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Extinction risk under coloured environmental noise

Mikko Heino, Jörgen Ripa and Veijo Kaitala

Heino, M., Ripa, J. and Kaitala, V. 2000. Extinction risk under coloured environ-
mental noise. – Ecography 23: 177–184.

Positively autocorrelated red environmental noise is characterized by a strong depen-
dence of expected sample variance on sample length. This dependence has to be taken
into account when assessing extinction risk under red and white uncorrelated
environmental noise. To facilitate a comparison between red and white noise, their
expected variances can be scaled to be equal, but only at a chosen time scale. We
show with a simple one-dimensional population dynamics model that the different
but equally reasonable choices of the time scale yield qualitatively different results on
the dependence of extinction risk on the colour of environmental noise: extinction
risk might increase as well as decrease when the temporal correlation of noise
increases.

M. Heino (mikko.heino@helsinki.fi), Di6. of Population Biology, Uni6. of Helsinki, Box
17, FIN-00014 Helsinki, Finland. – J. Ripa, Dept of Theoretical Ecology, Lund Uni6.,
Ecology Building, SE-223 62 Lund, Sweden. – V. Kaitala, Dept of Biological and
En6ironmental Sciences, Uni6. of Jy6äskylä, Box 35, FIN-40351 Jy6äskylä, Finland.

How do temporal correlations in environmental vari-
ability influence risk of population extinction? This is
an important question in conservation biology, which
calls both for analysis of empirical data sets, and for
theoretical studies on model populations (Lawton 1997,
Kaitala et al. 1997). Empirical data show that many
biotic and abiotic time series are positively autocorre-
lated, i.e. they are red-shifted (Pimm and Redfearn
1988, Schroeder 1991, Ariño and Pimm 1995). In effect,
positive autocorrelation means that a bad year is likely
to be followed by another bad year. A commonly
expressed intuitive argument is that temporally corre-
lated environments lead to higher risk of population
extinction than white noise environments, where long
runs of bad years are unlikely (Lawton 1997).

Surprisingly, theoretical studies have yielded no gen-
eral results on the influence of temporal correlations on
extinction risk. Only few papers give strong support to
the intuitive argument that red-shifted environments
pose a higher risk of extinction than white noise envi-
ronments (Foley 1994, Johst and Wissel 1997, Petchey
et al. 1997), whereas others show opposite (Roughgar-
den 1975, Ripa and Lundberg 1996) or indecisive re-

sults (Mode and Jacobson 1987a, b, Petchey et al. 1997,
Heino 1998, Cuddington and Yodzis 1999). In this
paper we show that seemingly subtle differences in
modelling of noise help to explain differences in the
results.

The theoretical approach boils down to comparing
behaviour of a model of population dynamics under the
alternative assumptions of red and white environmental
noise, the latter being de facto null model of noise in
ecology. Intuitively, the comparison should be made
between white and red noise which are somehow as
similar as possible, except for ‘‘colour’’. But what is a
proper criterion for similarity? Variability obviously
counts when dealing with questions related to extinc-
tion risk. Thus, variances of red and white environmen-
tal noise should be similar. However, there is a major
conceptual problem: no unambiguous criterion for sim-
ilarity exists. Expected variance of environmental noise
changes with length of a time interval, and the strength
of this response depends strongly on colour. In statisti-
cal terms, the expected sample variance depends on the
length of the sample, and on the correlation structure
of the time series.
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In this paper we first analyze the dependence of
variance on sample length in a first-order autoregressive
process, and present some methods on how to tackle
with this complication. We then show how different
scaling procedures influence predictions on extinction
risk in a simple population dynamics model.

