Evaluation of Western Blot CagA Seropositivity in *Helicobacter pylori*-Seropositive and -Seronegative Subjects

J. Henrik Simán,1* Lars Engstrand, 2 Göran Berglund, 1 Claes-Henrik Florén, 3 and Arne Forsgren 4

Department of Medicine1 and Department of Medical Microbiology,4 Malmö University Hospital, Lund University, Malmö, Department of Medical Epidemiology, Karolinska Institutet, Stockholm, 2 and Department of Medicine, Lund University Hospital, Lund University, Lund, 3 Sweden

Received 9 July 2004/Returned for modification 8 September 2004/Accepted 11 November 2004

CagA seropositivity is an important risk factor for gastric adenocarcinoma and duodenal ulcer. However, CagA seropositivity is also found in *Helicobacter pylori*-seronegative subjects. Is CagA seropositivity in these subjects a sign of a past *H. pylori* infection, or does it represent a false-positive reaction? This study investigates the intensity of the CagA immune reaction and the variation in CagA seroprevalence with year of birth for 650 subjects belonging to the Malmö Preventive Medicine cohort. CagA and *H. pylori* seroprevalences were determined by Western blot analysis (Helicoblot 2.1) and enzyme-linked immunosorbent assay. The peak intensity of the CagA band was significantly lower in *H. pylori*-seronegative subjects than in those with concomitant *H. pylori* seropositivity. In *H. pylori*-seropositive subjects, peak CagA intensity had a bimodal distribution. The prevalence of CagA-seropositive but *H. pylori*-seronegative subjects increased successively and significantly with year of birth, in contrast to the prevalence of CagA-seropositive and *H. pylori*-seropositive subjects, which decreased significantly. However, within *H. pylori*-seropositive and -seronegative subgroups, CagA seroprevalences were constant for different birth cohorts. If CagA seropositivity in *H. pylori*-seronegative subjects represents a past *H. pylori* infection, there must have been some mechanisms of eradication that were more common in younger subjects and that were of more importance than the presence of gastric atrophy and the longer duration and higher prevalence of *H. pylori* infection found in older subjects. Antibiotic treatment of *H. pylori* was not common practice at the time of enrollment. On the other hand, a false-positive reaction would be constant and independent of birth cohorts, as with the *H. pylori*-seronegative subgroup of our study. Peak CagA intensity in *H. pylori*-seronegative subjects corresponded to the lower part of the bimodal distribution of peak CagA intensity in *H. pylori*-seropositive subjects. We conclude that a major proportion of CagA seropositivity in *H. pylori*-seronegative subjects represents a false-positive reaction. Peak CagA intensity has a bimodal distribution in *H. pylori*-seropositive subjects. Low-intensity CagA seropositivity in *H. pylori*-seropositive subjects is indeterminate, representing both false-positive and true-positive reactions.

The *Helicobacter pylori* virulence factor cagA (cytotoxin-associated gene A) and its highly immunogenic protein product CagA are important risk factors for the development of gastric adenocarcinoma and duodenal ulcer (1, 2, 7, 9, 10, 13). Serological tests may be useful in predicting the risk of developing these diseases. Recently, CagA seropositivity has been found in subjects seronegative for the bacterium itself (4, 5). It is hypothesized that CagA seropositivity in *H. pylori*-seronegative subjects may either be a sign of a past *H. pylori* infection (3) or represent a false-positive reaction that may be due to a nonimmune protein-protein interaction or due to cross-reactivity.

The objective of this study was to investigate whether CagA seropositivity in *H. pylori*-seronegative subjects determined with a Western blot method represents a false-positive immune reaction or a sign of a past infection. The strength of a false-positive reaction to the test antigen may differ from that of a true-positive reaction. Also, a sign of a past infection would be expected to be more prevalent among older subjects because of the longer duration and the higher prevalence of *H. pylori* infection in older individuals and because of the spontaneous eradication of *H. pylori* associated with gastric atrophy. On the other hand, if CagA seropositivity in *H. pylori*-seronegative subjects represents a false-positive reaction, CagA-seropositive and *H. pylori*-seronegative subjects would be expected to be less prevalent in older individuals because of the higher prevalence of *H. pylori* infection in these individuals.

