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Popular summary in English

The past two decades have witnessed a transformation of the status and role of comput-
ing: from a commodity supporting essential societal functions to a utility permeating
all aspects of daily life. This transformation was accompanied by the emergence of so-
called cloud computing – a service model that made computation infrastructure reliable,
scalable and easily accessible. Increasingly, cloud computing displays the characterist-
ics common to utility services, such as: necessity, reliability, usability, low utilization
rates, scalability and (in some cases) service exclusivity.

In the cloud computing service model, users consume computation resources provided
through the Internet, often without any awareness of the cloud service provider that
owns and operates the supporting hardware infrastructure. This marks an important
change compared to earlier models of computation, for example when such supporting
hardware infrastructure was under the control of the user. Given the ever increasing
importance of computing, the shift to cloud computing introduces several challenging
issues, which include ensuring the integrity and confidentiality of the computation itself,
along with integrity and confidentiality of ancillary resources such as network commu-
nication and the stored or produced data.

While the potential risks for data isolation and confidentiality in cloud infrastructure
are somewhat known, they are obscured by the convenience of the service model and
claimed trustworthiness of cloud service providers, backed by reputation and contractual
agreements. Ongoing research on cloud infrastructure has the potential to strengthen
the security guarantees of computation, data and communication for users of cloud
computing. This thesis is part of such research efforts, focusing on assessing the trust-
worthiness of components of the cloud network infrastructure and cloud computing
infrastructure and controlling access to data and network resources.

The seven papers included in this thesis present a collection of contributions address-
ing select aspects of the focus areas above. The contributions include mechanisms to
verify or enforce security in cloud infrastructure. Such mechanisms have the potential
to both help cloud service providers strengthen the security of their deployments, and
empower users to obtain guarantees regarding security aspects of service level agree-
ments. By leveraging functionality of components such as the Trusted Platform Module,
we describe mechanisms to provide user guarantees regarding integrity of the comput-
ing environment and geographic location of plaintext data, as well as to allow users
maintain control over the cryptographic keys for integrity and confidentiality protec-
tion of data stored in remote infrastructure. Next, by leveraging recent innovations
for platform security such as Software Guard Extensions, we describe mechanisms to
verify the integrity of the network infrastructure in the Software-Defined Networking
model. Finally, we propose an innovative scheme for access control of resources in
Software-Defined Networking deployments.
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Populärvetenskaplig sammanfattning på svenska

De senaste två decennierna har förändrat databehandlingens status och roll: från en
nyttighet som stödjer viktiga samhällsfunktioner till något som är en naturlig del av
väldigt många funktioner i det dagliga livet. Denna omvandling åtföljdes av framväx-
ten av så kallad molnlösningar – en servicemodell som gjort datorresurser tillförlitliga,
skalbara och lätt tillgängliga. Molnlösningar visar i ökande utsträckning på de egen-
skaper som är viktiga för moderna IT-tjänster, såsom: tillförlitlighet, användbarhet,
utnyttjandegrad, skalbarhet och (i vissa fall) tjänsteexklusivitet.

I molnmodellen använder flera användare databehandlingsresurser som tillhandahålls
via Internet, ofta utan att vara medvetna om molntjänstleverantören som äger och dri-
ver själva hårdvaruinfrastrukturen. Detta markerar en viktig förändring jämfört med
tidigare modeller för databehandling, till exempel modeller där sådan stödjande hård-
varuinfrastruktur var under direkt kontroll av användaren eller användarens organisa-
tion. Med tanke på den allt större betydelsen av databehandling medför övergången
till molnlösningar flera problem – till exempel gällande integritet och konfidentialitet i
själva databehandlingen, tillsammans med integritet och konfidentialitet av tillhörande
resurser, såsom lagrad eller producerad data och nätverkskommunikation.

De potentiella riskerna för brister i fråga om dataisolering och konfidentialitet i mol-
ninfrastrukturen är tämligen välkända men har hamnat lite i skymundan på grund av
servicemodellens bekvämlighet och inte minst på grund av att den av molntjänstle-
verantörer hävdade pålitligheten hos tjänsterna samt genom garantier i service avtal.
Forskningsresultat kring säkerhet för molninfrastrukturer kan på sikt stärka säkerhets-
garantierna för databehandling, data och kommunikation för användare av molntjäns-
ter. Denna avhandling är en del av sådana forskningsinsatser, med särskild inriktning
på: (i) bedömning av komponenternas tillförlitlighet i molnnätverket och molninfra-
strukturen samt (ii) kontroll av tillgången till data och nätverksresurser.

De sju papper som ingår i denna avhandling är en samling av forskningsbidrag som
adresserar valda aspekter av ovanstående säkerhetsproblem. Forskningsbidragen inne-
håller nya mekanismer för att verifiera samt upprätthålla säkerheten i en molninfra-
struktur. Sådana mekanismer har potential att både hjälpa molntjänstleverantörer att
stärka säkerheten för deras installationer och att hjälpa slutanvändare att få
säkerhetsgarantier motsvarande den nivå som serviceavtalen anger. Genom att utnyttja
funktionalitet hos komponenter såsom “Trusted PlatformModule” beskriver vi mekanis-
mer för att ge slutanvändargarantier avseende integriteten i databehandlingsmiljön och
geografisk placering av klartextdata, samt att tillåta användare att behålla kontrollen
över de kryptografiska nycklar som används för att skydda integriteten och konfidenti-
aliteten av data lagrad i molninfrastruktur. På samma sätt beskriver vi mekanismer för
att verifiera nätverksinfrastrukturens integritet i den mjukvarudefinierade nätverksmo-
dellen genom att utnyttja nya plattformssäkerhetsteknologier såsom “Software Guard
Extensions”. Vi föreslår dessutom ett innovativt system för åtkomstkontroll av resurser
i mjukvarudefinierade nätverksinstallationer.
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Chapter 1

Introduction

“SSL added and removed here :-)”

“Current Efforts - Google”,
Author Unknown

US National Security Agency

Like every important technology trend, cloud computing has generated the widest pos-
sible spectrum of reactions - from enthusiastically embracing (sometimes “free”) services
based on the new paradigm to conservatively dismissing it as either something that has
been seen before, or as a menace to data security and user control over data. Paradox-
ically, more than a decade since the early “Infrastructure-as-a-Service” offerings have
been made publicly available, many of the predictions and reactions from across the
spectrum have become true. In fact, the adherents of either of the extremes were both
right and wrong.

Indeed, nowadays “X-as-a-Service” almost pervasively powers the core operations of
both major corporations and ephemeral start-ups. Skeptics missed once-in-a-generation
business opportunities that fueled a staggering growth of cloud-based services. However,
cloud providers have become targets of choice for a clique of adversaries: intelligence
services [1, 2], serious organized crime and skillful organized groups [3], motivated in-
siders [4] and endless armies of mechanical turk-like script kiddies [5].

Cloud providers are often significantly more capable (and motivated) to dedicate re-
sources for securing their services compared to many organizations that are sometimes
oblivious to the importance of protecting their data and networks. However, organiza-
tions that outsource their data and trust to cloud providers may have little control over
the protection level implemented by the cloud provider. Moreover, such organizations
often become victims of collateral damage - while not being targets themselves, they
may have their data exposed as a consequence of attacks on the cloud infrastructure.
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Amid this disconcerting reality, users are served a dull palette of options: avoid cloud
services and rely on in-house computing infrastructure; apply a security policy for con-
fidentiality [6] or integrity [7] to segregate data stored in-house and stored remotely
and invest significant effort to ensure that data can be shared without breaking the
policies [8]; or trust the security claims of cloud service providers, potentially also
requiring that they are certified by a third party according the relevant audit or certi-
fication schemes [9].

1 Trust, but Verify

“Trust, but verify” goes an old adage. Indeed, relinquishing control over data and
network security to cloud vendors without due diligence used to be common practice,
especially in the early stages of cloud services. At first glance, arguments were compel-
ling: drastic cost reduction for infrastructure maintenance and IT personnel on payroll;
no high up-front fees when purchasing enterprise server and network equipment; flex-
ible on-demand service scalability - all backed by a simple agreement and the market
reputation of the cloud provider. Even if one were to follow the above adage, there was
little support to do so in practice except relying on third-party certification. However,
the certification bodies themselves took their time to develop specialized cloud security
standards beyond the already available IT security audit schemes [9,10]. Lately, major
cloud service providers have adopted comprehensive cloud-specific security standards.
For example, ISO/IEC 27017 Cloud Security clarifies the division of responsibilities for
protecting data in the cloud environment between the cloud service provider and cloud
users; it describes controls regarding sharing information security roles, management
of customer assets in case of service termination, isolation of virtual computing and
network environments, monitoring, etc. ISO/IEC 27018 Cloud Privacy contains con-
trols for protection of Personally Identifiable Information (PII) in cloud environments,
aimed towards customer control over PII, transparency with regard to data collection,
PII transfer to third parties and data breach disclosure procedures. Other audit frame-
works or certification schemes for auditing security measures could also be applicable to
cloud services [9]. Beyond that however, users of cloud services - whether Software-as-a-
Service (SaaS), Platform-as-a-Service (PaaS) or Infrastructure-as-a-Service (IaaS) - had
no mechanisms to verify the implementation and application of security parameters of
cloud deployments.

In fact, post-factum verification may be a legitimate strategy when a breach of trust can
be mitigated through corrective action (for example through financial compensation) or
simply accepted along with its consequences. However, this approach may not always
be acceptable to either the users or the cloud service providers themselves.
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2 Verify, then Trust

A better approach would be to establish a trust relationship immediately prior to trans-
ferring data or computation to a remote deployment. Considering that scalability and
resource elasticity are among the strongest reasons for relying on cloud infrastructure
and other similar forms of remote network and computation resources, any additional
security mechanisms must have minimal impact on the performance and availability of
such remote infrastructure. To this end, this thesis addresses the following challenges:

• Providing user security guarantees in infrastructure clouds: operating a restricted
set of up-to-date hypervisors and encrypting data at rest within the deployment
is a reasonable approach; however, this approach can be further improved by
enabling deployment-time trust decisions about a given platform configuration
and transferring control over data protection keys to the tenants. Better still
if cloud tenants can obtain a proof that the chain of trust has been followed
throughout the virtual infrastructure deployment process, and if tenants can limit
the availability of data to a restricted set of authorized users or to a certain data
center or geographical region.

• Strengthening the security of Software-Defined Networking (SDN) deployments -
the SDN model has all but revolutionized large-scale network deployment and
management; however, such changes have obsoleted many of the decades-old best
practices of network security and introduced new security risks. These changes
include a shift from embedded software on specialized hardware to applications
executing on commodity hardware and operating systems, logical centralization
of networks, as well as the wide adoption of virtual network functions. Newly
introduced security risks can be addressed by improving the security of Software-
Defined Networking infrastructure using approaches adapted from other fields,
such as platform security and operating system security.

Establishing the trustworthiness of a remote cloud deployment is a complex procedure.
Depending on the threat model, it may involve verifying a wide range of aspects, such
as physical security, trustworthiness and access privileges of the support staff, system
configuration and integrity of the software image on the remote platform. However, even
assuming physical security and trustworthy support staff, effective appraisal of cloud
deployment trustworthiness by tenants is difficult in practice, due to several reasons.
First, the cloud model is built on an asymmetrical trust model (Chapter 2) and cloud
service providers are not incentivized to disclose deployment internals to its tenants, as
this may erode their competitive advantage or help adversaries find new attack vectors.
Second, continuously assessing the trustworthiness of the entire deployment requires
a detailed understanding of the trustworthiness of both the different software versions
of cloud infrastructure components and of the consequences of their interaction and
periodic upgrades. Even assuming that such level of access is granted, for tenants the
cost of undertaking this effort voids the benefits of using cloud services. In some cases,
cloud providers set up dedicated cloud deployments, certified according to a government
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security assessment, authorization, and continuous monitoring program (for example
FedRAMP [11]). However, access to such deployments is restricted to government
agencies [12], as multi-tenancy is regarded as a security risk [13]. Other tenants have
the option to use cloud offerings reserved for the general public, certified according
to one of the programs which mostly conduct periodic, point-in-time assessment of a
provider or a service. However, as pointed out in [9], the effectiveness of such programs
is severely limited considering the rapid change of technology and products.

System configuration and software integrity can be verified remotely - both periodically
and continuously - through remote attestation of the platform state. This the first focus
area of the thesis. In Paper A we describe mechanisms that provide evidence of platform
verification to tenants and end users of virtual appliances. We extend and describe this
approach in Paper B by: (a) formally defining a set of attacks on the trusted virtual
machine launch process and proving the security of the described scheme through a
theoretical analysis; (b) describing a mechanism to protect the data stored beyond the
perimeter of the executing host - this allows the use of cheap, commodity remote storage
while maintaining the integrity and confidentiality of stored data. This approach further
reduces the cost of using cloud computing without compromising security or burdening
the users with overly complex procedures. In Paper C we describe the storage protection
mechanisms extended with multi-tenancy support. Finally in Paper D we describe
mechanisms to control access to plaintext data based on geographical location.

Security mechanisms for network infrastructure in cloud deployments are the second
focus area of the thesis (Papers E, F, G). The swarms of physical server deployments
required to power major Internet services have been dwarfed by a rapid growth in the
number of virtual machine (VM) deployments. VMs are used to host web services,
are leased entirely to tenants, or are further multiplexed using OS level virtualization.
This has increased network complexity to a point where traditional network manage-
ment evolved throughout the previous decades became inadequate. An unscalable ap-
proach became obsolete: rigid - yet brittle and intricate - network connectivity was
configured by distributed algorithms with significant assistance from human operators
who painstakingly wrote configuration policies. SDN addressed these new challenges
by decoupling the forwarding and control layers of network infrastructure: increasingly
well-performing commodity hardware forwards the packets, while the control layer op-
erates on centralized network views to monitor and improve network management.
However, this paradigm change in network management also implies that earlier best-
practices became less relevant as new security risks were introduced. Such security
risks to SDN must be identified and addressed to enable service providers to ensure
the security of the virtual network infrastructure; this is a prerequisite for gaining user
trust in - and adoption of - software applications that rely on network communication.
This thesis aims to describe a suitable threat model and identify security threats to
SDN (Paper E). It also addresses some of the threats to increase the trustworthiness
of virtual network infrastructure, through integrity verification of the forwarding plane
(Paper F) and access control for network management applications (Paper G).

The two focus areas of the thesis reflect the underlying research projects, namely In-
fraCloud and 5G-ENSURE. InfraCloud was financed by Vinnova, the Swedish Innov-
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ation Agency and aimed at strengthening the security expertise of public agencies in
the area of cloud security; 5G-ENSURE is financed by the European Union within the
Horizon 2020 Framework Programme for Research and Innovation and aims to develop
security mechanisms and technologies for the next generation of mobile communica-
tion infrastructure. Considering the ongoing convergence of the two fields, some of the
results can be applied in both of them.

3 Thesis Outline

Following this introduction, Part I continues with a background chapter (Chapter 2)
that describes core platform and network infrastructure security concepts to help readers
better understand the papers in Part II. The background section contains an overview
of the Infrastructure-as-a-Service cloud computing model, followed by an overview of
the Software-Defined Networking model. It outlines the main challenges, recent devel-
opments and current security research efforts in both areas, and aims to place into a
common context the papers included in the thesis. Chapter 3 presents the contributions
to the thesis: first as an overview, followed by a description on a per-publication basis.
It also contains an enumeration of the author’s individual contributions and content
updates to the original version.

Throughout Sections 1 and 2 of Chapter 2, information boxes such as this briefly
clarify how the introduced content relates to the papers included in the thesis.
This is done to improve readability and help the reader to relate the background
material to the included papers.

Part II contains the peer-reviewed publications (Papers A, B, C, D, E, F) and one
manuscript under review (Paper G) included in this thesis.
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Chapter 2

Background

“There is no cloud just other
people’s computers.”

Postcard,
Free Software Foundation Europe

Alice is the Chief Technology Officer in an organization that operates with large amounts
of data as part of its business. The board of directors has been discussing cost reductions
and someone mentioned migrating the enterprise systems to a public cloud infrastruc-
ture as a possible way to improve the balance sheet. Alice is well aware of the cloud
computing concept and has even used a virtual machine from a public cloud service in
her spare time. Beyond on-going hand-wave talk of cloud computing, Alice considers
the most likely scenario would be to adopt the Infrastructure-as-a-Service (IaaS) model
and deploy the plethora of enterprise systems on a cluster of virtual machines. Choos-
ing a long-term infrastructure cloud service is a complex task. Beyond the maze of
contractual and service level agreements, one issue persists - choosing a trustworthy
provider to provide the best possible data security.

What is trustworthiness when it comes to a provider of computing, network and storage?
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1 Trust, Attestation and Isolation

We adopt the definition from [14], according to which trust is defined as confidence in the
integrity of an entity for reliance on that entity to fulfill specific responsibilities. Com-
putational trustworthiness is described in assurance levels, based on specific measures
that define the conditional and temporal requirements that must be fulfilled in order
to rely on a relationship or transaction. As it is highly dynamic, trustworthiness may
increase or decline over a certain dimension, the most common being time and number
of transactions. For example, a service provider that has followed the Service Level
Agreement (SLA) in the past may be increasingly trusted to maintain a high standard
in the future (or vice-versa). On the other hand, consider a service provider that has at
some point put in place certain strong security mechanisms (such as a strong hashing
algorithm) but has not upgraded them over time: in this case the trustworthiness of
the service provider may decline, since advances in cryptography are likely to render
the respective hashing algorithm vulnerable to preimage-, collision- or other attacks.

A trust relation is not necessarily binary [14], as Alice may trust the service provider
to a certain extent (for example for storing test or production data, but not the state-
of-the-art research plans). Likewise, a trust relation does not need to be absolute [15]
- Alice may trust the service provider A more than service provider B, but not trust
either of them to reliably store business-critical data. On the other hand, trust is not
necessarily symmetric - the fact that Alice trusts to a certain degree service providers
A and B does not imply that the service providers trust Alice (as it is in the public
cloud model). Finally, trust may be revocable: a data breach or audit report revealing
the cloud service provider’s poor security practices could precipitate Alice’s complete
loss of trust towards this service provider.

Prior to discussing several approaches to managing trust, we introduce informal defin-
itions of users and tenants used throughout this thesis. A user is a human individual,
computer, or an organization interacting with a service, a platform, or a virtual appli-
ance without any control over its deployment and underlying resource allocation; by
end-users we refer exclusively to human users. A tenant, according to the definition
from [16] adapted to the context of this thesis, is the entity (which may include the
user) responsible for the configuration, management and operation (including availab-
ility and security) of a cloud resource (service, platform, or computing, storage and
communication infrastructure).

Both users and tenants have in practice few - if any at all - means to establish a
direct trust relationship with the service provider. The reasons for this are both the
stringent security routines claimed by the providers of public cloud services and (often)
the complexity of computing deployments, incomprehensible to the vast majority of
users and tenants.
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1.1 Trust Delegation

Considering the situation described above, tenants can recur to trust delegation in one
of the forms discussed below to establish a trust relationship with the service provider.

Transitive Trust

Tenant Alice may decide to trust the service provider because she knows that tenant
Bob trusts the same service provider. Bob need not be aware of the implications - for
Alice - of his trust relationship with the service provider. This is a form of transitive
trust, where the trust relation between one tenant and the service provider is conditioned
on the trust relation of a different tenant (or multiple tenants) with the same service
provider (see Figure 2.1). However, transitive trust can be misleading. First, Alice

Service

Provider

Alice Bob

Legend:
Trust Relation

Delegation - implicit

Figure 2.1: Transitive delegation of trust: Bob trusts the service provider, hence Alice
chooses to trust the service provider as well.

cannot know whether the trust context or the parameters of the trust relation between
Bob and the service provider are aligned with her own trust context and parameters.
Second, unless a mechanism is available to notify Alice about the evolution of the trust
relation between Bob and the service provider, she might be left unaware when Bob
decides to discontinue the trust relation.

Reputational Trust

Another option for Alice is to rely on the (publicly or privately) available ratings, reviews
and experiences documented by her peers (Bob, Carol and others) in order to establish
a trust relation with the service provider. Such reputational trust bears similarities to
transitive trust below, with one essential difference - Alice’s peers are likely aware about
their participation in this reputational trust scheme, making such scheme explicit and
giving the peers certain privileges to influence it.

