Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy.

Svensson, Tomas; Swartling, Johannes; Taroni, Paola; Torricelli, Alessandro; Lindblom, Pia; Ingvar, Christian; Andersson-Engels, Stefan

Published in:
Physics in Medicine and Biology

DOI:
10.1088/0031-9155/50/11/008

Published: 2005-01-01

Citation for published version (APA):
Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

(http://iopscience.iop.org/0031-9155/50/11/008)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 130.235.188.41
The article was downloaded on 04/07/2011 at 11:14

Please note that terms and conditions apply.
Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy

Tomas Svensson¹, Johannes Swartling¹, Paola Taroni², Alessandro Torricelli², Pia Lindblom³, Christian Ingvar³ and Stefan Andersson-Engels¹

¹ Department of Physics, Lund Institute of Technology, Box 118, SE-221 00 Lund, Sweden
² Politecnico di Milano, Piazza Leonardo da Vinci 32, I-210 33 Milan, Italy
³ Department of Surgery, Lund University Hospital, SE-221 85 Lund, Sweden

E-mail: tomas.svensson@fysik.lth.se, js604@cam.ac.uk, paola.taroni@polimi.it, alessandro.torricelli@polimi.it, pia.lindblom@skane.se, christian.ingvar@skane.se and stefan.andersson-engels@fysik.lth.se

Received 11 November 2004
Published 18 May 2005
Online at stacks.iop.org/PMB/50/2559

Abstract
In recent years, extensive efforts have been made in developing near-infrared optical techniques to be used in detection and diagnosis of breast cancer. Variations in optical properties of normal breast tissue set limits to the performance of such techniques and must therefore be thoroughly examined. In this paper, we present intra- and intersubject as well as contralateral variations of optical and physiological properties in breast tissue as measured by using four-wavelength time-resolved spectroscopy (at 660, 786, 916 and 974 nm). In total, 36 volunteers were examined at five regions at each breast. Optical properties (absorption, \(\mu_a \), and reduced scattering, \(\mu'_s \)) are derived by employing diffusion theory. The use of four wavelengths enables determination of main tissue chromophores (haemoglobin, water and lipids) as well as haemoglobin oxygenation. Variations in all evaluated properties seen over the entire breast are approximately twice those for small-scale heterogeneity (millimetre scale). Intrasubject variations in optical properties are almost in all cases below 20% for \(\mu'_s \), and 40% for \(\mu_a \). Overall variations in water, lipid and haemoglobin concentrations are all in the order of 20%. Oxygenation is the least variable of the quantities evaluated, overall intrasubject variations being 6% on average. Extracted physiological properties confirm differences between pre- and post-menopausal breast tissue. Results do not indicate systematic differences between left and right breasts.
1. Introduction

The development of optical methods for detection and diagnosis of breast cancer has been pursued with increasing efforts during recent years. Optical methods for non-invasive tumour detection are based on near-infrared (NIR) light, typically within 600–1000 nm, which has the ability to propagate through tissue and yield a detectable reflected or transmitted signal. The NIR signal provides information on absorption and scattering properties of tissue, as well as spatial distribution of structures in the breast. The absorption coefficient μ_a and the reduced scattering coefficient μ'_s can be determined. This can be done locally, by using a probe based on a number of optical fibres to deliver and collect the light (Cubeddu et al. 1999, Cerussi et al. 2002, van Veen et al. 2004a), or by imaging techniques such as diffuse optical tomography (Gratton et al. 1993, Colak et al. 1999, McBride et al. 2001, Hebden et al. 2002, Li et al. 2003, Yates et al. 2005) or by scanning the source and detector fibres across the compressed breast to record a shadowgram type image analogous to x-ray mammography (Franceschini et al. 1997, Grosenick et al. 2003, Taroni et al. 2004). A key concept in these optical methods is the spectral information that can be derived if several wavelengths are used. Absorption properties can be used to quantify concentrations of chromophores in the tissue, of which the four principal ones are non-oxygen-saturated haemoglobin, oxygen-saturated haemoglobin, water and lipids (Sevick et al. 1991, Matcher et al. 1995, Cubbedu et al. 1999). The spectral shape of the reduced scattering coefficient can provide valuable information about size and distribution of tissue scatterers, which in turn can be used to extrapolate structure and cellular composition of the tissue (Beauvoit et al. 1994, Mourant et al. 1997, Nilsson et al. 1998, Cerussi et al. 2001, Srinivasan et al. 2003, Pifferi et al. 2004).

