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Abstract

A fast and accurate algorithm for the computation of effective electric and
mathematically equivalent properties of composites with non-smooth inter-
faces is reported. The algorithm is based on an integral equation reformu-
lation of the electrostatic partial differential equation and a fast hierarchical
technique for potential field evaluation. In a numerical example, two hundred
large and strongly inhomogeneous aggregates of randomly overlapping disks
are solved with a relative error of 0.0005.

Key words: Continuum percolation, disordered media, integral equations, effective con-
ductivity, overlapping cylinders, large-scale calculations, fiber-reinforced materials.

I. INTRODUCTION

Random aggregates of overlapping objects are frequently studied geometries in the
physics of disordered media: Objects with physical properties described by certain mod-
uli are placed, at random, in a matrix with different moduli.

Much work for random aggregates concerns effective properties. Of particular interest,
and difficulty, is to predict effective properties of highly inhomogeneous aggregates close
to the continuum percolation threshold [1,2], that is, close to the area fraction for which
the randomly placed objects start to form a connected path through the material. Popular
numerical methods for this problem are often based on statistical ideas and include bi-
ased diffusion [3], Monte Carlo or random walk simulations [4,5], “blind-ant” algorithms [6],
resistor network approximations [7,8], and series expansion incorporating structural param-
eters [9-11]. Most of these methods converge as 1/v/N, where N is the computational work.
A typical relative error for the effective moduli of strongly inhomogeneous large aggregates
is on the order of 0.05. The justification for using low-order accurate methods seems to
be a notion that high-order accurate methods are impossible to apply. The most reliable
estimates for large random systems, until now, are perhaps experimental measurements on
steel and molybdenum sheets [12] and thin aluminum films [13] with drilled holes.

This paper demonstrates that the accurate numerical calculation of effective properties of
strongly inhomogeneous large random aggregates of overlapping objects is not only possible,
but also simple to perform on a regular workstation. We specialize to overlapping disks and



compute the effective conductivity for unit cells at two hundred different area fractions and
with a relative error of 0.0005. At percolation the unit cells contain around 3,500 disks.
The key ingredients in our algorithm are: 1) A new integral equation formulation for the
electrostatic PDE on a doubly periodic domain. 2) The fast multipole method for potential
field evaluations [14-16]. 3) A recent algorithm for the evaluation of layer potentials close
to their sources [17].

II. INTEGRAL EQUATIONS AND EFFECTIVE PROPERTIES

This section reviews integral equation reformulations of the electrostatic PDE for two-
dimensional two-component composite materials. The material’s geometry is given in a unit
cell, taken to be the square Dy = (—1/2,1/2] x (—1/2,1/2], and periodically repeated as to
tile the entire plane. The area fractions and the conductivities of the components are p;, pa,
o1, and oo. If one component forms at least one infinitely large connected region while the
other component forms finite regions the composite is called a suspension of inclusions. The
interfaces between the components in the unit cell are called I'y.;;. The interfaces 'y, and
their periodic images are called I'. The interfaces I' and the parts of the unit cell boundary
that are covered with component two and their periodic images are called I'gy.

An average electric field e of unit strength is applied to the composite. The potential U,
at position r in the composite can then be represented on the form

|
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where p is an unknown density and r; and p; denote position and density at arclength .
The density p can be solved for from the integral equation
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where n; is the unit normal at arclength s pointing into component one. Equation (2) follows
from insertion of eq. (1) into the electrostatic PDE. If the composite is a suspension where
no inclusion overlaps the unit cell boundary, and if component one denotes the matrix, the
effective conductivity oeg in the direction e can be written

Ooff = 01 + 01 /1“ e-ryp.ds. (3)
unit

Equation (2) is the choice of Greengard and Moura [18] in their pioneering work on the

electrostatics of large suspensions, and of Cheng and Greengard [19] in their work on random

suspensions of non-overlapping disks.

If the composite is a suspension where inclusions do overlap the unit cell boundary, the
effective conductivity can still be computed from eq. (3) after a modification of the shape
of the unit cell. If the composite is not a suspension eq. (3) does not apply without more
extensive modifications. Another possibility is to use the formula
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where the integral goes along the unit cell boundary and where a short-hand notation for
the directional derivative is used.