Transitive trust and reputational trust have been the de-facto approaches to trust estab-
lishment employed since the early days of cloud computing. However, this is currently
transitioning to new forms of trust establishment, described below.
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Direct delegation

The revelations of the whistle-blower Edward Snowden have significantly increased
awareness about the magnitude of data collection and of activities aimed to subvert
the security of major communication and cloud service providers [1, 2]. Furthermore,
such revelations have contributed to adjusting - closer to reality - the threat models
considered in security research. The flurry of reported vulnerabilities in cloud infra-
structure [17–21] further de-legitimized reliance on transitive and reputational trust
approaches for trust establishment and accelerated the development of dedicated se-
curity standards, such as ISO/IEC 27017 Cloud Security and ISO/IEC 27018 Cloud
Privacy (introduced in Section 1), in addition to the earlier established ones [9].

This evolution allows tenants to complement transitive and reputational trust with dir-
ect delegation of trust (see Figure 2.2). In this case Alice - unable herself to assess
the trustworthiness of the service provider - delegates the decision to Bob, which is
more apt to make such a decision. Similar to transitive trust above, Bob might not
be aware that Alice has delegated her trust decision to him. However, in this case
an explicit certification mechanism is available - Bob verifies that the service provider
fulfills a certain well-known set of conditions and provides a time-limited certificate
to endorse the service provider. Note that this does not necessarily imply that Bob
trusts the service provider for his own operational purposes, since Bob may have his
own, stricter or entirely different requirements. In other cases, Bob may have an ex-

Service

Provider

Alice Bob

Legend:
Trust Relation

Delegation - explicit

Figure 2.2: Direct delegation of trust: Bob can evaluate the trustworthiness of the
service provider and issues time-limited certificates; Alice can rely on the certificates
and thus explicitly delegate her trust decision to Bob.

plicit agreement with Alice and verify that the service provider fulfills certain specific
conditions required by Alice. Examples of such additional conditions include explicit
requirements regarding the software stack of the compute host infrastructure where
data is processed, or support for hardware-enabled execution isolation features. While
such user-specific evaluations can be performed on a much finer time-scale and provide
additional assurance to the user, they incur significant costs and are rarely supported by
cloud service providers. For example, the Federal Risk and Authorization Management
Program (FedRamp) aims to achieve “near real-time monitoring” [22] of cloud service
providers. However, access to cloud resources monitored under FedRamp is subject to
restrictions (for example accessible only to government organizations) and deployed on
dedicated infrastructure [23]. Isolation - discussed below - is essential to ensuring that
the execution of a process cannot be affected by other, potentially malicious processes.
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1.2 Attestation

Simply providing isolation of the execution environment is (in most cases) insufficient
to establish a trust relationship with the target platform, as remote users cannot know
whether they are communicating with the intended software or a maliciously modified
instance. Therefore, attestation (explained below) is of central importance for trust
establishment in a remote system. Attestation of a target can be performed either by a
dedicated appraiser, or directly by the remote user. Users delegate trust (either directly
or transitively) to an appraiser, which is an entity - generally a computer or a network
- making a decision about one or more other targets. A target is a party (for example
a computer system) about which an appraiser needs to make such a decision [24].
Alternatively, a remote user can itself assume the appraiser role and attest the target
using components that are part of it or under its control.

Attestation is the activity of making a claim to an appraiser about the properties
of a target by supplying evidence which supports that claim. An attester is a party
performing this activity. An appraiser’s decision-making process based on attested
information is appraisal [24].

The goal of an appraisal is to take a decision regarding the expected behavior of the
target prior to establishing a trust relationship. This is done by collecting enough
information about the target - such as hardware, software, and configuration data - in
order to establish that the target is in an acceptable state or will not transfer to an
unacceptable state after a trust relationship is established. Given that the collected
information can be very thorough, the target may restrict access to such information
about itself in order to avoid disclosing certain business-specific configuration or protect
the privacy of the humans owning or operating it. Furthermore, the target may provide
distinct information to different appraisers depending on the existing trust relationships
between them. This reflects a potential contradiction between the interests of the human
organizations behind the appraiser and target: the owner of the appraiser requires
as much information as possible to establish a trust relationship, while the owner of
the target is interested in revealing the least possible amount of information in order
to establish a trust relationship. The possibility of establishing a trust relationship
between a target and an appraiser ultimately depends on the trust relationship between
the humans or human organizations owning or operating the target and appraiser.
Communication between an appraiser and a target is conducted in the form of an
attestation protocol, as defined in [24]:

Definition 1.1. An attestation protocol is a cryptographic protocol involving a target, an
attester, an appraiser, and possibly other principals serving as trust proxies. The purpose
of an attestation protocol is to supply evidence that will be considered authoritative by
the appraiser, while respecting the privacy goals of the target (or its owner).

Note that attestation is different from target measurement, which has a narrower scope.
Multiple measurements of a target can be reported in an attestation protocol to serve
as the basis for appraisal. Coker et al. [24] define target measurement as collecting
evidence about the target through direct and local observation of it.
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For the purposes of establishing a trust relationship, the collection of evidence about the
target cannot be fully deferred to the target itself for obvious reasons - a malicious target
may fabricate the expected measurements and report them. Instead, the appraiser is
assisted by a Root of Trust (RoT) placed on the target. A RoT is an immutable
computation engine with known behavior, which a certificate asserts to be present on a
particular platform. The Trusted Computing Group (TCG) has defined several types
of roots of trust [25]:

• A root of trust for measurement is a computation engine (or some functionality
provided by hardware) that can reliably prepare certain measurements on the
software state of a device.

• A root of trust for reporting is a computation engine (or some functionality
provided by hardware) that can reliably attest to the result of a measurement.

• A root of trust for storage is a computation engine (or some functionality provided
by hardware) that ensures that certain data such as cryptographic keys will be
stored in a way that will always preserve their secrecy.

Coker et al. outline five central principles for attestation architectures [24]. To date, no
attestation mechanisms correspond to all of the principles of such an “ideal” attestation
architecture. Instead, the extent of support for the different principles vary across the
available attestation mechanisms.

1. Fresh information: Assertions about the target should reflect the running system
rather than disk images of the target.

2. Comprehensive information: Attestation mechanisms should be capable of deliv-
ering comprehensive information about the target; its internal state should be
accessible to local measurement tools.

3. Constraint disclosure: A target should be able to enforce policies governing which
measurements are sent to each appraiser. Hence, an attestation architecture must
allow the appraiser to be identified to the target. Policies may distinguish the
kinds of information to be delivered to different appraisers. The policy may be dy-
namic and rely on current run-time information for individual disclosure decisions.
For instance, a target may require that the appraiser provides an attestation of
its own state, before the target discloses its state.

4. Semantic explicitness: The semantic content of attestations should be explicitly
presented in logical form. The identity of the target should be determined by
these semantics, so an appraiser can collect attestations about it. The appraiser
should be able to infer consequences from several attestations, for example when
different measurements of the target jointly imply a prediction about its behavior.
Hence, attestations should have uniform semantics, and be composable using valid
logical inferences.
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5. Trustworthy mechanism: Appraisers should receive evidence of the trustworthi-
ness of the attestation mechanisms on which they rely. In particular, the attest-
ation architecture in use should be identified to both appraiser and target.

Attestation mechanisms may follow the principles described above selectively, or to
varying degrees depending on their implementation and the use cases they aim to
address. For example, some targets may not require constrained disclosure of meas-
urements, while “freshness” of the information may vary depending on the trade-off
between the appraiser’s requirements and the performance overhead induced on the
target by the attestation. Differences in supporting the principles can be caused by the
inherent limitations of the attestation architectures (static variation) or by providing
different degrees of evidence depending on certain contextual factors, such as whether
the appraiser is known to the target (dynamic variation).

1.3 Isolation

Isolation is an essential concept in trust establishment, as well as for platform and net-
work security. In platform security, the goal is to protect certain assets from malicious
software executing on the platform. In the context of cloud computing, this aspect
is crucial for separation of collocated assets belonging to distinct tenants. In network
security, the goal is to prevent unauthorized parties from intercepting traffic from ad-
jacent network domains. In the context of cloud computing, this aspect is essential for
preventing distinct tenants collocated in the same infrastructure from intercepting the
traffic from each other’s or third party network domains. This trivial taxonomy blurs in
the case of virtual networks or infrastructure in the Software-Defined Networking (SDN)
model: network components on the forwarding plane (for example virtual switches) are
deployed on the same platform as the virtual appliances (including virtual machines,
containers [26] and unikernels [27, 28]) that belong to different tenants. In this case
network and platform isolation become intertwined - the adversary can compromise a
virtual switch to break network isolation; likewise, an adversary having access to a net-
work domain can craft malicious packets in order to compromise the virtual switch and
even break the isolation between guest VMs in case of a hypervisor breakout. Aspects
of isolation in SDN are discussed in Section 3.3.

Trusted Computing Base Isolation of code and data as well as support for security
policies in a computer system are enabled by a set of hardware and software components
comprising the trusted computing base (TCB). According to the definition in [29], the
TCB includes hardware, firmware, and software critical to system security and must
be designed and implemented such that system elements excluded from it need not be
trusted to maintain protection. A TCB should be as simple as possible consistent with
the functions it has to perform, since as the size and complexity of the TCB increases, it
is more likely to contain exploitable vulnerabilities. The TCB often operates alongside
a much larger collection of hardware and software components which are not critical
to the security of the system. When such components misbehave, the TCB can make
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sure that the system is “fail-secure”, for example by restricting functionality or access
to data until the system is in a correct state [30].

Trusted Boot and Secure Boot Gasser et al. introduced two approaches to plat-
form booting which are important in the process of TCB isolation, namely the trusted
boot and secure boot [31]. The difference between trusted boot and secure boot is illus-
trated in Figure 2.3. In a trusted boot, the chain of trust is initiated by a hardware-
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Figure 2.3: Conceptual illustration of secure boot and trusted boot, based on [32].

based RoT that measures the initial Basic Input/Output System (BIOS) code, which
subsequently measures and executes the bootloader, after which the bootloader meas-
ures and executes the operating system. Note that one cannot conclude that a system
that has booted following the trusted boot procedure is necessarily trustworthy, merely
that it must be trusted if the platform itself is to be trusted [32]. Furthermore, a failed
appraisal does not prevent execution of the operating system (OS) on the platform;
however, it can prevent access to certain code and data, only made available when the
platform is in a trustworthy state.

In a secure boot, each system component on the platform - starting with the boot
Read-Only Memory (ROM) - measures the code to be loaded and compares it to a
list of measurements for authorized software. Software is typically authorized by a
signature from a trusted authority; however, this requires the authority’s public key to
be available to the platform firmware. The boot process is halted in case an attempt to
load unauthorized code is detected [31,33]. By completing the boot process successfully,
secure boot provides assurance that the platform is in an approved state [32].

Trusted Execution Environments An isolated execution environment can be cre-
ated in several ways. One approach to constructing an isolated execution environment
is by validating the TCB using secure boot, as the TCB is by definition isolated from
the rest of the system [34]. However, this approach is progressively less suitable beyond
a very compact TCB, such as a hypervisor that can be formally verified.

A different approach is required when confidential information - such as cryptographic
keys - is persistently maintained on the platform. To address this, some platform manu-
facturers have introduced support for hardware-based Trusted Execution Environments
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(TEEs). TEEs often include storage for a (statistically) unique device key and an ex-
ecution environment in which small pieces of code can be executed is isolation from
the rest of the system [34]. Combined with the secure boot or trusted boot proced-
ures, trust roots and identities described above, TEEs can become a minimal TCB for
platform software. The TCB can in turn be leveraged by the booted OS, as well as by
software installed on the device or external appraisers that aim to assess the platform’s
trustworthiness. A TEE is a secure, integrity-protected processing environment, with
processing, memory and storage capabilities, isolated from an untrusted, Rich Execution
Environment that comprises the operating system and installed applications [35].

A sequence of three implementations of hardware-assisted Trusted Execution Environ-
ments is presented next. This introduction aims to facilitate the understanding of their
application in the papers included in this thesis. While the technologies described below
currently coexist, the presented sequence can be seen as steps on the evolutionary path
of hardware-assisted isolated execution environments.

1.4 Trusted Platform Module

Trusted Platform Modules (TPMs) are hardware components providing secure non-
volatile storage, cryptographic key generation and use, sealed storage and (remote)
attestation, according to the specifications defined by the TCG [36]. TPMs assume
platform integrity by identifying and reporting the platform state, which comprises the
hardware and software components on the platform [37]. In this context, trust is based
on the conjecture that a certain behaviour can be expected based on the reported plat-
form state. Being a discrete component on the platform motherboard, the state of the
TPM is distinct from the state of the platform. The TPM interacts with the platform
through an interface defined in the TPM specifications [36, 38]. Furthermore, a TPM
can prove its association between a cryptographically verifiable identity and the host
platform though platform binding. The first widely deployed TPM - version 1.1b - was
released in 2003. To correct incompatibilities on the hardware level, vulnerabilities to
dictionary attacks and many other issues, TPM specification version 1.2 was developed
in the following years. The TPM 2.0 specification was released in 2014 [39]. Along
with hardware TPMs produced by multiple vendors, there are also software TPM im-
plementations for both TPM 1.2 [40] and TPM 2.0 [41]. A high-level overview of select
TPM 1.2 features and changes in TPM 2.0 follows below. For a complete overview, see
the specifications [36,42] and other relevant literature [39]. Other secure co-processors,
such as the IBM 4758 co-processor [43] offer similar functionality.

TPM 1.2

Storage According to the specification [36], a TPM 1.2 carries 24 Platform Config-
uration Registers (PCRs). PCRs are integrity-protected registers used to store meas-
urements reflecting the state of the platform or selected files. Each PCR can hold one
digest value. A PCR value can be modified either by extending it or by resetting the
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PCR to an initial value. The PCRs can be reset using the TPM functionality (for re-
settable PCRs) or through power cycling. Extending the PCR allows to store multiple
digest values as one cumulative hash. In the process of extending a value into a PCR,
the incoming digest is appended to the existing PCR value and fed into a hash function,
as follows: PCRnew = H(PCRold||digest) where PCRnew is the new digest value stored in
the PCR, PCRold is the digest value previously in the PCR, H() is the hash function
associated with the PCR and digest is the measurement extended into the PCR. This
process is illustrated in Figure 2.4. PCRs are of central importance to the function-
ality enabled by TPMs, as they are used both in the attestation process for platform
appraisal, as well as for sealing data to a given platform state.
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...
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H( )

H( )

H( )
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Figure 2.4: PCR extension mechanism in TPMs. Extension function is an
implementation-specific hash function.

Key types Three non-migrateable types of keys are essential for implementing the
Root of Trust for Reporting and Root of Trust for Storage abstractions in TPM 1.2.

1. Endorsement Key (EK) is an RSA signing key permanently embedded in the
TPM at manufacturing time. it uniquely identifies and validates a TPM (and
transitively the host platform) and is used in the process of issuing attestation
identity credentials to establish platform ownership.

2. Attestation Identity Key (AIK) is a 2048-bit RSA key, alias of the EK, used to
sign quotes of values contained in TPM PCRs multiple AIKs can be generated
for each TPM.

3. Storage Root Key (SRK) is an RSA storage key generated within a TPM for every
new owner; the SRK serves as a root key for its hierarchy that can contain both
migrateable and non-migrateable keys (Figure 2.5).

Several other types of keys - migratable or non-migratable - are used to support the
data protection functionality offered by TPM modules:

• Storage key is a 2048-bit RSA keys used for encrypting and decrypting other keys
or sealed data with their security attributes external to the TPM.
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Figure 2.5: Root of Trust for Storage Architecture, from [36].

• Signing key is an RSA key part of the SRK hierarchy, used for signing data.

• Binding key is an RSA key used to decrypt - using the TPM_Unbind operation -
generic data sets externally encrypted and associated with the identification and
authentication data of the TPM.

• Legacy keys are a combination of binding and sealing keys usable in a limited set
of commands discouraged from usage.

At the time of provisioning of the EK to the TPM, a TPM entity (normally the man-
ufacturer) provides an Endorsement Credential (EC) - a certificate of the EK that
binds the public part of the EK to a TPM description [44]. Credential binding is done
through a signature computed with the signing key of the manufacturer and vouches
that a TPM is genuine [45]. A Privacy Certificate Authority (CA) uses the EC to verify
that a TPM is genuine prior to creating an identity credential by binding the public
part of the AIK to the identity label and generic information about the platform [46].
The identity credential can thereafter be used to attest the authenticity of a platform
configuration without unambiguously identifying the TPM.

Remote attestation TPMs can be used to establish the trustworthyness of the host
platform by obtaining a signed quote of the platform state through remote attestation.
During the attestation process, the TPM produces a quote containing the values of
selected PCRs. The quote is next signed using the locally generated AIK (certified
by EKs) The appraiser uses the quote received from the target host to decide on the
trustworthyness of the host based on information about the software that has been
loaded and measured.

Data protection The TPM provides several operations for data protection. Binding
encrypts data using migratable or non-migratable asymmetric storage keys; in the latter
case the encrypted data is not associated with a particular platform and the ciphertext
can be decrypted on other platforms with the appropiate private key. Sealing is an
extension of binding, where only non-migratable storage keys can be used to encrypt
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data (hence, data is always bound to a specific platform). Sealing also allows to specify
one or more PCRs to include a subset of the platform state in the ciphertext. The
resulting ciphertext can only be decrypted (“unsealed”) if the platform is in the same
state as reflected by the values of the PCRs included at sealing time. Such functionality
allows to prevent access to the sealed data if the host is compromised or is running an
unexpected software stack; likewise, it allows to persist data in encrypted form until the
execution enters a trusted state (for example, as implemented in Intel Trusted eXecution
Technology [47] described below).

TPMs provide signing functionality to protect the integrity and determine the authenti-
city of data; TPM owners can use AIKs to sign audit data, quoted data, or tick-stamped
binary objects. Finally, sealed signing includes - as part of the computation of the signed
message digest - the values of a set of PCRs mandated by the user. This enables the ap-
praiser to inspect the PCR values supplied in the signed message and obtain information
about the platform configuration at the time when the signature was generated.

TPM 1.2 functionality was used in the mechanisms and prototype implementations
described in Papers A, B, C, D included in this thesis.

Changes in TPM 2.0 The latest TPM specification at the time of writing - the TPM
2.0 library specification - has been developed to address two major concerns in the TPM
1.2 main specification: inadequate cryptographic algorithms in TPM 1.2 [36] and lack of
universally accepted reference implementations. The first issue has been addressed by
introducing algorithm agility, i.e., changing the algorithms as needed, without revisiting
the specification. The second issue has been addressed by making the specification the
same as the reference implementation [39,41]. Introduction of algorithm agility has led
to several additional improvements [39]:

• Enhanced authorization unifies the approach to authorizing TPM entities. Along
with additional management functions, this enables authorization policies that
allow for multi-factor and multi-user authentication.

• Quick key loading using symmetric encryption, rather than asymmetric encryption
as previously done.

• Non-brittle PCRs, which were introduced to address management problems when
locking keys to device states on platforms that must undergo state changes.

• Flexible management allows to separate the different types of authorization, to
help management of TPM resources.

• Resource identification was been modified to use cryptographically secure names
for all TPM resources.

Multiple key hierarchies are another addition to TPM 2.0. A hierarchy is a collection
of entities (hierarchy handles, primary objects at the root of a tree, keys in the tree)
that are related and managed as a group [39]. While TPM 1.2 has one hierarchy -
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represented by the owner authorization and SRK - TPM 2.0 features three persistent
hierarchies, namely platform, storage and endorsement hierarchies. Each hierarchy has
an authorization value and a policy, an enable flag, a persistent seed for key and data
object derivation and potentially a primary key from which descendants can be created.

According to the TPM 2.0 specification, the platform hierarchy is intended to be con-
trolled by the platform manufacturer, represented by the early boot code shipped with
the platform.

The storage hierarchy (similar to TPM 1.2) is intended to be controlled by the platform
owner.

The endorsement hierarchy is used for privacy-sensitive operations and to certify the
authenticity of the TPM. TPM manufacturers generate primary keys at the root of the
endorsement hierarchy using a seed and a template. The seed is generated when the
TPM is first powered on and thereafter resides in the TPM; the template describes
the key algorithm and size, and optionally supplies additional entropy. The use of
seeds and templates enables support for flexible key algorithms and key sizes without
consuming non-volatile memory (compared to TPM 1.2 which directly generated one
2048-bit RSA endorsement key). The TPM manufacturer uses the public part of the
generated primary key to create a certificate asserting that the public key belongs to a
genuine vendor TPM. For privacy-sensitive operations, primary keys in the endorsement
hierarchy are used to derive descendant encryption keys through a credential activation
protocol with a privacy CA.

