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Atomic and macroscopic measurements of attosecond pulse trains

J. M. Dahlström1, T. Fordell1, E. Mansten1, T. Ruchon2,
M. Swoboda1, K. Klünder1, M. Gisselbrecht1,3, A. L’Huillier1, J. Mauritsson1

1 Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
2 CEA-Saclay, DSM, Service des Photons, Atomes et Molcules, 91191 Gif sur Yvette, France

3 CNRS-Université Paris Sud, UMR8624, LIXAM, Bat. 350, 91405, Orsay, France

We characterize attosecond pulses in a train using both the well established “Reconstruction
of Attosecond Beating by Interference of Two Photon Transitions” (RABITT) technique and the
recently demonstrated in-situ method, which is based on a weak perturbation of the harmonic
generation process by the second harmonic of the laser field. The latter technique determines the
characteristics of the single atom emission, while RABITT allows one to measure attosecond pulses
“on target”. By comparing the results of the two methods, the influence of propagation and filtering
on the attosecond pulses can be extracted.

PACS numbers: 32.80.Rm, 32.80.Qk, 42.65.Ky

I. INTRODUCTION

Attosecond pulse trains (APTs) are created when in-
tense infrared (IR) laser pulses interact with a gas of
atoms or molecules [1]. The characteristics of the attosec-
ond pulses depend both on the quantum-mechanical sin-
gle atom dynamics as well as on macroscopic effects due
to propagation in the nonlinear medium [2]. Under nor-
mal experimental conditions, the pulse train contains two
pulses per cycle of the laser field [3–5]. The properties
of these pulses can be modified by transmission through
filters [6] or reflection by gratings and/or multilayer mir-
rors [7]. Several techniques to characterize attosecond
pulse trains have been proposed, each with specific ad-
vantages and limitations. In this paper we concentrate
on analyzing and comparing two of these techniques: the
Reconstruction of Attosecond Beating by Interference of
Two-photon Transitions (RABITT) [1] and a two-color
in-situ method [8], that uses a weak perturbation of high
order harmonic generation (HHG) by the second har-
monic of the fundamental laser field. Both techniques
aim to characterize the average attosecond pulse struc-
ture in an APT.

Fig. 1 illustrates schematically the difference between
these two techniques. RABITT allows us to determine
the final structure of the attosecond pulses after propa-
gation in the gas cell and filtering. The attosecond pulses
are characterized “on-target”, i.e., in the chamber where
they can be used for applications. The RABITT scheme
is implemented by ionizing an atomic gas with the APT
in presence of a synchronized weak IR field. The per-
turbation due to the IR field results in sidebands in the
photoelectron spectra as shown in Fig. 2(a). Information
about the structure of the attosecond pulses can then be
obtained by studying the intensity oscillations of these
sidebands with respect to the subcycle delay between the
probe field and the APT.

The in-situ method measures the single atom emis-
sion from the individual atoms. In contrast to RABITT,
the initial shape of the attosecond pulses, before prop-

FIG. 1: (Color online) Cartoon illustrating the differences be-
tween the two characterization methods. The in-situ method
measures the single atom emission, while the RABITT scheme
determines the corresponding attosecond pulses “on-target”.
The influence of phase matching and filtering on the attosec-
ond pulses can be deduced through the implementation of
both methods on the same HHG set-up.

agation and filtering, is now measured [Fig. 1]. This is
important for applications that are conducted in the gen-
eration process itself, e.g. the tomography of electronic
orbitals [9]. The presence of a weak second harmonic
(blue) field in the generation chamber leads to the gener-
ation of even harmonics as shown in Fig. 2(b) [10]. The
harmonic generation process is nonlinear beyond the per-
turbative regime, which results in comparable probabili-
ties for the processes shown in Fig. 2(b) even though the
number of IR photons absorbed differs by four. Informa-
tion about the initial properties of the attosecond pulse
is obtained by studying the intensity oscillations of the
even harmonics with respect to the phase between the IR
and the blue field.
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FIG. 2: (Color online) Energy diagrams associated with the
two characterization methods. (a) Sidebands are created
through the absorption/emission of an IR photon (ωR) in
the RABITT method. (b) Even harmonics are produced in
the in-situ method due to the presence of a weak blue field
(2ωR). Attosecond pulses are characterized by studying the
interferences arising from the degenerate ways of reaching the
sidebands or even harmonics.

In this paper we present a detailed theoretical and ex-
perimental comparison between the two characterization
methods. Implementing both schemes allows us to mea-
sure both the initial and final shape of the attosecond
pulses. From these measurements the influence of propa-
gation as well as filtering can be determined. The paper
is composed as follows: Section II reviews the theory of
the two characterization methods, Section III gives an
overview of the experimental setup, Section IV presents
results from both methods at low gas generation pres-
sure, Section V discusses the reasons for the difference
observed at higher gas pressures and Section VI summa-
rizes the article with an outlook.

