology has met during the last few years with 
the introduction of the multiprocessor and multi-core systems.  The current state-of-the-art in fluorescence molecular 
imaging data processing applications require parallel programming with multiple computational units and timings in the 
order of many, in some cases more than ten, hours, regardless their hardware implementation, reflectance of 
transmittance setups. The most important reason for this lack of time efficacy is the non-linear nature of the inverse 
problem and the requirement of iterative procedures that would converge to a solution. However, without any prior 
knowledge of the fluorophore distribution, those procedures require numerous iterations to converge, if they do that at 
all. 

The scope of the paper is to introduce a new technique for the solution of the inverse problem, which is based on data 
fitting and image fine-tuning and which will provide the required initial fluorophore distribution and solve the inverse 
problem within a few only iterations. The data fitting procedure is a very common technique among computer vision 
applications, especially in the field of object recognition2, 3, 4. Within this work the translation of this technique to the 
fluorescence molecular imaging was achieved. A database is constructed with image simulations of multiple tumour 
geometries and these images are compared to the captured one. This approach eliminates the necessity of applying the 
forward solver each time a new measurement is made and provides an initial guess, that is the best matching of the real 
fluorophore distribution. Sequentially, the image fine-tuning process utilizes the forward solver to provide the solution to 
the image reconstruction problem.
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In order to provide a complete method for the inverse problem solution, a forward solver is also proposed which fulfills 
the requirements of the introduced technique. A very important prerequisite for successful data fitting application is the 
accuracy of the forward model.  Diffusion approximation, although the golden standard of most fluorescence molecular 
imaging applications5, 6, suffers from two very important, for this approach, limitations. It is not accurate close to the 
surface of the inspected volume and close to the excitation sources7. That is why it is proposed the coupled radiative 
transfer equation and diffusion approximation model as the forward solver8, 9, 10. This model utilizes the radiative transfer 
equation in the sub-domains of the inspected area where the assumptions of the diffusion approximation are not valid, 
and the diffusion approximation elsewhere. In order to compromise the time consuming radiative transfer equation 
solution, the finite elements method is enhanced with an adaptive multi-grid technique11.

The outline of this paper is as follows: In Sec. 2.1 the coupled radiative transfer equation and diffusion approximation 
model is presented for the fluorescence molecular imaging. The forward model is consisted of a dual coupled radiative 
transfer equation and diffusion approximation equation system, one for the excitation field and one of the emission field, 
coupled through the excitation average intensity distribution.  Sec. 2.2 describes the finite element approximation for the 
solution of the forward model. In order to accurately describe light propagation within the whole region, an adaptive 
multi-grid scheme can be utilized. The database models formulation is presented in Sec. 2.3. Super-ellipsoid models 
provide numerous simulations of fluorophore distributions. The data fitting and image fine-tuning approach is described 
in Sec. 2.4. All the necessary image processing algorithms are analyzed, emphasizing those that would provide the image 
features for the image registration between real and simulated data. The image fine-tuning process is the final step for the 
image reconstruction and utilizes both the forward solver and the data-fitting outcomes. Finally, in Sec. 3 some image 
processing results will be presented in order to strengthen this proposal by proving that the acquired fluorescence images 
can provide all the required features for a data fitting and image fine-tuning process with great accuracy, while some very 
important conclusions about this method and the following actions are discussed in Sec. 4.

2. METHODOLOGY

The image reconstruction in fluorescence imaging corresponds to the estimation of the fluorophores distribution within 
the object of interest, when the amount of guided light and the measured data on the boundary of the object are given. 
Application of computer vision techniques for the solution of the non-linear inverse problem, requires accurate 
description of light propagation within the medium. Thus it is essential to have a forward model that preserves high 
levels of accuracy at the whole region of interest.

2.1. Forward model

The coupled radiative transfer equation (RTE) and diffusion approximation (DA) model is derived by coupling RTE, 
with its boundary conditions, and the DA. The two models are coupled at an interface B8, 10.  The position of this interface 
is determined by the scattering coefficient of the medium and it is chosen far enough from the surface, so that the DA can 
be considered to be a valid approximation.  Furthermore, it is assumed that this interface is located within the DA sub-
domain and it is actually the only boundary that the DA has. That is why, in this coupled model, the boundary condition 
of the DA is not applied. 