Finally, along with three persistent hierarchies, TPM 2.0 implements an ephemeral
NULL hierarchy. The seed of the NULL hierarchy changes on every reboot, making
this hierarchy suitable for the implementation of ephemeral key hierarchies (including
primary keys and storage keys) and sessions. Ephemeral key hierarchies are crypto-
graphically erased upon reboot - while keys may be present on disk, they cannot be
loaded into the TPM. Ephemeral cryptographic objects can be created using trivial
(zero-length password) authorization, in the cases when the TPM is used as a crypto-
graphic co-processor, since the NULL hierarchy is always enabled and has an empty
(unsatisfiable) policy.

The TPM is often used in trusted boot implementations to store measurement values,
computed using another mechanism defined by the TCG, namely the Root of Trust
for Measurement (RTM). Two common types of RTM implementations defined by the
TCG are the Static Root of Trust for Measurement (SRTM) and the Dynamic Root of
Trust for Measurement (DRTM). Trusted boot implementation typically uses an SRTM
as follows: at system boot time the SRTM measures itself as well as other parts of the
BIOS and the master boot record and stores the measurements in the TPM PCRs. A
Core Root of Trust for Measurement (CRTM) is the component performing the self-
measurement. Appraisers obtain - through an attestation protocol - a copy of the PCRs
signed by the TPM in order evaluate the boot measurements and establish the trustwor-
thiness of the platform. An attacker can exploit vulnerabilities in the implementation
of the CRTM to modify the CRTM without the self-measurement detecting the change.
In turn, this allows to corrupt without detection all subsequent elements in the chain
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- thus fundamentally breaking the chain of trust [48]. Privileged software can use a
DRTM to instatiate a trusted environment at a later point in time, even if the system
booted in an untrusted state [49], as discussed next.

Intel TXT

Intel Trusted eXecution Technology is an implementation of the TCG Dynamic Root of
Trust for Measurement [47]. Its primary purpose is to detect the potential presence of
certain types of attacks, notify system owners about the detected attacks and prevent
the creation of an Measured Launch Environment in the event of a compromise [39].
This is done by combining the SRTM and DRTM capabilities, along with additional
support in software and in the instruction set architecture. At power-on, SRTM is
used to establish and extend a chain of trust from the Intel processor (and chipset)
to and including the BIOS. Once booted, the operating system or an application ex-
ecuting on the operating system can initiate a measured launch sequence by invoking
the GETSEC(SENTER) instruction, which triggers the loading of the Measured Launch
Initialization (SINIT) Authenticated Code Module (ACM). The SINIT ACM, which
verifies the TXT.ERRORCODE register to ensure no security issues have occurred, trig-
gers relevant policy checks and performs the measured launch, bringing the operating
system into secure mode. The MLE is terminated by the operating system either ex-
plicitly when exiting the MLE (with the possibility to re-enter following the procedure
described above) or implicitly at platform power-off or restart.
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Figure 2.6: Intel TXT Boot timeline, based on [39].

Figure 2.6 illustrates the Intel TXT boot sequence, which uses the SRTM in order
to detect BIOS and reset attacks [39]. First, the microcode verifies the BIOS ACM
and starts the ACM in the Central Processing Unit (CPU) internal memory 1 . The
BIOS ACM measures certain portions of the BIOS - specified in the firmware interface
table configured by the BIOS original equipment manufacturer (OEM) - necessary for
system integrity guarantees and extends the computed measurements into PCR 0 2 . In
case of an error, the Startup ACM sets an error code in the TXT.ERRORCODE register and
interrupts the verified launch and resets the CPU (marked by ‘TXT reset’ in Figure 2.6).
Next, BIOS extends all remaining BIOS blocks to PCR 0 3 . Any other code in the
BIOS trust boundary is measured to PCRs 1-7 4 , for example option ROMs into
PCR 3 and option ROM configuration into PCR 4. Finally, the system boots the
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operating system loaded on the system 5 - at this point the operating system is ready
to perform DRTM booting.

DRTM can be started by either the operating system or an application running in the
operating system by triggering 6 the GETSEC(SENTER) instruction. This invokes a
microcode flow that verifies, loads and executes the SINIT ACM. In turn, the SINIT
ACM verifies that no errors have been reported to the TXT.ERRORCODE register and
measures the trusted operating system code and invokes 7 a Launch Control Policy
engine to perform policy checks and verify the measured OS code and PCR values
against a list of known good values. Measurements performed in this step are extended
into PCRs 17-18. If any of the checks fail at this stage, the platform is reset (marked by
‘TXT reset’ in Figure 2.6). Upon a successful verification the operating system enters
the trusted mode 8 , referred to as a Measured Launch Environment. In the MLE the
operating system acquires 9 TPM Locality 2 access, i.e. ability to extend PCRs 18-22
with measurements of other operating system components and configurations, which can
also be used by local applications. The DRTM is terminated by either the initiating
process itself or platform restart.

Intel Software Guard Extensions

Software developers can use Intel Software Guard Extensions (SGX) enclaves (intro-
duced in [50–53]) to create TEEs during operating system execution. Such enclaves rely
for their security on a trusted computing base of code and data loaded at initialization
creation time, processor firmware and processor hardware. Program execution within
an enclave is transparent to both the underlying operating system and other enclaves.
Multiple mutually distrusting enclaves can operate on the platform.

Enclaves operate in a dedicated memory area called the Enclave Page Cache (EPC)
which in turn is a subset of Processor Reserved Memory (PRM). The PRM is a range of
Dynamic Random Access Memory (DRAM) reserved by BIOS which cannot be accessed
by system software or peripherals [51, 54]. Furthermore, Enclave Page Cache Map
(EPCM) is a data structure that contains a mapping between the enclave identities and
the EPC pages that belong to them. This mapping is used by the CPU to verify enclave
access to memory pages and prevent unauthorized access attempts. The CPU firmware
and hardware are the Root of Trust of an enclave. It prevents access to the memory
segment of the enclave by either the platform operating system, other enclaves, or other
external agents.

The life cycle of an SGX enclave starts with a creation stage, when the ECREATE in-
struction invoked by the system software allocates a memory page for the SGX Enclave
control structure and populates it with data about the memory size and layout of the
enclave, made available by the system software. Once the enclave is created, system
software uses the EADD instruction to load code and data into the enclave using the
EEXTEND instruction to update the measurement of the enclave. Finally, the system
software obtains an intialization token (EINITTOKEN) from a dedicated Launch Enclave
(LE) and initializes the enclave (using the EINIT instruction). Once the enclave is ini-

23



tialized, the enclave application software can execute the code in the enclave. Note that
the LE must sign the produced EINITTOKEN using one of they keys supported by Intel
SGX (the Intel signing key is the default option [54]). The CPU saves the measurement
throughout the lifetime of the enclave to later assert the integrity of the enclave con-
tents. In the first implementation of SGX, no additional changes could be done to the
memory of the initialized enclave [50]. The next generation of SGX (denoted SGX2),
introduces support for additional instructions for manipulation of enclave memory [54]
(described below).

Remote attestation allows an enclave to provide integrity guarantees of its contents [50]
(see Figure 2.7). For this, the platform produces an attestation report with information
about the identity of the enclave and details of its internal state (such as the mode of
the software environment, associated data, and a cryptographic binding to the platform
trusted computing base producing the assertion). For intra-platform attestation (i.e.
between enclaves on the same platform), the reporting enclave (reporter) invokes the
EREPORT instruction to create a REPORT structure with the assertion and calculate a
MAC, using a report key, known only to the target enclave (target) and the CPU.
The structure contains a user data field, where the reporter can store a hash of the
auxiliary data provided. The target recomputes the MAC with its report key to verify
the authenticity of the structure and compares the hash in the user data with the
hash of the auxiliary data to verify its integrity. Enclaves then use the auxiliary data
to establish a secure communication channel.

For inter-platform attestation (see Figure 2.7) the appraiser1 sends a challenge 1 to
the target enclave application, which complements the challenge with the identity of a
Quoting Enclave (QE) and sends it 2 to the target enclave. The target enclave com-
putes an integrity REPORT which contains its identity and internal state and sends it 3
to the Quoting Enclave 4 ; The QE verifies the REPORT, computes an attestation QUOTE
and signs it with a platform-specific key using the Enhanced Privacy ID (EPID) [55],
and returns it 5 (using the enclave application) to the appraiser 6 . Finally, the ap-
praiser checks 7 the authenticity of the signature and the report itself [50] and assesses
the reported state of the enclave.
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Figure 2.7: Intel SGX external remote attestation overview.

Despite the contribution of SGX towards protection of data on remote hosts, it must
be noted that the first published specification contains vulnerabilities to practical at-

1In this example the appraiser itself performs the attestation.
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tacks, described in [56–59]. Some of the vulnerabilities have been addressed through
improvements implemented in SGX2. One example are the Iago attacks, where a mali-
cious operating system subverts a protected application by exploiting the application’s
reliance on correct results of system calls [60]. Baumann et al. in ported a library oper-
ating system into an SGX enclave to handle page faults inside the enclave [61] and thus
prevent Iago attacks. This work has contributed to the subsequent implementation of
secure exception handling in SGX2 [53] and dynamic memory allocation in enclaves [52].

Changes is SGX2 Novel instructions introduced in SGX2 allow adding memory
resources and new threads to an enclave after initialization [54]:

• EUG adds a page to an initialized enclave.

• EMODPR restricts the access rights associated with an EPC page in an initialized
enclave.

• EMODT changes the type of an existing EPC page.

• EACCEPT accepts changes made by system software to an EPC page in the running
enclave.

• ECCEPTCOPY initializes a dynamically allocated EPC page from another page in
the EPC.

• EMODPE extends the access rights of an existing EPC page.

See [54] for a complete description of the instructions supported by SGX2.

SGX - similar to other trusted computing solutions - is vulnerable to cuckoo attacks [62],
which is made possible because Intel SGX is not resistant to hardware attacks [51].
Thus, the adversary can acquire an SGX-enabled platform and launch a long-term
physical attack to extract the key necessary to sign the intialization token (EINITTOKEN)
and impersonate other SGX enclaves. For platforms running in a cloud environment,
Schuster et al. addresses this by introducing an additional component - namely a Cloud
QE, created by the cloud provider for each provisioned SGX-enabled platform; the
Cloud QE complements quotes by the QE with quotes asserting platform ownership by
the cloud provider [63].

Following this introduction on trust, attestation and execution isolation, Section 2 in-
troduces the cloud infrastructure system model.
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2 The Cloud Infrastructure Model

As defined in [64], “cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources (such
as networks, servers, storage, applications, and services) that can be rapidly provisioned
and released with minimal management effort or service provider interaction.” Cloud
computing has evolved into a complex system for delivering various computing and
communication resources, while abstracting aspects such as physical resource ownership,
operation and geographic location.

The OpenStack project has created a popular open-source cloud management plat-
form that allows to set up, operate and maintain large-scale cloud computing deploy-
ments [65, 66]. Since its first release in 2010, OpenStack has had a rapid community-
driven evolution and is at the time of writing at its sixteenth release; the collaborative
and open-source structure of this initiative facilitated the adoption of OpenStack in
research projects. In this thesis, the OpenStack platform was both a foundation for the
cloud infrastructure system model and the platform of choice for prototype implement-
ation and evaluation.

This section starts with a brief discussion of the cloud operation and service models,
followed by a review of the logical components of a cloud infrastructure deployment
based on the OpenStack project.

2.1 Operation and Service Model

Two important aspects of the cloud computing paradigm are its service models and
deployment models. There are three widely adopted service models for cloud computing:

• Service provisioning (SaaS) allows users to access the cloud service provider’s
applications deployed on a cloud infrastructure. The underlying implementation
and deployment is normally abstracted from the user and only a limited set of
configuration controls are made available. Similarly, data created or collected
by SaaS applications - which are a type of service provisioning - is transparently
stored in the cloud infrastructure. Examples include applications such as word
processing [67], enterprise resource planning software [68], image recognition for
robotics [69] and various network functions such as firewalls [70] under the um-
brella term network function virtualization [71].

• Platform provisioning (PaaS) allows the users a wider range of capabilities, includ-
ing software development tools, middleware, Software Developing Kits (SDKs),
and Application Programming Interfaces (APIs). Platform providers commonly
support run-time environments, such as content delivery networks, mobile applic-
ations, and large-scale data processing platforms [72].

• Infrastructure provisioning (IaaS) allows tenants to remotely access processing
power, disk storage, random access memory and network capabilities. Tenants
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can develop, deploy and run arbitrary software and networked services. In the
IaaS model, tenants access a sandboxed environment, determined by the leased
resource quota enforced by the cloud provider. Within the limits of the quota,
tenants have full control over the provisioned virtual resources. However, tenants
cannot access the underlying cloud management infrastructure (such as the cloud
platform management agents deployed on the host servers) or configuration of the
physical hosts (such as BIOS settings).

Four cloud deployment models are commonly known: private, public, community, and
hybrid clouds [64]. In private deployments, all components of a cloud deployment
are potentially under the full control of the tenants, such that tenants can configure
the hardware, network and software components. In public, community, and hybrid
deployments, the cloud deployment infrastructure is either partially or fully placed
on the premises of other entities, hence limiting the tenant’s capabilities to monitor
and control the infrastructure. In the context of the current thesis, we focus on the
distinction between private deployments and other types of cloud deployments.

2.2 OpenStack Architectural Overview

OpenStack is a collection of independent components that intercommunicate through
public APIs and collectively form a robust cloud computing platform. The logical archi-
tecture of OpenStack is illustrated in Figure 2.8. Below, we review the main components
of the OpenStack infrastructure cloud model; similar components are present in most
cloud infrastructure platforms and deployments.

Compute Service

Compute is a core component responsible for provisioning and management of compute
hosts. Compute service instances run on the hosts in a cloud deployment to support vir-
tualization management tasks. Hardware virtualization [73] allows to multiplex physical
compute hosts among virtual machines or unikernels. Configuration of compute hosts
can have far-reaching security implications. For example, a high instance per server
density (over-commit) is beneficial from a resource utilization perspective when guests
do not perform CPU or network-intensive tasks [74]. However, a higher over-commit
ratio leads to increased interference from collocated virtual machines [74] and higher
potential for side-channel information leakage [20,75].

The choice of CPU architecture and vendor, along with server OEM determines the
availability of - and support for - hardware-enabled security features. Security fea-
tures such as AMD Secure Encrypted Virtualization [76, 77], TrustZone [78, 79], Intel
SGX [50,51] or SecureBlue++ [80] can protect computation and data both directly on
the physical hosts and in virtualized environments deployed on such hosts [81]. However,
such features differ wildly in their security models, firmware support and functionality.
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Figure 2.8: OpenStack Logical Architecture.

OpenStack compute component (Nova) was used in the prototype implementations
described in Papers A, B included in this thesis.

Storage

Storage is essential for both infrastructure management and resource provisioning in
enterprise deployments. From an IaaS management perspective, storage capacity is
necessary for maintaining databases of tenant accounts, network topology information,
authentication credentials, tokens and policies, along with multiple other critical data,
i.e. management data. From a resource provisioning perspective, storage capacity
is required for VM operating system execution along with additional file systems for
storing VM images, as well as any further persistent storage for VM instances, i.e.
tenant data.
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In terms of confidentiality, integrity and availability, the security concerns and require-
ments towards tenant data and management data differ depending on the threat model.
In this context we distinguish between two data persistence categories:

• Ephemeral storage does not persist over virtual machine instantiation cycles. For
example, such storage can be allocated to virtual machine instances used for data
processing tasks that do not produce data that must be persisted. From a tenant
point of view, data on ephemeral storage disappears when a virtual machine is
terminated. Beyond RAM, this includes ephemeral disks [82] - virtual disks that
can be mounted to and used by a virtual machine during its operation but are
destroyed once the instance is terminated.

• Persistent storage outlives any other resource and is available regardless of the
state of the virtual machine instance. Infrastructure providers use persistent stor-
age to store infrastructure management data.

Figure 2.8 illustrates two types of storage in enterprise deployments, namely block
storage and object storage, further discussed below.

Block Storage Tenants use block storage to add storage to a virtual machine and
maintain access to it even after the instance has been terminated. Tenants use the
block storage API to create and operate persistent block storage volumes on servers.
Block storage is accessed through a block device that can be partitioned, formatted,
and mounted. Such storage is appropriate for performance-sensitive scenarios - such
as database storage, expandable file systems, access to raw block-level storage, etc.
Block storage volumes are located either off compute host storage - on a shared file
system; on compute host storage - on a shared file system; or on compute host storage
- in a dedicated file system. As illustrated in Figure 2.8, the high-level structure of a
block storage component in an enterprise deployment is as follows: based on requests
received through the block storage API, a volume manager operates storage partitions
enumerated in a block storage database and described by meta-data information in a
registry. The physical location of volumes is determined by the block storage scheduler
based on deployment architecture and relevant policies. Examples of block storage
back-ends include Ceph [83] and GlusterFS [84].

OpenStack block storage (Cinder) was used in the prototype implementations de-
scribed in Papers B, C included in this thesis.

Object Storage Tenants use object storage to store, expose and manage data as ob-
jects instead of files or blocks. Stored objects contain a variable amount of meta-data, to
facilitate indexing and data management in large-scale data stores. The design of object
stores prioritizes horizontal scalability across multiple hosts (in the order of hundreds
or thousands) and high availability; it is often tuned towards read-intensive data access
patterns. Object stores support larger namespaces and eliminate name collisions by en-
abling addressing and identification of individual objects by unique identifiers within a
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bucket, or across the entire system. External entities access data stored in object stores
through an API - such as the REpresenational State Transfer (REST) - that is limited
to storage and retrieval of files and that does not support mounting directories (such as
in the case of a file server). Figure 2.8 includes a high-level logical structure of an object
store, which stores object data from multiple accounts in replicated containers located
across a set of hosts in the deployment. Examples of object stores include Dynamo [85],
PNUTS [86], Haystack [87], Azure (Blob storage) [88] and Ambry [89].

OpenStack object storage component (Swift) was used in the prototype implement-
ation described in Paper D included in this thesis.

Image Service

In order to reduce data transfer and VM isntance launch time, enterprise deployments
often maintain a set of virtual machine images offered to tenants for instantiation.
The image service is a repository that stores and versions VM images available to
tenants. Integrity of the VM images made available through the repository is critical
for protecting tenant data and computation. Furthermore, images provided through
the repository must be patched and maintained up to date [90].

Identity service

The identity service maintains and provides tenant account and identity information.
This service communicates with all user-facing components of the deployment for au-
thentication and authorization purposes. Security of the identity service is essential for
preventing impersonation and privilege escalation attacks in cloud deployments [17].

Network infrastructure

Large-scale enterprise deployments implement a wide range of network topologies and
architecture models. SDN is a popular architectural model in cloud deployments. Along
with flat networks with Virtual Local Area Networks (VLANs) for tenant isolation, net-
work control can take advantage of the SDN model and create massively scalable multi-
tenant virtualized networks. The extension framework (network plugins in Figure 2.8)
allows to deploy and manage software implementations of additional network services,
such as load balancing, firewalls and virtual private networks. Figure 2.9 illustrates the
types of networks present in cloud deployments:

• The install or out-of-band network enables deploying software images to compute
hosts.

• The internal or management network enables communication between compute,
storage and management hosts.
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Figure 2.9: Types of networks typically present in a cloud infrastructure deployment.

• The tenant network enables communication among instances.

• The storage network enables communication between compute hosts and storage
back-ends.

• The public network enables instance access to the public network space; public
network addresses are handled by a deployment-specific network agent on network
controller nodes.

Network isolation is important to prevent interference from other networks in case of
data-intensive transfers. Section 3.3 presents further aspects of SDN, along with security
considerations for network connectivity in infrastructure cloud deployments.

Management Components

Depending on the use case and usage model of the infrastructure cloud deployment,
additional common but deployment-specific components may be present. Such com-
ponents include the log aggregation subsystem, telemetry components collecting usage
data for billing purposes, or a dashboard displaying deployment status information.