There are many ways to represent the potential U, in the composite. Equation (1), the
single layer representation, is just a convenient choice. Another integral formulation is based
on the representation

1 .
U, = _—/ wUtdt /log|r—rt|%dt (5)
r
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In terms of a scaled potential u, defined by

Uy = MUN (6)
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and with the use of Green’s second identity, an integral equation can be derived
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The effective conductivity in the direction e can be computed from u via

Ooff = 01 + 01 /r e-n,u.ds. (8)
unit

The integral kernels in eq. (2) and eq. (7) are each other’s adjoints. One could therefore
expect that the amount of work needed to solve the two equations with a given error tolerance
should be similar. A closer inspection reveals a difference between the equations: the left
hand side in eq. (7) is a smoother quantity than the left hand side in eq. (2). Does this mean
that eq. (7) is easier to solve than eq. (2)7 As we shall see in the next section, the answer to
this question is often “yes”. An difficulty with eq. (7) is that it calls for integration involving
a non-periodic and unbounded function, u,, over an infinite domain.

We now propose a reformulation of eq. (7) that is a simplification from a numerical
viewpoint: First the potential u, is split up into a linearly growing and into a periodic and
bounded part,

(O’Q 0'1) (9)
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Then eq. (7) is rewritten
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where r* is the position r translated with a lattice vector back into the unit cell. Equation (8)
becomes



Oeff = P101 + P20s + 04 / e - nyw,ds. (11)
1—‘unit
In eq. (10) the integral on the left hand side includes parts of the unit cell boundary. This
integral is simple, since it only involves known geometric quantities.
Yet another choice for the potential is the layer representation

Ulr)=e-r— 1 /F wutdt, (12)
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where n | is the unit tangential vector at ¢, pointing in positive direction. The electrostatic
PDE leads to the integral equation
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where e is the vector e rotated 90 degrees counter-clockwise. The effective conductivity in
the direction e is

Ooff = 01 + 04 / e, - nguds. (14)
unit

While eq. (12) may be simpler to evaluate than eq. (5), the integral equation (13) is rather

similar to the integral equation (7) and it will not be discussed further in this paper.

III. NUMERICAL COMPARISON OF INTEGRAL EQUATIONS

In this section we compare the performance of eqgs. (2,3), eqs. (2,4) and eqgs. (10,11) for
various composites with different kinds of interfaces. In all examples we choose o; = 1 and
0y = 1000. For the numerical solution of the integral equation we use a recent Nystrom
algorithm [17] which relies on 16-point Gauss-Legendre quadrature with aposteriori refine-
ment, solution of systems of linear equations with the GMRES [20] iterative solver, an
adaptive method for evaluation of layer potentials close to their sources, and Fast Multipole
Method [14-16] acceleration of matrix-vector multiplication. Initially, we place eight Gaus-
sian segments per disk. For each stage of adaptive refinement we increase the number of
segments with about 25 per cent. The “tolerance” is the value of the residual below which
GMRES iteration is terminated. This value is chosen experimentally as to give the highest
achievable accuracy with the fewest number of iterations for each stage.

A. Suspensions with smooth interfaces

We first look at a suspension with smooth interfaces: the random suspension of equisized
disks shown in Figure 1 where p, = 0.6. Table I shows that for very high resolution,
eqs. (10,11) and egs. (2,3) perform similarly. For lower resolution eqs. (10,11) gives better
accuracy than egs. (2,3).



B. Suspensions with non-smooth interfaces

We next turn to a suspension with non-smooth interfaces: the arrangement of 902 over-
lapping disks shown in Figure 2. The disks have radius R = 0.02. In the left arrangement the
disks are placed at random with the constraint that no disks overlap the unit cell boundary.
In this way we make sure that the material is a suspension and that eq. (3) applies. The
right arrangement is the same as the left arrangement, the difference being that all disks are
translated so that there is a considerable number of disks that overlap the unit cell bound-
ary. Table IT shows that eqs. (10,11) give better accuracy than eqs. (2,3), which in turn give
better accuracy than egs. (2,4), for all stages of resolution. Furthermore, for eqs. (10,11) no
accuracy is lost when the inclusions are allowed to overlap the unit cell boundary.

C. General composites with non-smooth interfaces

The arrangement in Figure 3 has 902 randomly overlapping disks in the unit cell. The
interfaces are non-smooth and the unit cell boundary is covered with both types of compo-
nents. The disks radius is R = 0.02 and the area fraction is ps &~ 0.67528 — close to the
percolation threshold. In this particular realization there is no percolation of disks in the
a-direction. Table III shows that egs. (10,11) give roughly 100 times better accuracy than
eqs. (2,4), for a given amount of work.

