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A high-order accurate algorithm forelectrostatics of overlapping disksJohan HelsingDepartment of Solid Mechanics, Royal Institute of Technology,SE-100 44 Stockholm, Sweden(August 13, 1997, revised November 9, 1997)AbstractA fast and accurate algorithm for the computation of e�ective electric andmathematically equivalent properties of composites with non-smooth inter-faces is reported. The algorithm is based on an integral equation reformu-lation of the electrostatic partial di�erential equation and a fast hierarchicaltechnique for potential �eld evaluation. In a numerical example, two hundredlarge and strongly inhomogeneous aggregates of randomly overlapping disksare solved with a relative error of 0.0005.Key words: Continuum percolation, disordered media, integral equations, e�ective con-ductivity, overlapping cylinders, large-scale calculations, �ber-reinforced materials.I. INTRODUCTIONRandom aggregates of overlapping objects are frequently studied geometries in thephysics of disordered media: Objects with physical properties described by certain mod-uli are placed, at random, in a matrix with di�erent moduli.Much work for random aggregates concerns e�ective properties. Of particular interest,and di�culty, is to predict e�ective properties of highly inhomogeneous aggregates closeto the continuum percolation threshold [1,2], that is, close to the area fraction for whichthe randomly placed objects start to form a connected path through the material. Popularnumerical methods for this problem are often based on statistical ideas and include bi-ased di�usion [3], Monte Carlo or random walk simulations [4,5], \blind-ant" algorithms [6],resistor network approximations [7,8], and series expansion incorporating structural param-eters [9{11]. Most of these methods converge as 1=pN , where N is the computational work.A typical relative error for the e�ective moduli of strongly inhomogeneous large aggregatesis on the order of 0.05. The justi�cation for using low-order accurate methods seems tobe a notion that high-order accurate methods are impossible to apply. The most reliableestimates for large random systems, until now, are perhaps experimental measurements onsteel and molybdenum sheets [12] and thin aluminum �lms [13] with drilled holes.This paper demonstrates that the accurate numerical calculation of e�ective properties ofstrongly inhomogeneous large random aggregates of overlapping objects is not only possible,but also simple to perform on a regular workstation. We specialize to overlapping disks and1



compute the e�ective conductivity for unit cells at two hundred di�erent area fractions andwith a relative error of 0.0005. At percolation the unit cells contain around 3,500 disks.The key ingredients in our algorithm are: 1) A new integral equation formulation for theelectrostatic PDE on a doubly periodic domain. 2) The fast multipole method for potential�eld evaluations [14{16]. 3) A recent algorithm for the evaluation of layer potentials closeto their sources [17].II. INTEGRAL EQUATIONS AND EFFECTIVE PROPERTIESThis section reviews integral equation reformulations of the electrostatic PDE for two-dimensional two-component composite materials. The material's geometry is given in a unitcell, taken to be the square D0 = (�1=2; 1=2]� (�1=2; 1=2], and periodically repeated as totile the entire plane. The area fractions and the conductivities of the components are p1, p2,�1, and �2. If one component forms at least one in�nitely large connected region while theother component forms �nite regions the composite is called a suspension of inclusions. Theinterfaces between the components in the unit cell are called �unit. The interfaces �unit andtheir periodic images are called �. The interfaces � and the parts of the unit cell boundarythat are covered with component two and their periodic images are called �ext.An average electric �eld e of unit strength is applied to the composite. The potential Urat position r in the composite can then be represented on the formUr = e � r+ 12� Z� log jr� rtj�tdt; (1)where � is an unknown density and rt and �t denote position and density at arclength t.The density � can be solved for from the integral equation2e � ns = (�2 + �1)(�2 � �1)�s + 1� Z� ns � (rt � rs)jrt � rsj2 �tdt; (2)where ns is the unit normal at arclength s pointing into component one. Equation (2) followsfrom insertion of eq. (1) into the electrostatic PDE. If the composite is a suspension whereno inclusion overlaps the unit cell boundary, and if component one denotes the matrix, thee�ective conductivity �e� in the direction e can be written�e� = �1 + �1 Z�unit e � rs�sds: (3)Equation (2) is the choice of Greengard and Moura [18] in their pioneering work on theelectrostatics of large suspensions, and of Cheng and Greengard [19] in their work on randomsuspensions of non-overlapping disks.If the composite is a suspension where inclusions do overlap the unit cell boundary, thee�ective conductivity can still be computed from eq. (3) after a modi�cation of the shapeof the unit cell. If the composite is not a suspension eq. (3) does not apply without moreextensive modi�cations. Another possibility is to use the formula�e� = Z r=(0:5;0:5)r=(0:5;�0:5) �r@Ur@n dt; (4)2