Sample variance in autoregressive processes

The behaviour of the expected sample variance can be
demonstrated with the simplest possible model for
coloured noise, the first-order autoregressive process
(AR(1)) – practically the standard model for correlated
noise (but see Cuddington and Yodzis 1999). The mag-
nitude of environmental noise at time t depends only on
its previous value, and some random influence:

xt=
!0 for t=0
axt−1+bet−1 otherwise,

(1)

where b\0 is a constant parameter scaling the vari-
ance of time series, and a (�a�B1) is a constant auto-
correlation parameter, and et are normally distributed
uncorrelated random variates with zero mean and unity
variance. Autocorrelation parameter a determines the
colour of the resulting time series: for a\0, the time
series {xt} is positively correlated (red-shifted), while
aB0 results to negative correlation (blue-shift). Nega-

tively autocorrelated noise is unlikely to be important
in nature, but is included in this section for the sake of
completedness. If there is no autocorrelation (a=0),
the time series is white noise.

The true variance of time series {xt} (the variance of
time series of infinite length) is b2/(1−a2) (thick line in
Fig. 1a; for a derivation, see e.g. Chatfield 1996, pp.
35–36). The expected variance of a sample of length T,
assuming that t�0 such that the initial condition has
no effect, is (see the Appendix for the derivation):

E(s2)=
b2

(1−a2)(T−1)
�

T−
(1+a)2

1−a2 +
2a(1−aT)
T(1−a)2

�
.

(2)

This result has earlier been given in slightly different
form by McArdle (1989). If noise is positively autocor-
related, its variance is lower the shorter the sample, as
illustrated in Fig. 1a. The opposite is true for negatively
autocorrelated noise. For white noise, the expected
sample variance does not depend on sample length.

Because of the strong increase in variance with in-
creasing autocorrelation parameter a in model (1), it is
expected that the extinction risk increases with increas-
ing autocorrelation of environmental noise. This intu-
itive reasoning has been confirmed by Mode and
Jacobson (1987a, b) and Johst and Wissel (1997). How-
ever, this result is not straightforward to interpret: the
effect of change in colour will be masked by the effect
of increased variance. An elegant solution to this prob-

Fig. 1. Dependence of
expected sample variance (thin
lines for samples of different
lengths: T=2, 5, 10 and 50)
and asymptotic variance (thick
lines; sample length ‘‘infinity’’)
on autocorrelation in the
first-order autoregressive
process (eq. 1). In (a),
parameter b is constant at
unity for all values of the
autocorrelation parameter a.
In (b) and (c), b depends on a
such that the asymptotic
variance and expected variance
in samples of 50, respectively,
are constant. Now the
expected variance in short
samples is greatly reduced if
autocorrelation parameter a is
large. In (d), if the process
(eq. 1) is started from its
mean value (zero), then the
variance of the first T values
is smaller than in random
samples of the same length
(a).
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Fig. 2. Examples of time
series (with their marginal
distributions) of different
colour and scaling of variance.
(a) White noise (a=0) with
b=12. (b)–(d) Red noise with
a=0.95. In (b), b=12 as in
(a) (white noise). In panels
(c)–(d) the parameter b is
chosen such that the expected
variance for the first 50 values
(c) or asymptotic variance (d)
of the whole time series is the
same as for white noise
process in (a). All the time
series are based on the same
random numbers. Sample
variances of the particular
time series are inserted.

lem is to scale the time series such that its true variance
is independent of the a by letting the parameter b be a
function of a:

bb(a)=s�
1−a2, (3)

where s�2 is the desired asymptotic variance of noise.
This scaling has been used by many authors, e.g.
Roughgarden (1975), Foley (1994), Ripa and Lundberg
(1996) and Petchey et al. (1997). However, rescaling the
noise has also its shortcoming: the expected variance in
short samples is greatly reduced if autocorrelation
parameter a is large, say \0.5 (see Fig. 1b). In an
extreme case, when a approaches one, short time series
show hardly any variability. At short time scales, red
noise with the same asymptotic variance as white noise
is ‘‘milder’’ than white noise. Not surprisingly, under
such scaling of noise, extinction risk may strongly
decrease when noise gets more strongly autocorrelated
(see below).