II. THEORY

The electric field of an attosecond pulse can be written
as Ẽ(t) = Λ̃(t) exp[iφ̃(t)], where Λ̃(t) and φ̃(t) represent
the temporal envelope and phase respectively. It can also
be described through its Fourier transform

E(ω) = Λ(ω) exp [iφ(ω)] (1)

=
∫
dt Λ̃(t) exp

[
iφ̃(t)− iωt

]
, (2)

where Λ(ω) and φ(ω) are the spectral envelope and phase.
The Fourier integral in Eq. 2 can be approximated using
the saddle point method when the linear part in the tem-

poral phase cancels the Fourier component,

dφ̃

dt

∣∣∣∣∣
t=t′(ω)

− ω = 0, (3)

and the quadratic part of the temporal phase is large,∣∣∣∣d2φ̃

dt2

∣∣∣∣
∣∣∣∣∣
t=t′(ω)

� 0. (4)

Note that the temporal phase must be expanded at dif-
ferent times for different Fourier components, i.e. the
saddle point time is a function of frequency, t′(ω). The
saddle point approximation yields

E(ω) ≈
√√√√ 2π∣∣∣d2φ̃dt2 ∣∣∣ Λ̃(t) exp

[
iφ̃(t)− iωt± iπ

4

]∣∣∣∣∣∣∣
t=t′(ω)

(5)

where the positive (negative) phase factor corresponds to
a positive (negative) chirp which is the case for attosec-
ond pulses from the short (long) branch. The spectral
phase is approximately equal to

φ(ω) = φ̃(t′(ω))− ωt′(ω)± π

4
, (6)

and its first derivative is

dφ

dω
= −t′(ω), (7)

which is obtained using the chain rule and Eq. 3. We can,
therefore, interpret the group delay (GD = −dφ/dω) as
the time when the temporal phase oscillates as ω. A
deeper analysis is needed if Eq. 3-4 are not satisfied,
which is the case of frequencies above the harmonic cut-
off.

We define the relative timing of spectral components
(or relative group delay) as

t(rel)(ω, ω0) = t′(ω)− t′(ω0) = −dφ
dω

+
dφ

dω

∣∣∣∣
ω0

(8)

where t(rel)(ω, ω0) is the time is takes for the attosecond
pulse to go from oscillating at ω0 to oscillating at ω. The
reference frequency, ω0, is arbitrarily chosen to be the
lowest frequency of the pulse.

In the present work performed with relatively long
(multicycle) driving pulses, the emission spectrum con-
tains peaks at harmonic frequencies. In what follows,
we use the following notation for the spectral phase
Φn = φ(nωR) where n is the harmonic number and ωR
is the angular frequency of the IR laser field.

A. RABITT

The sidebands that appear in the RABITT method
can be understood through the use of second order per-
turbation theory [1]: absorption of a high-order harmonic
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photon followed by absorption or emission of an IR pho-
ton. Interferences occur between the different quantum
paths that lead to the same sideband [Fig. 2(a)]. If we as-
sume that the competing quantum paths have the same
amplitude, then the intensity of the sideband varies as

I2n(ϕ) ∝ 1 + cos
[
2ϕ−∆Φ2n −∆Φat2n

]
, (9)

where ϕ is the phase of the probe field oscillations rel-
ative to the attosecond pulses, ∆Φ2n = Φ2n+1 − Φ2n−1

is the difference between the phases of the corresponding
harmonics and ∆Φat2n is the difference in atomic phase
for the corresponding energies [11]. The atomic phase
is neglected in the following because it only has a small
effect on the final result in the spectral region that we
consider. The first derivative of the spectral phase can
then be determined using the approximate relation

dφ

dω

∣∣∣∣
2nωR

≈ ∆Φ2n

2ωR
. (10)

The final shape of an average attosecond pulse in the
APT can be reconstructed using Eq. 10 combined with
a measurement of the spectrum [12]. The aim of this
paper is, however, not to reconstruct attosecond pulses
but rather to study how the corresponding relative timing
is affected by macroscopic dispersion in the generation
cell. Using Eq. 8-10, the relative timing can be written
as a function of experimental observables as

t
(rel)
final(ω, ω0) ≈ − 1

ωR
[ϕmin(ω)− ϕmin(ω0)] , (11)

where ϕmin(ω) is the relative phase between the probe
and the APT that minimizes the sideband intensity,
I2n(ϕmin(ω)) = 0, for ω = 2nωR. The subscript final is
used to indicate that this is the final state of the pulse as
it is detected on target.