This study investigated the intensity and the change in seroprevalence over time of the 116-kDa CagA band in *H. pylori*-seropositive and -seronegative subjects as detected by the Helicoblot 2.1 test (Genelabs Diagnostics, Singapore) and was performed with the population-based serum bank of the Malmö Preventive Medicine cohort at Malmö University Hospital, Malmö, Sweden.

MATERIALS AND METHODS

Study subjects. Selected samples from the Malmö Preventive Medicine health-screening cohort were used. The 650 samples selected as controls matched to patients with gastric or esophageal malignancies in a case-control study performed by our group. The matching criteria were gender, date of birth (±6 months), and date of enrollment (±6 months). In order to make the selected material representative of the Malmö Preventive Medicine cohort, a set of correction factors were used. Each cell consisted of subjects born in the same year and of the same sex. The quotient of the relative cell size of the Malmö Preventive Medicine cohort and the relative cell size of the study group was used as a correction factor. Corrected sums of numbers of seropositive subjects and numbers of individuals in cells were estimated, and the quotients of these sums were used to estimate accurate seroprevalences. The Preventive Medicine cohort consists of 32,906 middle-aged Malmö citizens invited to a health-screening
investigation (23,104 men and 9,802 women) who were enrolled from 1974 to 1992. All citizens in the city of Malmö belonging to the male birth cohorts corresponding to the years 1921, 1924, 1944, and 1948 (termed e.g., cohort 1921) and to the female birth cohorts 1928, 1930–1936, 1938, and 1941 were invited; the mean participant rate was 75%, ranging from 62 to 85% in different birth cohorts. At enrollment, plasma and serum samples from each participant were frozen at –20°C.

Western blot analysis. CagA seropositivity and *H. pylori* seropositivity were estimated using the commercial Western blot assay Helicoblot 2.1 (Genelabs Diagnostics). Helicoblot 2.1 has a reported sensitivity of 96% and specificity of 95% compared to histology, culture, the rapid urease test, or the urea breath test (manufacturer data). Added onto the immunoblot strip, Helicoblot 2.1 has a separate current infection marker consisting of a recombinant antigen with a positive predictive value of 85 to 94%. Reactive and nonreactive control sera were included in each test kit together with a photocopy of the results for the positive reactive control. The molecular weights of those bands needed for seropositivity determination were indicated on this photocopy. The bacte- rial lysate and the reactive positive controls of all kits belonged to a single batch (Matthew Maks, Genelabs Diagnostics, personal communication). Helicoblot strips were incubated with sera diluted 1:100 for 1 h at room temperature and then incubated with goat anti-human immunoglobulin G (IgG) conjugated with alkaline phosphatase included in the kit for 1 h at room temperature. The strips were then developed with 5-bromo-4-chloro-2-indolyl-phosphate and nitroblue tetrazolium for 15 min. The strips were scanned (model GS-700 densitometer; Bio-Rad Laboratories) and then developed with 5-bromo-4-chloro-2-indolyl-phosphate and nitroblue tetrazolium for 15 min. The strips were scanned (model GS-700 densitometer; Bio-Rad Laboratories) and then developed with 5-bromo-4-chloro-2-indolyl-phosphate and nitroblue tetrazolium for 15 min. The strips were scanned (model GS-700 densitometer; Bio-Rad Laboratories) and then developed with 5-bromo-4-chloro-2-indolyl-phosphate and nitroblue tetrazolium for 15 min.

Statistical methods. The Wilcoxon two-sample test was used for testing the difference between continuous parameters. Multivariate linear regression models from the computer program SAS (version 6.12; SAS Institute Inc., Cary, N.C.) were used to determine changes in prevalence with time. A P value of <0.05 was regarded as significant; two-sided tests were used.

RESULTS

Study population. The 650 study subjects were originally chosen as matched control subjects of a case-control study of esophagogastric cancer. Males and older individuals were slightly overrepresented among the study subjects of our group compared to the subjects in the Malmö Preventive Medicine cohort (Tables 1 and 2). Correction factors could be estimated for all sex and birth year cells. The mean age at enrollment corresponded to a mean year of enrollment of 1981 (standard deviation, ±3.0).

