

LUND UNIVERSITY

Climate Performance of Ligno-cellulose-based Biofuels

Greenhouse gas performance of emerging production pathways for the biofuels ethanol, methanol, hydrogenated vegetable oil and methane Becker, Nathalie; Börjesson, Pål; Björnsson, Lovisa

2017

Link to publication

Citation for published version (APA):

Becker, N., Börjesson, P., & Björnsson, L. (2017). *Climate Performance of Ligno-cellulose-based Biofuels:* Greenhouse gas performance of emerging production pathways for the biofuels ethanol, methanol, hydrogenated vegetable oil and methane.

Total number of authors: 3

General rights

Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study

or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117 221 00 Lund +46 46-222 00 00

Climate Performance of Ligno-cellulose-based Biofuels

LUNDS UNIVERSITET

Greenhouse gas performance of emerging production pathways for the biofuels ethanol, methanol, hydrogenated vegetable oil and methane

Conclusions

- The criteria on greenhouse gas reduction stipulated in the EU Renewable Energy Directive is fulfilled by nine biofuel production pathways analysed in this study;
- Forest residues as feedstock shows lowest climate impact compared to cultivated biomass;

Method

The method used to evaluate the climate performance of the biofuel production pathways is in line with the GHG calculation method as suggested in the RED (2009). Calculations include emissions from the extraction or cultivation as well as the collection of feedstock, emissions from processing and conversion as well as emissions from transport and distribution. The climate impact is expressed in gram carbon dioxide equivalent (CO₂e) per Mega Joule (MJ) of the biomass-based fuel (LHV). Technology-specific data from previous research and industry collaborations is applied.

 Methanol, methane and ethanol production based on forest residues shows best climate performance followed by the production pathways of hydrogenated vegetable oils from residue tall oil and pyrolysis oil.

Introduction

According to amendments of the EU Renewable Energy Directive (RED 2009), biofuel production installations starting operation after October 2015 are required to present greenhouse gas (GHG) savings of at least 60% compared to the currently suggested fossil fuel reference of 83.8 g CO₂e MJ⁻¹ fuel (EU 2015/1513). The objective of this study is to present updated calculations of the GHG performance of emerging ligno-cellulose-based biofuel production systems in the Swedish context. The considered biofuels are ethanol, methanol, hydrogenated vegetable oil (HVO) and methane based on feedstock from cultivated short-rotation coppice (willow), forest residues from foresting operations, black liquor from pulp and paper industry and straw from agricultural activities.

Table 1 – Results for nine biofuel production systems. DV signifies Default Value as outlined in the RED 2009, for comparison.

	HVO				Methanol			
values in g CO ₂ e MJ ⁻¹ biofuel	talloil	pyrolysis oil	waste	vegetable or animal oil	forest resiudes	willow	waste wood	farmed wood
RED 2009				DV			DV	DV
cultivation / collection	3.6	4.9		0.0	1.9	13.2	1.0	5.0
processing / conversion	1.2	1.2		13.0	0.0	0.0	0.0	0.0
transport / distribution	1.3	1.7		1.0	1.1	1.0	4.0	2.0
total GHG emissions	6.2	7.8		14.0	3.0	14.2	5.0	7.0
GHG savings	93%	91%		83%	96%	83%	94%	91%
		Ethanol Methane						
			Etl	hanol			Met	hane
values in g CO ₂ e MJ ⁻¹ biofuel	straw	forest resiudes	Et Nolliw	hanol straw	farmed wood	waste wood	forest resiudes	hane ^{Nolliw}
values in g CO ₂ e MJ ⁻¹ biofuel RED 2009	straw	forest resiudes	Et Nolliw	hanol straw DV	farmed wood AD	DV Nood	forest resiudes	hane ^{Nolliw}
values in g CO ₂ e MJ ⁻¹ biofuel <i>RED 2009</i> cultivation / collection	straw 6.0	forest resindes 1.8	Eti Nolini 12.6	hanol straw DV 3.0	farmed <i>VD</i> 0.6	waste vood 1.0	Met forest resindes 1.6	hane Nollin 10.8
values in g CO ₂ e MJ ⁻¹ biofuel <i>RED 2009</i> cultivation / collection processing / conversion	0.9 9.8 a	tesindes 1.8 2.2 b	Eti Notice 12.6 2.2 b	hanol straw DV 3.0 7.0	0.6 0.7 0.7 0.7	easte <i>DV</i> 1.0 17.0	Met torest 1.6 0.9	hane
values in g CO ₂ e MJ ⁻¹ biofuel <i>RED 2009</i> cultivation / collection processing / conversion transport / distribution	0.9 0.5	Lesindes 1.8 2.2 b 0.9	Et 12.6 2.2 b 0.9	hanol ^{Nation} <i>DV</i> 3.0 7.0 2.0	2.0	et master de la constant de la const	Met touest 1.6 0.9 2.4	hane Nolini 10.8 0.9 2.3
 values in g CO₂e MJ⁻¹ biofuel <i>RED 2009</i> cultivation / collection processing / conversion transport / distribution total GHG emissions 	0.9 9.8 a 0.5	1.8 2.2 b 0.9 5.0	Eti 12.6 2.2 b 0.9 15.7	hanol	25.0	et so poon of a second of a se	Met tages tage	hane ♪

production systems.

Results

Since the configuration of RED's (2009) calculation method excludes emissions prior to the extraction of residue biomass, the policy is explicitly in favour of these biofuel production systems making use of forest residues, black liquor and straw. Thus, the residue based production pathways of methanol, methane, and ethanol showed lowest climate impact (<5 g CO₂e MJ⁻¹), followed by the production pathways of HVO from residue tall oil and pyrolysis oil. For the ethanol production pathway, the energy demand of the off-site enzyme production burdens the biofuels total climate performance with an approximate amount of 10 g CO₂e MJ⁻¹; this impact can be significantly moderated by an onsite enzyme preparation based on the feedstock. The cultivation of feedstock accounts for a significant part (>10 g CO₂e MJ⁻¹) of the biofuels' total GHG emissions (see Table 1 and Figure 1). However, it could be seen that GHG savings for all investigated feedstock and pathways are between 81 – 96% (see Table 1), implying that the emerging ligno-cellulose-based production pathways, considered in this study, can be suitable for future biofuel supply, even under a regime imposing more rigid sustainability criteria (> 60%) and changed fossil fuel reference.

a: off-site enzyme production; b: on-site enzyme production

Authors

 Nathalie Becker, Pål Börjesson, Lovisa Björnsson
 Environmental and Energy Systems Studies, LTH, Lund University
 Acknowledgements
 The funding from the Swedish Energy Agency is gratefully acknowledged.