Several investigations have been carried out to determine the relations between optical and physiological properties of normal breast tissue. Studies utilizing optical techniques have shown that breast tissue characteristics correlate with factors such as age (Cubeddu et al. 1999, Cerussi et al. 2001, Srinivasan et al. 2003, Shah et al. 2001), hormonal cycle (Cubeddu et al. 2000), menopause status (Shah et al. 2001, Cerussi et al. 2002) and body mass index (Pogue et al. 2001, Cerussi et al. 2002, Durduran et al. 2002). A number of investigators have also shown differences in the NIR signal for cancerous lesions as compared to normal tissue or benign lesions (Andersson-Engels 1992, Fantini et al. 1998, Tromberg et al. 2000, Pogue et al. 2001, Grosenick et al. 2003, Taroni et al. 2004). These papers present a variability in optical properties for different lesions. Other studies have investigated the variability in optical properties of normal breast tissue (Shah et al. 2004, van Veen et al. 2004a, Pogue et al. 2004). Of these, only Shah et al. (2004) emphasize intrasubject variations. The overall variability implies an overlap between optical properties of lesions and normal tissue, which most likely precludes detection formulae based on direct analysis of absolute values of measured optical properties. Most certainly, detection methods will therefore be based on relative observations such as ratios, comparisons between different parts of the breast, comparisons between left and right breasts, or image contrast and context analysis in the case of imaging modalities. For this development, it is of fundamental importance to possess knowledge of the intrinsic variations of optical properties within a breast and between left and right breasts.

In this paper, we present an extensive investigation of intra- and intersubject heterogeneity in optical and physiological properties of normal breast tissue. A total number of 36 volunteers were included in the study. Optical properties were measured using four-wavelength time-resolved spectroscopy (Swartling et al. 2003, Pifferi et al. 2005) following a protocol comprising five measurement areas on each breast. Small-scale variations (millimetre displacements) were investigated thoroughly. A similar protocol was used by Shah et al. (2004), in an investigation based on frequency-domain measurements at a fixed fibre separation.
In our study, most measurements were conducted using two different source and detector fibre separations, which means that different probing depths were used. This enables us to investigate spatial variation both laterally and axially.

2. Materials and methods

2.1. Instrumentation

All data were acquired using a compact and portable time-domain photon migration instrument primarily intended for spectroscopy of biological tissue in a clinical environment (Swartling et al 2003, Pifferi et al 2005). The system is based on diode laser technology and time correlated single photon counting (TCSPC). A laser driver (SEPIA PDL 808, PicoQuant, Germany) controls four pulsed diode lasers (LDH, PicoQuant at 660, 786, 916 and 974 nm). Wavelengths are chosen to enable monitoring of important tissue constituents (haemoglobin, water and lipids) and properties (tissue oxygenation). By separating the individual pulses in time (~6 ns), using electric cables of different lengths, it is possible to generate 4λ pulse trains at a repetition frequency up to 40 MHz. Diode lasers are coupled into 200 μm GRIN fibres (G 200/280 N, ART Photonics, Germany). A 4:1 coupler is used to couple all lasers into a 600 μm GRIN fibre (G 600/840 N, ART Photonics), which serves as the light source. A second 600 μm GRIN fibre collects light and delivers it to the detector. The length of these fibres were 1.95 m each. Since this work is based on diffuse reflectance measurements, these fibres were held by a probe that fixes them at a certain fibre separation (15 or 20 mm). The probe is made of a small metal block through which two metal tubes run (tubes may be moved to achieve proper separation). The metal tubes extend from the block, and optical fibres are inserted in these so that fibre endings are almost edge to edge with tube endings. The probe is held so that tube and fibre endings are in contact with the tissue. All parts are painted in mat black. Proper photon levels are achieved by sending collected light through an adjustable gradient ND filter. Remaining photons are sent into a cooled MCP-PMT (R3809-59, Hamamatsu Photonics, Japan). A TCSPC computer card (SPC-300, Becker & Hickl, Germany) is used to obtain time-dispersion curves. Lasers are typically operated at 1–2 mW generating pulses about 70 ps wide (FWHM). However, broadening in fibres and detector causes the instrument response function (IRF) to be about 100 ps wide. A schematic is given in figure 1.