B. IN-SITU

We will now derive an analogue to Eq. 11 for the in-
situ method, where the relative timing of the initial at-
tosecond pulses is determined from the oscillation of the
induced even harmonics. Using the Strong Field Ap-
proximation (SFA), the Fourier components of the HHG
dipole can be approximated as [13]

~xn ∝
∫
dt dτ d3~p exp

[
iS(~p, t, τ)

~
− inωRt

]
, (12)

where ~p is the canonical (drift) momentum, τ is the time
between tunneling and recombination, S is the quasiclas-
sical action and n is the harmonic order. Finding the
stationary points of the quasiclassical action, and then
applying the saddle point approximation five times re-
duces the integrals in Eq. 12 to a sum of discrete contri-
butions, each corresponding to a quasiclassical trajectory

[5, 14]. In the limit of a vanishing ionization potential,
the quasiclassical trajectories become classical and the
quasiclassical action becomes the classical action,

S[x(t, t′)] =
∫ t

t−τ(t)
dt′
{
mv(t, t′)2

2
+ qx(t, t′)E(t′)

}
,

(13)
where x, v, m, q are the position, velocity, mass and
charge of the electron respectively. We label the electron
trajectories as x = x(t, t′), where t is the return time and
t′ is the integration variable for the action. The electron
is released from the atom at time t−τ and accelerated by
the laser field, E, until it returns and recombines with the
atom at time t. In the one-color HHG, where E = ER =
ER0 sin(ωRt), the process is repeated with an alternating
sign every half period, xR(t, t′) = −xR(t + TR/2, t′ +
TR/2), since ER(t′) = −ER(t′ + TR/2). The action is,
however, the same SR(t) = SR(t+ TR/2).

Adding a weak blue field, E = ER + EB , EB =
EB0 sin (2ωRt+ ϕ), induces a small change of the tra-
jectories and the accumulated action. We treat the blue
field as a perturbation and expand the trajectory,

m
d2

dt2

∞∑
n=0

λnx(n) = qER + λqEB , (14)

where λ is the usual perturbation parameter. The zeroth
order solution is the same as in the one-color case, x(0) =
xR; and the first order solution is purely given by the blue
field, x(1) = xB . Higher orders, n > 1, are equal to zero.
We expand the action as S = S(0) + λS(1) + λ2S(2). The
zeroth order action is the same as in the one-color case,
S(0) = SR. The first order action, S(1) = σ, is composed
of three cross terms that can be rewritten using a few
partial integrations

σ =
∫ t

t−τ
dt′ {mvRvB + qxREB + qxBER} (15)

= q

∫ t

t−τ
dt′ xREB , (16)

where the following boundary conditions are used:
xR(t, t) = xR(t, t − τ) = vR(t, t − τ) = xB(t, t) = 0.
It is interesting to note that σ can be written as an in-
tegral over the unperturbed trajectory, xR, and the blue
field (or as an integral over the trajectory perturbation,
xB , and the red field). Unlike SR, the first order action
changes sign between opposite half cycles of the IR field,
σ(t) = −σ(t + TR/2), which reflects the fact that the
electron is now moving differently in the two half cycles,
x(t, t′) 6= −x(t+ TR/2, t′ + TR/2). The second order ac-
tion is given purely by the blue field, S(2) = SB , and it
has, therefore, the same sign in opposite half cycles of the
IR. The sum of the contributions from the zeroth and the
second order is labeled as Σ = S(0) + S(2).

The integrals of Eq. 12 are evaluated for the two-color
case using the saddle point solutions for the IR field only,
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i.e. we assume that σ and SB are slowly varying com-
pared to SR. Only the two stationary points correspond-
ing to the short branch of trajectories in two neighboring
half cycles of the fundamental are used, in accordance
with the experiment where the long branch has been re-
moved using spatial filtering in a narrow aperture. It
turns out that the contributions from the first order ac-
tion have equal sign for the odd harmonics and opposite
sign for even harmonics, which allows us to combine the
terms using Euler’s formula. The HHG dipole takes the
following form for the odd harmonics:

~xn=2N+1 ∝ cos
[σn

~

]
exp

[
iΣn
~
− inωRtn

]
, (17)

where the first order change in action, σn, leads to change
of dipole amplitude. In the limit of a vanishing blue
field, we recover the one-color case: cos(σn/~) → 1 and
Σn → SRn. The HHG dipole for the even harmonics
takes the following form:

~xn=2N ∝ sin
[σn

~

]
exp

[
iΣn
~
− inωRtn

]
, (18)

where the amplitude again is dependent on the change
in action. The even harmonics vanish if there is no blue
field since sin(σn/~)→ 0. The intensities of the odd and
even harmonics vary out of phase: The odd harmonics
decrease when the even harmonics increase. A weak blue
field implies that sin(σn/~) ≈ σn/~. In this regime the
even harmonic amplitudes grow linearly with the applied
blue field and oscillate with the relative phase, ϕ. It is in
this regime that an in-situ measurement can be carried
out.