where the integral goes along the unit cell boundary and where a short-hand notation forthe directional derivative is used.There are many ways to represent the potential Ur in the composite. Equation (1), thesingle layer representation, is just a convenient choice. Another integral formulation is basedon the representationUr = � 12� Z� nt � (rt � r)jrt � rj2 Utdt� 12� Z� log jr� rtj@Ut@n dt: (5)In terms of a scaled potential ur de�ned byur = (�2 � �1)�1 Ur; (6)and with the use of Green's second identity, an integral equation can be derived2e � rs = (�2 + �1)(�2 � �1)us � 1� Z� nt � (rt � rs)jrt � rsj2 utdt: (7)The e�ective conductivity in the direction e can be computed from u via�e� = �1 + �1 Z�unit e � nsusds: (8)The integral kernels in eq. (2) and eq. (7) are each other's adjoints. One could thereforeexpect that the amount of work needed to solve the two equations with a given error toleranceshould be similar. A closer inspection reveals a di�erence between the equations: the lefthand side in eq. (7) is a smoother quantity than the left hand side in eq. (2). Does this meanthat eq. (7) is easier to solve than eq. (2)? As we shall see in the next section, the answer tothis question is often \yes". An di�culty with eq. (7) is that it calls for integration involvinga non-periodic and unbounded function, ur, over an in�nite domain.We now propose a reformulation of eq. (7) that is a simpli�cation from a numericalviewpoint: First the potential ur is split up into a linearly growing and into a periodic andbounded part ur = (�2 � �1)�1 e � r+ wr: (9)Then eq. (7) is rewritten�(�2 � �1)�1 e � rs + (�2 � �1)�1 1� Z�ext nt � (rt � rs)jrt � rsj2 e � r�tdt =(�2 + �1)(�2 � �1)ws � 1� Z� nt � (rt � rs)jrt � rsj2 wtdt; (10)where r� is the position r translated with a lattice vector back into the unit cell. Equation (8)becomes 3



�e� = p1�1 + p2�2 + �1 Z�unit e � nswsds: (11)In eq. (10) the integral on the left hand side includes parts of the unit cell boundary. Thisintegral is simple, since it only involves known geometric quantities.Yet another choice for the potential is the layer representationU(r) = e � r� 12� Z� n?t � (rt � r)jrt � rj2 �tdt; (12)where n?t is the unit tangential vector at t, pointing in positive direction. The electrostaticPDE leads to the integral equation2e? � rs = (�2 + �1)(�2 � �1)�s + 1� Z� nt � (rt � rs)jrt � rsj2 �tdt; (13)where e? is the vector e rotated 90 degrees counter-clockwise. The e�ective conductivity inthe direction e is �e� = �1 + �1 Z�unit e? � ns�sds: (14)While eq. (12) may be simpler to evaluate than eq. (5), the integral equation (13) is rathersimilar to the integral equation (7) and it will not be discussed further in this paper.III. NUMERICAL COMPARISON OF INTEGRAL EQUATIONSIn this section we compare the performance of eqs. (2,3), eqs. (2,4) and eqs. (10,11) forvarious composites with di�erent kinds of interfaces. In all examples we choose �1 = 1 and�2 = 1000. For the numerical solution of the integral equation we use a recent Nystr�omalgorithm [17] which relies on 16-point Gauss-Legendre quadrature with aposteriori re�ne-ment, solution of systems of linear equations with the GMRES [20] iterative solver, anadaptive method for evaluation of layer potentials close to their sources, and Fast MultipoleMethod [14{16] acceleration of matrix-vector multiplication. Initially, we place eight Gaus-sian segments per disk. For each stage of adaptive re�nement we increase the number ofsegments with about 25 per cent. The \tolerance" is the value of the residual below whichGMRES iteration is terminated. This value is chosen experimentally as to give the highestachievable accuracy with the fewest number of iterations for each stage.A. Suspensions with smooth interfacesWe �rst look at a suspension with smooth interfaces: the random suspension of equisizeddisks shown in Figure 1 where p2 = 0:6. Table I shows that for very high resolution,eqs. (10,11) and eqs. (2,3) perform similarly. For lower resolution eqs. (10,11) gives betteraccuracy than eqs. (2,3).