2.2. Clinical procedure

Clinical data were collected at the Lund University Hospital adhering to a protocol approved by the local committee of ethics. Measurements were conducted during May and June 2003.
on in total 36 volunteers (29 pre-menopausal and 7 post-menopausal). Relevant medical information was collected in connection with the measurements. None of the volunteers had been diagnosed with malignant disease. All measurements were carried out while subjects were in a comfortable sitting posture. The probe was held by subjects themselves after careful instruction. Each breast was examined at five different areas: at the centre part of the four quadrants and just above the areolar area (denoted left/right (L/R) upper outer (UO), upper inner (UI), lower inner (LI), lower outer (LO) and upper areolar (UA)). Locations of measurement areas are illustrated in figure 2. Six out of the thirty-six volunteers were examined using only the 20 mm fibre separation, and following a more comprehensive protocol P1 where (i) five spatially separated measurements are performed within each area (small millimetre-scale probe displacements) and (ii) five spatially identical measurements (fixed probe geometry) are performed at the upper outer areas (RUO and LUO) to ensure/monitor stability. The remaining 30 volunteers were examined using two different fibre separations (15 and 20 mm) and a different protocol P2. In these cases each area was only measured once, except for the upper outer areas which were measured three times (spatially separated in the case of ROU and spatially identical in the case of LOU). Typically, a single measurement was completed within 20–30 s.

2.3. Modelling

Experimental data are modelled using the diffusion approximation of transport theory. The particular model used in this work is derived for the case of homogenous media in a semi-infinite geometry and employs a so-called extrapolated boundary condition (Haskell et al 1994, Hielscher et al 1995). The refractive index of tissue is assumed to be 1.4. Tissue optical properties are extracted by fitting solutions of the diffusion equation to experimental data. An example on how data may appear is given in figure 3. To avoid problems related to early photons, such as poor validity of the diffusion equation and stray light, fitting is limited to datapoints where the photon count exceeds 30% of the peak count on the rising flank (see figure 3). The trailing flank is cut where the photon count drops below 1% of the peak count. Discussions on appropriate fit regions are found in Hielscher et al (1995) and Cubeddu et al (1996). The best fit is reached iteratively using a Levenberg–Marquardt algorithm, where \(\mu'_s, \mu_a \) and an overall amplitude (scale) factor are varied in order to minimize the \(\chi^2 \) error norm. The temporal delay between IRF and experimental data is known and is thus not a free parameter. Each iteration involves a convolution between the theoretical time-dispersion curve and the IRF. The IRF is carefully measured before and after every set of measurements to ensure stability and, as mentioned above, since it is needed in data evaluation.
Figure 3. Example of time-resolved data. The 4 λ pulsetrains correspond to (from left to right) 660, 786, 916 and 974 nm. Experimental curves (tissue) are partially hidden behind fitted diffusion curves, indicating reasonable fits. Residuals occasionally and non-systematically exhibit non-random patterns (as seen for 660 nm in this example). [−1.96, 1.96] is a 95% prediction interval for a standardized normal distribution.

Figure 4. A typical breast tissue spectrum constructed from component spectra. Vertical dotted lines mark where diode lasers are positioned. Note that oxy-haemoglobin, lipid and water absorption exhibit comparable strengths in the range 900–950 nm.

Tissue constituents are determined using the four extracted absorption coefficients. The use of four wavelengths enables calculations of concentration for the four main chromophores in breast tissue: water, lipids, deoxy-haemoglobin (Hb) and oxy-haemoglobin (HbO₂). The assumption is that the observed absorption match a linear superposition of the four main component spectra, and that no other tissue constituents contribute to the absorption in this wavelength region. The haemoglobin spectra are taken from Prahl (2004), the water spectrum from Hale and Querry (1973) and the lipid spectrum from van Veen et al (2004b). An example of an interpreted breast spectrum composed of the four tissue chromophores in typical concentrations is shown in figure 4. Mathematically, concentrations are calculated by solving a set of linear equations

\[\mu_a = A \cdot c \Rightarrow c = A^{-1} \cdot \mu_a \]

where \(\mu_a \) is a vector of extracted absorption coefficients at the four wavelengths, \(A \) a matrix of absorption coefficients for the four chromophores at the four wavelengths measured and \(c \) a vector of concentrations. Haemoglobin concentrations [Hb] and [HbO₂] are measured in \(\mu M \), while water and lipid concentrations are measured in volume per cent (per cent relative to pure water and lipid, respectively). Oxygenation (StO₂) is determined by the ratio of [HbO₂] to total haemoglobin concentration [Hb] + [HbO₂] (THC). Error propagation is discussed in section 4.
2.4. Variational measures