Using Eq. 16, we seek the relative phase, ϕmin(t), that
induces no even harmonic amplitude,

σ(t, ϕmin(t)) = q

∫ t

t−τ(t)
dt′ xR(t, t′)EB(t′, ϕmin(t)) = 0,

(19)
where the return time, t = t(ω), is a saddle point so-
lution to Eq. 12 and, therefore, a function of frequency
(in close analogy with Eq. 3-4). We find excellent agree-
ment with the pioneering work of Dudovich et. al. [8]
using unperturbed classical trajectories in Eq. 19. The
solution, ϕmin(t), is expanded to first order around the
central return time, tc = 0.35TR,

ϕmin(t)− ϕmin(tc) ≈ −(1 + ξ) ωR (t− tc), (20)

where ξ ≈ −0.06 is the “systematic scaling difference”
between ϕmin and ωRt. Our numerical linearization of
ϕmin(t) in Eq. 20 depends on the choice of tc: ξ varies
from 0.1 (in the shortest return) to 0 (in the cut-off
regime). It is, however, the scaling around the central
return time (central frequency) that is most appropriate
for calculating the initial properties of the entire attosec-
ond pulse. Using Eq. 8 and Eq. 20, we find the following

simple relation between the oscillations in the even har-
monics and the relative emission time from the atom

t
(rel)
initial(ω, ωc) ≈ −

γ

ωR
[ϕmin(t(ω))− ϕmin(t(ωc))] , (21)

where γ = 1/(1 + ξ) ≈ 1.06 is a correction factor. Eq. 21
resembles Eq. 11 from the RABITT section in both form
and interpretation. The even harmonic oscillations are
mapping out the relative emission times from the atom
much like the sidebands in a RABITT scan map out the
relative arrival times on target. In contrast to RABITT,
the in-situ method needs a correction factor, γ, which is
slightly larger than one for the short branch of trajecto-
ries. The validity of Eq. 21 is limited to the high-order
harmonic plateau where the constant amplitude approx-
imation [Eq. 12] and the linearization of ϕmin(t) [Eq. 20]
are sound. The in-situ method can be applied also to
the second (long) branch of trajectories. The correction
factor for the long branch is γ ≈ 0.88 for tc = 0.55TR.

We want to stress that the in-situ method is not a
direct measure of the emission time (or the group delay),
because ϕmin(t) is not related to the return time in a
trivial way [Eq. 19]. In fact, one could also interpret the
in-situ method as a measurement of the continuum time
which is an equally good parameter of the process.

All technical details aside, we have found that the in-
situ method produces traces of oscillating even harmon-
ics which, to reasonable agreement, can be treated as
RABITT scans. In the following, we will present data
which is uncorrected, γ = 1, verifying numerically and
experimentally the validity of γ ≈ 1 for harmonics in
the plateau. Unlike RABITT, the in-situ method is not
limited to sampling the relative timing at only even har-
monic energies. The oscillations in the odd harmonic
energies [Eq. 17] can be treated in a similar way, thus
doubling the number of sampling points for the relative
timing compared to RABITT.

C. Numerical SFA calculation

We perform a numerical experiment using SFA to ver-
ify the analytical work presented in the previous subsec-
tion for an IR intensity of IR = 2 × 1014 W/cm2. Our
numerical calculations are based on Eq. 13 in [5] where
the saddle point approximation is done only over ~p space.
The integration over continuum time, τ , and actual time,
t, is done numerically. This allows us, in a simple way,
to access either branch of trajectories by numerically re-
stricting the integral over the continuum time, τ . We
calculate the single atom response for the short branch
of trajectories by restricting the continuum time integral
to 0 < τ < 0.65TR. Then we calculate the response from
the long branch of trajectories by restricting the contin-
uum time integral to 0.65TR < τ < TR. The correspond-
ing group delays are calculated numerically from the first
derivative of the spectral phase of the short branch dipole
[Fig. 3(a) ◦] and the long branch dipole [Fig. 3(a) •].
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FIG. 3: (Color online) (a) The single atom response of the short (◦) and the long (•) branches are calculated using SFA for a
typical IR intensity, IR = 2×1014 W/cm2. The group delays, −dφ/dω, of both branches are in good agreement with the simple
classical model (gray line). The group delay branches merge beyond the cut-off (dotted line). (b) The numerical in-situ scans
generated using SFA with a weak blue field, IB/IR = 0.1%, show qualitative agreement for both the short (◦) and the long (•)
branch with the shifted simple classical model (gray line). The in-situ branches do not merge beyond the cut-off (dotted gray
line).

