Absorption across the nasal airway mucosa in house dust mite perennial allergic rhinitis.

Greiff, Lennart; Andersson, Morgan; Svensson, Jenny; Wollmer, Per; Lundin, Stefan; Persson, Carl

Published in:
Clinical Physiology and Functional Imaging

DOI:
10.1046/j.1475-097X.2002.00401.x

2002

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Absorption across the nasal airway mucosa in house dust mite perennial allergic rhinitis

Lennart Greiff¹, Morgan Andersson¹, Jenny Svensson¹, Per Wollmer², Stefan Lundin³ and Carl G. A. Persson³

¹Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Lund, Sweden, ²Department of Clinical Physiology, University Hospital, Malmö, Sweden, and ³Department of Clinical Pharmacology, University Hospital, Lund, Sweden

Introduction

It has been postulated that increased airway tissue permeability (increased absorption) is critically involved in the development and/or the persistence of allergic airway disease (Leskowitz et al., 1972; Aas, 1978). Airway hyperpermeability is also considered a pathogenic mechanism in established airway inflammation causing non-specific hyper-responsiveness (Hogg, 1981). This attractive hyperpermeability hypothesis may receive some support from previous reports dealing with animal (Boucher et al., 1977; Ranga et al., 1983) and human experiments (Salvaggio et al., 1964; Buckle & Cohen, 1975; Inagaki et al., 1985; Ilowite et al., 1989). However, well controlled human studies involving asthmatic subjects (Elwood et al., 1983; O’Byrne et al., 1984; Halpin et al., 1993) and patients with seasonal allergic rhinitis (Greiff et al., 1993, 1997) have challenged the hyperpermeability hypothesis by demonstrating unchanged or even decreased airway absorption during active disease periods.

The possibility that allergens with enzymatic activity might damage the epithelium and increase airway absorption has received attention (reviewed in Robinson et al., 1997). House dust mite allergens express enzymatic activity (Stewart et al., 1989) and may produce epithelial damage and increased mucosal permissiveness in vitro (Herbert et al., 1990, 1995). Although in vitro studies of airway absorption have unknown relevance to the in vivo condition (e.g. epithelial restitution may be prompt in vivo but not in vitro (Persson et al., 1997)) these observations are of interest. For example, the possibility exists that perennial allergic rhinitis, where house dust mite is a major culprit, may exhibit a more deranged absorption barrier than in the seasonal pollinosis where a functionally tight mucosa has been demonstrated (Greiff et al., 1993, 1997). In the present study we have thus examined nasal airway absorption in patients with perennial house dust mite allergic rhinitis and healthy subjects. We have employed the 1067 Da peptide desmopressin as absorption tracer (Greiff et al., 1997). This tracer may reflect airway absorption of peptide allergens.

Materials and methods

Study design

Nasal absorption of desmopressin (1-deamino-8-D-arginine vasopressin) was examined in patients with perennial allergic rhinitis and healthy subjects. The patients with allergic rhinitis were examined after withdrawal of treatment for 4 weeks when

© 2002 Blackwell Science Ltd • Clinical Physiology and Functional Imaging 22, 1, 55–57

55
symptoms of allergic rhinitis were evident. The healthy subjects were examined together with the patients. The urinary excretion of desmopressin in 24 h urine samples was calculated after its nasal administration as an index of nasal mucosal absorption.

Patients and healthy subjects

Fifteen patients with perennial allergic rhinitis (aged 22–35 years) were enrolled and examined during a period from December to February, i.e. outside the season for, e.g. birch and grass pollen allergy. All patients had a history of perennial house dust mite allergic rhinitis, which was verified by a positive skin prick test (Aquagen SQ, ALK, Copenhagen, Denmark). Eight healthy subjects (aged 22–27 years) participated as controls. These subjects had no history of allergic rhinitis and a negative skin prick test to seasonal and perennial allergens. The study was performed after approval by the local ethics committee and according to the declaration of Helsinki. Informed consent was obtained from the subjects.

Nasal symptoms

On-going medication (in all patients topical glucocorticosteroid treatment) was withdrawn and nasal symptoms were scored for 4 weeks. The patients with allergic rhinitis were instructed to register nasal blockage and discharge on a four graded scale during the treatment withdrawal period. The symptoms were scored as 0: no, 1: mild, 2: moderate, and 3: severe symptoms. Only patients who developed significant nasal symptoms of allergic rhinitis, chosen to be a score of 2 or more of either symptom, were further examined. Accordingly, seven symptomatic patients were subsequently examined with desmopressin nasal absorption measurements.

Nasal administration of desmopressin

Desmopressin (20 μg ml⁻¹) in isotonic saline was administered onto the mucosal surface of the right nasal cavity using a nasal pool-device (Greiff et al., 1990). The device contained 15 ml of the desmopressin (tracer) solution. The solution was maintained in contact with the nasal mucosa for 15 min and subsequently recovered. The mucosal surface was irrigated immediately after the completed tracer instillation in order to prevent uptake of retained tracer beyond the 15 min of exposure. These irrigations were carried out with isotonic saline using two nasal pool-devices, each containing 15 ml fluid. These fluids were maintained in contact with the nasal mucosa for periods of 30 s each.

Monitoring of nasal absorption of desmopressin

Urine was collected for 24 h after the completed nasal administration of desmopressin. The concentration of desmopressin in urine was determined and the total amount excreted during the 24-h period was calculated. The concentration of desmopressin was analysed by a specific radioimmunoassay that previously has been described in detail (Fjellstad-Paulsen et al., 1993). The cross-reactivity with arginine vasopressin and oxytocin was less than 0.01%. The detection limit of desmopressin was 5.0 pm.

Statistics

Mann–Whitney U-test was used for comparisons between absorption level patients with allergic rhinitis and the group of healthy subjects. A P-value <0.05 was considered significant. Data are presented as mean ± SEM.

Results

The amount of desmopressin in urine excreted during the 24-h sampling period did not differ between patients with perennial allergic rhinitis and healthy subjects (P = 0.1) (Fig. 1). There were no significant differences between the urine volumes between these groups being 955 ± 91 ml in healthy subjects and 1211 ± 218 ml in patients with perennial allergic rhinitis (P = 0.1).

Discussion

The present study demonstrated significant nasal absorption of desmopressin in patients with perennial allergic rhinitis. However, the acute absorption capacity of the nasal airway mucosa in these patients did not differ from that recorded in healthy subjects. These results are at variance with the view that an abnormal pervious nasal epithelial lining is an important mechanism in airway disease caused by house dust mite allergens.

Displacement of nasal absorption tracers to the gut may interfere with nasal absorption measurements (Greiff et al.,

Figure 1 Desmopressin excretion in 24 h urine samples (pmol 24 h⁻¹) obtained after nasal administration of desmopressin. There were no difference in urinary excretion of desmopressin between patients with perennial allergic rhinitis and healthy control subjects.
Aas K. What makes an allergen an allergen? Allergy (1978); 33: 3–14.


Halpin DMG, Currie D, Jones B, Leigh TR, Evans TW. Permeability of bronchial mucosa to 113mIn-DTPA in asthma and the effects of salmeterol. Eur Respir J (1993); 6 (Suppl. 17): 512s.