CagA seroprevalence. CagA seropositivity was found in 346 of 376 subjects (92%) who were *H. pylori* seropositive by the Helicoblot 2.1 test and in 123 of 274 subjects (45%) who were *H. pylori* seronegative by that test (Table 3). Similar CagA seroprevalences were found after adjustment so that our study subjects would be representative of the Malmö Preventive Medicine cohort: 298 of 327 (91%) *H. pylori*-seropositive subjects and 135 of 323 (42%) *H. pylori*-seronegative subjects (Table 3).

Peak CagA intensity. The peak intensity of the CagA band ranged from 0 to 215 arbitrary units (Fig. 1). Visibility to the naked eye corresponded to a peak intensity of about 10 arbitrary units. The median peak CagA band intensity in subjects with the cutoff (absorbance, 0.700) in between these Gaussian peaks. The sen-

Statistical methods. The Wilcoxon two-sample test was used for testing the difference between continuous parameters. Multivariate linear regression models from the computer program SAS (version 6.12; SAS Institute Inc., Cary, N.C.) were used to determine changes in prevalence with time. A P value of <0.05 was regarded as significant; two-sided tests were used.
who were *H. pylori* seropositive by the Helicoblot 2.1 test and CagA seropositive was 101.9 (quartiles, 77.2 to 126.4) arbitrary intensity units compared with 15.0 (quartiles, 7.3 to 44.5) arbitrary intensity units in *H. pylori*-seronegative but CagA-seropositive subjects, the difference being highly significant (*P* < 0.0001). The peak CagA intensity distribution diagram also revealed a bimodal distribution of peak CagA intensity (Fig. 1). The peak CagA intensity distribution diagram verified that *H. pylori*-seropositive and -seronegative subjects had different distributions of peak CagA intensity (Fig. 1). The peak CagA intensity distribution diagram also revealed a bimodal peak CagA intensity distribution in *H. pylori*-seropositive subjects. A cutoff positioned in between the two peaks of the *H. pylori*-seropositive bimodal CagA intensity distribution at an intensity level of 50 arbitrary units categorized the peak CagA intensities into a high-intensity CagA group and a low-intensity CagA group. Correction for sex and birth year did not affect the peak CagA intensity distribution diagram (data not shown). Specifically, the difference in peak CagA band intensity between *H. pylori*-seropositive and -seronegative subjects remained, as well as the bimodal distribution among *H. pylori*-seropositive subjects. There was no correlation between CagA intensity and freezing time (*r* = 0.0011).

Dependence between *H. pylori* seropositivity and CagA seropositivity. In 330 of 376 (88%; adjusted to 280 of 327 or 86%) *H. pylori*-seropositive cases, more than one of the criteria for *H. pylori* seropositivity was fulfilled. CagA seropositivity in combination with the separate infection marker was the only criterion for *H. pylori* seropositivity in 11 of 376 (2.9%; adjusted to 12 of 327 or 3.7%) cases. Among 137 (adjusted to 148) subjects with low-intensity CagA seropositivity, 7 of 41 (17%; adjusted to 10 of 38 or 26%) were classified as *H. pylori* seropositive solely on the criteria of CagA positivity and the presence of the current infection marker.

Low-intensity CagA bands in *H. pylori*-seropositive and -seronegative subjects. Only 41 of 346 (12%; adjusted to 38 of 298 or 13%) CagA- and *H. pylori*-seropositive subjects were CagA seropositive at a low intensity (Table 3). In contrast, 96 of 123 (78%; adjusted to 109 of 135 or 81%) *H. pylori*-seronegative but CagA-seropositive subjects were CagA seropositive at a low intensity (Table 3).