Figure 4 shows an arrangement of 1763 randomly overlapping disks with radius R =
0.01414. The area fraction is py ~ 0.67530. In this realization there is percolation of disks
in the z-direction. Table IV shows that eqs. (10,11) again give roughly 100 times better
accuracy than eqs. (2,4), for a given amount of work.

In the arrangement of 3502 randomly overlapping disks in Figure 5 the disks radius is
R = 0.01 and the area fraction is ps ~ 0.67519. In this realization there is no percolation
of disks in the z-direction. The effective conductivity, presented in Table V, is even lower
than that of the composite in Figure 3.

Table ITI, Table IV, and Table V demonstrate that for unit cells with several thousand
randomly placed disks, close to the percolation threshold, and for a degree of inhomogeneity
around a thousand, details in the microstructure do have influence on the effective conduc-
tivity. Tables III-V also tell us that for a relative error of 0.0005, and with eqs. (10,11), it
is sufficient to use only one stage of refinement and to stop the GMRES iterations when the
residual is less than 1075,

IV. BULK CALCULATIONS

The previous section shows that egs. (10,11) can give effective properties for aggregates
of overlapping disks with R = 0.01 and 09/0; = 1000 with a relative accuracy of 0.0005 at
a modest computational cost. In a final example we produce numerical results computed
with egs. (10,11) to that same accuracy for 200 different unit cells sampling the entire range
of area fractions p, = 0.00 to p; = 1.00. The results are shown in Figure 6. The curve is
rather smooth to the eye — indicating that the system can be considered “quite large” for
the chosen degree of inhomogeneity. The computations took approximately 200 CPU hours



on a SUN Ultra 1 workstation. The chosen problem size is perhaps close to what can be
treated at present on a regular workstation without swapping. The bulk of the memory is
used to store search directions in the Krylov space for the GMRES solver.

It is of interest to compare our computed effective properties to well-studied theoretical
predictions such as bounds and effective medium approximations. Apart from being of the-
oretical interest, bounds and crude approximations give rapid answers in difficult situations
when only partial geometric information about a composite is available or when the geom-
etry is too complicated to be discretized. For these type of estimates to be quantitatively
useful, however, the degree of inhomogeneity must not be too large. Figure 6 also shows
the second order accurate Hashin-Shtrikman bounds [21], a pair of fourth order accurate
bounds derived by Milton [10] which incorporate structural data computed by Torquato
and Beasley [11], and the Bruggeman effective medium approximation [22] for disks. As
we can see, the bounds are quite conservative and the effective medium approximation is
acceptable only for low area fractions where the geometry resembles a dilute suspension of
disks. Note that the vertical axis has a logarithmic scale.

V. DISCUSSION

The algorithm presented in this paper should be a powerful tool for the numerical investi-
gation of conductivity behavior for continuum percolation in two dimensions. The geometry
can be arbitrary. We chose disks in our examples because it is a standard choice.

The reader may wonder what the computational cost would be if the code was extended
to three dimensions. Here follow some thoughts on that topic: The bulk of the computational
work in the present two-dimensional algorithm is spent in the fast multipole routine inside
the GMRES solver. We use the scheme of Greengard and Rokhlin [15]. Assuming N
uniformly spaced discretization points in the unit cell and using seven digit accuray, the
number of operations per iteration is between 200N and 300/N. The latest version of the fast
multipole method for the Laplace equation in three dimensions [23] require approximately
2000N operations per iteration. The complexity of the fast multipole method in two and
three dimensions is similar, while the actual work per GMRES iteration, given a number of
points and a prescribed accuracy, could be ten times larger in three dimensions than in two
dimensions.

While it is easy to find three dimensional analouges to the two dimensional integral equa-
tions used above, discretizing interfaces in two and three dimensions are programming tasks
of different magnitude. In order to make the three dimensional code efficient one also needs
to extend our method for evaluation of layer potentials close to their sources [17] to three
dimensions. The difficulty in these tasks are issues of parameterization and interpolation.

The computer code used in this paper is available from the author upon request.
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FIGURES

FIG. 2. The left image depicts a unit cell consisting of 902 overlapping disks of radius R = 0.02.
The area fraction is py &~ 0.65506. The disk are placed at random with the constraint that no disk must
overlap the unit cell boundary. The right image depicts the same material, but the origin is translated
so that many disks now overlap the unit cell boundaries.



FIG. 3. A unit cell consisting of 902 overlapping disks of radius R = 0.02. The area fraction,
p2 = 0.67528, is close to the percolation threshold.