2.3 The Software Defined Networking Model

Cloud computing relies on hardware virtualization to operate many computing work-
loads deployed in self-contained, migratable virtual appliances [91]. Such atomic units
were implemented as VMs at first and later complemented with various operating sys-
tem virtualization approaches, collectively denoted as virtual endpoints. While the
existing switching hardware and routing protocols can support connectivity between
virtual endpoints (see “hairpin switching” in Figure 2.10), they lack the flexibility and
scalability necessary for effectively managing connectivity at large [92]. To address this,
the Clean slate initiative [92] proposed to decouple network forwarding from control and
management logic. This initiative gained wide support and later evolved into the SDN
model, with several key contributions playing a major role in its evolution.
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Figure 2.10: Inter-VM communication paths: (1) virtual switch; (2) host-local (native
bridging); (3) virtual queues in the Network Interface Card (NIC); (4) external switch,
i.e. “hairpin switching”.

Figure 2.10 illustrates alternative software switching approaches for communication
between virtual endpoints. Along with other approaches, virtual switching offered a
scalable and flexible alternative to routing of both layer 2 and layer 3 communications.

In the SDN model, software or virtual switches route packets according to flows stored
in the switch flow table. In turn, each flow entry consists of match fields, counters,
and a set of instructions that the switch applies to matching packets. Flow entries are
installed by a logically centralized controller, according to policies defined by human
administrators and network management applications. While applications - also known
as “middleboxes” - often appear as hardware components (such as firewalls and traffic
shapers) in traditional networks, software implementations (so-called Virtual Network
Functions) are better suited for dynamic SDN deployments.

Communication between virtual switches (on the logical forwarding plane) and the net-
work controller (on the control plane) is done through a so-called “southbound API”.
However, there is no single widely adopted corresponding interface between applica-
tions (on the management plane) and network controllers (i.e. a “north-bound API”).
Network controllers implement a variety of interfaces [93, 94]. The SDN system model
is further described and analysed in Papers E, F, G included in this thesis.

Several implementations of SDN infrastructure components were put forth by both
industry and academia in the years following the introduction of SDN. Two of the
SDN projects - Open vSwitch [95] and OpenFlow [96] - have become de-facto standard
implementations.

Open vSwitch is a popular virtual switch implementation, which has heavily influenced
the evolution of Software-Defined Networking. It is designed to have minimal pro-
cessing logic and to forward packets that match installed rules; unmatched packets
are either sent to the network controller or discarded. However, results reported in [97]
demonstrate that complementing the switch implementation with control logic improves
forwarding performance and facilitates management tasks.

OpenFlow is a widely adopted southbound API. It specifies the format of messages
that a network controller can use to add, update, and delete flow entries in flow tables.
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OpenFlow is supported by popular network operating systems, such as NOX [98], Rose-
mary [99], ONOS [100]. In the context of SDN, network operating systems are a part
of the network controller abstraction, logically placed on the control plane.

Following this introduction of the cloud infrastructure model, Section 3 introduces some
security aspects of the cloud infrastructure system model.
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3 Security in Cloud Infrastructure

Since 1996, when the term “cloud computing” was first coined [101], the technology
behind this concept has progressed from a bold vision to massive deployments in mul-
tiple application domains. However, the complexity of the underlying technology intro-
duces novel security risks and challenges. Earlier research on cloud security identified
challenges across the stack: from cross-site scripting attacks allowing to take over the
deployment [18]; to side-channel attacks causing information leakage from virtual ma-
chines [17, 20]; to attacks capable of extracting sensitive information from isolated ex-
ecution environments specially designed from cloud environments [56, 57]. While none
of the attacks mentioned above are “cloud-specific” and each of them belongs to an
own narrow field of security research, malicious actors can apply them in the cloud
computing context.

Having introduced the necessary background, we next provide an overview of research
contributions across several aspects of cloud infrastructure security (see [102] for a more
comprehensive overview). In this context, we also introduce the contributions of this
thesis.

3.1 Confidentiality and Integrity of Computation

On-demand pooling of virtual resources in a multi-tenant model is one of the defining
features of cloud computing [64]. As cloud computing relies on hardware virtualiza-
tion to multiplex physical infrastructure, ensuring the security of VM instances2 is an
essential prerequisite for the trustworthiness of a cloud provider.

For private cloud deployments, monitoring the security of VMs is facilitated both by
stricter control over tenant identity and access, as well as by VM introspection [103],
which offers solutions such as VM-based intrusion detection, forensic memory analysis,
and low-artifact malware analysis [104]. The task is more complex for public cloud pro-
viders: on the one hand, they must ensure that the anonymous, mutually mistrustful
or competing tenants do not break the isolation of the tenant domain; on the other
hand, they have very limited introspection capabilities due to both the security risks
involved [105] and the privacy concerns of its tenant end-users [106]. Assuming that
the physical security of the host systems is ensured [32, 107, 108], the adversary may
attempt to break the isolation provided by commodity hypervisors in order to access
the compute environment of a target VM instance. The adversary is in this case rep-
resented by either a peer tenant in a public cloud deployment, or an administrator of
the cloud management platform. A broad range of approaches to virtualization security
are available.

CloudVisor [107] is a minimal security hypervisor that uses nested virtualization and
a dynamic RoT for measurement functionality to protect the memory and I/O access
of virtual machine instances. Furthermore, the solution enforces memory isolation and

2This is equally relevant for the more recent virtual appliances such as containers and unikernels.
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disk storage protection for virtual machine instances. In this approach, the TPM stores
the integrity measurements of the TCB and enables remote attestation of the security
hypervisor.

Credo [109] relies on a minimal and measurable TCB to protect a virtual machine guest’s
I/O, as well as its memory and CPU state. The Credo TCB includes a hypervisor,
TPM and TXT firmware along with additional hardware and firmware components
launched using a DRTM; following the launch procedure, integrity measurements of the
TCB are stored in resetable TPM registers. The virtual machine guest’s memory and
CPU state are protected through a combination of scrubbing memory pages prior to
release, limiting the number of intercepts forwarded to the management partition of the
hypervisor3 and enhancing access control of virtual registers accessible by intercepts.
The solutions described in [110] and [61] reuse some of the approaches from Credo to
create isolated application sandboxes in cloud environments.

Mutual isolation between users and computing infrastructure providers was also ad-
dressed by Butt et al. in [111]. The solution splits the control over the tenant and
operator administrative domains and introduces in this approach mutually-trusted ser-
vice domains, to resolve the tension between the introspection needs of the cloud service
provider and the confidentiality and integrity requirements of the cloud tenants. Such
service domains are based on introspection policies mutually agreed between the cloud
infrastructure provider and tenants. Cloud infrastructure providers deploy workload
management and introspection code that executes in compliance with the established
introspection policies. Tenants inspect measurements of the code collected at bootstrap
time and stored in the registers of tenant-specific virtual TPMs, in order to attest the
integrity of the introspection code and evaluate its compliance with the established
introspection policies.

While the approaches enumerated above - as well as many others [108,112–114] - address
the security of the virtualization software or of the launched virtual machines, they do
not enable tenants to verify that such mechanisms are actually used by cloud providers.
A tenant following the direct delegation of trust approach may choose to rely on third
party certification to confirm that the hypervisor security features described above
are present on compute hosts. However, this leaves the tenant exposed to bugs and
vulnerabilities in the cloud management platform or workload scheduling code, such
that the virtual machine is launched on an arbitrary platform without the hypervisor
security features requested by the tenant.

This issue is addressed by the verifiable trusted launch introduced in Paper A. This
approach enables tenants to verify that the VM instance they communicate with was
launched on a platform with a certain TCB, without exposing the details of the TCB
itself. This is achieved through remote attestation of the platform (leveraging the
functionality of a TPM), combined with sealing of a user-generated token unsealed
only if the virtualization host maintains the expected TCB. The work described in
Paper A was based on research conducted prior to, or in parallel with the emergence
of hardware support for “cloud-native” TEEs such as Intel SGX, AMD Secure Pro-

3The approach is designed based on the Hyper-V hypervisor.
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cessor, SecureBlue++ [80] and AMD Memory Encryption [76, 77] and others [115].
Such TEEs enable new security models for cloud computing, have remote integrity
attestation functionality, and allow tenants to deploy rich applications [63], modified
operating systems [61] or virtual appliances [116] in a protected environment with a
minimal TCB. However, the performance of software placed in such TEEs reported
by the authors is lower compared to native execution [61, 63, 116]. The authors of
SCONE [116] highlight the trade-off between the size of the TCB and the execution
performance.

3.2 Cloud Storage Protection

Storing data backups in remote infrastructure has a decades-long history [117]; early
works primarily addressed reliability through disaster recovery [118–120], with little
regard to the security of the remotely stored data. However, the dynamicity and multi-
tenancy of cloud infrastructure, along with new uses of storage for internal cloud man-
agement operations have introduced new attack vectors.

Whether used for storing internal cloud infrastructure management data or allocated
to VM instances, block storage is often represented by logical volumes assembled from
multiple disk partitions that may be physically scattered throughout the deployment
and replicated within or across datacenters. Beyond the obvious challenges of pinpoint-
ing the physical location of data at any moment in time, peer tenants, rogue system
administrators and state-level adversaries may attempt to break the integrity and con-
fidentiality of data stored on block storage allocated to VM instances.

Results from industry security research reported in 2011 a vulnerability where block
storage allocated to a VM instance was later re-allocated to new VM instances while
still containing old data [21]. Disk wiping [121] - or in case of encrypted volumes simply
by reliable destruction of the encryption key - can effectively resolve such issues. Below
follows a brief account of notable research efforts towards protection of data in remote
infrastructure.

Kamara and Lauter describe a cryptographic cloud storage architecture in [122]. The
architecture provides confidentiality and integrity of data stored on remote infrastruc-
ture, while providing availability, reliablity, efficient retrieval and data sharing. Its
core workflow is as follows: customer data is transferred to the cloud storage through
a data processor; once deployed, its integrity can be verified at any moment using a
data verifier component; search and retrieval of customer data segments is done using
search tokens issued by a token generator; finally, third parties can access and query the
customer data using credentials issued by a credential generator according to a user-
defined access control policy. The proposed architecture is enabled by several advances
in cryptography supporting the requirements for cloud storage - namely searchable en-
cryption [123,124], attribute-based encryption [125] and proofs of storage [126].

With CloudProof, Popa et al. address the lack of security aspects in the SLAs of cloud
service providers. The proposed system detects and proves instances of security prop-
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erty violation under the threat model of an untrusted cloud provider. The addressed
security properties are: confidentiality, achieved by client-side content encryption prior
to deployment in the cloud; integrity, achieved through a combination of client-owned
private signature keys used to sign updated data blocks and public verification keys
used to verify integrity of data blocks at read time; write-serializability (i.e. reliable
versioning of stored data), achieved using attestation chains, i.e. chains of hashes over
the data block version number and content computed at each data block update; fresh-
ness (i.e. guarantee to provide the latest data block version), verified by checking the
correctness of the attestation chain for a selected data block.

Approaches such as FADE [127] implement policy-based file assured deletion, in or-
der to effectively prevent access to the stored files by the cloud service provider upon
revocations of file access policies.

Excalibur combines policy-sealed data with Ciphertext Policy Attribute-Based Encryp-
tion [128] in order to protect data in cloud infrastructure [129]. Policy-sealed data is a
trusted computing abstraction designed for cloud services that leverages TPM function-
ality. It allows data to be sealed (i.e., encrypted to a customer-defined policy) and then
unsealed (i.e., decrypted) only by hosts whose configuration matches a given policy.

Mylar is a security framework that combines data protection in the cloud with end-
to-end protection of client data access [130]. Mylar consists of four main components:
(i) a server-side library implements keyword search over encrypted data on the server;
(ii) a client-side library intercepts the data transfer with the server and manages data
encryption and decryption, as well as client key management. (iii) a browser extension
verifies the integrity of the client-side web application code; (iv) an optional identity
provider verifies the link between user names and keys. This approach can benefit from
both the continuous advances in searchable encryption for keyword search [123, 124]
and from advances in hardware-supported isolated execution environments [50] that
can help reduce the reliance on the identity provider component.

The contributions described above presented a variety of approaches to storing, search-
ing through, and sharing confidentiality and integrity protected data in cloud deploy-
ments. In Paper B we present a complementary approach based on combining several
previous results [131–133], that implements a comprehensive protection mechanism in-
cluding virtualization host attestation prior to virtual machine instantiation (verifiable
trusted launch ) and user-controlled storage protection transparent for the VM instances
(domain-based storage protection). Verifiable trusted launch, initially introduced in Pa-
per A, provided a means for users to verify that the VM instance they communicate
with has been launched following the trusted launch protocol on a platform with an
attested TCB (see Section 3.2). Domain-based storage protection, initially described
in [132] and the related patent [133] allowed encryption of persistent VM block storage
by the hypervisor, transparent to the guest VM and independent of the implementation
of the encryption libraries in the VMs.

By shifting disk encryption to the underlying hypervisor where it is managed by a
dedicated secure component, the approach described in Paper B reduces the attack
surface by maintaining all key material in the secure component rather than in the
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virtual machine instances. In the same time, encrypting locally on the virtualization
host the virtual disks mounted to VM instances allows to reduce the cost of cloud storage
by storing data in other deployments with more relaxed security guarantees. Finally,
maintaining control of the data encryption keys externally from the virtualization host
allows tenants to seamlessly swap cloud services without the hurdle of secure data
migration between infrastructure deployments.

Beyond using TPM functionality for key sealing, the approach described in Paper B re-
lies on a secure component - a verifiable execution module performing confidentiality and
integrity protection operations on VM instance data and key management. The use of
a secure component in this work was inspired by approaches such as SecVisor [112] and
CloudVisor [107], which relied on a verified software module executing at the highest
privilege level. The solutions in [112] and [107] required placing the verified software
module at the highest privilege level in order to protect it from a potentially malicious
host operating system. In a novel implementation, this approach can leverage the in-
creasing hardware support for TEEs on commodity platforms [115,134] by deploying the
secure component in one such isolated execution environment. The solution is generic
enough to be deployed with a variety of available or upcoming TEE implementations.
We used the block storage (Cinder) to implement domain-based storage protection in
both Paper B and in [132].

In Paper C we extended the solution with access control for multi-tenancy support. In
particular, we introduce extensions that allow tenants to control, at instance launch
time, its read and write access rights over a storage device.

Data geolocation

Concerns about the physical location of data and its availability in different jurisdic-
tions [135] gained further importance as state regulations on data placement caught
up with technological developments. Such regulations are referred to as data localiz-
ation [136, 137], defined as “a policy whereby national governments compel Internet
content hosts to store data about Internet users in their country on servers located
within the jurisdiction of that national government” [137]. Several countries have ad-
opted data localization regulations regarding storing, processing, or handling of certain
types of data (the specific types of data differ depending on the country). Examples
of such regulations include: Personally Controlled Electronic Health Record Provision
in Australia [138], Cybersecurity law in China [139]; Telecommunications Act in Ger-
many [140]; National Data Sharing and Accessibility Policy in India [141]; Information
and Electronic Transaction Law in Indonesia [142]; Federal Law No. 242-FZ in Rus-
sia [143]; and Defense Federal Acquisition Regulation Supplement: Network Penetration
Reporting and Contracting for Cloud Services in the United States of America [144]
(see [136] for more details).

While data localization is a fairly recent term, a large body of research investigated the
closely related aspect of data location, which remains an unsolved issue in the context
of cloud computing. This is partly caused by the architecture of cloud computing de-
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ployments, which rely extensively data replication and load balancing to ensure elastic
scalability [64] and high availability at all times. Watson et al [145] showed that there
are limits to the accuracy of verifying the location of data in a cloud storage. The
authors demonstrated that when a malicious cloud service provider colludes with ma-
licious hosts, it is unfeasible for a user to correctly verify the exact location of files.
Furthermore, Watson et al. were the first to take into consideration cases where two or
more malicious hosts collude and make copies of the stored files. This assumption led
them to posit that the task of restricting the geographic location of data is impossible.
The authors have suggested a proof of location scheme that can be used by a user
to obtain the location of a stored file. However, the proposed scheme required signi-
ficant supplementary infrastructure, as the solution relied on the existence of trusted
landmarks responsible for verifying the existence of files on a host.

Similar to other solutions that rely on distance-bounding protocols [146–148], and
latency-based techniques [149, 150], most data geolocation approaches not not address
the question of limiting data accessibility according to geographic location.

NIST described a proof of concept for geolocation of data in the cloud [151], relying
on the combination of trusted computing, Intel TXT and a set of manual audit steps
to verify and enforce data location policies. The use of hardware-based isolation en-
vironments has created the capability to restrict accessibility of cleartext data across
jurisdictions (also refereed to as “geo-fencing”) [152, 153] however still relying on the
cloud storage provider to enforce the data location policies.

In Paper D, we describe an approach to control access to cleartext data in data centers,
based on their geographic location. The approach is based on sealing cryptographic
material used to protect data integrity and confidentiality to approved geolocation cells
described by a set of geolocation coordinates. We used a hardware RoT to unseal the
cryptographic material only if the geographic location of the platform is within one of
the approved geolocation cells. As a result, data can only be accessed in plaintext if the
storage is placed in one of the geolocation cells approved by the data data administrator.
In all other cases, the data remains encrypted but can be replicated for redundancy
purposes. While in the design and implementation phases we relied on gelocation data
reported by the Global Positioning System (GPS), the solution can be implemented
with other geolocation systems. The prototype was implemented using the Swift object
store [154] (part of the OpenStack project); however data stored in other types of storage
(such as block storage) could as well be geo-fenced based on the same principles.

While the approaches presented above provided multiple solutions to the data geo-
location problem, this aspect remains unresolved in practical deployments, as users
must trust the statements of service providers regarding data location.

3.3 Security in Software Defined Networking

SDN has challenged the network infrastructure security best-practices evolved over
the decades since packet-switched digital communication gained overwhelming pop-
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ularity [155]. This change triggered renewed research in network management security,
re-definition of adversary models, re-assesment of security challenges and attack vectors.
While significant work has been done on the security of the SDN model, important chal-
lenges remain. A review by Scott-Hayward et al. lists multiple security issues spanning
across the architectural layers of SDN [156]. These include unauthorized access, data
leakage, data modification, malicious or compromised applications, denial of service,
configuration issues, as well as system level SDN security - such as lack of visibility
of the network state. Since SDN has seen considerable security research efforts, many
of the issues have been addressed to some level in [157–162] along with multiple other
contributions. Along with the existing security challenges and solutions, a review by
Ahmad et al. [163] highlighted several future directions for security in SDN, such as
class-based application security, security scalability in SDN, synchronization of network
security and network traffic, network security automation, and identity location (which
could be addressed by applying approaches such as the host identity protocol [164]). In
Paper E we described an SDN-specific threat model as well as attack vectors identified
based on the adversary capabilities and prior work [155,165]. This review helped identify
a list of ten security requirements towards SDN deployments. A part of the challenges
identified in [163] (in particular class-based security and partly security scalability), as
well as part of requirements identified in Paper E were later addressed through the
mechanisms described in Papers F, G and in on-going work [166].

Protecting Software-Defined Networking Components

The adoption of software network components executing on commodity operating sys-
tems has increased the attack surface of network infrastructure: as highlighted in the
European Telecommunications Standards Institute security specification for network
function virtualization, software network components are vulnerable to both bugs in
their own code and to risks introduced by the underlying trusted computing base (such
as hypervisor introspection, vulnerabilities in the OS) [14]. Antikainen et al. described
in [167] a series of attacks that can be performed once a virtual switch has been com-
promised. Such attacks include eavesdropping control plane communication, network
state and topology spoofing, as well as denial of service.

Some of the above attacks can be prevented by protecting southbound communica-
tion using standard network security protocols such as TLS with server- or mutual
authentication. However, while using TLS prevents certain classes of attacks - such as
topology spoofing and traffic eavsdropping - it does not solve the issue but rather shifts
the focus on protection of the authentication credentials. Virtual switches commonly
contain kernel modules for performance reasons [95], which means that a virtual switch
compromise can lead to a complete compromise of the compute host [168]. Beyond
revealing authentication credentials, a compromised host can be used to launch attacks
throughout the deployment, both on the network and compute infrastructure. Integrity
monitoring and integrity verification can be used to prevent forwarding plane comprom-
ise. For example, the proliferation of novel and versatile TEEs opened the possibility
of using TEEs to strengthen the security guarantees in SDN deployments.
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Several related scenarios of protecting SDN components were investigated in [169] - pro-
tecting integrity of virtual network function states using TEEs; in Paper F- protecting
integrity of forwarding plane components using TEEs; in [170] - enhancing security of
the Tor ecosystem by using TEEs; and [171] - packet processing in TEEs. To the best
of our knowledge, the contribution described in Paper F (introduced below) was the
first to propose ensuring authenticity, as well as protecting confidentiality and integrity
of software switches by placing them in TEEs.