Intrasubject variations are characterized using coefficients of variation (CV). The CV of a certain series $\{x_i\}$ is defined as the standard deviation divided by the mean: $CV_x = \sigma_x / \bar{x}$. It is a unitless quantity stated in per cent.

The CV of a fixed geometry series states the variations induced mainly by instrumentation and measurement parameters, such as e.g. probe-skin pressure, as well as noise in the signal. The CV of a displacement series is a measure of the local intrasubject variation within different measurement areas. Overall intrasubject variation is, in this work, defined as the CV of the ten average values obtained for the ten different positions.

3. Results

An example of how extracted data may appear is given in figure 5. Here, a selection of data from one volunteer examined according to protocol P1 is presented. Average properties, based on all volunteers, are presented and compared to values from literature in table 1.

A statistical analysis of intrasubject variations for fixed geometries (F), small-scale displacements (D) and overall (O) is shown in figure 6. Variations in fixed geometry series are typically very small compared to variations in series where the probe is displaced, as long as the probe is held properly (no change in pressure or orientation). However, if probe-skin pressure or probe orientation is varied (still using a fixed position) variations

Table 1. Positional averages of optical and physiological properties (this study). Results are compared with values from recent literature. N states the number of subjects involved in the different studies. Optical properties, μ'_s and μ_a, are extracted at 785 or 786 nm.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>μ'_s (cm$^{-1}$)</th>
<th>μ_a (cm$^{-1}$)</th>
<th>THC (µM)</th>
<th>Oxygenation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>36</td>
<td>8.0 ± 2.0</td>
<td>0.041 ± 0.021</td>
<td>17 ± 10</td>
<td>77 ± 8</td>
</tr>
<tr>
<td>Spinelli et al (2004)</td>
<td>> 50</td>
<td>11.3 ± 2.1</td>
<td>0.037 ± 0.013</td>
<td>16 ± 5</td>
<td>66 ± 9</td>
</tr>
<tr>
<td>Grosenick et al (2003)</td>
<td>28</td>
<td>10.2 ± 1.6</td>
<td>0.039 ± 0.009</td>
<td>17 ± 8</td>
<td>74 ± 3</td>
</tr>
<tr>
<td>Durduran et al (2002)</td>
<td>52</td>
<td>8.5 ± 2.1</td>
<td>0.041 ± 0.025</td>
<td>34 ± 9</td>
<td>68 ± 8</td>
</tr>
</tbody>
</table>
Characterization of breast tissue heterogeneity

Figure 6. Intrasubject variation in fixed series (F, \(m = 42 \)), displacement series (D, \(m = 90 \)) and overall (O, \(m = 36 \)), where \(m \) follows from study protocols and refers to the number of underlying series. Variations are given in CV (%). Dots represent the average intrasubject CV and error bars stretch out to \(\pm \sigma \), where \(\sigma \) is the standard deviation of the CV distribution. Data are based on series from \(n = 36 \) volunteers.

Figure 7. Average values versus measurement position. Volunteers are divided into two groups: pre-menopausal (\(n = 29 \), black) and post-menopausal (\(n = 7 \), grey). 20 mm fibre separation.

occasionally are in the same order. Derived optical and physiological properties indicate that the overall intrasubject variation is typically a factor of 2 greater than variations within displacement series (a factor of 4 in the case of \(S_tO_2 \)). Overall intrasubject variations in \(\mu'_s \) were \((14.0 \pm 6.5)\%\), \((13.2 \pm 5.6)\%\), \((15.1 \pm 5.5)\% \) and \((15.3 \pm 6.0)\%\), for 660, 786, 916 and 974 nm respectively. \(\mu_a \) varied even more, and corresponding figures were \((23.1 \pm 8.3)\%\), \((19.8 \pm 5.3)\%\), \((11.8 \pm 3.6)\% \) and \((20.4 \pm 8.3)\% \) (the largest variation was 48.7% and was registered at 974 nm, but CVs above 40% were very rare). \(S_tO_2 \) displays the smallest overall intrasubject variation, being \((6.6 \pm 2.9)\% \) (in all cases below 14.2%).