The time-energy curves are compared to a simple classi-
cal model [Fig. 3(a) gray line], consisting in finding the
classical kinetic return energy for a classical electron in
a sinusoidal electric field, E(t) = E0 sinωt, which starts
and returns to the origin, and then adding the ionization
energy.

Next, we perform the numerical in-situ measurement
by calculating the single atom response from the same
IR field plus a weak blue field with a relative inten-
sity of IB/IR = 0.1%. The phase of the blue field, ϕ,
is then shifted relative to the IR and the atomic re-
sponse is calculated again. As expected, we obtain weak
oscillations in the even harmonics which vary with re-
spect to ϕ. The relative phases, ϕmin, that minimize
the even harmonic signal are extracted from the short
branch [Fig. 3(b) ◦] and the long branch [Fig. 3(b) •].
We find that the in-situ method produces time-energy
slopes that are in qualitative agreement with a shifted
simple classical model [Fig. 3(b) gray line] for harmonics
below the cut-off [Fig. 3(b) dotted line]. There is, how-
ever, an absolute time difference between the delays that
minimize the even harmonic signal, −ϕmin/ωR, and the
(unshifted) simple classical model [Fig. 3(b) dashed gray
line]. A careful study of the numerical experiment indi-
cates that the in-situ measurement suffers from a small
systematic deviations from the group delay which can be
attributed to the correction factor, γ. We stress that all
data presented in Fig. 3(b) is uncorrected, i.e. γ = 1.

A larger, and possibly more interesting, systematic de-
viation between the group delay and the in-situ method
arises for harmonics close to and beyond the cut-off
[Fig. 3(a)-3(b) dotted line]. This deviation occurs in a
spectral region where Eq. 3-4 are questionable and it is,
therefore, more difficult to interpret the deviation. It

is clear, however, that the in-situ measurement is not a
direct measurement of the group delay (nor the relative
timing) of the attosecond pulses and that a deeper anal-
ysis is needed for understanding the behavior beyond the
cut-off. It is interesting to note that the in-situ measure-
ments of the short branch and of the long branch do not
merge in the cut-off. We verify that the strange cut-off
behavior is not an artifact of the trajectory separation by
calculating the combined response of the short and the
long branch, 0 < τ < TR. The in-situ measurement of
the combined branches results in a chaotic behavior in
the plateau region due to interferences between the two
branches; and a steady solution in the cut-off region that
tends toward the long branch. Our interpretation, of this
numerical experiment, is that the dominant physical con-
tribution comes the long branch beyond the cut-off. The
dominance of the long branch beyond the cut-off region
has been stressed by Lewenstein et. al. [15], but it has
never been demonstrated experimentally.

The numerical experiment is repeated at progressively
higher relative intensities to investigate the robustness
of the in-situ method. We observe the depletion of the
odd harmonics, as expected from Eq. 17. The informa-
tion retrieved from the even harmonics is intact as long
as IB/IR < 1% for IR = 2 × 1014 W/cm2. Increasing
the relative intensity further results in an invalid in-situ
measurement.

III. EXPERIMENTAL SETUP

The experimental work is carried out at the Lund Laser
Center (LLC) using a kHz Ti-Sapphire chirped pulse am-
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(a) (b)

(c) (d)

FIG. 4: (Color online) (a) In RABITT mode the blue field [from KPD] is split off [BS1] and blocked. A weak IR probe field
is created [BS2] and delayed on the subcycle scale using a translation stage. The APT is generated from the intense IR pulses
[HHG (IR)] in a synchronized pulsed gas cell. The intense IR field is eliminated using aluminum filter(s). The APT and the
probe are recombined [APT+probe] using a mirror with a narrow aperture. The APT passes through the aperture while the
probe is reflected on the mirror. The temporally overlapping APT and probe field are then focused using a toroidal mirror and
detected using an electron spectrometer [not shown]. (b) The RABITT scan is recorded using an electron spectrometer with
subcycle synchronization of the APT and the probe in the detection chamber. (c) In in-situ mode the IR and the blue field
[from KDP] are separated [BS1] into a dichroic interferometer. The IR field is delayed on the subcycle scale using a glass plate
(which can be tilted) before it is recombined with the blue field [BS3]. The probe is blocked [after BS2]. The APT is generated
from intense IR pulses in the presence of a weak blue field [HHG (IR+blue)] in a synchronized pulsed gas cell. The IR and blue
fields are eliminated using aluminum filter(s). The APT is detected using an electron spectrometer [not shown] after passing a
narrow aperture. (d) The in-situ scan is recorded using an electron spectrometer with subcycle synchronization of the IR and
the blue fields in the generation cell [HHG (IR+blue)]. The colorscale in (b) and (d) is saturated so that the interferometric
beating is more clearly seen.