In Paper F we address some of the risks introduced by the widespread use of virtual
switches in network deployments. Virtual switches executing on commodity operating
systems are often assigned the same trust level and privileges as hardware switches.
However, commodity operating systems contain security flaws that can compromise
virtual switches. On the other hand, the absence of a secure and scalable process
for authentication and authorization of virtual network components prior to enrollment
introduces the risk of impersonation of components enrolled into the SDN infrastructure.

We addressed both of the above risks in Paper F by deploying a custom implement-
ation of simple a software switch in a TEE with remote attestation capability. We
use the functionality of the TEE to distribute the key material used to establish an
authenticated, confidentiality and integrity protected communication channel between
the software switches and the network controller.

Another result introduced by this paper are the so-called ephemeral flow-specific pre-
shared keys. TruSDN leverages two aspects of the popular OpenFlow protocol - namely
centralized network control and forwarding the first packet of a flow to the network
controller - to deliver on demand ephemeral pre-shared keys to communication end-
points. This approach allows to relax requirements for high-quality entropy available to
virtual endpoints and reduce the time to establish a TLS session. Along with a further
extension of this work [166], this approach highlights the opportunities for increased
use of TEEs to secure network infrastructure.

Access Control in Network Infrastructure

Beyond the goal of separating forwarding and control planes of network infrastructure,
SDN has created new possibilities for network management and network application
deployment. While the initial abstractions of virtual switch, flow rules, southbound
API and logically centralized network controller are available, the northbound API and
the access control to SDN remain undefined.

The access control scheme for SDN controllers proposed in [172] - followed by a pro-
totype described in [173] - mimics access control schemes for operating systems, with
contextual adjustments. In particular, it introduced the logical separation of network
components to reliably assign the object and mode of access, along with support for
delegation of access permissions to network components. The permissions supported by
the access control system included both operating system-type read and write permis-
sions, and additional permissions for reading statistics, requesting information about
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the objects and modifying their state. The policies supported by the proposed access
control scheme reflect the separation of the administrator and management domains of
the network deployment: a mandatory access control component managed by the net-
work administrator allows to assign permissions for network subjects to perform actions
on the network deployment; a discretionary access control component enables subjects
to delegate the objects they own to peer subjects.

Despite the research efforts on network virtualization and SDN access control [172–176],
replacing hardware network middleboxes with software implementations is not sufficient
to ensure security while supporting multi-tenancy and deployment flexibility of virtual
network infrastructure. In part, this is due to the lack of access control for network man-
agement applications, caused by missing or incomplete definitions and understanding of
other network abstractions [172]; this also impedes defining an expressive north-bound
API. The intent framework [177,178] implemented in the ONOS network controller [100]
enabled a solution for SDN access control for network applications.

In manuscript G, we describe a north-bound network resource access control API for
network operators and application developers. The approach is based on three prin-
ciples: broad definition of resources in the software defined network model (partly
induced by the additional permissions introduced in [172]); explicit assignment of re-
sources and privileges for network applications; reuse of the Capability-Based Access
approach, where subjects carry an unforgeable token describing their access rights in
order to access a resource.

The definition of network resources adopted in manuscript G includes: device resources
such as hardware or virtual switches and installed flows; data resources, such as the
network topology and flow statistics; and control resources, such as management and
security policies in the deployment. This definition enabled a change in the way network
applications interact with the network controller (and implicitly the rest of the network
deployment): access to resources in the network deployment is explicitly described for
each application (or class of applications) using an access mask, which describes both
the resources that the application can access and the actions that it can perform on
those resources. An unforgeable token created based on the access mask (along with
other information) is then supplied along with the intents submitted by applications to
the network controller; the token is verified by a reference monitor in order to prevent
violation of access policies in the event of a network controller compromise.

Ongoing Work and Future Challenges

In our on-going work [166], we aim to provide comprehensive user security guarantees
regarding the trustworthiness the network infrastructure on all planes. This is done by
leveraging two emerging aspects: logical centralization of network infrastructure offered
by SDN; and increasing availability and hardware support for TEEs on commodity
platforms. Future security research challenges in SDN include run-time validation of
VNF states, compliance verification of forwarding network functionality, as well as
identification of security mechanisms for federated SDN infrastructure.
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4 Concluding Remarks

A common theme reoccurring throughout this thesis is the design and application of
mechanisms to assess trustworthiness in cloud infrastructure deployments. The aim is
to complement reputation and audits - holistic trust indicators operating on a scale
of months and years - with additional, focused mechanisms operating on a finer scale
tied to events such as component deployment, component initialization or data access.
Establishing the trustworthiness of cloud deployments is relevant to both tenants and
end-users on one hand, and operators of cloud infrastructure on the other hand.

For tenants and end-users, disclosures such as [1, 2] have demonstrated the naivety of
relying on reputational trust for the confidentiality of data stored with major cloud
service providers. This provides additional motivation to develop reliable and fine-
grained mechanisms for assessing security of remote computing deployments before
taking the decision to transfer sensitive data and computation to them.

For cloud service operators, the revelations that powerful adversaries have the capability
to subvert their core internal infrastructure have highlighted the need for trust estab-
lishment mechanisms in enterprise deployments. Furthermore, the growing frequency of
targeted attacks performed by increasingly well established Advanced Persistent Threat
groups [179] re-emphasized the need to add additional layers of protection - well in line
with the “defense in depth” approach.
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Scientific publications

Overview

The goal of this thesis is to improve the security of cloud computation, data storage
and network communication within cloud deployments. Each of the papers included
in the thesis addresses either one specific aspect, or a combination of aspects in a
comprehensive solution. Most of the papers include an implementation and evaluation
of the described solution (see Table 2.1).

Table 2.1: Overview of the publication content areas and features.
Legend: □ = design; ⊡ = implementation; ■ = performance evaluation; * = aspect
addressed; (*) = re-applied solution proposed in an earlier contribution.

Content area
Virtual Machine Launch Storage Access Control SDN

Paper A □⊡ ∗
Paper B □⊡■ ∗ ∗
Paper C □⊡■ ∗ ∗
Paper D □⊡■ (∗) ∗
Paper E □ ∗
Paper F □⊡■ ∗
Paper G □⊡■ ∗ ∗

Publications included in this thesis address the following aspects:

• Launch of virtual machines on attested hosts (addressed in papers A, B)
focuses on providing user guarantees regarding the compute host where a tenant
virtual machine has been instantiated.

• Storage protection (addressed in papers B, C, D) focuses on several aspects
of storage protection, such as transparent data encryption on compute hosts and
data geo-fencing in geographically distributed cloud deployments.

• Network infrastructure protection (addressed in papers E, F, G) focuses on
addressing some of the core threat vectors in the adversary model identified for
Software-Defined Networking infrastructure.
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Guide to publications Readers aiming to get familiar with the publications are
encouraged to start with Paper A, which presents a protocol for launching a virtual
machine instance on an attested host with additional, tangible user guarantees. The
approach is complemented in Paper B with a domain-based storage protection pro-
tocol [132, 133] and presents a comprehensive solution for launching a virtual machine
instance on a remote host and transparently encrypting its storage volumes using com-
modity software on compute hosts. Paper B thus introduces the reader to the work on
storage protection, extended in papers C, D on respectively adding support for multi-
tenancy to the domain-based storage protection protocol and geo-fencing plaintext data
access on compute hosts based on their geographic location. Paper E is a transition
towards security of the SDN infrastructure, as it describes an SDN-specific threat model
and main threat vectors, which are later addressed in Paper F and Paper G. Paper F
focuses on integrity of forwarding plane components and southbound communication
security, while Paper G addresses access control on the northbound API.

Papers A, B, C, D, E, F, are included in accepted or camera-ready versions; Paper G
is included in its submitted version. The included papers have been minimally updated
to correct grammar and spelling errors and adapt them to the format of the thesis.
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Included Contributions

Co-authors are abbreviated as follows: Christian Gehrmann (CG), Mudassar Aslam (MA),
Antonis Michalas (AM), Fredric Morenius (FM)

Paper A: Trusted Launch of Virtual Machine Instances in Public
IaaS Environments

Originaly published as N. Paladi, C. Gehrmann, M. Aslam, and F. Morenius,
“Trusted Launch of Virtual Machine Instances in Public IaaS Environments”, in
Proc. 15th International Conference on Information Security and Cryptology,
ICISC’ 12, pp. 309–323, Springer, December 2012.

The final publication is available at Springer via https://doi.org/10.1007/
978-3-642-37682-5_22

Content Prior to starting work on Paper A, several protocols for trusted launch of virtual
machine instances on remote platforms have already been proposed, namely [109, 180]. Work
on this paper was triggered by a simple question: what can prevent a dishonest provider
from claiming to have performed a trusted launch while in effect presenting tenants with an
instance executing on a different host with an entirely different software stack? In essence,
tenants would significantly benefit from a guarantee that they are communicating with an
instance launched according to a certain trusted launch protocol. In paper A, we addressed
this by proposing and implementing a trusted launch protocol which includes an unforgeable
token sealed to a certain state of the platform configuration registers and injected into the file
system of the virtual machine instance launched following the protocol. As a result, tenants
could verify the presence of the token on the file system and interpret that as a guarantee that
the virtual machine instance has been created following a trusted launch.

Original Contributions N. Paladi designed and implemented the protocol for trusted
launch of virtual machines with user guarantees, as well as written the initial content of the
paper (based on his earlier M.Sc. thesis under the supervision of CG). CG refined the protocol
and improved the manuscript both by directly editing it and by providing valuable comments
on the content of the paper. MA contributed to the implementation of the protocol by a
library for key sealing to the platform, as well as clarifying the inner workings of the OpenPTS
stack and the TrouSerS TPM library. FM contributed comments on the adversary model in
the context of infrastructure clouds as well as on the content of the manuscript.

Paper B: Providing User Security Guarantees in Public Infra-
structure Clouds

Originally published as N. Paladi, C. Gehrmann, and A. Michalas, “Providing
User Security Guarantees in Public Infrastructure Clouds”, IEEE Transactions on
Cloud Computing, vol. PP, pp. 1– 1, February 2016.
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Content The owners of virtual machine instances executing on remote hosts may require
confidentiality and integrity protection of data stored by their VM instances, along with guar-
antees about the software stack of the virtualization hosts. While encryption of data at rest
is widely available from multiple cloud providers, this commands a leap of trust from the
end-users, since the encryption keys are stored in the security domain of the cloud provider.
Paper B addresses this by combining two previous results: an improved version of the trusted
virtual machine launch protocol; a domain-based storage protection protocol first described
in [132]; and the related patent [133]. In the presented solution, virtual machines are launched
on hosts with an attested software stack and the disk encryption for each virtual machine is
performed on the hypervisor level, while the encryption keys are stored in a minimal secure
component trusted by the user. A beneficial side-effect of the solution is simplified data migra-
tion between cloud providers and the potential to reduce costs by enabling users to store data
in commodity third-party storage facilities while protecting its confidentiality and integrity.

Original Contributions N. Paladi contributed major parts of the content along with the
description and implementation of the improved virtual machine launch protocol as well as the
entire description and partly the implementation of the domain-based storage protocol. CG
provided parts of the content and comments that helped significantly improve the manuscript.
In particular, his contributions to the security model and security analysis have considerably
improved the structure and content of the paper. AM made major contributions to the content
of the paper as well as to the improved design and implementation of the Domain-Based Storage
Protection (DBSP) protocol.

Paper C: Domain-Based Storage Protection with Secure Access
Control

Originally published as N. Paladi, A. Michalas, and C. Gehrmann, “Domain
Based Storage Protection with Secure Access Control for the Cloud,” in Proc. 2014
International Workshop on Security in Cloud Computing, SCC ’14, pp. 35–42,
ACM, June 2014.

Content Simplified data sharing is among the core benefits of cloud storage, however this
aspect was insufficiently addressed in our previous work on the DBSP [132,133,181]. In Paper C
we describe and implement a secure storage protection protocol to provide per-virtual machine
instance access control and allow tenants to control, at virtual machine launch time, its read
and write access rights over a storage device. We introduce an XML-based language framework
allowing users to define role-based access control in order to grant access, based on permissions,
to other users in the Infrastructure-as-a-Service cloud.

Original Contributions N. Paladi contributed main parts of the content along with the
implementation of the protocol for the cloud infrastructure. AM initiated the effort to add
access control to the earlier existing domain-based storage protocol, contributed important
parts of the content and contributed to the implementation and evaluation of the solution.
CG contributed with valuable comments on the content of the paper.
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Paper D: Trusted Geolocation-Aware Data Placement in Infra-
structure Clouds

Originally published as N. Paladi, M. Aslam, and C. Gehrmann, “Trusted
Geolocation-Aware Data Placement in Infrastructure Clouds”, in Proc. 13th In-
ternational Conference on Trust, Security and Privacy in Computing and Com-
munications, TrustCom ’14, pp. 352–360, IEEE, September 2014.

Content Considering the plethora of regulations on data protection across jurisdictions,
limiting the geographic placement of data maintains its relevance. In Paper D we describe a
novel approach to geo-fencing the access to plaintext data across data centers. This is done by
sealing cryptographic material used to protect data integrity and confidentiality to approved
geolocation cells described by a set of geolocation coordinates. We use a hardware root of
trust to only unseal the cryptographic material if the geographic location of the platform - as
reported by a Global Positioning System device - is within one of the approved geolocation
cells. Since the time of the publication, storage of geo-tags in TPM registers has become one of
the important use cases for TPM usage, mainly popularized by related solutions [13,182,183].

Original Contributions N. Paladi contributed the initial idea of restricting plaintext
access to data based on geographic location of the storage nodes, as well as most of the
content, implementation and evaluation of the solution. MA made significant contributions to
the implementation of the solution, in particular to the coordinate data extraction from the
GPS device and sealing data encryption key to the TPM PCRs. CG contributed with valuable
comments on the content throughout the writing process.

Paper E: Towards Secure Multi-Tenant Virtualized Networks

Originally published as N. Paladi and C. Gehrmann, “Towards Secure Multi-
tenant Virtualized Networks”, Proc. 14th International Conference on Trust, Se-
curity and Privacy in Computing and Communications, TrustCom’15, pp. 1180-
1185, IEEE, August 2015

Content The Software-Defined Networking model has been widely used to deploy, manage
and operate large-scale network architectures. With the separation of data and forwarding
planes as one of its core premises, SDN challenges network security best practices and intro-
duces both new capabilities for network security as well as new vulnerabilities. In paper E we
analyze the SDN model and describe a range of SDN-specific attack vectors along with high-
level approaches to mitigating them. This paper has laid out the groundwork for improvements
to SDN security described in Paper F and Paper G.

Original Contributions N. Paladi contributed the entirety of the content in this work.
CG significantly improved the paper by providing valuable comments on the content through-
out the writing process
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Paper F: TruSDN: Bootstrapping Trust in Cloud Network Infra-
structure

Original published as N. Paladi and C. Gehrmann, “TruSDN: Bootstrapping
Trust in Cloud Network Infrastructure”, in Proc. 12th International Conference
on Security and Privacy in Communication Networks, SecureComm’16, Springer,
October 2016.

The final publication is available at Springer via https://doi.org/10.1007/
978-3-319-59608-2_6

Content The proliferation of data centers and virtual machine endpoints has triggered the
advances in virtualising the network equipment. Along with improved flexibility, this intro-
duced new attack vectors and vulnerabilities in the network infrastructure. In paper F we
address this by proposing TruSDN, a framework for bootstrapping trust in SDN infrastructure
using Intel Software Guard Extensions. TruSDN allows to establish trust in deployed SDN
components and protect communication between network endpoints. Paper F further intro-
duces ephemeral flow-specific pre-shared keys, which leverage the SDN model to reduce the
number of messages needed for key distribution between endpoints in network infrastructure.
The prototype implementation - based on the OpenSGX emulator [184] due to the lack of
access to a SGX-enabled hardware platform at the time when the contribution was written
- has helped prove the concept and had yield valuable insights for enabling trust in SDN
infrastructure components.

Original Contributions N. Paladi contributed the entirety of the content of this work.
CG contributed with valuable comments during the solution design and on the content through-
out the writing process.

Paper G: SDN Access Control for the Masses

N. Paladi and C. Gehrmann, “SDN Access Control for the Masses.” Submitted
for review, May 2017.

Content Software Defined Networking has so far been successful in defining and refining the
abstraction layers on the forwarding and control planes. However, despite a maturing south-
bound interface and a range of proposed network controllers, the network operating system
has currently poorly defined - if any - access control mechanisms that could be exposed to net-
work applications. Available mechanisms allow only rudimentary control and do not provide
any procedures to partition access to resources across multiple dimensions. We address this in
Paper G by introducing a taxonomy of access models for SDN resources, as well as describing
and implementing for the first time a North-Bound access control API and enforcement mech-
anism for SDN deployments. We demonstrate the feasibility of the solution by implementing
it as an extension of ONOS, an open source SDN controller.
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Original Contributions N. Paladi contributed the entirety of the content of this work.
CG significantly improved the paper by providing valuable comments during the solution design
and on the content throughout the writing process.

Further Contributions

Besides the included papers listed above, the PhD candidate is also co-author of the following
work, not part of this thesis:

• N. Paladi, C. Gehrmann, and F. Morenius, “Domain-Based Storage Protection (DBSP)
in Public Infrastructure Clouds”, in Proc. 18th Nordic Conference on Secure IT Systems,
NordSec ’13, pp. 279–296, Springer, October 2013

• A. Michalas, N. Paladi, and C. Gehrmann, “Security aspects of e-Health systems mi-
gration to the cloud”, in Proc. 16th International Conference on e-Health Networking,
Applications and Services, HealthCom ’14, pp. 212–218, IEEE, October 2014

• N. Paladi, “Towards Secure SDN Policy Management”, in Proc. 8th International Con-
ference on Utility and Cloud Computing, UCC ’15, pp. 607–611, December 2015

• C. Gehrmann, F. Morenius, and N. Paladi, “Procedure For Platform Enforced Storage
in Infrastructure Clouds,” March 2016. Patent Application WO2014185845 A1

• N. Paladi, L. Karlsson, “Safeguarding VNF Credentials with Intel SGX”, in Proc. of the
SIGCOMM Posters and Demos, ACM, 2017)
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Paper A

Trusted Launch of Virtual
Machine Instances in Public
IaaS Environments

Nicolae Paladi, Christian Gehrmann, Mudassar Aslam and Fredric Morenius

Abstract

Cloud computing and Infrastructure-as-a-Service (IaaS) are emerging and prom-
ising technologies, however their adoption is hampered by data security concerns.
At the same time, Trusted Computing is experiencing an increasing interest as
a security mechanism for IaaS. In this paper we present a protocol to ensure the
launch of a virtual machine instance on a trusted remote compute host. Relying
on Trusted Platform Module operations such as binding and sealing to provide
integrity guarantees for clients that require a trusted virtual machine launch, we
have designed a trusted launch protocol for virtual machine instances in public
IaaS environments. We also present a proof-of-concept implementation of the pro-
tocol based on OpenStack, an open-source IaaS platform. The results provide a
basis for the use of TC mechanisms within IaaS platforms and pave the way for a
wider applicability of trusted computing to IaaS security.

1 Introduction

One of the distinguished trends in IT operations today is the consolidation of IT systems onto
common platforms. A key technology in realizing this is system virtualization [185]. System
virtualization makes it possible to streamline IT operations, save energy and obtain better
utilization of hardware resources. A virtualized computing infrastructure allows clients to run
own services in form of virtual machine (VM) on shared computing resources. This approach
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however introduces new challenges, as it means that information previously controlled by one
administrative domain and organization is now under the control of a third party provider
and that the information owner loses direct control over how data and services are used and
protected. IaaS [102] is one of the business models based on system virtualization and security
aspects are among the main identified obstacles for its adoption1. The problems with securing
IaaS are evident not least through the fact that widely known platforms such as Amazon
EC2, Microsoft Azure, services provided by RackSpace and other IaaS services are plagued by
vulnerabilities at several levels of the software stack, from the web based cloud management
console [18] to VM side-channel attacks, to information leakage, to collocation with malicious
virtual machine instances [17].