The two extremes, no scaling at all (b=constant)
and scaling to uniform variance at infinity (eq. 3), are
not the only options: expected sample variance can be
independent of autocorrelation parameter a at some
finite time scale. One natural choice for the time scale
of equal variances is the length of period over which
extinction risk is evaluated: in this case, a comparison
between red and white noise is made between time
series with equal variability over the whole period, but
with different temporal structure, i.e. colour. It is even
possible (but very unlikely) that white and red time
series have the same data points, but in different order.
Figure 1c exemplifies a scaling to equal variability at
the time scale of 50 time steps.

A final snag is that starting an autoregressive process
(1) from its mean value (x0=0) results in decreased
variability in the beginning of the time series. The
expected variance of the first T values becomes (see the
Appendix)

E(s2�x0=0)=
b2

(1−a2)(T−1)

×
�

T−
2+2a+a2−a2T

1−a2 +
(1−aT)(1+2a−aT)

T(1−a)2

�
.

(4)

Figure 1d shows the dependence of the expected vari-
ance of first n values on the autocorrelation. There is a
marked decrease in the variance of the very first values,
especially for noise with negative correlation. This has
to be taken into account if extinctions are scored over
some short time period.

Scaling noise – an example

To cast the issue of scaling to a practical context, we
have simulated some hypothetical time series of carry-
ing capacities with a model Kt=100+xt, where xt is
given by eq. (1). The first time series (Fig. 2a) is white
noise with b=12, yielding expected asymptotic vari-
ance equal to 122. In Fig. 2b, there is a strongly
correlated (a=0.95) time series with the same b. The
carrying capacity has now an asymptotic variance of
�38.42, and is seen to fluctuate wildly to very low
values. In this exaggerated example, it would be ex-
pected that the red-shifted environment is more danger-
ous to some model population than the white

ECOGRAPHY 23:2 (2000) 179



environment. However, it is difficult to tell apart the
effects of high variability and colour, i.e. low carrying
capacity per se, and low carrying capacity several time
steps. A more informative procedure would be to com-
pare white noise with the red time series in Fig. 2c with
b�5.64, such that both time series have the same
expected variance (11.92) for the first 50 time steps. The
last panel (Fig. 2d) represents time series scaled (with
b�3.75) to have the asymptotic variance as white noise
in Fig. 2a, and has, in consequence, fairly tame short
term fluctuations.

Each of the red time series, or more properly, each
process that were used to create them in Fig. 2 could be
used to assess influence of red-shift to extinction risk,
with fairly good justification. Short pieces of the un-
scaled time series (Fig. 2b) seem to have much the same
variability as the white one. This is no coincidence
because in unscaled noise the expected variance is
roughly constant in samples of length five (see Fig. 1a)!
Thus, in a sense, unscaled red noise from model (1) is
similar to white noise at a very short time scale. The
time series scaled to have the same variance at an
intermediate time scale has a very similar ‘spread’ of the
carrying capacities (compare the marginal distribu-
tions). Finally, red noise in Fig. 2d is similar to white
noise when it comes to the very long term properties of
the time series. The bottom line is that the variabilities
of time series of different colours can be similar only at
some time scale, while at all other time scales they are
bound to differ. Any choice of the time scale is always
somewhat arbitrary. Nevertheless, this choice will
greatly influence the predictions on extinction risk, as is
shown in the examples below.

Colour of noise and extinction risk

Population dynamics model

We used the generalized, individual-based version of
the Moran-Ricker model used by Petchey et al. (1997),
where demographic stochasticity is accounted for by
drawing the population size in next generation from the
Poisson distribution with its deterministic value as the
mean:

Nt+1=Poisson(Nt exp(r(1− (Nt/Kt)
b))), (5)

where r is intrinsic growth rate and parameter b deter-
mines the nature of density dependence (overcompensa-
tory for b=1 and undercompensatory for b=0.1).
Ripa and Lundberg (1996) also used eq. (5) as the basic
model, but with b=1 and without demographic
stochasticity. Equation (5) can produce complex dy-
namics, although we use here parameter values which
would in the deterministic formulation result in equi-
librium dynamics. As in Ripa and Lundberg (1996) and

Petchey et al. (1997), environmental noise is assumed to
influence carrying capacity, such that Kt=K+xt. We
did not assume any lower limit for Kt. However, Kt50
was taken to imply an extinction.