In order to better understand these variations, the data were analysed to provide intersubject variation with respect to positional averages. Figure 7 shows the result for haemoglobin, oxygenation and water. In these graphs, pre-menopausal and post-menopausal volunteers are considered as two separate groups. Concentrations of haemoglobin and water were both approximately 1.5 times greater, on average, for pre-menopausal volunteers. On the other hand, lipid concentration was approximately 1.4 times greater for post-menopausal volunteers. Nonetheless, variations within the two groups cause overlap. No significant differences were noted neither for oxygenation levels or scattering levels (not shown).
By changing the separation between probe fibres, the influence of probing depth was examined. Correlations between data obtained for the two fibre separations are stated using the correlation coefficient \(r \). Fairly strong correlations between the two ways of measuring were observed for all optical and physiological properties. Lowest correlation was found in scattering (on average \(r = 0.51 \)). Correlations \((r) \) were on average 0.78 for absorption, 0.67 for lipids and 0.86 for water. No significant differences were observed in the cases of lipids, water or scattering. However, as indicated in figure 8, extracted levels of oxygenation and haemoglobin tended to be systematically higher when using the larger fibre separation (20 mm).

Intrasubject variations between left and right breasts were examined by comparing corresponding measurements. The result does not indicate any significant systematic differences. Left–right asymmetry in a certain parameter \(p \) is measured using relative deviation \(\Delta_{rel} \):

\[
\Delta_{rel} = \frac{|p_{left} - p_{right}|}{(p_{left} + p_{right})/2}
\]

where \(p_{left} \) and \(p_{right} \) are (mean) values derived at a certain measurement area. \(\Delta_{rel} \) is a unitless quantity that states the deviation in % of the mean of the left and right parameter values. Results are presented in table 2.

4. Discussion

The main purpose of this study is to measure variations in tissue composition of normal breasts and discuss how such variations may influence the possibility of discriminating a possible tumour using optical methods. Nevertheless, it is important to note that fundamental optical and physiological properties derived in this study are in good agreement with previously
Characterization of breast tissue heterogeneity

Table 2. Variations between the left and right breasts stated in relative deviation Δ_{rel} (% of mean). Values presented are means of the individual relative left–right deviation derived for all $n = 36$ volunteers (20 mm fibre separation).

<table>
<thead>
<tr>
<th></th>
<th>UO</th>
<th>LO</th>
<th>LI</th>
<th>UI</th>
<th>UA</th>
</tr>
</thead>
<tbody>
<tr>
<td>THC</td>
<td>27</td>
<td>19</td>
<td>19</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Oxygenation</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Water</td>
<td>28</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td>Lipid</td>
<td>24</td>
<td>36</td>
<td>20</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Scattering (786 nm)</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

published data (see table 1). Deviations may be assigned to differences in measurement geometry. The statistical analysis of spatial variations within breast tissue, as measured in this study, is illustrated in figure 6. On average, variations once the probe was held fixed in the same position are small for all properties evaluated. Variations in these measurements are not believed to reflect any changes within the tissue structure, but rather variations in how the probe was applied to the tissue, mainly due to pressure variations, as well as uncertainties in the evaluation of the signals due to noise. As soon as the probe was displaced a few millimetres to include small-scale tissue variability, variations increased for all parameters. Interestingly, water, lipid and haemoglobin concentrations varied considerably more (a factor 5) than the oxygenation (as also reported by Shah et al (2004)). Variations in evaluated constituent concentrations are believed to be due to the heterogeneous structure of breast tissue even at this small scale (millimetres). The oxygenation of haemoglobin present in the probe volume is, however, less likely to alter for these small displacements. Oxygenation is high everywhere in normal breasts.