In fluorescence imaging two light fields should be taken into consideration, the excitation light and the emission light. 
This means that a dual coupled RTE-DA model is created to compensate for both fields. For the excitation field, index 

exc , the only light source is the external light Iexc r, ŝ( ) , and thus the internal light sources are equal to zero. With the 

previous description for formulation of the coupled RTE-DA model, excitation light is expressed as:

i

c
Iexc r, ŝ( ) + ŝ Iexc r, ŝ( ) + µa, exc r( ) + µs, exc r( ) Iexc r, ŝ( )

µs, exc r( ) pexc s, ŝ( ) Iexc r, ŝ( ) ds
4

= 0
   

r VRTE

Iexc r, ŝ( ) =
0

Isrc r, ŝ( )
        

r SRTE , out , ŝ n̂ < 0

1( )

2( )
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Iexc r, ŝ( ) =
1

4
Uexc r( )

3

4
Dexc r( ) Uexc r( ) ŝ

    
r B

i

c
Uexc r( ) Dexc r( ) Uexc r( ) + µa, exc r( ) Uexc r( ) = 0

    
r VDA

Uexc r( ) = Iexc r, ŝ( ) dŝ
4         

r B

For the emission field,  index em , external light source does not exist, but only the internal fluorescence sources.  Thus 

Isrc r, ŝ( ) = 0  and assuming fluorophore quantum yield , the internal light sources are described by the formalism:

em r( ) =
µa, exc

fluo r( )
1 i r( )

Uexc r( )

where µa, exc
fluo r( )  is the absorption coefficient of the fluorophores at the excitation wavelength and r( )  is the 

fluorophore lifetime12, 13, 14.

It is obvious that the fluorescence light sources are strictly depended on the solution of the coupled RTE-DA model for 
the excitation field. The corresponding model for the emission field is as follows:

i

c
Iem r, ŝ( ) + ŝ Iem r, ŝ( ) + µa, em r( ) + µs, em r( ) Iem r, ŝ( )

µs, em r( ) pem s, ŝ( ) Iem r, ŝ( ) ds
4

=
µa, exc

fluo r( )
1 i r( )

Uexc r( )
   

r VRTE

Iem r, ŝ( ) = 0
         

r SRTE , out , ŝ n̂ < 0

Iem r, ŝ( ) =
1

4
Uem r( )

3

4
Dem r( ) Uem r( ) ŝ

    
r B

i

c
Uem r( ) Dem r( ) Uem r( ) + µa, em r( ) Uem r( ) =

µa, exc
fluo r( )

1 i r( )
Uexc r( )

 

r VDA

Uem r( ) = Iem r, ŝ( ) dŝ
4         

r B

Within the described model it is assumed that the presence of the fluorophores does not alter the scattering coefficient of 

the tissue, which means that µs, exc em r( ) = µs, exc em
tis r( ) , where µs, exc em

tis r( )  is the scattering coefficient of the tissue. 

However, this is not true for the absorption coefficient, where it is assumed to be the sum between the absorption 

coefficient of the tissue µa, exc em
tis r( )  and the one of the fluorophores µa, exc em

fluo r( ) , µa, exc em r( ) = µa, exc em
tis r( ) + µa, exc em

fluo r( ) .

In the systems 1( ) 5( )  and 7( ) 11( ) ,  Iexc em r, ŝ( )  is the specific intensity at position r = x, y, z( )
T

 for a given 

direction of propagation ŝ = cos sin , sin sin , cos( )
T

 where ,( )  are standard spherical coordinates, which 

flows within a unit solid angle dŝ . With  is expressed the angular modulation frequency of the excitation source, and 

with c  is expressed the average speed of light in the medium7, 15. Furthermore,  pexc em ŝ, ŝ( )  is the scattering phase 

function, Uexc em r( )  is the average intensity, and Dexc em r( ) = 1 3( ) a µa, exc em r( ) + µs, exc em r( )
1

 is the photon 

diffusion coefficient with µs, exc em r( )  being the reduced scattering coefficient, while the factor a  is related to the 

3( )

4( )

5( )

6( )

7( )

8( )

9( )

10( )

11( )
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absorption, scattering and anisotropy of the medium. In the case of tissue this factor is in the order of  a 0.5 , assuming 

an anisotropy factor of 
 
g 0.8  in the visible16. Finally, VRTE  is the sub-domain of the inspected region where the RTE is 

applied with boundary SRTE  and VDA  is the sub-domain where the DA is valid.