We took the proportion of replicate runs that ended
in extinction as an estimate of extinction probability;
104 replicates were used. Simulations were initiated with
N0=K0=100 and run for 50 or 1000 time steps.

Simulation results

We now focus only on noise with non-negative correla-
tion. The qualitative predictions of the influence of
noise colour on extinction risk in the Moran-Ricker
model are sensitive to the assumptions on scaling (Fig.
3). If the dynamics are overcompensating, scaling the
noise such that its asymptotic variance is independent
of its colour causes the extinction risk to steadily de-
crease with increasing autocorrelation (red-shift) (Fig.
3c). If there is no scaling at all (Fig. 3a), extinction risk
increases strongly with increasing autocorrelation, ex-
cept for low correlations (a+0.25). In the intermediate
case (Fig. 3b), where the scaling is such that the ex-
pected variance is independent of colour, extinction risk
first decreases with increasing autocorrelation, followed
by a small increase for strong correlations.

For undercompensating dynamics, lower extinction
risk under red than white noise is observed only if the
time scale of uniform variance is in infinity (Fig. 3d–f).
If correlation is low, there is hardly any change in
extinction risk, however. In all the cases, extinction risk
is lower for undercompensating than for overcompen-
sating dynamics. Studying the population size and car-
rying capacity helps to gain understanding on the
results. If density dependence is overcompensating, ex-
tinctions occur mostly as population crashes where
population size prior to the extinction is high above the
carrying capacity, resulting in virtually zero recruitment
to the next generation (Fig. 3g). However, if noise is
strongly correlated, an increasing fraction of extinctions
are caused by environment becoming uninhabitable, i.e.
Kt50 (dotted lines in Fig. 3a–f). In case of undercom-
pensating dynamics, this is practically always the cause
of extinction (Fig. 3h). The population size prior to the
extinction tends still to be much higher than the carry-
ing capacity, but this happens because undercompen-
sating population is tracking the environment slowly.
Extinction because of demographic stochasticity is un-
likely simply because population size do not stay low
long enough – usually an extinction because uninhabit-
able environment occurs first. Thus, for populations
with undercompensating dynamics, the extinction risk
is really a characteristic of the environment, not popu-
lation dynamics.

The influence of different scaling procedures is simi-
lar in longer assessment periods (1000 generations): for
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unscaled noise (Fig. 4a, d), extinction risk increases
with increasing correlation of noise, whereas an oppo-
site pattern is observed if asymptotic variance of noise
is independent of its colour (Fig. 4c, f). Scaling at an
intermediate scale (50 generations) yields a marked
increase in extinction risk with increasing autocorrela-
tion for undercompensatory dynamics (Fig. 4b), but
indecisive results for overcompensatory dynamics (Fig.
4e). The time scale of 50 generations, however, is here
very arbitrary. In longer samples, the difference be-
tween expected sample variance and asymptotic vari-
ance gets insignificant, except for very high
autocorrelations. Accordingly, dependence of extinction
risk on noise colour gets increasingly similar. However,
for very high autocorrelations, an increase in extinction
risk can always be observed. Changing the assessment
period does not change observed population sizes and
carrying capacities prior to extinctions.

Discussion

Assessing the influence of coloured noise on extinction
risk is confounded by their complex temporal structure.
In coloured noise, sample variance depends on sample
length, which is not the case for white noise. By scaling
the variance in a proper manner, it is possible to make
fair comparisons between red and white noise environ-
ments, in a sense that their expected variabilities are the

same at some time scale. However, there is no single
correct time scale to do this, which excludes the possi-
bility of general results on extinction risk in coloured
environments.

Our results clearly show that the choice of the scaling
procedure matters – especially when the time scales of
interest are fairly short, as is often the case in conserva-
tion biology. Below we give some considerations in
favour of each of the three scaling schemes: no scaling,
scaling to uniform variance in finite samples, and scal-
ing to uniform true variance.