Variations in all evaluated properties seen over the entire breast are approximately twice those registered for small-scale displacements of the probe. The increased variability for these measurements can, at least partly, be explained by more systematic alterations in tissue structure and composition at different parts of the breast. Such variations are presented in figure 7. In general, strong overlaps exist between values for different locations. However, while total haemoglobin concentration is relatively even throughout the breast, oxygenation seems to be slightly higher in the upper inner area of the breast and lower in the upper areolar area. Shah et al (2004) report significantly lower oxygenation in areolar regions, but no significant variations among other regions. Worth noting is also that intrasubject variations in μ_a is a factor 2 smaller at 916 nm than at the other three wavelengths. This is related to the fact that lipids and water exhibit comparable absorption strengths in this region, and that these two constituents, to a large extent, replace each other (Pifferi et al 2004, Swartling et al 2005).

The data also show differences in total haemoglobin and water concentrations for pre- and post-menopausal women. Such changes are in accordance with known structural alterations of breast tissue after menopause (Shah et al 2004). However, one should also have in mind that there is a difference in age between the two groups. The mean ages for the two groups in this study are 37 and 52 years, respectively. In the material, it is also evident that the composition of the breast may be quite different in different persons. Intersubject variations are thus much higher than intrasubject variations (see figure 7).

Heterogeneity of breast tissue has previously been addressed by Shah et al (2004). Their investigation presents small-scale variations in the same order as our report. Overall heterogeneity is similar in the case of water, lipids, THC and oxygenation. However, Shah et al (2004) report on an overall heterogeneity less than 12% for μ'_s while we observe corresponding values up to approximately 20%. The generally good agreement in results was obtained despite
differences in measurement technique (time-domain versus frequency-domain), measurement
geometry (probe design, sitting versus supine position) and possibly also in exact measurement
positions.

By using two different distances between the source and detector fibres we probe different
depths of the tissue (Patterson et al 1995). For time-resolved data the probing depth is also a
function of the time the light has spent in the tissue. The evaluation of \(\mu'_s \) in the fitting process
is sensitive to the early portion of the light, while \(\mu_a \) is mostly determined by the late light
(Andersson-Engels et al 1992, Cubeddu et al 1996). This means that the extracted values of \(\mu'_s \)
and \(\mu_a \) do not represent the exact same volume, even for the same fibre separation. Scattering
values represent a shallow volume confined to the region between the two fibres, while the
absorption values are derived from a larger volume deeper in the tissue. When performing
measurements, for practical reasons, the probe had to be lifted between the measurements
at 15 mm and 20 mm fibre separation. Repositioning of the probe could not be done with
better accuracy than a few millimetres, which means that we can expect a random variation
in the results of at least the same order of magnitude as that given by small displacements
of the probe, as shown in figure 6. This is seen in the scatter plots in figure 8. The difference
in effective probing volume for determination of \(\mu_a \) and \(\mu'_s \) may explain the lower degree of
correlation for \(\mu'_s \) (\(r = 0.51 \)) compared to \(\mu_a \) (\(r = 0.78 \)). Moreover, we noted an average
increase in both THC and \(\text{StO}_2 \) when increasing the fibre separation from 15 mm to 20 mm, as
seen in figure 8. This may be interpreted as a higher haemoglobin concentration and oxygen
saturation at larger depth, and is in agreement with the known structure of tissue: at short fibre
separations, the probing volume is more affected by the skin layer, which has lower blood
perfusion. Similar findings were reported by Pifferi et al (2004), where the fibre separation
was increased from 20 to 40 mm.

All data presented in this study are based on rather superficial measurements on breasts,
including skin, subcutaneous fat and breast tissue. This will often be the case in diagnostic
procedures based on non-invasive optical spectroscopy. Due to the aim to measure local
properties in the same spatial scale as would be of interest for tumour diagnostics, without
relying on a tomographic algorithm, the interfibre distance is short. This results in a relatively
large fraction of the probed tissue being occupied by subcutaneous fat, especially for women
with high body mass index (BMI). Unfortunately, the material is not sufficiently large to make
a correlation with BMI. However, Pifferi et al (2004) report that the kind of diffuse reflectance
measurements employed in this paper provide representative values even for interior breast
tissue. Whether this also hold for interior heterogeneity is unclear and is currently examined
both in Lund and elsewhere.