plified laser operating at a wavelength of 800 nm (IR).
The pulse energy is 2 mJ and the pulse length is 35 fs.
The APTs are generated by focusing the IR laser pulses
into a synchronized pulsed argon gas cell [16]. Having
a pulsed gas cell allows us to maintain a low average
background pressure in the generation chamber while the
effective gas pressure in the gas cell is high. We do not
measure the instantaneous generation pressure in the gas
cell but it is reasonable to assume that it scales with the
average background pressure in the generation chamber.

We use aluminum filters after the HHG to:

• Remove the remaining IR and the low-order har-

monics in the pump line

• Compress the pulses in the APT

Eliminating the intense IR beam after the generation cell
is important since neither of the characterization schemes
work if there is a strong IR field present in the detection
process. The individual filters are 200 nm thick and the
number of filters used can be changed using a motorized
filter holder [6]. Being able to change the number of fil-
ters is important in order to access the effect of filters on
the attosecond pulses [3]. The attosecond pulses are fi-
nally detected using a magnetic bottle electron spectrom-
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eter (MBES). The detection gas is Argon which allows us
to study the high-order harmonics from the plateau and
cut-off regions.

In the RABITT method the ionization step in the
MBES is perturbed by a synchronized weak IR probe
field, which is coupled into the MBES using a Mach-
Zehnder interferometer [Fig. 4(a)]. The relative phase,
ϕ, between the APT and the IR is controlled using a
piezo-electric translation stage in the interferometer. A
typical RABITT scan is shown in Fig. 4(b).

In the in-situ method the IR pulse is used to generate
a second harmonic field (blue) with a 1.3 mm thick KDP
type I crystal. The IR and the blue field are synchronized
before the generation chamber using a three dimensional
dichroic interferometer [Fig. 4(c)]. A glass plate in the
interferometer enables control of the relative phase, ϕ,
between the IR and the blue fields. The interferometer
is engineered so that the polarizations of the recombined
red and blue fields are parallel [17]. A typical in-situ
scan is shown in Fig. 4(d). Using Eq. 11 and Eq. 21, we
know that the information about the attosecond pulses
is derived in the same way from both methods, while the
physical interpretation of the two measurements differs.

IV. PROOF OF PRINCIPLE FOR IN-SITU
MEASUREMENTS

In this section, we study the properties of an APT
using both the RABITT and the in-situ method. A di-
rect comparison of the two measurements is not meaning-
ful since attosecond pulses are probed at different times.
Two main effects influence the properties of the attosec-
ond pulses:

• Dispersion from the Al filters

• Phase matching in the generation cell

To avoid effects due to phase matching as much as pos-
sible [2, 21], we perform the measurement at the lowest
possible pressure, corresponding to a background pres-
sure of PG ≈1.5 µbar. At this pressure, the high-order
harmonic signal is weak but still stable enough for both
characterization methods to work. The results from the
RABITT method are shown in Fig. 5(a) and the results
from the in-situ method are shown in Fig. 5(b).

The change in relative timing induced to an attosec-
ond pulse propagating through one aluminum filter,
∆t(rel)Al (ω, ω0), can be determined using two RABITT
measurements,

∆t(rel)Al (ω) = t
(rel)
final2

(ω)− t(rel)final1
(ω), (22)

where t(rel)final1
is the relative timing of the attosecond pulse

having passed one filter and t(rel)final2
is the relative timing

after passing two filters. Note that we now drop the nota-
tion for the reference frequency since it is ω0 = 14ωR for
all experimental data. We have verified that ∆t(rel)Al (ω)

agrees with the GD deduced from the refractive index of
aluminum [18]. Assuming that the two filters are identi-
cal we can calculate the relative timing of the attosecond
pulse before passing the filter(s),

t
(rel)
final0

(ω) = t
(rel)
final1

(ω)−∆t(rel)Al (ω). (23)

The “unfiltered” relative timing of attosecond pulses
[Fig. 5(a) ◦] is in good agreement with the simple classical
model [gray line] for an effective intensity of IR ≈ 1×1014

W/cm2. This intensity corresponds to a cut-off at har-
monic 23, which agrees well with spectral measurements
taken without the probe field present.