A promising approach towards handling IaaS security threats and a mean to provide service
confidence is the use of Trusted Computing technologies as defined by the Trusted Computing
Group (TCG). The core component in the TCG-defined security architecture is the Trusted
Platform Module (TPM), a hardware module that can be used as a trust anchor for software
integrity verification in open platforms that also offers protected storage for sensitive paramet-
ers. TPM usage and deployment models for IaaS clouds are currently an active research area
[180,186–190]. Earlier research has introduced principles of a trusted IaaS platform [180], later
extended to cover both trusted virtual machine launch [189] and VM migration [190]. These
research results demonstrate principles of combining basic TPM attestation mechanisms with
standard cryptographic techniques to design an infrastructure for VM protection. However,
such solutions have limitations with respect to security, complexity and target compute host
selection procedures.

In this paper we describe a trusted virtual machine launch process that addresses these limit-
ations and present a trusted launch protocol that does not require secure pre-packaging of the
virtual machine image on the client side. Furthermore, in order to be usable in a significant
proportion of IaaS deployment scenarios and to provide full scheduling flexibility on the IaaS
side, the protocol allows the IaaS provider to select a target trusted compute host without
directly involving the client. The main contributions of this paper are:

1. Description of a trusted launch protocol for virtual machine instances in public IaaS
environments.

2. Implementation of the proposed protocol based on a widely-known IaaS platform.

The paper is further organized as follows: In Section 2 we define the trust and attack models,
formulate the problem area and define requirements for a scheme to address the identified
issues; section 3 presents the main contribution of the paper, namely a platform-agnostic
protocol for trusted virtual machine launching. In Section 4 we perform a security analysis of
the proposed protocol and continue with a description of the prototype implementation based
on the OpenStack IaaS platform in Section 5. In Section 6 we provide summaries of significant
related work within trusted computing in IaaS environments. We conclude in Section 7 and
provide a set of further research suggestions.

1AFCEA Cyber Committee – October, 2011, http://www.afcea.org/mission/intel/documents/
cloudcomputingsecuritylessonslearned_final.pdf
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2 Trust and Attack Models, Problem Description and
Requirements

Next we describe the trust and attack models we assume in this paper, list the top security and
general design requirements applicable given the defined trust and attack models and revisit
virtual machine images in the context of a trusted virtual machine instance launch. We also
discuss the characteristics that can be expected from a well-designed virtual machine instance
launch.

2.1 Trust and attack models

In the trust model and consequently the attack model used in this paper, the client does
not implicitly trust any aspect of the IaaS provider. Although potentially true for many IaaS
environment types, this trust model should be particularly relevant to public IaaS environments
(according to the definition in [64]), where the relationship between the client and the IaaS
provider is often formal and lacks prerequisites for implicit trust.

We share the attack model with [180, 189, 190] which assume that privileged access rights
can be maliciously used by IaaS provider remote system administrators (Ar). This scenario
assumes that Ar can log in remotely to any host maintained by the IaaS provider and obtain
root access. However, in this model Ar does not have physical access to the hosts. The only
possibility for Ar to circumvent this constraint is by succeeding to force a client to launch their
virtual machine instance on an Ar-controlled compute host outside the physically secured IaaS
provider perimeter. Furthermore, we assume that an Ar obtaining remote root access to the
compute host will not be able to access the volatile memory of any VM residing on the compute
host at that time, i.e. the compute host offers VMs a closed box execution environment2. This
assumption is required in order to ensure that Ar can not access the nonce provided by C and
its implementation is out of the scope of this paper.

In a trusted virtual machine launch context this means that we consider both the attack where
Ar attempts to launch a virtual machine instance on a non-trusted compute host instead of
on a trusted one and the attack where Ar attempts to substitute the virtual machine image
requested by the client with a maliciously modified virtual machine image.

In the current attack model, a virtual machine instance is considered trusted if and only if it
fulfils the following criteria:

1. The virtual machine image used for the instance is itself trusted;
2. The virtual machine instance is started on a trusted compute host;
3. The virtual machine instance has the client-generated verification token injected (see

section 3.1)
2This does not include any VMs which are part of the hosting infrastructrure, such as Xen dom0

VM)
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2.2 Virtual machine images

As an implication of the above trust and attack models, we consider the following two properties
of virtual machines in the context of trusted computing:

• No virtual machine instance, or any entity communicating with the virtual machine
instance, can determine whether the hypervisor the virtual machine instance is running
on is trusted or not.

• A virtual machine instance cannot be trusted to reliably determine if it has the config-
uration originally requested by the client.

To overcome these issues, we suggest a launch protocol where we use standard TPM v1.2
functionality to first ensure that the client can detect the situation when it is communicating
with a virtual machine instance that is not launched on a trusted platform and subsequently
utilize the trusted platform to verify the integrity of the virtual machine image prior to virtual
machine launch.

It is essential, in the scope of the protocol, that no modifications or customizations of the
virtual machine image to be launched are performed by the IaaS provider without the client’s
knowledge.

2.3 Requirements for a trusted virtual machine launch protocol

Considering the trust and attack models above, it is important for the client to be able to obtain
reasonable security guarantees from the IaaS provider. These include both trustworthiness of
the computing resources, as well as guarantees regarding VM integrity and confidentiality.
In order to also be cost and implementation efficient, the underlying infrastructure should
provide such guarantees with a minimal operational overhead without increasing structural
complexity. The expectations can be summarized as a set of basic requirements towards a
trustworthy virtual machine launch process:

1. The client shall have the mechanisms to ensure that the virtual machine instance has
been launched on a trusted compute host.

2. The client should have the possibility to reliably determine that it is communicating
with a virtual machine instance launched on a trusted compute host, and not with a
different virtual machine instance.

3. The integrity of the virtual machine image scheduled to be launched must be verifiable
by the target trusted compute host.

4. The trusted virtual machine launch procedure should be scalable and have a minimum
impact on the performance of the IaaS platform.

5. Clients should have a transparent view of the trusted launch procedure.
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3 A Trusted Launch Protocol for VM Images in IaaS
Environments

Based on the above requirements for a trusted launch protocol for virtual machine instances
in IaaS environments, we present a platform-agnostic protocol that shows principles of using
TPM functionality to ensure the integrity of the compute host and of the virtual machine image
requested to be launched by the client. The below protocol addresses the security concerns
presented above by focusing on simplicity, transparency, scalability and minimal interference
with the currently known setup of the IaaS implementations. Furthermore, the protocol is
based on widely-used and verified techniques, such as hashing and asymmetric cryptography
in combination with TPM functionality.

The protocol requires the participation of four entities, three of which are typically involved
in virtual machine launch procedures in IaaS architectures:

1. Client (C) is a IaaS user and intends to launch a virtual machine instance. In this paper,
C is considered to be a non-expert, i.e. one not capable of assessing the security of
platform configurations based on values contained in the measurement list. C requires
a virtual machine instance to be launched on a trusted platform. Furthermore, it is
important for C to be able to either verify or trust the security of virtual machine
images provided for launch.

2. Scheduler (S) is responsible for receiving requests for virtual machine instance launches
from C, as well as scheduling and rescheduling of virtual machine instances on avail-
able compute hosts at the IaaS provider. S should be able to function with minimal
involvement in the security-specific message passing.

3. The compute host (CH) is the target resource that will be chosen by S to run the par-
ticular virtual machine instance. CH represents a physical or virtual server that is able
to host one or more virtual machine instances (however, this paper considers exclusively
the case when the CH is a physical server). For the purposes of the proposed protocol,
a CH must also be equipped with a TCG-compliant TPM as well as be immune to
modification attempts when in a trusted state.

4. The Trusted third party (TTP) is, as the name implies, trusted by both the Client and
the IaaS provider and can not be controlled or manipulated by the IaaS provider. The
recent breaches of Certificate Authorities have emphasized the drawbacks of central-
ized security models and their susceptibility to attacks [191]. The more complex the
operations performed by the TTP, the higher the probability of it having exploitable
vulnerabilities. It is therefore important to keep the implementation of the TTP as
simple as possible. The main task of the TTP is to attest the configuration of the CH
that will host the virtual machine instance and assess its security profile according to
predefined policies. Within the current trust model, TTPs could be implemented by an
expert C, as long as the IaaS provider agrees to that and C has the capability to set up
and operate an attestation and evaluation engine.

For the purpose of the protocol, we also introduce the concept ‘security profile of a CH’:

Definition 3.1. A security profile (SP) is a verified setup of an OS including underlying
libraries and configuration files, which is considered to be trusted by all parties. SP can range
on an ascending integer scale which reflects the level of verification, from least to most strict
(and hence more restrictive).
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The information needed to calculate the SP and also to compare the setup of two CHs is
stored in the integrity measurement log (IML), as the IML contains hashes of the components
that were loaded or used during the boot sequence of the CH. The validity of the IML is
confirmed through a signature using the attestation identity keys (AIK) of a TPM. The AIK
are persistent, non-migratable keys that are used to sign and authenticate by the means of an
AIK certificate (denoted by AIK − cert) the validity of the information provided by the TPM
in case of an external attestation [36]. We thus assume that the SP of any given CH can be
deterministically calculated by each of the parties involved in the protocol. 3

3.1 Platform-agnostic protocol description

The following steps are required in order to perform a trusted virtual machine launch (Fig.
A.1, the steps of the protocol correspond to the steps in the figure 4).

1. Before initiating the launch procedure, C generates a sufficiently long nonce N, to be
used as a proof token in communications between C and the virtual machine instance
and must be kept confidential to untrusted parties throughout the launch process.

2. C creates a token which we denote by T, representing a data structure with information
necessary for the trusted virtual machine launch. T contains N, the minimum SP and
the hash of the virtual machine image used for launch, denoted by Hvmi

5. Finally, the
token is encrypted with the public key of TTP, represented by PKTTP, while the encrypted
token is represented by TPKTTP .

3. C provides the scheduler (S) the following parameters:

• virtual machine image identifier and optionally the virtual machine image to be
launched;

• SP;
• URL of the TTP;
• Encrypted token TPKTTP generated in step (2).

SP will determine the lower bound of trust level required from CH on which the VM will
run, with stricter security profiles accepted.

4. S schedules a VM on the appropriate CH, depending on its membership in the respective
security profile group and sends the CH a request to generate a bind key PKBind, also
providing the URL of the TTP.

5. Once the destination CH receives the bind key request, it retrieves a PCR-locked non-
migratable TPM-based bind key PKBind. This key can be periodically regenerated by CH
according to a administrator-defined policy, using the current platform state represented
by the TPM PCRs. It is important to note that the values of the PCRs should not
necessarily be in a trusted state in order to create a trusted state bind key.

6. In order to prove that the bind key is a non-migratable, PCR-locked, asymmetric TPM
key, CH uses the TPM_CERTIFY_KEY TPM command in order to retrieve the TPM_CERTIFY_INFO

3The methodology for calculating the SP of a CH is out of the scope of this paper.
4Due to space limitations, “Attestation data” was chosen as the condensed notation for:

TPKTTP , PKBind, TPM_CERTIFY_INFO,HTPM_CERTIFY_INFOAIK, IML,AIK − cert
5If non-repudiation of virtual machine launch is required, the client should also sign the virtual

machine image hash and include the signature and corresponding client certificate into the token.
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structure signed with the TPM attestation indentity key [36], which we denote by PKAIK;
we also denote the signed structure by
HTPM_CERTIFY_INFO

AIK. The TPM_CERTIFY_INFO data structure contains the hash of the bind
key and the PCR value required for the key usage.

7. CH sends an attestation request to the TTP through an HTTPS session using the URL
supplied by C. The following arguments are sent in the request to TTP:

• Client-provided token TPKTTP

• Attestation data, which includes the public bind key, the TPM_CERTIFY_INFO struc-
ture, the hash of TPM_CERTIFY_INFO signed with the AIK6, the IML and the AIK-
certificate collectively represented as:
PKBind, TPM_CERTIFY_INFO, HTPM_CERTIFY_INFO

AIK, IML, AIK-cert.

8. TTP uses its private key PrKTTP, which corresponds to the public PKTTP to attempt to
decrypt the token TPKTTP .

9. TTP validates the attestation information obtained from CH as follows:

• Validates the AIK certificate;
• Validates the structure of the AIK-signed TPM_CERTIFY_INFO;
• Validates the key PKBind by comparing its digest with the digest received in

TPM_CERTIFY_INFO;
• Calculates the hash of the PCR values HPCR based on the information in the IML

and compares it with the hash of PCR_INFO,
which is a component of TPM_CERTIFY_INFO

10. TTP examines the entries in the IML in order to determine the trustworthiness of the
CH and decides whether SP is satisfied.

11. If step 10 is true, TTP encrypts N and the hash Hvmi with the bind key PKBind obtained
from CH, to ensure that N is only available to CH in a trusted state. By sending N
and Hvmi encrypted with the public key PKBind available to the trusted configuration of
CH, the security perimeter expands to include three parties: C itself, TTP and CH in
its trusted configuration. This implies that all actions performed by CH in its trusted
configuration are trusted by default.

12. Prior to launching the VM, CH decrypts N and Hvmi using the TPM-issued PrKBind, which
is available to it in its trusted configuration but stored in the TPM; next, CH compares
Hvmi obtained from the TTP with the hash of the virtual machine image to be used for
launch and accepts the image only in case the values are equal.

13. CH injects N into the virtual machine image prior to launching the virtual machine
instance.

14. CH returns an acknowledgement to S to confirm a successful launch.
15. To verify that the virtual machine instance has been launched on a trusted platform, C

challenges the virtual machine instance to prove its knowledge of N.

The fact that N is kept confidential allows it to be used as an authentication token while
establishing a secure communication channel between C and the launched VM instance. N
can be used as the pre-shared secret in order to add protection against man-in-the-middle

6Expressed as HTPM_CERTIFY_INFOAIK
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attacks when using Diffie-Hellman key exchange, as specified in the password-authenticated
key-exchange protocol [192].

Some of the operations can be optimized taking into account the operational environment. For
example, the validity period of PKBind created in step (5) can be adjusted. In a similar way,
TTP can have a cache of the PKBind keys created by CHs with verified trusted configurations.
In this case, steps (9) and (10) can be skipped for a certain number of cases, which can also
be regulated by an administrative policy. However, it is important to remember that the use
of such a cache introduces further complexity to TTP, the analysis of which is out of the scope
of this paper.

4 Protocol Security Analysis

In this section we present a critical review of the protocol and highlight improvement areas
that were left as future work. We begin with a security analysis of the protocol, in order to
outline its strengths and weaknesses.

Returning to the security concerns expressed in the requirements on the trusted launch protocol
formulated in Section 2.3, they are addressed as follows. Let φ be the guest virtual machine
instance launched on CH, then:

• R1: Following above protocol, C and φ have a shared secret N. The fact that φ is
running on a trusted platform is ensured by the properties of the bind key used to seal
the shared secret N to the trusted configuration of CH;

• R2: The fact that C is communicating with φ and not any other unexpected virtual
machine instance φ′ is ensured through the combination of: a. verification of CH by the
TTP, b. presence of the token N injected into φ where N is only available to CH in a
trusted state; c. the virtual machine image integrity verification performed by the CH
prior to the launch. A failure at any of the steps of the above sequence would prevent
the trusted virtual machine launch, a fact that would be verifiable by C.

• R3: Integrity of the virtual machine image is ensured through the verification performed
by CH in a trusted state, prior to the trusted virtual machine launch. Thus, the virtual
machine image is verified using the hash value obtained from the TTP. By comparing
the hash of the virtual machine image with the expected Hvmi provided by C, CH ensures
a one-to-one correspondence between the virtual machine image to be used for launch
and the virtual machine image expected by C. The chain is completed once C verifies
the presence of N injected into φ. The presence of the correct token N guarantees the
integrity of φ requested by C.

• R4: Scalability of the protocol is ensured by the lightweight nature of operations that
must be performed by both TTP and CH and the flexibility in the choice of TTP. While
a challenging topic, especially in the case of high-availability and heavy load IaaS setups,
the design of a scalable TTP architecture is out of the scope of this paper.

• R5: Transparency of the trusted virtual machine launch procedure is ensured by the
introduction of client parameters, such as the URL of the TTP, the trust level of CH
and the secret token generated by C. The ability to choose TTP opens the possibility for
C to ensure the trustworthiness of the CH attestation procedure, either through audit
controls of the TTP or by itself serving the role of TTP.
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13. Inject N, launch VM
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14. Confirm
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{N,HVMimg}PKBind
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Figure A.1: Trusted virtual machine launch protocol: C: Client; S: Scheduler; CH:
Compute Host; TTP: Trusted Third Party;

4.1 TTP verification model

The stateless architecture of the TTP implies that it does not maintain knowledge of N except
for at the moment of sealing it to CH and does not maintain any session state at any point
of the protocol. As a result, an Ar can only obtain N from TTP if they obtain TTP’s private
key PrKTTP. Furthermore, assessment of the trust level of a CH according to a deterministic
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algorithm which only takes two inputs (in the form of static set of reference measurement
data and dynamic attestation calls from any CH) will be easily traceable and reproducible
based on the original input data, without the need to recreate or rely on a certain state of
the TPP’s internal data. Finally, a stateless architecture of the TTP contributes indirectly
towards requirement R4.

4.2 Protocol caveats

One aspect that requires more attention is the possibility of a post-launch modification of the
software stack of CH. The runtime process infection method, which is a method for infecting
binaries during runtime7 is one of the malicious approaches that could be used to this end.
This scenario is in fact a common threat to all TCG-based systems, also touched upon in [193],
described in detail in [194] and should thus be prevented using means within the platform which
is part of the trusted computing base verified at boot time, the presence of which is verified
by the above protocol.

5 Protocol Implementation

In order to validate the assumptions made during the protocol design phase, we have im-
plemented it as an extension to OpenStack, an open source IaaS platform chosen given the
open access to its codebase, its large community and the traction it has gained. This sec-
tion briefly introduces the OpenStack architectural model and changes made for the prototype
implementation.

5.1 OpenStack IaaS platform

The Essex release of OpenStack comprises five core components (projects), namely Compute
(Nova), Image Service (Glance), Object Storage (Swift), Identity Service (Keystone) and Dash-
board (Horizon). Nova has several sub-components: nova-api, nova-compute, nova-schedule,
nova-network, nova-volume, plus an SQL database and message queue functionality to pass
messages between sub-components. OpenStack components affected by the protocol imple-
mentation are mentioned here in more detail:

• Nova-api is the interface for nova- compute and volume API calls. It is through this in-
terface most of the cloud orchestration operations are performed. The interface supports
both the OpenStack and Amazon EC2 API.

• Nova-compute handles virtual machine instance life cycle tasks through hypervisor API
calls. Notably the libvirt and XenAPI hypervisor APIs are supported.

• Nova-schedule is responsible for selecting CH(s) to run virtual machine instances on. The
CH selection process is determined by which scheduling policy/algorithm is employed.

• The nova SQL database holds tables and relations to describe the state of nova, such as
launched instances and network configurations.

7Runtime process infection, http://www.phrack.org/issues.html?issue=59&id=8&mode=txt
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• The Dashboard is a web based GUI for OpenStack operation and administration. It
interfaces nova-api.

5.2 Prototype Implementation

Below are the main additions to OpenStack required for the prototype implementation.

Nova SQL database The nova SQL database has been extended to include tables to hold
the available CHs and their SPs:

• An SP is an integer in the range 1-10, with a higher number being more trusted than a
lower number.

• The security profile of a CH is global, rather than specific per tenant.

Dashboard and nova-api The Dashboard web based GUI has been extended to include
the option to request CH attestation, minimum SP selection, token TPKTTP entry and TTP URL
provision (3) into the “Launch Instance” dialog. This information is included in the OpenStack
API HTTP payload to nova-api, which propagates the information to the scheduler.

In the prototype implementation, steps (1) and (2) are performed by a script which outputs
TPKTTP , which then can be manually input into the Dashboard dialog. Note that it is not an
option to let Dashboard provide functionality for generating TPKTTP , since Dashboard is not
trusted by C.

Scheduler, compute host and virtualization driver The nova scheduler S is a cent-
ral component as it decides on which CH a certain virtual machine instance will be launched.
Each S works according to a specific configurable algorithm and several S implementations are
available in OpenStack by default. In the SimpleScheduler implementation, S identifies the
least loaded CH and schedules the virtual machine instance to be launched on that CH.