In the autoregressive process (eq. 1), no scaling re-
sults in red noise which corresponds roughly to a view
of red noise many people probably have in their minds:
rather wild fluctuations, where extreme values often
occur in runs. Although this may offer a good baseline,
strongly increased long-term variability may cause arte-
factual results. Thus, it is usually a good practice to
scale the variance to be independent of sample length at
some time scale. Threat of extinction is usually assessed
over some predetermined, short time period (Mace and
Lande 1991). This time scale is often a natural choice
for scaling to uniform variance: time series of different
colours will have, on average, similar data points, but
in different orders, according to their autocorrelation.
Another intermediate time scale may be obtained if
data on environmental variability is available: the
length of this time series. If very long-term properties of
noise are likely to be important, then scaling to uniform

Fig. 3. Dependence of
extinction risk in 50 generations
(continuous line) on colour of
environmental noise, and
different ways of scaling
variance of noise. (a)–(c)
Overcompensatory dynamics
(b=1), (d)–(f)
undercompensatory dynamics
(b=0.1). In the left hand side
panels, there is no scaling:
b=30 in eq. (1) for all a. In
the middle panels, b is scaled
such that the expected variance
of the first 50 generations is
independent of colour. In the
right hand side panels, b is
scaled such that the asymptotic
variance is independent of
colour. The dashed line gives
the risk of extinction caused by
carrying capacity drifting to or
below zero. Panels (g) and (h)
give the mean population size
and carrying capacity before
extinction in simulations
of panels (b) and (e),
respectively. All results are
based on 104 replicates.
Parameter values: r=1.5,
b=1 (a)–(c), (g) or b=0.1
(d)–(f), (h).
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Fig. 4. Dependence of
extinction risk in 1000
generations (continuous lines)
on colour of environmental
noise. (a)–(c) Overcompensatory
dynamics (b=1), (d)–(f)
undercompensatory dynamics
(b=0.1). Other details as in
Fig. 3.

variance at infinity can be used. Note, however, that
not all models of environmental noise are stationary as
the AR(1) process (1). Non-stationary processes do not
have finite variance when time approaches infinity, and
cannot be scaled to uniform true variance. Examples of
non-stationary noise are brown noise (as eq. (1) but
a=1) and pink 1/f noise, the latter suggested to be the
null model of environmental noise (Halley 1996).

The results in this paper are based on the simplest
model for coloured noise, the first-order autoregressive
process. More complex models of noise are possible
(Mode and Jacobson 1987a, b, Cuddington and Yodzis
1999), and they may be more realistic. However, the
dependence of sample variance on sample length is a
general property of coloured noise which needs to be
taken into account in more complex models of noise as
well.

Noise from the autoregressive model similar to eq.
(1) with constant b has been used by Mode and Jacob-
son (1987a, b) and Johst and Wissel (1997); however,
Johst and Wissel (1997) restricted the variability of
demographic parameters to certain intervals. Johst and
Wissel (1997) observed increased extinction risk in red-
shifted environments, whereas Mode and Jacobson
(1987a, b) got results to both directions. Scaling to
constant variance at infinity has been used by Rough-
garden (1975), Foley (1994), Ripa and Lundberg (1996)
and Petchey et al. (1997). Roughgarden (1975) and
Ripa and Lundberg (1996) observed clearly decreased
extinction risk under red noise, as compared to white
noise. Petchey et al. (1997) got the opposite results for
a model with spatial structure or undercompensatory
dynamics. Foley (1994) showed that a population with
random growth rate with zero mean and no density
dependence is at higher risk of extinction in red-shifted
environments than in white environments. Thus, paying

attention to scaling practices can shed some light to the
contrasting results.

Petchey et al. (1997) reported that populations with
undercompensating dynamics are more vulnerable to
red noise than to white noise. Our results show that this
is not a general result. The results of Petchey et al.
(1997) are critically dependent on the assumption that
carrying capacity cannot go below five individuals, that
is Kt=max(K0+xt, 5) (this assumption is accidentally
missing from the paper of Petchey et al. (1997), Petchey
pers. comm.). Under this assumption, population with
undercompensating dynamics can go extinct only by
demographic stochasticity. This is unlikely for the cho-
sen minimum carrying capacity. Thus, very long persis-
tence times are observed.