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B. Suspensions with non-smooth interfacesWe next turn to a suspension with non-smooth interfaces: the arrangement of 902 over-lapping disks shown in Figure 2. The disks have radius R = 0:02. In the left arrangement thedisks are placed at random with the constraint that no disks overlap the unit cell boundary.In this way we make sure that the material is a suspension and that eq. (3) applies. Theright arrangement is the same as the left arrangement, the di�erence being that all disks aretranslated so that there is a considerable number of disks that overlap the unit cell bound-ary. Table II shows that eqs. (10,11) give better accuracy than eqs. (2,3), which in turn givebetter accuracy than eqs. (2,4), for all stages of resolution. Furthermore, for eqs. (10,11) noaccuracy is lost when the inclusions are allowed to overlap the unit cell boundary.C. General composites with non-smooth interfacesThe arrangement in Figure 3 has 902 randomly overlapping disks in the unit cell. Theinterfaces are non-smooth and the unit cell boundary is covered with both types of compo-nents. The disks radius is R = 0:02 and the area fraction is p2 � 0:67528 { close to thepercolation threshold. In this particular realization there is no percolation of disks in thex-direction. Table III shows that eqs. (10,11) give roughly 100 times better accuracy thaneqs. (2,4), for a given amount of work.Figure 4 shows an arrangement of 1763 randomly overlapping disks with radius R =0:01414. The area fraction is p2 � 0:67530. In this realization there is percolation of disksin the x-direction. Table IV shows that eqs. (10,11) again give roughly 100 times betteraccuracy than eqs. (2,4), for a given amount of work.In the arrangement of 3502 randomly overlapping disks in Figure 5 the disks radius isR = 0:01 and the area fraction is p2 � 0:67519. In this realization there is no percolationof disks in the x-direction. The e�ective conductivity, presented in Table V, is even lowerthan that of the composite in Figure 3.Table III, Table IV, and Table V demonstrate that for unit cells with several thousandrandomly placed disks, close to the percolation threshold, and for a degree of inhomogeneityaround a thousand, details in the microstructure do have inuence on the e�ective conduc-tivity. Tables III-V also tell us that for a relative error of 0.0005, and with eqs. (10,11), itis su�cient to use only one stage of re�nement and to stop the GMRES iterations when theresidual is less than 10�5. IV. BULK CALCULATIONSThe previous section shows that eqs. (10,11) can give e�ective properties for aggregatesof overlapping disks with R = 0:01 and �2=�1 = 1000 with a relative accuracy of 0.0005 ata modest computational cost. In a �nal example we produce numerical results computedwith eqs. (10,11) to that same accuracy for 200 di�erent unit cells sampling the entire rangeof area fractions p2 = 0:00 to p2 = 1:00. The results are shown in Figure 6. The curve israther smooth to the eye { indicating that the system can be considered \quite large" forthe chosen degree of inhomogeneity. The computations took approximately 200 CPU hours5