Having estimated the initial state of the attosecond
pulses using the RABITT method, we now proceed with
the in-situ scheme. One important advantage of the in-
situ scheme is that all information is imprinted spectrally,
which makes it possible to analyse attosecond processes
with great accuracy using a photon spectrometer rather
than an electron spectrometer. In this paper, however,
we use the same MBES as for the RABITT so that a
straightforward comparison of the two schemes is made.

The in-situ measurements are taken immediately after
their respective RABITT measurements for one and two
aluminum filters [Fig. 5(b)]. The HHG conditions, there-
fore, have little time to evolve when changing schemes
(a few seconds). The filters should not influence the in-
situ measurement because the information is imprinted
spectrally already in the HHG process. Using the in-situ
scheme, we should ideally obtain identical information
regardless of the number of filters. The measurements
again nicely follow the classical model for I = 1 × 1014

W/cm2 [gray curve]. We determine the initial relative
timing, t(rel)initial(ω), and compare it to the relative tim-
ing obtained with the RABITT method, t(rel)final0

(ω), in
Fig. 5(c). The corresponding GDD is calculated by fit-
ting a line to the relative timing using sidebands/even
harmonics 14 to 22

− d2φ

dω2

∣∣∣∣
18ωR

≈
{

2.31 × 104 as2/rad (RABITT)
γ × 2.24 × 104 as2/rad (in-situ),

(24)
with a root mean square (RMS) deviation of approxi-
mately 23 as for the corresponding difference in relative
timing. We treat the in-situ data as a RABITT scan,
and the numerical value of the GDD must, therefore, be
multiplied by the correction factor, γ. The experiment
shows that the correction factor is close to unity for the
short branch, as expected from the theory section. The
good agreement between these measurements shows that
the either the RABITT or the in-situ method can be used
to characterize the APTs at low generation pressures for
energies in the central and upper region of the harmonic
plateau.

It is tempting to increase the intensity of the blue
field so that the even harmonics become stronger and
more visible. We use an adjustable aperture in the
blue arm of the three dimensional dichroic interferom-
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FIG. 5: (Color online) (a) RABITT measurements with one (+) and two (×) aluminum filters are used to determine the relative
timing of the unfiltered attosecond pulses (◦). All temporal measurements are presented as relative timings with reference to
harmonic 14. (b) In-situ measurements with one (+) and two (×) aluminum filters. The data is uncorrected, γ = 1. The simple
classical model (IR = 1 × 1014 W/cm2) [5(a)-5(b) gray curve] is plotted for reference. (c) Unfiltered RABITT measurement
(red ◦) compared to the average in-situ measurement (blue ∗). (d) A slight increase of the blue intensity (blue ∗) has a small
effect on the measurement in the harmonic plateau (harmonic 14− 24). Increasing the blue intensity further (pink 2) results
in an invalid measurement. The simple classical model (IR = 0.9 × 1014 W/cm2) [gray line] is plotted for reference. Beyond
the cut-off (harmonic 24− 28), a similar shift occurs as for the long branch in Fig. 3(b).

eter so that the intensity of the blue field can be in-
creased while all other experimental parameters are con-
stant. It has been demonstrated that an increased blue
intensity will alter the quasiclassical trajectories in the
HHG process [19, 20], but a systematic study of how
the in-situ method breaks down has not yet been re-
ported. Even harmonic oscillations appear beyond the
cut-off for a slight increase of the blue intensity. The in-
formation extracted from these oscillations show strong
deviations with the expected group delays, while the in-
formation from the plateau region remains rather accu-
rate [Fig. 5(d) ∗]. Even harmonic oscillation beyond the
cut-off regime should, therefore, not be included in our

simple interpretation [Eq. 21] of the in-situ method. The
experimental results beyond the cut-off are in qualita-
tive agreement with the numerical calculations shown
in Fig. 3(b), which indicates that it is the long branch
of trajectories that contribute to the cut-off regime. At
moderately higher blue intensities we observe a shift of
the modulations in the plateau [Fig. 5(d) 2]. This shows
that the in-situ method now predicts the wrong relative
timing for the initial attosecond pulses also in the plateau
region and that the relative intensity must be reduced.
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V. COMPARISON OF RABITT AND IN-SITU
MEASUREMENTS AT HIGHER PRESSURE

We now study how the phase of the attosecond pulses
is modified due to a higher gas pressure in the generation
chamber. It has recently been shown that in some condi-
tions an increasing gas pressure can lead to a compression
of the attosecond pulses [21]. The effect predicted theo-
retically was, however, small and difficult to demonstrate
experimentally. Here, combined measurements using the
RABITT and the in-situ method allows us to unambigu-
ously extract the contribution of phase matching to the
temporal structure of attosecond pulses.