The formalisms in this work are expressed in the frequency domain, however utilizing the transformation

i
t

one can alter the equations to time domain, or even in the steady-state condition assuming = 0 .

Under these premises, the actual scope of the fluorescence molecular imaging is to provide an accurate estimation about 
the positions within the inspected tissue region where the fluorophore absorption coefficient presents value different than 
zero, that is the actual positions of the fluorophores. Providing this information and assuming uniform distribution of the 
fluorophores, the three-dimensional reconstruction of the tumour embedded into tissue is feasible.

2.2. Numerical solution of the forward problem

The analytical solution of the RTE and the DA are often restricted to certain geometries, and therefore their exploitability 
in fluorescence molecular imaging is limited. Thus, in such applications both models are usually solved with numerical 
methods. The most often applied numerical methods are the finite difference method and the finite elements method12, 17, 

18.  The latter is generally regarded as more flexible when issues of implementing different boundary conditions and 
handling complex geometries are considered,  and therefore it is most often chosen as the method for solving equations 
governing light transport in tissue14, 19, 20. The finite elements method is thus proposed as the numerical approach for the 
model described in the previous section.

A finite element solution of the coupled RTE-DA model can derive by posing the model in a weak variational form, 

instead of the strong formalisms of equations 1( ) 5( )  and 7( ) 11( ) , with the use of piecewise linear functions21, 22.  To 

obtain the variational formulation of this model it must be taken into consideration that the solution of the sub-system 

1( ) 5( ) , which is the forward model for the excitation field, is the light source element for the sub-system 7( ) 11( ) , 

which is the forward model for the emission field. Thus, the two sub-systems will be confronted separately, with the 
second sub-system depending directly on the solution of the first.  This will prevent the occurrence of unstable equation 
matrices, very important for the successful convergence to a unique solution.

Therefore, the RTE model of the two subsystems, equations 1( )  and 7( ) , is multiplied with the test function r, ŝ( )  

and is integrated over the sub-domain VRTE  and angular directions 4 , while the DA model, equations 4( )  and 10( ) , is 

multiplied with the test function r( )  and is integrated over the VDA  sub-domain.  An analytical walkthrough for these 

integrations can be obtained from the literature10, 21.

In order to obtain the finite element approximations of the two sub-systems,  the solutions Iexc em r, ŝ( )  and Uexc em r( )  of 

the variational formulations are approximated in piecewise linear functions per element,  based on the nodal values of the 

above solutions. Hence, the discretizations of Iexc em r, ŝ( )  and Uexc em r( ) , following the Galerkin’s method21, 23, 24, are 

expressed as:

Iexc em r, ŝ( ) Iexc em
h r, ŝ( ) = il , exc em i r( ) l ŝ( )

l=1

Na

i=1

Nn

Uexc em r( ) Uexc em
h r( ) = ak , exc em k r( )

k=1

N

12( )

13( )

14( )
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where i r( )  and l ŝ( )  are the nodal basis functions of the spatial and angular finite elements discretizations of the 

RTE domain VRTE , il , exc em  is the radiance in spatial point i  and direction l , with 
 
i = 1,…,Nn  and 

 
l = 1,…,Na , Nn  is 

the number of spatial points and Na  is the number of angular directions. On the other hand, k r( )  are the nodal basis 

functions of the finite elements discretizations of the DA domain VDA , ak , exc em  is the photon density in nodal point k , 

with 
 
k = 1,…,N , and N  is the number of nodal points.