We extend the behaviour of the SimpleScheduler to include the policy that a CH must belong
to a certain SP or stricter in order to be acceptable for hosting the virtual machine instance.
This policy is realized as follows: first S looks up the recorded SP of CH in the nova database
and proceeds if SP is sufficient compared to the requirements of C (corresponds to (4)). The
second step is to request CH to attest itself with TTP. If SP was not sufficient, the next eligible
CH is selected.

Steps (5)-(7) are perfomed by CH, followed by TTP in steps (8)-(11). Token TCH = {N,Hvmi}PKBind
is returned from TTP to CH after which CH includes the token in the return message to S .
If the attestation was successful, S requests the now trusted CH to launch the virtual machine
instance and includes TCH in the request.

Next, CH decrypts TCH and obtains N and Hvmi. To verify the integrity of the virtual machine
image, Hvmi is included in the call to the virtualization driver (libvirt is used by the prototype),
which fetches the virtual machine image from Glance and caches it locally on CH. The hash of
the cached image is calculated and compared to Hvmi. If the hashes do not match, an exception
is raised. Otherwise, the launch procedure continues (12) and the file injection capability of
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Nova is used to inject N into the file system of the virtual machine image (13). The virtual
machine image is then used to launch the virtual machine instance on CH and steps (14) and
(15) are completed.

6 Related Work

Application of trusted computing principles within IaaS environments has been the focus of
several research papers examined below.

Santos et al propose the design of a “trusted cloud compute platform” (TCCP) that ensures
VMs are running on a trusted hardware and software stack with a remote and initially untrusted
CH[180]. The authors propose a remote attestation process where a trusted coordinator (TC)
stores the list of attested CHs that run a “trusted virtual machine monitor” which can securely
run the client’s VM. A trusted CH maintains in its memory an individual trusted key used for
identification each time the client C instantiates a VM on the trusted CH. The paper presents
a good initial set of ideas for trusted virtual machine launch and migration, in particular
the use of a TC. A limitation of this solution is that the trusted key resides in the memory
of the trusted CH, which leaves the solution vulnerable to cold boot attacks [195] with keys
extractable from memory. Furthermore, the authors require that the TC maintains information
about all CH deployed on the IaaS platform, but do not mention mechanisms for anonymizing
this information, making it valuable to an attacker and unacceptable for a public IaaS provider.
Finally, the solution lacks both mechanisms for revocation of the trusted key and considerations
for the re-generation of trusted key outside of CH reboot.

A decentralized approach to integrity attestation is adopted by Schiffman et al in [196]. The
primary concerns addressed by this approach are the limited transparency of IaaS platforms and
the limits to scalability imposed by third party integrity attestation mechanisms, as described
in [180]. The authors examine a trusted cloud architecture where the integrity of the IaaS
CH is verified by the IaaS client through a “cloud verifier” (CV) proxy that resides in the
application domain of the IaaS platform provider and is accessible by the client. Thus, in the
first step of the protocol the client evaluates the integrity of the CV in order to include the
CV into its trust perimeter if the integrity level of the CV is considered satisfactory. Next, the
CV sends attestation requests from CH, i.e. the CH where the guest virtual machine instance
can potentially be deployed, thus extending the trust chain to the CH. Finally, CH verifies
the integrity of the virtual machine image, which is countersigned by the CV and returned to
the client which evaluates the virtual machine image integrity data and allows or disallows the
virtual machine launch on the CH. While the idea of increasing the transparency of the IaaS
platform for the client is indeed supported in industry [197, 198], the authors do not clarify
how the introduction of an additional integrity attestation component in the architecture of
the IaaS platform has positive effects on the transparency of the IaaS platform. Furthermore,
the proposed protocol increases the complexity model for the IaaS client both by introducing
the evaluation of integrity attestation reports of the CV and CH and introduction of additional
steps in the trusted virtual machine launch, where the client has to take actions based on the
data returned from the CV. This requires either human interaction or a fairly complex integrity
attestation evaluation component (or a combination thereof) on the client side, making a wide-
scale adoption of the solution difficult.

In [189], Aslam et al proposed principles for trusted virtual machine launch on public cloud
platforms using trusted computing techniques. In order to ensure that the requested virtual
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machine instance is launched on a CH with verifiable integrity, the client encrypts the virtual
machine image (along with all injected data) with a symmetric key sealed to a particular
configuration of CH, which is reflected through the values in the platform configuration registers
(PCR) of the TPM deployed on the CH. The solution proposed by Aslam et al presents a
suitable model in the case of trusted virtual machine launch scenarios for enterprise clients.
It requires that the virtual machine image is pre-packaged and encrypted by C prior to IaaS
launch. However the proposed model does not cover the very common scenario of launching
an unmodified virtual machine image made available by the IaaS provider or uploaded by C.
Furthermore, we believe that reducing the number of steps required from C will facilitate the
adoption of the trusted IaaS model. Likewise, direct communication between C and CH, as well
as significant changes to the existing virtual machine launch implementations in IaaS platforms
hamper the implementation of this protocol. This paper reuses some of the ideas proposed in
[189] and directly addresses the above limitations, namely actions to be performed by C, also
touching upon the requirements towards the launched virtual machine instance and required
changes to the IaaS platform.

7 Conclusion

In this paper we have presented a detailed trusted launch protocol for virtual machine instance
launch in public IaaS environments. Furthermore, we have provided a prototype implementa-
tion of the launch protocol in OpenStack. Detailed performance measurement and evaluation,
as well as alternative implementation choices have been left for future work.

The presented results make a case for broadening the range of use cases for trusted computing
by applying it to IaaS environments, especially within the security model of an untrusted IaaS
provider. Trusted computing offers capabilities to securely perform data manipulations on
remote hardware owned and maintained by another party by potentially preventing the use of
untrusted software on that hardware for such manipulations. The presented design is directly
applicable to the process of developing a trusted virtualized environment, such as a public IaaS
service.

Future research recommendations can be grouped into three categories: First is the extension
of the trust chain to other operations on virtual machine instances (migration, suspension,
updates, etc.), as well as data storage and virtual network communication security. The
second category includes addressing certain assumptions of the proposed launch protocol, such
as the assumption that the CH configuration is not changed after the trusted launch of the
virtual machine instance, since even in the case of a bona fide IaaS provider the CH can be
compromised through runtime process infection. A technique to enable C to either directly
or through mediated access discover such events and protect the data used by the virtual
machine instance is a promising research topic. The third category focuses on the design and
implementation of the evaluation policies of the TTP. The current assumption is that the TTP
has access to information regarding “secure” configurations and the PCR values, something
which needs to be directly addressed as evaluating exactly how secure a certain software stack
is a challenge. Furthermore, taking into account the diversity of available libraries as well as the
different combinations in which they can be loaded during the boot process, verification of PCR
values (such as values stored in PCR10 and reference values in binary_runtime_measurements)
becomes a less trivial task.
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Paper B

Providing User Security
Guarantees in Public
Infrastructure Clouds

Nicolae Paladi, Christian Gehrmann and Antonis Michalas

Abstract

The infrastructure cloud (IaaS) service model offers improved resource flexibility
and availability, where tenants – insulated from the minutiae of hardware mainten-
ance – rent computing resources to deploy and operate complex systems. Large-
scale services running on IaaS platforms demonstrate the viability of this model;
nevertheless, many organizations operating on sensitive data avoid migrating op-
erations to IaaS platforms due to security concerns. In this paper, we describe
a framework for data and operation security in IaaS, consisting of protocols for
a trusted launch of virtual machines and domain-based storage protection. We
continue with an extensive theoretical analysis with proofs about protocol resist-
ance against attacks in the defined threat model. The protocols allow trust to be
established by remotely attesting host platform configuration prior to launching
guest virtual machines and ensure confidentiality of data in remote storage, with
encryption keys maintained outside of the IaaS domain. Presented experimental
results demonstrate the validity and efficiency of the proposed protocols. The
framework prototype was implemented on a test bed operating a public electronic
health record system, showing that the proposed protocols can be integrated into
existing cloud environments.
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1 Introduction

Cloud computing has progressed from a bold vision to massive deployments in various applic-
ation domains. However, the complexity of technology underlying cloud computing introduces
novel security risks and challenges. Threats and mitigation techniques for the IaaS model have
been under intensive scrutiny in recent years [21, 180, 196, 199], while the industry has inves-
ted in enhanced security solutions and issued best practice recommendations [200]. From an
end-user point of view the security of cloud infrastructure implies unquestionable trust in the
cloud provider, in some cases corroborated by reports of external auditors. While providers
may offer security enhancements such as protection of data at rest, end-users have limited or
no control over such mechanisms. There is a clear need for usable and cost-effective cloud
platform security mechanisms suitable for organizations that rely on cloud infrastructure.

One such mechanism is platform integrity verification for compute hosts that support the vir-
tualized cloud infrastructure. Several large cloud vendors have signaled practical implementa-
tions of this mechanism, primarily to protect the cloud infrastructure from insider threats and
advanced persistent threats. We see two major improvement vectors regarding these imple-
mentations. First, details of such proprietary solutions are not disclosed and can thus not be
implemented and improved by other cloud platforms. Second, to the best of our knowledge,
none of the solutions provides cloud tenants a proof regarding the integrity of compute hosts
supporting their slice of the cloud infrastructure. To address this, we propose a set of protocols
for trusted launch of virtual machines (VM) in IaaS, which provide tenants with a proof that
the requested VM instances were launched on a host with an expected software stack.

Another relevant security mechanism is encryption of virtual disk volumes, implemented and
enforced at compute host level. While support for data encryption at rest is offered by several
cloud providers and can be configured by tenants in their VM instances, functionality and
migration capabilities of such solutions are severely restricted. In most cases cloud providers
maintain and manage the keys necessary for encryption and decryption of data at rest. This
further convolutes the already complex data migration procedure between different cloud pro-
viders, disadvantaging tenants through a new variation of vendor lock-in. Tenants can choose
to encrypt data on the operating system (OS) level within their VM environments and manage
the encryption keys themselves. However, this approach suffers from several drawbacks: first,
the underlying compute host will still have access encryption keys whenever the VM performs
cryptographic operations; second, this shifts towards the tenant the burden of maintaining
the encryption software in all their VM instances and increases the attack surface; third, this
requires injecting, migrating and later securely withdrawing encryption keys to each of the
VM instances with access to the encrypted data, increasing the probability than an attacker
eventually obtains the keys. In this paper we present DBSP (domain-based storage protection),
a virtual disk encryption mechanism where encryption of data is done directly on the compute
host, while the key material necessary for re-generating encryption keys is stored in the volume
metadata. This approach allows easy migration of encrypted data volumes and withdraws the
control of the cloud provider over disk encryption keys. In addition, DBSP significantly reduces
the risk of exposing encryption keys and keeps a low maintenance overhead for the tenant – in
the same time providing additional control over the choice of the compute host based on its
software stack.

We focus on the Infrastructure-as-a-Service model – in a simplified form, it exposes to its
tenants a coherent platform supported by compute hosts which operate VM guests that com-
municate through a virtual network. The system model chosen for this paper is based on
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requirements identified while migrating a currently deployed, distributed electronic health re-
cord (EHR) system to an IaaS platform [201].

1.1 Contribution

We extend previous work applying Trusted Computing to strengthen IaaS security, allowing
tenants to place hard security requirements on the infrastructure and maintain exclusive control
of the security critical assets. We propose a security framework consisting of three buiding
blocks:

• Protocols for trusted launch of VM instances in IaaS;
• Key management and encryption enforcement functions for VMs, providing transparent

encryption of persistent data storage in the cloud;
• Key management and security policy enforcement by a Trusted Third Party (TTP);

We describe several contributions that enhance cloud infrastructure with additional security
mechanisms:

1. We describe a trusted VM launch (TL) protocol which allows tenants – referred to
as domain managers – to launch VM instances exclusively on hosts with an attested
platform configuration and reliably verify this.

2. We introduce a domain-based storage protection protocol to allow domain managers
store encrypted data volumes partitioned according to administrative domains.

3. We introduce a list of attacks applicable to IaaS environments and use them to develop
protocols with desired security properties, perform their security analysis and prove their
resistance against the attacks.

4. We describe the implementation of the proposed protocols on an open-source cloud
platform and present extensive experimental results that demonstrate their practicality
and efficiency.

1.2 Organization

The rest of this paper is organized as follows. In Section 2 we describe relevant related work
on trusted virtual machine launch and cloud storage protection. In Section 3 we introduce the
system model, as well as the threat model and problem statement. In Section 4 we introduce
the protocol components, and the TL and DBSP protocols as formal constructions. In Section 5,
we provide a security analysis and prove the resistance of the protocols against the defined
attacks, while implementation and performance evaluation results are described in Section 6.
We discuss the protocol application domain in Section 7 and conclude in Section 8.

2 Related Work

We start with a review of related work on trusted VM launch, followed by storage protection
in IaaS.
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2.1 Trusted Launch

Santos et al. [180] proposed a “Trusted Cloud Compute Platform” (TCCP) to ensure VMs are
running on a trusted hardware and software stack on a remote and initially untrusted host. To
enable this, a trusted coordinator stores the list of attested hosts that run a “trusted virtual
machine monitor” which can securely run the client’s VM. Trusted hosts maintain in memory
an individual trusted key used for identification each time a client launches a VM. The paper
presents a good initial set of ideas for trusted VM launch and migration, in particular the use
of a trusted coordinator. A limitation of this solution is that the trusted coordinator maintains
information about all hosts deployed on the IaaS platform, making it a valuable target to an
adversary who attempts to expose the public IaaS provider to privacy attacks.

A decentralized approach to integrity attestation is adopted by Schiffman et al. [196] to
address the limited transparency of IaaS platforms and scalability limits imposed by third
party integrity attestation mechanisms. The authors describe a trusted architecture where
tenants verify the integrity of IaaS hosts through a trusted cloud verifier proxy placed in the
cloud provider domain. Tenants evaluate the cloud verifier integrity, which in turn attests
the hosts. Once the VM image has been verified by the host and countersigned by the cloud
verifier, the tenant can allow the launch. The protocol increases the complexity for tenants
both by introducing the evaluation of integrity attestation reports of the cloud verifier and
host and by adding steps to the trusted VM launch, where the tenant must act based on the
data returned from the cloud verifier. Our protocol maintains the VM launch traceability and
transparency without relying on a proxy verifier residing in the IaaS. Furthermore, the TL
protocol does not require additional tenant interaction to launch the VM on a trusted host,
beyond the initial launch arguments.

Platform attestation prior to VM launch is also applied in [202], which introduces two pro-
tocols – “TPM-based certification of a Remote Resource” (TCRR) and “VerifyMyVM”. With
TCRR a tenant can verify the integrity of a remote host and establish a trusted channel for
further communication. In “VerifyMyVM”, the hypervisor running on an attested host uses
an emulated TPM to verify on-demand the integrity of running VMs. Our approach is in
many aspects similar to the one in [202] in particular with regard to host attestation prior to
VM instance launch. However, the approach in [202] requires the user to always encrypt the
VM image before instantiation, thus complicating image management. This prevents tenants
from using commodity VM images offered by the cloud provider for trusted VM launches. We
overcome this limitation and generalize the solution by adding a verification token, created
by the tenant and injected on the file system of the VM instance only if it is launched on an
attested cloud host.

In [189], the authors described a protocol for trusted VM launch on public IaaS using trusted
computing techniques. To ensure that the requested VM instance is launched on a host with
attested integrity, the tenant encrypts the VM image (along with all injected data) with a sym-
metric key sealed to the host configuration, reflected in the platform configuration registers
(PCR) values of the host TPM. The proposed solution is suitable in trusted VM launch scen-
arios for enterprise tenants as it requires pre-packaging and encrypting the VM image prior
to IaaS launch. However, similar to [202], this prevents tenants from using commodity VM
images offered by the cloud provider to launch VM instances on trusted cloud hosts. Further-
more, we believe that reducing the number of steps required from the tenant can facilitate the
adoption of the trusted IaaS model. We extend some of the ideas proposed in [189], address
the above limitations – such as additional actions required from tenants – and also address the
requirements towards the launched VM instance and required changes to cloud platforms.
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2.2 Secure Storage

Cooper at al described in in [203] a secure platform architecture based on a secure root of trust
for grid environments – precursors of cloud computing. Trusted Computing is used as a method
for dynamic trust establishment within the grid, allowing clients to verify that their data wil
be protected against malicious host attacks. The authors address the malicious host problem
in grid environments, with three main risk factors: trust establishment, code isolation and grid
middleware. The solution established a minimal trusted computing base (TCB) by introducing
a security manager isolated by the hypervisor from grid services (which are in turn performed
within VM instances). The secure architecture is supported by protocols for data integrity
protection, confidentiality protection and grid job attestation. In turn, these rely on client
attestation of the host running the respective jobs, followed by interaction with the security
manager to fulfill the goals of the respective protocols. We follow a similar approach in terms
of interacting with a minimal TCB for protocol purposes following host attestation. However,
in order to adapt to the cloud computing model we delegate the task of host attestation to an
external TTP as well as use TPM functionality to ensure that sensitive cryptographic material
can only be accessed on a particular attested host.

In [204], the authors proposed an approach to protect access to outsourced data in an owner-
write-users-read case, assuming an “honest but curious service provider”. Encryption is done
over (abstract) blocks of data, with a different key per block. The authors suggest a key
derivation hierarchy based on a public hash function, using the hash function result as the
encryption key. The scheme allows to selectively grant data access, uses over-encryption to
revoke access rights and supports block deletion, update, insertion and appending. It adopts
a lazy revocation model, allowing to indefinitely maintain access to data reachable prior to
revocation (regardless of whether it has been accessed before access revocation). While this
solution is similar to our model with regard to information blocks and encryption with different
symmetric keys, we propose an active revocation model, where the keys are cached for a limited
time and cannot be retrieved once the access is revoked.

The “Data-Protection-as-a-Service” (DPaaS) platform [205] balances the requirements for con-
fidentiality and privacy with usability, availability and maintainability. DPaaS focuses on
shareable logical data units, confined in isolated partitions (e.g. VMs of language-based fea-
tures such as Caja, Javascript) or containers, called Secure Execution Environments (SEE).
Data units are encrypted with symmetric keys and can be stored on untrusted hardware, while
containers communicate through authenticated channels. The authors stress the verifiability
of DPaaS using trusted computing and the use of the dynamic root of trust to guarantee that
computation is performed on a “secure” platform. The authors posit that DPaaS fulfills con-
fidentiality and privacy requirements and facilitates maintenance, logging and audit; provider
migration is one of the aspects highlighted, but not addressed in [205]. Our solution resembles
DPaaS in the use of SEE based on software attestation mechanisms offered by the TPM, and
in the reliance on full disk encryption to protect data at rest and support for flexible access
control management of the data blocks. However, the architecture outlined in [205] does not
address bootstrapping the platform (e.g. the VM launch) and provides few details about the
key management mechanism for the secure data store. We address the above shortcomings,
by describing in detail and evaluating protocols to create and share confidentiality-protected
data blocks. We describe cloud storage security mechanisms that allow easy data migration
between providers without affecting its confidentiality.

Graf et al. [206] presented an IaaS storage protection scheme addressing access control. The
authors analyse access rights management of shared versioned encrypted data on cloud infra-
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structure for a restricted group and propose a scalable and flexible key management scheme.
Access rights are represented as a graph, making a distinction between data encryption keys
and encrypted updates on the keys and enabling flexible join/leave client operations, similar
to properties presented by the protocols in this paper. Despite its advantages, the requirement
for client-side encryption limits the applicability of the scheme in [206] and introduces import-
ant functional limitations on indexing and search. In our model, all cryptographic operations
are performed on trusted IaaS compute hosts, which are able to allocate more computational
resources than client devices.