on a SUN Ultra 1 workstation. The chosen problem size is perhaps close to what can betreated at present on a regular workstation without swapping. The bulk of the memory isused to store search directions in the Krylov space for the GMRES solver.It is of interest to compare our computed e�ective properties to well-studied theoreticalpredictions such as bounds and e�ective medium approximations. Apart from being of the-oretical interest, bounds and crude approximations give rapid answers in di�cult situationswhen only partial geometric information about a composite is available or when the geom-etry is too complicated to be discretized. For these type of estimates to be quantitativelyuseful, however, the degree of inhomogeneity must not be too large. Figure 6 also showsthe second order accurate Hashin-Shtrikman bounds [21], a pair of fourth order accuratebounds derived by Milton [10] which incorporate structural data computed by Torquatoand Beasley [11], and the Bruggeman e�ective medium approximation [22] for disks. Aswe can see, the bounds are quite conservative and the e�ective medium approximation isacceptable only for low area fractions where the geometry resembles a dilute suspension ofdisks. Note that the vertical axis has a logarithmic scale.V. DISCUSSIONThe algorithm presented in this paper should be a powerful tool for the numerical investi-gation of conductivity behavior for continuum percolation in two dimensions. The geometrycan be arbitrary. We chose disks in our examples because it is a standard choice.The reader may wonder what the computational cost would be if the code was extendedto three dimensions. Here follow some thoughts on that topic: The bulk of the computationalwork in the present two-dimensional algorithm is spent in the fast multipole routine insidethe GMRES solver. We use the scheme of Greengard and Rokhlin [15]. Assuming Nuniformly spaced discretization points in the unit cell and using seven digit accuray, thenumber of operations per iteration is between 200N and 300N . The latest version of the fastmultipole method for the Laplace equation in three dimensions [23] require approximately2000N operations per iteration. The complexity of the fast multipole method in two andthree dimensions is similar, while the actual work per GMRES iteration, given a number ofpoints and a prescribed accuracy, could be ten times larger in three dimensions than in twodimensions.While it is easy to �nd three dimensional analouges to the two dimensional integral equa-tions used above, discretizing interfaces in two and three dimensions are programming tasksof di�erent magnitude. In order to make the three dimensional code e�cient one also needsto extend our method for evaluation of layer potentials close to their sources [17] to threedimensions. The di�culty in these tasks are issues of parameterization and interpolation.The computer code used in this paper is available from the author upon request.ACKNOWLEDGMENTSI thank Leslie Greengard, Robert Kohn, and Ohad Levy for many useful discussions.This work was supported by NFR, TFR, and The Knut and Alice Wallenberg Foundationunder TFR contract 96-977. 6
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FIGURES

FIG. 1. A unit cell with a \random" suspension of 1024 disks at area fraction p2 = 0:6.

FIG. 2. The left image depicts a unit cell consisting of 902 overlapping disks of radius R = 0:02.The area fraction is p2 � 0:65506. The disk are placed at random with the constraint that no disk mustoverlap the unit cell boundary. The right image depicts the same material, but the origin is translatedso that many disks now overlap the unit cell boundaries.
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FIG. 3. A unit cell consisting of 902 overlapping disks of radius R = 0:02. The area fraction,p2 � 0:67528, is close to the percolation threshold.

FIG. 4. A unit cell consisting of 1763 overlapping disks of radius R = 0:01414. The area fraction,p2 � 0:67530, is close to the percolation threshold.
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FIG. 5. A unit cell consisting of 3502 overlapping disks of radius R = 0:01. The area fraction,p2 � 0:67519, is close to the percolation threshold.