These variable expansions are then substituted into the weak formulations of the coupled RTE-DA for the excitation or 

the emission field,  respectively. Furthermore, as test functions are chosen the basis functions j r( ) , m ŝ( )  and p r( )  

alternately for all 
 
j = 1,…,Nn , 

 
m = 1,…,Na  and 

 
p = 1,…,N  in order to obtain the algebraic equations for all the 

unknowns. The resulting systems are linear algebraic systems, expressed in matrix mode as:

ARTE , exc em BRTE , exc em

BDA, exc em ADA, exc em

exc em

aexc em
=

CRTE , exc em

CDA, exc em

for the excitation and emission fields. In the matrix equations 15( )  exc em = il , exc em  is the radiance of excitation or 

emission field, respectively to the indices, in nodal points of the finite element mesh in the RTE model sub-domain, and 

aexc em = ak , exc em  is the photon density in nodal points of the finite element mesh in the sub-domain of the region where 

the assumptions of the DA are valid. Further, ARTE , exc em  is a block which contains the finite element approximation of the 

RTE as derived from the Galerkin’s method, ADA, exc em  is  the corresponding finite element approximation of the DA, and 

BRTE , exc em  and BDA, exc em  are matrices that contain the coupling connections on the interface B. The source vectors for the 

case of the excitation light contain in the VRTE  sub-domain the external light source and in the VDA  domain are equal to 

zero. On the other hand, the source vectors for the emission light contain the finite element approximation of the solution 
to the excitation field.

The matrix systems 15( )  can be solved so to provide the excitation and emission radiance in the nodal points of the 

spatial and angular discretizations of the RTE sub-domain and the excitation and emission photon density in the nodal 
points of the finite element model of the DA. 

In order to avoid excessive large number of unknowns when encountered with uniform meshes, the finite element 

method can be enhanced with an adaptive multi-grid scheme. A coarse multi-grid T0  is generated and over this region 

discretization the forward model is solved and the prediction error is estimated for each grid. The magnitude of this error 
determines how the multi-grids will be refined. In case the prediction error is insignificant inside a grid, then that grid 
will remain as it is, otherwise it will be refined and a sequence of multi-grids is constructed. However,  the forward solver 
is not applied each time a refinement occurs, but mean nodal values are used instead and the prediction error is updated. 
In case the refinement is leading to significant errors, then the forward solver is applied to the new mesh. This iterative 
procedure is terminated only when all the multi-grids are convergent11.

2.3. Construction of the database models

Till now the fluorescence molecular imaging applications from the forward solver proceed to the comparison between 
the simulated and the acquired data.  This means that the time consuming forward solver must be applied each time a new 
measurement is made and at every iteration, till convergence occurs. The robustness of the method described in this 
paper is that the initial estimations of the fluorophore distribution are computed a priory, providing significant time 
efficacy during fluorescence molecular imaging experiments. These estimations will be stored into a database,  which will 
be updated with every new solution. The super-ellipsoid model defines a closed surface without hole and is the most 
appropriate to simulate a tumour embedded into tissue. These models have been used extensively in many computer 

15( )
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vision applications25, 26 even in some biomedical applications27, 28. However, this is the first time that super-ellipsoid 
models are used in fluorescence molecular imaging.

A super-ellipsoid model is defined as the solution of the general form of the implicit equation:

f x, y, z( ) =
x

a1

2
2

+
y

a2

2
2

2
1

+
z

a3

2
1

In this equation, one can recognize an ellipsoid form, enriched with two more parameters, 1  and 2 , that allow to 

control the shape curvature. More specific, 2  determines the shape of the super-ellipsoid cross-section parallel to the 

x, y( )  plane, while 1  determines the shape of the super-ellipsoid cross-section in a plane perpendicular to the x, y( )  

plane and containing the z  axis. As for the ellipsoid case, the a1 , a2  and a3  parameters are scale factors on x , y  and 

z  axis, respectively, Figure 1.

Fig. 1: Super-ellipsoid models with constant shape curvature parameters and variable scale factors (left) and 
constant scale factors and variable shape curvature parameters (right).