H. pylori and CagA seroprevalences over time. Helicoblot 2.1 *H. pylori* seroprevalence decreased 1.37% (standard error [SE], ±0.32; *P* = 0.0001) with each increasing year of birth. IgG ELISA *H. pylori* seroprevalence decreased as well by 1.14% (SE, ±0.32; *P* = 0.0005) per year of birth (Fig. 2) (Table 4). The prevalence of subjects that were *H. pylori* seropositive according to the Helicoblot 2.1 test and had a high- or a low-intensity CagA band decreased with each increasing year of birth by 1.06% (SE, ±0.32; *P* = 0.0012) or 0.35% (SE, ±0.16; *P* = 0.029), respectively. In contrast, there was an increase with year of birth in the prevalence of subjects that were *H. pylori* seronegative according to the Helicoblot 2.1 test but had a low-intensity CagA band: 0.54% (SE, ±0.23; *P* = 0.021) per year (Fig. 2) (Table 4). The prevalence of *H. pylori*-seronegative subjects with a high-intensity CagA band did not change with birth date; the rate of increase per year of birth was 0.18% (SE ±0.13; *P* = 0.17) (Fig. 2) (Table 4). Within the *H. pylori*-seropositive and -seronegative groups, there were constant proportions at different birth years of both high- and low-intensity CagA-seropositive subjects (Fig. 3). The changes with increasing year of birth of the proportions of high- and low-intensity CagA bands among *H. pylori*-seropositive subjects were not significant: 0.10% (SE, ±0.35; *P* = 0.78) and 0.38% (SE, ±0.28; *P* = 0.18), respectively (Fig. 3). In the *H. pylori*-seronegative group, neither of the changes with increasing year of birth of the proportions of high- and low-intensity CagA were significant: 0.09% (SE, ±0.30; *P* = 0.29) and 0.14% (SE, ±0.48; *P* = 0.77), respectively. All linear regression analyses were adjusted for sex.

DISCUSSION

This study shows that the prevalence of subjects that were *H. pylori* seronegative but CagA seropositive by the Helicoblot 2.1 test was lower in older individuals and increased succe-
sively with year of birth, in contrast to a successive decrease in prevalence of subjects that were both *H. pylori* and CagA sero-
positive. The proportions of CagA-seropositive subjects within *H. pylori*-seropositive and -seronegative subgroups were con-
stant in different birth cohorts. Furthermore, the study shows
that the median peak CagA intensity was significantly lower in
H. pylori-seronegative subjects than in *H. pylori*-seropositive
subjects and that peak CagA intensity had a bimodal distribu-
tion in *H. pylori*-seropositive subjects.

Almost half of the subjects who were *H. pylori* seronegative
by the Helicoblot 2.1 test were CagA seropositive. The Helic-
oblot 2.1 test has a reported sensitivity of 96%. Thus, most *H.
pylori*-seronegative but CagA-seropositive subjects were not
infected with *H. pylori* at the time of blood sampling. Could
CagA seropositivity in an *H. pylori*-seronegative subject be a
sign of a past *H. pylori* infection? In our material, the propor-
tion of CagA seropositivity in the *H. pylori*-seronegative sub-
group was constantly about 42% in different birth cohorts.
Similarly, in the *H. pylori*-seropositive group, the proportion
of CagA seropositivity was constantly about 91%. Because the
prevalence of *H. pylori* decreased with increasing year of birth,
the prevalence of CagA-seropositive but *H. pylori*-seronegative
subjects was highest in the youngest birth cohorts (Table 4).

If CagA seropositivity in subjects who were *H. pylori* sero-
negative by the Helicoblot 2.1 test represents a past *H. pylori*
infection, there must have been some mechanism of eradica-
tion that was more common in younger individuals and that
was of more importance than the presence of gastric atrophy
and the longer duration and higher prevalence of *H. pylori*
infection found in older individuals. *H. pylori* eradication was
not a generally established therapy at the time when the blood
samples of this study were collected. Successively improving
living conditions might have increased the spontaneous erad-
ication rate during childhood, leaving CagA seropositivity as a
scar of an early infection. Such a mechanism would, though,
imply that the *H. pylori* infection rate in childhood is still high
in younger individuals. Another possibility might be that anti-
bodies against CagA are retained to a higher degree in younger
than in older subjects after an *H. pylori* infection has been
resolved. However, the retention time of CagA antibodies af-

\[
\text{FIG. 2. The prevalences of different serological markers of *H. pylori* infections are plotted against the years of birth of 650 subjects. The prevalences of *H. pylori* seropositivity determined by the Helicoblot 2.1 test and an IgG ELISA decreased with increasing year of birth. The prevalences of *H. pylori*-seropositive subjects with high- or low-intensity CagA seropositivity as determined by the Helicoblot 2.1 test decreased as well with increasing year of birth. In contrast, the prevalences determined by Helicoblot 2.1 testing of *H. pylori*-seronegative subjects with high-
or low-intensity CagA seropositivity increased with year of birth. pos, positive; neg, negative.}
\]

\[
\text{TABLE 4. Seroprevalences of *H. pylori* infection in different birth cohorts according to the Helicoblot 2.1 test, ELISA, and CagA seropositivity.}
\]