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FIG. 6. The e�ective conductivity of random aggregates of overlapping disks in a unit cell at variousarea fractions along with bounds and a crude estimate. Points denote the computations in this paper,the dashed lines are the Hashin Shtrikman bounds [21], the stars are a fourth order bound [10,11],and the solid line is an e�ective medium approximation [22]. The disk radius is R = 0:01 and theconductivity of the matrix and of the disks are �1 = 1 and �2 = 1000.
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TABLESTABLE I. E�ective conductivity in the x-direction for the \random" suspension of 1024 disks inFigure 1. The in�nite medium has conductivity �1 = 1 and the disks have conductivity �2 = 1000.The value in the limit of an in�nitely large unit cell should be 5:114 � 0:060: [19]Stage 1 Stage 2 Stage 3 Stage 4�e� , eq. (3) 5 15.14 5.14079 5.14078902�e� , eq. (11) 5.14 15.1408 5.140789 5.14078902iterations, eq. (2) 39 27 56 72iterations, eq. (10) 51 53 67 82points, eq. (2) 131,072 180,224 229,376 278,528points, eq. (10) 131,936 181,088 229,696 277,136tolerance, eq. (2) 10�2 10�2 10�4 10�7tolerance, eq. (10) 10�6 10�7 10�9 10�11TABLE II. E�ective conductivity in the x-direction for the aggregate of 902 disks in Figure 2. Thein�nite medium has conductivity �1 = 1 and the disks have conductivity �2 = 1000.Stage 1 Stage 2 Stage 3 Stage 6 Stage 9�e� , left image, eq. (3) 15.10 15.10 15.10 15.10 15.10�e� , right image, eq. (4) 15 15.1 15.1 15.1 15.10�e� , both images, eq. (11) 15.098 15.0976 15.0976 15.09762 15.09762iterations, left image, eq. (2) 78 80 83 94 107iterations, left image, eq. (10) 95 113 113 129 129iterations, right image, eq. (10) 91 91 91 125 124points, left image, eq. (2) 55,264 69,072 77,856 100,480 122,320points, left image, eq. (10) 55,264 69,072 77,840 102,240 124,848points, right image, eq. (10) 55,648 69,522 82,992 122,368 161,600tolerance, eq. (2) 10�4 10�4 10�4 10�4 10�4tolerance, eq. (10) 10�6 10�7 10�7 10�8 10�8
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TABLE III. E�ective conductivity in the x-direction for the aggregate of 902 disks in Figure 3.The in�nite medium has conductivity �1 = 1. The disks have conductivity �2 = 1000.Stage 1 Stage 2 Stage 3 Stage 6 Stage 9�e� , eq. (4) 48 48 48.3 48.3 48.3�e� , eq. (11) 48.32 48.322 48.322 48.3222 48.3222iterations, eq. (10) 101 120 120 135 135points, eq. (2) 57,744 72,176 82,032 105,728 128,592points, eq. (10) 58,096 72,608 83,856 115,856 146,560tolerance, eq. (10) 10�5 10�6 10�6 10�7 10�7TABLE IV. E�ective conductivity in the x-direction for the aggregate of 1763 disks in Figure 4.The in�nite medium has conductivity �1 = 1 and the disks have conductivity �2 = 1000.Stage 1 Stage 2 Stage 3 Stage 4�e� , eq. (4) 71 71 71 71.7�e� , eq. (11) 71.7 71.71 71.715 71.715iterations, eq. (10) 95 124 149 149points, eq. (2) 116,144 145,168 164,464 180,752points, eq. (10) 116,624 145,776 170,448 194,384tolerance, eq. (10) 10�5 10�6 10�7 10�7TABLE V. E�ective conductivity in the x-direction for the aggregate of 3502 disks in Figure 5.The in�nite medium has conductivity �1 = 1 and the disks have conductivity �2 = 1000. The numberswithin perethesis denote the converged solutions at the two stages.Stage 1 Stage 2�e� , eq. (11) 43.7 (43.696) 43.69 (43.6936)iterations, eq. (10) 88 155points, eq. (10) 236,144 295,168tolerance, eq. (10) 10�4 10�6
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