This form provides an information on the position of a three-dimensional point, related to the super-ellipsoid surface, 
that is important for interior/exterior determination. This information derives from the following critical values of the 

implicit equation, which are
 
f x, y, z( ) = 1  when the point lies on the surface,

 
f x, y, z( ) < 1  when the point is inside the 

super-ellipsoid, and f x, y, z( ) > 1  when the point is outside of the super-ellipsoid. In the case of fluorophore 

distribution, the absorption coefficient can be expressed, utilizing these values, as:

µa, exc em r( ) = µa, exc em
tis r( ) + c µa, exc em

fluo r( )
           

c =
1, f x, y, z( ) 1

0, f x, y, z( ) 1

The expression of equation 17( )  is of great importance as the absorption coefficient is automatically updated for each 

model of the database and not user defined, as in most cases of fluorescence imaging simulations. Furthermore, the 
three-dimensional reconstruction of the tumour is achieved by estimation of the coefficient c  in the region under 

inspection. Of course,  there should not be ignored another six parameters, three for translation and three for rotation, that 
define the position of the super-ellipsoid model in a global coordinate system.

16( )

17( )
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Through this modeling a quite large number of simulation models are derived by only alternating the eleven parameters, 
required to totally describe the super-ellipsoid. These models consist the basis for populating and structuring the 
database, which is used for the solution of the inverse problem. The surrounding normal tissue area can be simulated by 
another super-ellipsoid or a rectangular area with optical properties equal to those of the tissue.

The forward solver is applied on these models and the intensity that exits the region surface is transformed to images via 
the expression:

X r( ) = Iem r, ŝ( ) ŝ n̂( ) dŝ
SRTE , out

where X r( )  is the measurand of the system, that is the exitance on the boundary of the domain.  Within this formulation 

losses in the imaging system are taken into consideration and accounted as a correlation factor. This factor is 
experimentally calculated through the system calibration process.

With the expression 18( )  the database is populated with simulation images, that will be used during the data fitting and 

image fine-tuning processes, to provide the three-dimensional reconstruction of the tumour.

2.4. Data fitting and image fine-tuning process

The acquired images for each measurement are pre-processed and normalized, in order to meet the simulation protocols 
of the database.  The pre-processing algorithms include intensity adjustment and background correction. The background 
correction is achieved via subtraction of a reference background image from the primary one. The reference image will 
be acquired from an animal model without the presence of fluorophores so that diffuse reflectance and autofluorescence 
signals that pass through filters to be estimated. Further, the calibration parameters will be applied, in order to 
compensate for the hardware noise and distortion factors on the acquired images.

The intensity adjustment is applied to correlate intensity between captured and simulated images. Intensity adjustment is 
achieved via intensity mapping between high and low threshold levels. From the intensity profile of the acquired images 
the highest and lowest intensity values are determined and change to the threshold ones. All the other intensity levels are 
mapped between those borders, to avoid enhancement of some features and significant minimization of others.

Following the pre-processing procedure, a normalization of the acquired images is applied. This normalization is 
performed from a geometrical view point. A photogrammetric camera provides accurate three-dimensional surface 
reconstruction of the region under inspection. Via this procedure relative coordinates between the animal model and the 
imaging system are estimated and through back-projection the region under inspection can change its positioning in a 
global coordinates system and therefore the acquired images to be updated to that system. This global coordinates system 
is also used for the super-ellipsoid model development, and thus acquired and simulated images refer to the same three-
dimensional coordinates. This process enhances the accuracy of the registration algorithm.

After those two image pre-processing algorithms, exactly the same features as in the database, are extracted from the 
acquired images. Those features include intensity profiles and geometrical information and through these features the 
correlation problem is confronted. Correlation maxima of intensity levels and area properties provide the correlation 
percentage between acquired and pre-calculated images. Threshold values of this correlation percentage provide the best 
matching between a super-ellipsoid model and the real tumour.

The “recovery of object shape” technique is used mainly in cases of estimation of region boundaries when the region 

optical properties are known a priory. Through equation 
 
16( )  the super-ellipsoid model optical properties are known a 

priory, as well as its location inside the virtual tumour. The boundaries can then be approximated in the simulated image, 
and those boundaries are actually compared to the acquired images. Thus, moving backwards, information about the real 
prostate tumour geometry and location is derived, with a correlation factor available.