<table>
<thead>
<tr>
<th>Birth cohort</th>
<th>% Seroprevalence of H. pylori (95% CI)</th>
<th>% of subjects with indicated peak CagA intensity level (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Helicoblot positive</td>
<td>ELISA positive</td>
</tr>
<tr>
<td>1921</td>
<td>75.0 (65–85)</td>
<td>57.9 (47–69)</td>
</tr>
<tr>
<td>1926–28</td>
<td>60.4 (53–68)</td>
<td>52.2 (44–60)</td>
</tr>
<tr>
<td>1929–33</td>
<td>60.2 (53–67)</td>
<td>48.8 (42–56)</td>
</tr>
<tr>
<td>1934–38</td>
<td>50.8 (42–60)</td>
<td>43.0 (34–52)</td>
</tr>
<tr>
<td>1939–43</td>
<td>42.3 (29–56)</td>
<td>36.5 (23–50)</td>
</tr>
<tr>
<td>1944–48</td>
<td>37.5 (18–57)</td>
<td>25.0 (7–43)</td>
</tr>
<tr>
<td>Total</td>
<td>57.8 (54–62)</td>
<td>47.7 (44–52)</td>
</tr>
</tbody>
</table>

\[
\text{a CagA seropositivity was examined for low and high intensity.}
\]
ter the resolution of *H. pylori* infection would then have to decrease linearly with age and at the specific rate needed to keep the proportion of CagA seropositivity of *H. pylori-*seronegative subjects constant in different birth cohorts, as was found in our material. There was no correlation between peak CagA intensity and freezing time, and there were instances of both increasing and decreasing CagA seroprevalences with year of birth, contradicting the possibility of an effect caused by sample storage.

A more comprehensible explanation of the constant proportion of CagA seropositivity in subjects who were *H. pylori* seronegative by the Helicoblot 2.1 test in different birth cohorts might be that CagA seropositivity in *H. pylori-*seronegative subjects represents a false-positive reaction that may be due to a nonimmune protein–protein interaction or due to cross-reactivity against antibodies formed primarily from a different widely distributed antigen. Such a false-positive reaction would be constant and independent of birth cohorts. However, this kind of false-positive CagA reaction would be uncovered only in *H. pylori-*seronegative subjects. Therefore, with decreasing *H. pylori* seropositivity, this phenomenon would be observed to increase, as was true for our material.

If CagA seropositivity in samples that are *H. pylori* seronegative by the Helicoblot 2.1 test represents a false-positive reaction, it is reasonable to believe that this false-positive reaction occurs also in *H. pylori*-seropositive samples. Among *H. pylori*-seronegative subjects, by cohort-representative values, 42% were CagA seropositive (Table 3). Of these, 81% had a CagA band with a peak intensity below 50 arbitrary intensity units. Among *H. pylori*-seropositive subjects, 29 were CagA seronegative. If the proportion of false-positive reactions to CagA seronegativity in *H. pylori*-seropositive subjects is similar to that in *H. pylori*-seronegative subjects (137 to 188), 21 *H. pylori*-seropositive subjects might have a false-positive CagA reaction, most of whom would have low-intensity CagA seropositivity. Thus, about half of the 38 *H. pylori*-seropositive subjects with low-intensity CagA seropositivity might have had a false-positive reaction. However, only a small fraction of the 260 *H. pylori*-seropositive subjects with high-intensity CagA seropositivity would have had a false-positive reaction. It would therefore be reasonable to consider a low-intensity CagA band in subjects who are *H. pylori* seropositive by the Helicoblot 2.1 test as indeterminate with regard to their CagA status.