RABITT results obtained at different pressures are
shown in Fig. 6(a). The data is collected with one alu-
minum filter, but the effect of this filter is removed us-
ing Eq. 23. The corresponding in-situ measurements are
shown in Fig. 6(b). The in-situ measurements are mostly
insensitive to the increased gas pressure, while the RA-
BITT measurements are deformed in a nontrivial way.
Deviations in relative timing for attosecond pulses due
to the macroscopic propagation through the gas cell can
be extracted by subtracting the final and initial relative
timings

∆t(rel)macro(ω, PG) = t
(rel)
final0

(ω, PG)− t(rel)initial(ω, PG), (25)

where we have explicitly written PG to indicate that
the macroscopic effects depends on the gas pressure. In
t
(rel)
initial(ω, PG), the PG dependence refers to a possible

change of the fundamental field in the nonlinear medium
that could affect the single atom response. The results
are shown in Fig. 6(c), together with the effect of a
200 nm-Al filter (gray). Macroscopic effects introduce
a (non-trivial) negative relative timing, first decreasing
then increasing with frequency. The corresponding in-
duced GDD might help to compensate for the single atom
GDD for low orders, but for higher orders the GDD is
increased. These results agree well with those presented
in [21].

To understand the origin of the macroscopic group de-
lay, we perform a simple model calculation [21, 22]. We
consider for simplicity a one-dimensional approximation,
along the propagation axis, z; a homogeneous medium of
length L and a collimated geometry. In this simple case,
the contribution of the single atom response and of prop-
agation can be separated and the effect of propagation
both on the phase (or more exactly phase variation) and
amplitude of the nth harmonic can be described by

Fn =
1− exp [(−i∆kn − κn)L]

i∆kn + κn
= |Fn| exp [iφmacn ] .

(26)
The phase mismatch ∆kn is equal to kn−nk1, where kn
and k1 denote the wave vector of harmonic n and the fun-

damental respectively. Absorption at the nth harmonic
frequency is described by κn. The macroscopic phase can
be written as

φmacn = − arctan
[

sin[∆knL]
cos[∆knL]− exp[κnL]

]
−arctan

[
∆kn
κn

]
.

(27)
Fig. 6(d) presents in color its derivative as a function of
harmonic order and pressure. These results show a varia-
tion of the phase derivative that qualitatively agrees with
the measured one. For a given pressure > 20 mbar, the
induced GD is negative, showing a decrease at low or-
ders, a minimum around the 23rd harmonic, followed by
an increase. We stress that this satisfactory agreement
is obtained with a simple model, not including the geo-
metric phase due to focusing or two-dimensional effects.
Combined RABITT and in-situ measurements provide
a way to really unravel the effect of propagation in the
generation of attosecond pulses.

VI. CONCLUSIONS

We have performed a proof of principle experiment
for the in-situ scheme, by comparing it to the well es-
tablished RABITT method. We have found excellent
agreement between the methods at low generation gas
pressures when the macroscopic phase matching plays a
negligible role.

We have found that it is not possible to use the in-situ
scheme to predict the final relative timing of the average
attosecond pulses if the generation pressure is high or if
it passes through some unknown dispersive material. It
is equally important to realize that accurate single atom
measurements can not be conducted at high generation
gas pressures with the RABITT scheme. In a RABITT
measurement there will always be a trade off between
the number of XUV photons generated and their phase
perturbation from propagation through the generation
cell.

The advantages and disadvantages of the two schemes
become quite clear when the generation pressure is high
and one could argue that both schemes are needed for
a more complete understanding of the attosecond pulse
production and propagation.
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FIG. 6: (Color online) (a) Relative timing measurements from RABITT for a variety of high background pressures in the
generation chamber: 5×10−3 (×), 6×10−3 (4) and 7×10−3 (2) mbar (the exact instantaneous pressure in the gas cell is
unknown). The effect of the Al-filter has been subtracted. At high pressures there is an increased deviation from the simple
classical model (IR = 0.9 × 1014 W/cm2) [gray curve]. (b) The corresponding in-situ measurements are mostly unaffected by

the increased pressure. The data is not corrected, γ = 1. (c) The difference in relative timing, ∆t
(rel)
macro(ω, PG), (pink ×, 4, 2)

is interpreted as the macroscopic delay due to phase matching in the gas cell. The symbols correspond to the same pressures
as in the figures above. The delay from phase matching has approximately the same magnitude as an aluminum filter [gray
dashed curve]. (d) The relative timing due to phase matching [false color in units of TR] is calculated using a one dimensional
model [21] for pressures ranging from 0 to 100 mbar. The intensity used in the model is 1.25× 1014 W/cm−2; and the duration
of the pulse is 35 fs. The length of the cell is modeled as 5 mm.
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