In case the overall correlation percentage exceeds a threshold value, the reconstruction problem is considered 
successfully solved and the three-dimensional information of the tumour is approximated by the super-ellipsoid model. 

18( )
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This depends directly on the population size of the database, however with the super-ellipsoid models a huge number of 
simulations can be pre-computed, so the reconstruction problem is solved by the data fitting procedure.

On the other hand,  in the case that the correlation percentage is not high enough to provide direct solution of the 
reconstruction problem, an image fine-tuning algorithm is applied. The inverse problem is actually the determination of 
the fluorophore distribution inside the region under inspection, or in other worlds the determination of the fluorophore 

absorption coefficient distribution. Furthermore, from equation 
 
17( )  the inverse problem can be defined as the 

estimation of non-zero elements of the  c  matrix.

In order to estimate these elements, a comparison between the captured and simulated data must be accomplished. This is 
an optimization problem, and the quantity to be minimized (i.e. the misfit between prediction and measurement) is then:

  

F =
1

2
MS X

S

2

where the norm of the difference between the actual measurements,  MS , and the prediction of the emission field,  X  

equation 
 
18( ) , that exits at a part S  of the surface is minimized. The actual measurements incorporate the calibration 

outcomes, so to compensate for any hardware distortion or noise factors and this optimization process to converge 

successfully. The least squares estimation technique is used to minimize equation 
 
19( ) . Due to the nonlinear nature of 

the forward model, that provides the predicted emission field, simultaneous estimation of the parameters involves 
application of an iterative algorithm. For this problem, the Levenberg - Marquardt29 optimization method has been 
selected as it is a virtual standard in nonlinear optimization, which significantly outperforms gradient descent and 
conjugate gradient methods. However, without proper initial values, the optimization may stick in a local minimum and 
thereby causes the convergence to fail. This problem has been confronted by using the data fitting procedure outcomes as 
the initial values for the optimization.

The parameters that have to be defined through this procedure are the elements of the matrix c .  However, from the 

registration algorithm, the initial values of these parameters have been defined and they describe a rigid convex three-
dimensional object inside the region under inspection. It is obvious that only surface elements of these objects will be 
redefined, as from the matching process it is expected that the main body of the super-ellipsoid will describe accurately 
the main body of the labeled tumour. This increases time efficacy, as a specific number of parameters changes after every 
iteration, something that does not happen when no prior information about the fluorophores distribution is available. The 
forward problem is solved as described previously, without further mesh refinement, as the global mesh stored into the 
database has been already fined enough for the real case.

When the optimization procedure converges, the real fluorophore distribution is calculated and the three-dimensional 
reconstruction of the embedded prostate tumour is achieved. This reconstruction model updates the database, increasing 
further its population. This is very important, because after a number of experimental measurements the database will 
provide accurate models of tumour and data fitting procedure results into correlation percentages above the threshold 
value. The number of experiments will be determined when the image fine tuning procedures does not occur any more. 
The robustness here,  is that eventually the reconstruction problem is solved without the need of optimization, but only 
through image registration procedures.

3. RESULTS

The validity of the coupled RTE-DA model has been proven in the literature8, 10,  thus it is not included in the scope of the 
present work. Furthermore, the finite elements method has been also used extensively in many applications during the 
last few years and its results are well known and undoubted.

In this section are presented results from the main image processing algorithms that guarantee a successful data fitting 
and image fine-tuning process. The fluorescence image used in the following figures was acquired from a gel (1% w.v.) 
Agar-Agar in deionized water, on the center of which 10 µl of m-THPC solution were added. The excitation wavelength 
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was at 405 nm and the emission maxima was at 650 nm, while proper high-pass filters were used to cut-off the 
reflectance and backscattering light. An acquired fluorescent image is presented in Figure 2.

  
Fig. 2: Fluorescence image acquired from Agar-Agar gel (1% w.v.) with embedded m-THPC fluorophore (left) 

and the same image uniformly intensified for visualization reasons (right).