In this work, breast spectra are sampled at four wavelengths. Since equally many (four)
chromophores need to be taken into account, it is very important that all of the four derived
absorption coefficients are accurate. According to basic perturbation theory, errors in \(c \)
(denoted \(\delta c \)) are related to errors in \(\mu_a \) (denoted \(\delta \mu_a \)) as shown in (3).

\[
c = c^{\text{true}} + \delta c = A^{-1} \cdot (\mu_a^{\text{true}} + \delta \mu_a) \quad \Rightarrow \quad \delta c = A^{-1} \cdot \delta \mu_a.
\]

Thus, influence of errors in extracted absorption coefficients may be examined by taking a
closer look at the matrix \(A^{-1} \). Relative errors naturally depend on the tissue constitution
of the particular breast (i.e. \(c^{\text{true}} \) and \(\mu_a^{\text{true}} \)). By proper normalization of \(A^{-1} \) it is possible
to determine a relative error propagation matrix, \(E \), that states component-wise relative error
propagation (valid for a particular tissue composition). The normalization procedure is defined
in 4, where \(\text{diag}(\cdots) \) are diagonal \(4 \times 4 \) matrices.

\[
E = E(A^{-1}, c^{\text{true}}, \mu_a^{\text{true}}) = \text{diag}(1/c^{\text{true}}) \cdot A^{-1} \cdot \text{diag}(\mu_a^{\text{true}}).
\]

(4)
When considering breast tissue having the composition as shown in figure 4 one finds that
\[
E = \begin{pmatrix}
1.58 & -0.56 & -0.12 & 0.11 \\
-0.74 & 2.27 & -0.12 & -0.41 \\
0.27 & -1.59 & 2.90 & -0.58 \\
0.15 & -0.56 & -0.11 & 1.53
\end{pmatrix}.
\]
(5)

Here, each column corresponds to a certain wavelength (660, 786, 916 and 974 nm, from left to right) and each row to a certain chromophore (Hb, HbO₂, lipids and water, from top to bottom). As an example, a +1% error in \(\mu_a \) at 786 nm will add a +2.27% error on HbO₂ concentration (when measuring on a tissue consisting of 50% lipids, 30% water, 5 \(\mu \)M Hb and 15 \(\mu \)M HbO₂). \(E \) gives an idea of the robustness of four-wavelength spectroscopy when applied to characterization of breast tissue. The diagonal dominance implies that each chromophore has its own main wavelength (this is also seen in figure 4). The relatively large numbers in the third row show that the derivation of lipid concentrations suffer the greatest sensitivity to errors. This is due to that lipid absorption normally does not dominate over other chromophores at any wavelength (this is exemplified in the breast spectra presented in figure 4). This is a possible explanation to why lipid levels, in comparison with other chromophore levels, exhibit larger variations within fixed series (see figure 6).

5. Conclusion

In summary, we have investigated the influence of normal spatial heterogeneities of breast tissue on optical and related physiological properties measured with a four-wavelength, time-resolved diffuse spectroscopy instrument. Variations in evaluated properties over all measurement areas were about twice as large as small-scale variations (mm displacements). Intrasubject variation was in almost all cases below 40% for \(\mu_a \) and below 20% for \(\mu'_s \). In terms of the evaluated quantities of water, lipids and haemoglobin, the variation in these were all in the order of 20%, while the oxygen saturation exhibited a lower variation (6%). These numbers define a background variation that any modality for optical detection of breast cancer has to take into account. Furthermore, we did not see any evidence of systematic differences between contralateral breasts, although individual left–right asymmetry is often seen. The intersubject variation is larger than the intrasubject variation and is loosely correlated with menopause status, which confirms previous studies. Finally, measurements performed at different fibre separations, thus probing different depths, indicated an on average higher haemoglobin concentration at the larger fibre separation. Random variations were in this case comparable to those seen for small-scale displacements.

Acknowledgments

This work was financially supported by OPTIMAMM (European grant QLG1–2000–00690), MEDPHOT (European grant QLG1–2000–01464), CUSBO (European grant HPRI–CT–2001–00148) as well as the Swedish Research Council. The authors also wish to thank all volunteers for their participation.

References

Beauvoit B, Kitai T and Chance B 1994 Contribution of the mitochondrial compartment to the optical properties of the rat liver: a theoretical and practical approach Biophys. J. 67 2501–10
Li A et al 2003 Tomographic optical breast imaging guided by three-dimensional mammography Appl. Opt. 42 5181–90