Does positive correlation in environmental noise in-
crease extinction risk, as compared to temporally un-
correlated noise? We have shown in this paper that
there is no simple answer – the answer depends cru-
cially on the exact formulation of the question.
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Appendix 1: Derivation of equations (2) and
(4)

Consider an AR(1) time series of length T:

xt=axt−1+et, et�N(0, b2), t=1, 2, . . . , T−1,
(6)

and x0 chosen from some distribution. Equation (6) can
be used to express the sequence of x-values as linear
functions of the initial value, x0, and the random ‘‘in-
ventions’’ et:

xt=axt−1+et=a(axt−2+et−1)+et

=…=atx0+ %
t−1

k=0

aket−k. (7)

Equation (7) describes xt as a sum of independent
random deviates, which facilitates the further analysis.
Now, the sample mean and sample variance of this time
series are

mx=
1
T

%
T−1

t=0

xt (8)

and

sx
2=

1
T−1

%
T−1

t=0

(xt−mx)2=
1

T−1
%

T−1

t=0

xt
2−

T
T−1

mx
2.

(9)

We are interested in the expected sample variance:

E(sx
2)=E

� 1
T−1

%
T−1

t=0

xt
2−

T
T−1

mx
2�

=
1

T−1
%

T−1

t=0

E(xt
2)−

T
T−1

E(mx
2). (10)

To calculate the first sum in (10) we need:

E(xt
2)=E

��
atx0+ %

t−1

k=0

aket−k

�2�
=E

�
a2tx0

2+ %
t−1

k=0

a2ket−k
2 �

=a2kE(x0
2)+b2 %

t−1

k=0

a2k=a2kE(x0
2)+b2 1−a2t

1−a2 .

(11)

Using (11) we get

%
T−1

t=0

E(xt
2)=E(x0

2) %
T−1

t=0

a2t+
b2

1−a2 %
T−1

t=0

(1−a2t)

=E(x0
2)

1−a2T

1−a2 +
b2

1−a2

�
T−

1−a2T

1−a2

�
.

(12)

The expected squared mean is calculated in a similar
manner. First, evaluate the sum in (8) using (7):

%
T−1

t=0

xt=x0+ %
T−1

t=1

�
atx0+ %

t−1

k=0

aket−k

�
=x0

1−at

1−a
+ %

T−1

j=1

ej %
T−1

t= j

at− j

=x0

1−at

1−a
+ %

T−1

j=1

ej

1−aT− j

1−a
. (13)

Using (13) in (8) we get

E(mx
2)=E

��1
T

%
T−1

t=0

xt

�2�
=

1
T2 E

��
x0

1−at

1−a
+ %

T−1

j=1

ej

1−aT− j

1−a
�2�
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=
1

T2

�
E(x0

2)
(1−at)2

(1−a)2 +
b2

(1−a)2 %
T−1

j=1

(1−aT− j)2�
=

1
T2

�
E(x0

2)
(1−at)2

(1−a)2 +
b2

(1−a)2

×
�

T−1−2
a−at

1−a
+

a2−a2T

1−a2

��
. (14)

Finally, using (12) and (14) in (10) we get:

E(s2)=
E(x0

2)
T−1

�1−a2T

1−a2 −
(1−aT)2

T(1−a)2

�
+

b2

(1−a2)(T−1)

×
�

T−
2+2a+a2−a2T

1−a2 +
(1−aT)(1+2a−aT)

T(1−a)2

�
.

(15)

We assume x0=0, yielding eq. (4) for the expected
variance of the first T values in the time series. For
samples starting later, E(x0

2) in eq. (15) has to be
replaced with E(xt

2), given by eq. (11). For t sufficiently
large, the dependence on the initial conditions is lost
and the eq. (11) simplifies to E(xt

2)=b2/(1−a2). Substi-
tuting this expression to eq. (15) and simplifying yields
eq. (2) in the main text.
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