The intensity adjustment was performed by mapping the intensity values in each image to new values, such that values 
between a low threshold and a high threshold mapped to values between 0 (black) and 1 (white). Values below low and 
above high thresholds were clipped; that is, values below the low threshold mapped to 0 and those above the high 
threshold mapped to 1. For the specific protocol of image acquisition, the appropriate mapping was the one that was 
weighted toward higher (brighter) output values. This way, all the image elements were included in the adjusted images, 
even those with significant low intensity levels.

Fig. 3: Intensity adjustment in the acquired fluorescence image.

An expected side-effect of the intensity adjustment is the amplification of the inherited noise, something that is more 
than obvious in Figure 3. The two images were restored by implementing the Wiener filtering30, 31. A Wiener filter seeks 

an estimate f̂  that minimizes the statistical error function expressed by the following equation:

e2 = E f f̂( )
2

{ }

where E  is the expressed value operator and f  the undegreded image.  This filter in its complete form requires the 

knowledge of a good deal about the signal and the properties of the noise that infects it. By considering the inherited 
image noise to be Gaussian the resulted restored fluorescence images are shown in Figure 4.
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Fig. 4: Restored grey level image.

The difference between Figures 2 and 4 is sound. The images in Figure 4 were restored and they  retained the details in 
comparison with the original images. Trying to segment the fluorescence images from the acquired ones, would result in 
leaving image features undetected. The reason is that the intensity of some features is quite smaller than the intensity due 
to inherited noise. This is most obvious close to the edges of the region.

However, the described algorithm overcame this difficulty via morphological image processing. More specific, opening 
filter can produce a reasonable estimate of the background across the image, as long as the selected structuring element is 
large enough not to fit entirely within any of the object of interest. Subtracting the resulted image from the restored, a 
new one with even background arises (top-hat transformation). Repeating the same procedure, but instead of opening 
applying the closing filter (bottom-hat transformation), and multiplying the outcomes, a contrast enhancement was 
succeeded, and shown in Figure 4.

Fig. 5: Segmented image

After the preprocessing procedure the images are ready for the segmentation. Simple thresholding would lead either to 
the exclusion of some elements or to the region growth of others. On the other hand, application of any edge detection or 
segmentation algorithm would lead to falsely detected edges or over-segmentation. The reason is that the object in the 
images does not have sharp edges or relevant intensities. In order to avoid such problems, this algorithm performed a 
combination of marker-controlled watershed transformation32, 33 and thresholding. As a result even the lowest intensity 
features were detected. The resulted segmented image is presented in Figure 5.

From Figure 5 all the geometrical features of the emitted fluorescence signal can be estimated. These required for the 
data fitting and image-fine tuning process is the area of the detected region. This feature, along with the intensity profile 
of the detected area can provide the correlation factor between the real and the database images.
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4. DISCUSSION

In this paper a new method for the solution of the inverse problem in fluorescence molecular imaging was presented. Its 
two main procedures, data fitting and image fine-tuning, are very promising for the translation of fluorescence molecular 
imaging from phantoms to animal modeling. The results from image processing showed that the fluorescence images can 
provide the geometrical features of the inspected region for successful data fitting.

The algorithms presented here succeeded to overcome the fact of high level noise and successfully segment the sample 
image. Providing this information, the image registration between database models and acquired images is feasible.

Another important aspect of the work is the proposal of the super-ellipsoids as the database models. With only eleven 
parameters, an excessively large number of tumour simulations can result automatically and the required initial values of 
the fluorophore distribution to be available. This is of great importance as the lack of these values are mostly responsible 
for the time consuming iterations during the solution of the inverse problem.

The method described here can be proven a valuable tool for a large number of fluorescence imaging applications. In its 
final formalism it is strictly related to the image acquisition system, as the calibration parameters are incorporated in the 
development of the database and the simulation images are constructed for a specific geometry. However, this method 
can be applied to any geometry, and by using any forward solver, with a cost on accuracy if the solver is not accurate 
enough, as long as the database is constructed in accordance to the modus operandi of the application.
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