FIG. 4. A unit cell consisting of 1763 overlapping disks of radius R = 0.01414. The area fraction,
pa =~ 0.67530, is close to the percolation threshold.
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FIG. 5. A unit cell consisting of 3502 overlapping disks of radius R = 0.01. The area fraction,
p2 = 0.67519, is close to the percolation threshold.
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FIG. 6. The effective conductivity of random aggregates of overlapping disks in a unit cell at various
area fractions along with bounds and a crude estimate. Points denote the computations in this paper,
the dashed lines are the Hashin Shtrikman bounds [21], the stars are a fourth order bound [10,11],
and the solid line is an effective medium approximation [22]. The disk radius is R = 0.01 and the

conductivity of the matrix and of the disks are o1 = 1 and o9 = 1000.
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TABLES

TABLE 1. Effective conductivity in the z-direction for the “random” suspension of 1024 disks in
Figure 1. The infinite medium has conductivity o1 = 1 and the disks have conductivity oo = 1000.
The value in the limit of an infinitely large unit cell should be 5.114 4+ 0.060. [19]

Stage 1 Stage 2 Stage 3 Stage 4
Oeffs €4 (3) ) 15.14 5.14079 5.14078902
Oeff, €q. (11) 5.14 15.1408 5.140789 5.14078902
iterations, eq. (2) 39 27 56 72
iterations, eq. (10) 51 53 67 82
points, eq. (2) 131,072 180,224 929,376 278,528
points, eq. (10) 131,936 181,088 229,696 277,136
tolerance, eq. (2) 1072 1072 1074 1077
tolerance, eq. (10) 1076 107 107° 0=

TABLE II. Effective conductivity in the z-direction for the aggregate of 902 disks in Figure 2. The
infinite medium has conductivity o3 = 1 and the disks have conductivity o5 = 1000.

Stage 1 Stage 2 Stage 3 Stage 6 Stage 9
oeff, left image, eq. (3) 15.10 15.10 15.10 15.10 15.10
o, Tight image, eq. (4) 15 15.1 15.1 15.1 15.10
oeff, both images, eq. (11) 15.098 15.0976 15.0976 15.09762 15.09762
iterations, left image, eq. (2) 78 80 83 94 107
iterations, left image, eq. (10) 95 113 113 129 129
iterations, right image, eq. (10) 91 91 91 125 124
points, left image, eq. (2) 55,264 69,072 77,856 100,480 122,320
points, left image, eq. (10) 55,264 69,072 77,840 102,240 124,848
points, right image, eq. (10) 55,648 69,522 82,992 122,368 161,600
tolerance, eq. (2) 1074 1074 1074 1074 1074
tolerance, eq. (10) 1076 10-7 10-7 108 108
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TABLE III. Effective conductivity in the z-direction for the aggregate of 902 disks in Figure 3.
The infinite medium has conductivity o1 = 1. The disks have conductivity oo = 1000.

Stage 1 Stage 2 Stage 3 Stage 6 Stage 9
Oeft, €q. (4) 48 48 48.3 48.3 48.3
Oeff, €q. (11) 48.32 48.322 48.322 48.3222 48.3222
iterations, eq. (10) 101 120 120 135 135
points, eq. (2) 57,744 72,176 82,032 105,728 128,592
points, eq. (10) 58,096 72,608 83,856 115,856 146,560
tolerance, eq. (10) 107° 106 106 10=7 10=7

TABLE IV. Effective conductivity in the z-direction for the aggregate of 1763 disks in Figure 4.
The infinite medium has conductivity o1 = 1 and the disks have conductivity go = 1000.

Stage 1 Stage 2 Stage 3 Stage 4
Oeffs €4. (4) 71 71 71 1.7
Oeft €q. (11) 71.7 71.71 71.715 71.715
iterations, eq. (10) 95 124 149 149
points, eq. (2) 116,144 145,168 164,464 180,752
points, eq. (10) 116,624 145,776 170,448 194,384
tolerance, eq. (10) 1075 10°6 1077 1077

TABLE V. Effective conductivity in the z-direction for the aggregate of 3502 disks in Figure 5.
The infinite medium has conductivity o1 = 1 and the disks have conductivity oo = 1000. The numbers
within perethesis denote the converged solutions at the two stages.

Stage 1 Stage 2
oett €q. (11) 437 (43.696) 4369  (43.6936)
iterations, eq. (10) 88 155
points, eq. (10) 236,144 295,168
tolerance, eq. (10) 10=4 1076
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