Ekström et al. (3) found CagA seropositivity among *H. pylori-*seronegative subjects to be a strong risk factor for noncardia gastric adenocarcinoma in a case-control study with cross-sectional blood sampling. In their study, CagA seropositivity was present among 59 of 79 (75%) *H. pylori-*seronegative gastric cancer cases, in contrast to 10 of 107 (10%) *H. pylori-*seronegative controls. Longitudinal studies have shown that the association between *H. pylori* seropositivity and noncardia gastric adenocarcinoma is stronger when blood sampling is performed more than 10 years before cancer diagnosis (8). It is generally believed that *H. pylori* infections spontaneously disappear because of the gastric atrophy that occurs in the development of intestinal gastric cancer. In an eradication study of ulcer patients with 32 months of follow-up, Sörberg et al. (12) found posttreatment CagA antibody titers to decrease slower than *H. pylori* enzyme immunoassay IgG antibody titers. Thus, there is support for the notion that CagA seropositivity in *H. pylori-*seronegative subjects represents a past *H. pylori* infection when blood sampling is performed close to the time of gastric cancer diagnosis. Whether this is true for the general population is unclear. Fusconi et al. (5) found CagA seropositivity among 8 of 80 (10%) stringently selected subjects who were *H. pylori* negative by five tests (histology, culture, rapid urease test, urea breath test, and IgG ELISA serology). Because of the dissimilarity between CagA and other known bacterial and human polypeptide sequences, Fusconi et al. (5) argue that CagA seropositivity in *H. pylori-*seronegative subjects generally represents a past *H. pylori* infection. In our material, where the Helicoblot 2.1 test was used to determine *H. pylori* and CagA seroprevalences, CagA seropositivity was found among a higher proportion of subjects: 123 of 274 (45%) *H. pylori-*seronegative subjects. We cannot exclude the possibility that a minor proportion of these were infected with *H. pylori* in the past. However, without an explanation of why past infection would be more prevalent in younger individuals, a major proportion of subjects showing CagA seropositivity as

FIG. 3. The proportions of high- and low-intensity CagA bands were constant in different birth cohorts for both *H. pylori*-seropositive and -seronegative subjects. pos, positive; neg, negative.
determined by the Helicoblot 2.1 test among H. pylori-seronegative subjects would have to represent a false-positive reaction.

Although we classified serostatus for both H. pylori and CagA with the same test, only one of five criteria for H. pylori seropositivity is based on the CagA serostatus, and then the determination is made in combination with the current infection marker. There was negligible dependence between the two tests (3.7%), except in determining the number of CagA-dependent H. pylori-seropositive subjects in the subgroup of individuals seropositive for CagA at a low intensity (26%). This dependence would not interfere with the conclusions of this study. However, we recommend caution in the interpretation of the Helicoblot 2.1 strip when the CagA band is faint and no other criterion for H. pylori seropositivity is present.

The Malmö Preventive Medicine cohort is a health-screening cohort of middle-aged Malmö citizens enrolled from 1974 to 1992. The high participation rate makes it a good representative sample of the general middle-aged population. Although adjustment had to be done in order to make the selected study subjects representative of the Malmö Preventive Medicine cohort, the main conclusions of this study were not affected by whether this adjustment was performed or not.

In conclusion, our data suggest that for a major proportion of H. pylori-seronegative subjects who are CagA seropositive, the reaction to CagA is a false-positive reaction. Our results also suggest that there is a bimodal distribution of peak CagA intensity in H. pylori-seropositive subjects and that the low-intensity proportion of this bimodal peak CagA intensity distribution consists of both true- and false-positive reactions. A low-intensity CagA band among H. pylori-seropositive subjects should be regarded as indeterminate concerning CagA status. Further studies will be needed to assess whether these findings are limited to the Helicoblot 2.1 Western blot method or are common properties of Western blot methods measuring CagA seropositivity.

ACKNOWLEDGMENTS

We acknowledge F. Lindgärde, Department of Medicine, Malmö University Hospital, for having been in charge of the health-screening project for part of the recruitment period. We acknowledge Astrid Asklin, Department of Microbiology, Uppsala University Hospital, Uppsala, Sweden, for analyzing the Western blot assay.

This work was supported by the Swedish Cancer Society, the General Hospital in Malmö Foundation for the Control of Cancer, and the Ernhold Lundström Foundation.

REFERENCES