Santos et al. [129] proposed Excalibur, a system using trusted computing mechanisms to allow
decrypting client data exclusively on nodes that satisfy a tenant-specified policy. Excalibur
introduces a new trusted computing abstraction, policy-sealed data to address the fact that
TPM abstractions are designed to protect data and secrets on a standalone machine, at the
same time over-exposing the cloud infrastructure by revealing the identity and software finger-
print of individual cloud hosts. The authors extended TCCP [180] to address the limitations
of binary-based attestation and data sealing by using property-based attestation [207]. The
core of Excalibur is ‘the monitor’, which is a part of the cloud provider, which organises com-
putations across a series of hosts and provides guarantees to tenants. Tenants first decide a
policy and receive evidence regarding the status of the monitor along with a public encryption
key, and then encrypt their data and policy using ciphertext-policy attribute-based encryp-
tion [128]. To decrypt, the stored data hosts receive the decryption key from the monitor who
ensures that the corresponding host has a valid status and satisfies the policy specified by the
client at encryption time. Our solution is similar to the one in [129], with some important
differences: 1) In contrast with [129] our protocols were implemented as a code extension
for Openstack. Furthermore, the presented measurements were made after we deployed the
protocols for a part of the Swedish electronic health records management system in an infra-
structure cloud. Thus, our measures are considered as realistic since the experiments were done
under a real electronic healthcare system; 2) Excalibur does not present a security analysis,
substituted instead by the results of ProVerif (an automated tool) regarding the correctness
of their protocol. Furthermore, we introduced a new list of attacks that can be applied to
such systems, which can be considered as a contribution to protocol designers since can avoid
common pitfalls and design even better protocols in the future.

In [122] the authors presented a cryptographic cloud storage built on an untrusted IaaS in-
frastructure. The approach aims to provide confidentiality and integrity, while retaining the
benefits of cloud storage – availability, reliability, efficient retrieval and data sharing – and
ensuring security through cryptographic guarantees rather than administrative controls. The
solution requires four client-side components: data processor, data verifier, credential gener-
ator, token generator. Some important building blocks are: Symmetric searchable encryption
(SSE), appropriate in settings where the data consumer is also the one who generates it (effi-
cient for single writer-single reader (SWSR) models); Asymmetric searchable encryption (ASE),
appropriate for many writer single reader (MWSR) models, offers weaker security guarantees
as the server can mount a dictionary attack against the token and learn the search terms of
the client; Efficient ASE, appropriate in MWSR scenarios where the search terms are hard to
guess, offers efficient search but is vulnerable to dictionary attacks; Multi-user SSE, appropri-
ate for single writer/many reader settings, allows the owner to – besides encrypting indexes
and generating tokens – revoke user search privileges over data; Attribute based encryption,
introduced in [208], provides users with a decryption key with certain associated attributes,
such that a message can be encrypted using a certain key and a policy. In such a scheme, the
message can only be decrypted only if the policy matches the key used to encrypt it; finally,
proofs of storage allow a client to verify that data integrity has not been violated by the server.
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The concepts presented in [122] are promising – especially considering recent progress in search-
able encryption schemes [209]. Indeed, integrating searchable and attribute-based encryption
mechanisms into secure storage solutions is an important direction in our future work. How-
ever, practical application of searchable encryption and attribute-based encryption requires
additional research.

Earlier work in [131, 132] described interoperable solutions towards trusted VM launch and
storage protection in IaaS. We extend them to create an integrated framework that builds a
trust chain from the domain manager to the VM instances and data in their administrative
domain, and provide additional details, proofs and performance evaluation.

3 System Model and Preliminaries

In this section we describe the system and threat model, as well as present the problem
statement.

3.1 System Model

We assume an IaaS system model (e.g. OpenStack, a popular open-source cloud platform) as
in [64]: providers expose a quota of network, computation and storage resources to its tenants
– referred to as domain managers (Figure B.1). Domain managers utilize the quota to launch
and operate VM guests. Let DM = {DM1, . . . ,DMn} be the set of all domain managers in
our IaaS. Then, VMi =

{
vmi

1, . . . , vmi
n

}
is the set of all VMs owned by each domain manager

DMi. VM guests operated by DM are grouped into domains (similar to projects in OpenStack)
which comprise cloud resources corresponding to a particular organization or administrative
unit. DM create, modify, destroy domains and manage access permissions of VMs to data
stored in the domains. We refer to Di =

{
Di

1, . . . ,Di
n

}
as the set of all domains created by a

domain manager DMi.
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Figure B.1: High level view of the IaaS model introduced in Section 3.

Requests for operations on VMs (launch, migration, termination, etc.) received by the IaaS
are managed by a scheduler that allocates (reallocates, deallocates) resources from the pool
of available compute hosts according to a resource management algorithm. We assume in this
work compute hosts that are physical – rather than virtual – servers. We denote the set of all
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compute hosts as CH = {CH1, . . . ,CHn}. We denote a VM instance vmi
l running on a compute

host CHi by vmi
l 7→ CHi and its unique identifier by idvmi

l.

The Security Profile (SP), defined in [131], is a function of the verified and measured deployment
of a trusted computing base – a collection of software components measurable during a platform
boot. Measurements are maintained in protected storage, usually located on the same platform.
We expand this concept in Section 4. Several functionally equivalent configurations may each
have a different security profile. We denote the set of all compute hosts that share the same
security profile SPi as CHSPi . VMs intercommunicate through a virtual network overlay, a
“software defined network” (SDN). A domain manager can create arbitrary network topologies
in the same domain to interconnect the VMs without affecting network topologies in other
domains.

I/O virtualization enables device aggregation and allows to combine several physical devices
into a single logical device (with better properties), presented to a VM [210]. Cloud platforms
use this to aggregate disparate storage devices into highly available logical devices with arbit-
rary storage capacity (e.g. volumes in OpenStack). VMs are presented with a logical device
through a single access interface, while replication, fault-tolerance and storage aggregation are
hidden in the lower abstraction layers. We refer to this logical device as storage resource (SR);
as a storage unit, an SR can be any unit supported by the disk encryption subsystem.

3.2 Threat Model

We share the threat model with [131,132,180,189], which is based on the Dolev-Yao adversarial
model [211] and further assumes that privileged access rights can used by a remote adversary
Adv to leak confidential information. Adv, for example a corrupted system administrator,
can obtain remote access to any host maintained by the IaaS provider, but cannot access
the volatile memory of guest VMs residing on the compute hosts of the IaaS provider. This
property is based on the closed-box execution environment for guest VMs, as outlined in Terra
[212] and further developed in [107,112].

Hardware Integrity Media revelations have raised the issue of hardware tampering en
route to deployment sites [2, 213]. We assume that the cloud provider has taken necessary
technical and non-technical measures to prevent such hardware tampering.

Physical Security We assume physical security of the data centres where the IaaS is
deployed. This assumption holds both when the IaaS provider owns and manages the data
center (as in the case of Amazon Web Services, Google Compute Engine, Microsoft Azure, etc.)
and when the provider utilizes third party capacity, since physical security can be observed,
enforced and verified through known best practices by audit organizations. This assumption is
important to build higher-level hardware and software security guarantees for the components
of the IaaS.

Low-Level Software Stack We assume that at installation time, the IaaS provider re-
liably records integrity measurements of the low-level software stack: the Core Root of Trust
for measurement; BIOS and host extensions; host platform configuration; Option ROM code,
configuration and data; Initial Platform Loader code and configuration; state transitions and
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wake events, and a minimal hypervisor. We assume the record is kept on protected storage
with read-only access and the adversary cannot tamper with it.

Network Infrastructure The IaaS provider has physical and administrative control of
the network. Adv is in full control of the network configuration, can overhear, create, replay and
destroy all messages communicated between DM and their resources (VMs, virtual routers,
storage abstraction components) and may attempt to gain access to other domains or learn
confidential information.

Cryptographic Security We assume encryption schemes are semantically secure and the
Adv cannot obtain the plain text of encrypted messages. We also assume the signature scheme
is unforgeable, i.e. the Adv cannot forge the signature of DMi and that the MAC algorithm
correctly verifies message integrity and authenticity. We assume that the Adv, with a high
probability, cannot predict the output of a pseudorandom function. We explicitly exclude
denial-of-service attacks and focus on Adv that aim to compromise the confidentiality of data
in IaaS.

3.3 Problem Statement

The introduced Adv has far-reaching capabilities to compromise IaaS host integrity and con-
fidentiality. We define a set of attacks available to Adv in the above threat model.

Given that Adv has full control over the network communication within the IaaS, one of the
available attacks is to inject a malicious program or back door into the VM image, prior to
instantiation. Once the VM is launched and starts processing potentially sensitive information,
the malicious program can leak data to an arbitrary remote location without the suspicion of
the domain manager. In this case, the VM instance will not be a legitimate instance and in
particular not the instance the domain manager intended to launch. We call this type of attack
a VM Substitution Attack:

Definition 3.1 (Successful VM Substitution Attack). Assume a domain manager, DMi, in-
tends to launch a particular virtual machine vmi

l on an arbitrary compute host in the set CHSPi .
An adversary, Adv, succeeds to perform a VM substitution attack if she can find a pair
(CH, vm) : CH ∈ CHSPi , vm ∈ VM, vm ̸= vmi

l, vm 7→ CH, where vm will be accepted by DMi as
vmi

l.

A more complex attack involves reading or modifying the information processed by the VM
directly, from the logs and data stored on CH or from the representation of the guest VMs’
drives on the CH file system. This might be non-trivial or impossible with strong security
mechanisms deployed on the host; however, Adv may attempt to circumvent this through a
so-called CH Substitution Attack – by launching the guest VM on a compromised CH.

Definition 3.2 (Successful CH Substitution Attack). Assume DMi wishes to launch a VM vmi
l

on a compute host in the set CHSPi . An adversary, Adv, succeeds with a CH substitution
attack iff ∃ vmi

l 7→ CHj, CHj ∈ CHSPj , SPj ̸= SPi: vmi
l will be accepted by DMi.

Depending on the technical expertise of DMi, Adv may still take the risk of deploying a con-
cealed – but feature-rich – malicious program in the guest VM and leave a fall back option in
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case the malicious program is removed or prevented from functioning as intended. Adv may
choose a combined VM and CH substitution attack, which allows a modified VM to be launched
on a compromised host and present it to DMi as the intended VM:
Definition 3.3 (Successful Combined VM and CH Substitution Attack). Assume a domain
manager, DMi, wishes to launch a virtual machine vmi

l on a compute host in the set CHSPi . An
adversary, Adv, succeeds to perform a combined CH and VM substitution attack if she
can find a pair (CH, vm), CH ∈ CHSPj , SPj ̸= SPi, vm ∈ VM, vm ̸= vmi

l, vm 7→ CH, where vm will
be accepted by DMi as vmi

l.

Denote by Di
vm the set of storage domains that vm ∈ VM, vm 7→ CHi can access. We define a

successful storage compute host substitution attack as follows1:
Definition 3.4 (Successful Storage CH Substitution Attack). A DMi wishes to launch or has
launched an arbitrary virtual machine vmi

l on a compute host in the set CHSPi . An adversary
Adv succeeds with a storage CH substitution attack if she manages to launch vmi

l 7→ CHj,
CHj ∈ CHSPj , SPj ̸= SPi and Di

vmi
l
∩ Dj

vmi
l
̸= ∅.

If access to the data storage resource is given to all VMs launched by DMi, Adv may attempt to
gain access by launching a VM that appears to have been launched by DMi. Then, Adv would
be able to leak data from the domain owned by DMi to other domains. This infrastructure-level
attack would not be detected by DMi and requires careful consideration. A formal definition
of the attack1 follows.
Definition 3.5 (Successful Domain Violation Attack). Assume DMi has created the domains
in the set Di. An adversary Adv succeeds to perform a domain violation attack if she
manages to launch an arbitrary VM, vmj

m on an arbitrary host CHj, i.e. vmj
m 7→ CHj, where

Dj

vmj
m
∩ Di ̸= ∅.

4 Protocol Description

We now describe two protocols that constitute the core of this paper’s contribution. These
protocols are successively applied to deploy a cloud infrastructure providing additional user
guarantees of cloud host integrity and storage security. For protocol purposes, each domain
manager, secure component and trusted third party has a public/private key pair (pk/sk).
The private key is kept secret, while the public key is shared with the community. We assume
that during the initialization phase, each entity obtains a certificate via a trusted certification
authority. We first describe the cryptographic primitives used in the proposed protocols,
followed by definitions of the main protocol components.

4.1 Cryptographic Primitives

The set of all binary strings of length n is denoted by {0, 1}n, and the set of all finite binary
strings as {0, 1}∗. Given a set U, we refer to the ith element as vi. Additionally, we use the

1 In this definition we exclude the possibility of legal domain sharing which would be a natural
requirement for most systems. However, with our suggested definition, the legal sharing case can be
covered by extending the domain manager role such that it is allowed not to a distinct entity but a
role that is possibly shared between domain managers that belong to different organizations.
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following notations for cryptographic operations throughout the paper:

• For an arbitrary message m ∈ {0, 1}∗, we denote by c = Enc (K,m) a symmetric encryption
of m using the secret key K ∈ {0, 1}∗. The corresponding symmetric decryption operation
is denoted by m = Dec(K, c) = Dec(K, Enc(K,m)).

• We denote by pk/sk a public/private key pair for a public key encryption scheme. En-
cryption of message m under the public key pk is denoted by c = Encpk (m)2 and the
corresponding decryption operation by m = Decsk(c) = Decsk(Encpk(m)).

• A digital signature over a message m is denoted by σ = Signsk(m). The corresponding
verification operation for a digital signature is denoted by b = Verifypk(m, σ), where b = 1
if the signature is valid and b = 0 otherwise.

• A Message Authentication Code (MAC) using a secret key K over a message m is denoted
by µ = MAC(K,m).

• We denote by τ = RAND(n) a random binary sequence of length n, where RAND(n)
represents a random function that takes a binary length argument n as input and gives
a random binary sequence of this length in return3.

4.2 Protocol Components

Disk encryption subsystem a software or hardware component for data I/O encryp-
tion on storage devices, capable to encrypt storage units such as hard drives, software RAID
volumes, partitions, files, etc. We assume a software-based subsystem, such as dm-crypt, a
disk encryption subsystem using the Linux kernel Crypto API.

Trusted Platform Module (TPM) a hardware cryptographic co-processor following
specifications of the Trusted Computing Group (TCG) [36]; we assume CH are equipped with
a TPM v1.2. The tamper-evident property facilitates monitoring CH integrity and strengthens
the assumption of physical security. An active TPM records the platform boot time software
state and stores it as a list of hashes in platform configuration registers (PCRs). TPM v1.2 has
16 PCRs reserved for static measurements (PCR0 - PCR15), cleared upon a hard reboot. Ad-
ditional runtime resettable registers (PCR16-PCR23) are available for dynamic measurements.
Endorsement keys are an asymmetric key pair stored inside the TPM in the trusted platform
supply chain, used to create an endorsement credential signed by the TPM vendor to certify
the TPM specification compliance. A message encrypted (“bound”) using a TPM’s public key
is decryptable only with the private key of the same TPM. Sealing is a special case of binding
– bound messages are only decryptable in the platform state defined by PCR values. Platform
attestation allows a remote party to authenticate a target platform and obtain a guarantee that
it – up to a certain level in the boot chain – runs software that is identical to the expected one.
To do this, an attester requests – accompanied by a nonce – the target platform to produce
an attestation quote and the measurement aggregate, or Integrity Measurement List (IML).
The TPM generates the attestation quote – a signed structure that includes the IML and the
received nonce – and returns the quote and the IML itself. The attestation quote is signed

2Alternative notations used for clarity are {m}pk or ⟨m⟩pk.
3We assume that a true random function in our constructions is replaced by a pseudorandom

function the input-output behaviour of which is “computationally indistinguishable” from that of a
true random function.
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with the TPMs Attestation Identity Key (AIK). The exact IML contents are implementation-
specific, but should contain enough data to allow the verifier to establish the target platform
[214] integrity. We refer to [36] for a description of the TPM, and to [131,132,202] for protocols
that use TPM functionality.

Trusted Third Party (TTP) an entity trusted by the other components. TTP verifies
the TPM endorsement credentials on hosts operated by the cloud provider and enrolls the
respective TPMs’ AIKs by issuing a signed AIK certificate. We assume that TTP has access
to an access control list (ACL) describing access and ownership relations between DM and D.
Furtermore, TTP communicates with CH to exchange integrity attestation data, authentication
tokens and cryptographic keys. TTP can attest platform integrity based on the integrity
attestation quotes and the valid AIK certificate from a TPM, and seal data to a trusted
host configuration. Finally, TTP can verify the authenticity of DM and perform necessary
cryptographic operations. In this paper, we treat the TTP as a “black box” with a limited,
well-defined functionality, and omit its internals. Availability of the TTP is essential in the
cloud scenario – we refer the reader to the rich body of work on fault tolerance for approaches
to building highly available systems.

Secure Component (SC) this is a verifiable execution module performing confidenti-
ality and integrity protection operations on VM guest data. SC is present on all CH and is
responsible for enforcing the protocol; it acts as a mediator between the DM and the TTP and
forwards the requests from DM to either the TTP or the disk encryption subsystem. SC must
be placed in an isolated execution environment, as in the approaches presented in [107,112].

4.3 Trusted Launch Construction

We now present our construction for the TL, with four participating entities: domain manager,
secure component, trusted third party and cloud provider (with the ‘scheduler’ as part of it).
TL comprises a public-key encryption scheme, a signature scheme and a token generator.
Figure B.2 shows the protocol message flow (some details omitted for clarity).

TL.Setup : Each entity obtains a public/private key pair and publishes its public key. Below
we provide the list of key pairs used in the following protocol:

• (pkDMi , skDMi ) – public/private key pair for DMi;
• (pkTTP, skTTP) – public/private key pair for TTP;
• (pkTPM, skTPM) – TPM bind key pair;
• (pkAIK, skAIK) – TPM attestation identity key pair;

TL.Token : To launch a new VM instance vmi
l, DMi generates a token by executing τ = RAND(n)

and calculates the hash (H1) of the VM image (vmi
l) intended for launch, the hash (H2) of

pkDMi , and the required security profile SPi. Finally, Di
vmi

l
describes the set of domains that

vmi
l with the identifier idvmi

l shall have access to; the six elements are concatenated into:
m1 =

{
τ ∥H1 ∥H2 ∥SPi∥idvmi

l∥Di
vmi

l

}
. DMi encrypts m1 with pkTTP by running c1 = EncpkTTP (m1).
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Figure B.2: Message Flow in the Trusted VM Launch Protocol.

Next, DMi generates a random nonce r and sends the following arguments to initiate a trus-
ted VM launch procedure: ⟨c1, SPi, pkDMi , r⟩, where c1 is the encrypted message generated in
TL.Token, SPi is the requested security profile and pkDMi is the public key of DMi. The message
is signed with skDMi , producing σDMi . Upon reception, the scheduler assigns the VM launch to
an appropriate host with a security profile SPi, e.g. host CHi. In all further steps, the nonce r
and the signature of the message are used to verify the freshness of the received messages.

Upon reception, SC verifies message integrity and TL.Token freshness by checking respectively
the signature σDMi and nonce r. When SC first receives a TL.Request message, it uses the
local TPM to generate a new pair of TPM-based public/private bind keys, (pkTPM, skTPM),
which can be reused for future launch requests, to avoid the costly key generation procedure.
Keys can be periodically regenerated according to a cloud provider-defined policy. To prove
that the bind keys are non-migratable, PCR-locked, public/private TPM keys, SC retrieves the
TPM_CERTIFY_INFO structure, signed with the TPM attestation identity key pkAIK [36] using the
TPM_CERTIFY_KEY TPM command; we denote this signed structure by σTCI. TPM_CERTIFY_INFO
contains the bind key hash and the PCR value required to use the key; PCR values must not
necessarily be in a trusted state to create a trusted bind key pair. This mechanism is explained
in further detail in [131].

81



Next, SC sends an attestation request (TL.AttestRequest) to the TTP, containing the encrypted
message (c1) generated by DMi in TL.Token, the nonce r and the attestation data (AttestData),
used by the TTP to evaluate the security profile of CHi and generate the corresponding TPM
bind keys. SC also requests the TPM to sign the message with skAIK, producing σAIK. AttestData
includes the following:

- the public TPM bind key pkTPM;
- the TPM_CERTIFY_INFO structure;
- σTCI: signature ofTPM_CERTIFY_INFO using skAIK;
- IML, the integrity measurement list;
- the TCI-certificate;

Upon reception, TTP verifies the integrity and freshness of TL.AttestRequest, checking re-
spectively the signature σAIK and nonce r. Next, TTP verifies – according to its ACL – the
set Di

vmi
l

to ensure that DMi is authorised to allow access to the requested domains for vmi
l and

decrypts the message m1 := DecskTTP (c1), decomposing it into τ, H1, H2, SPi. Finally, TTP
runs an attestation scheme to validate the received attestation information and generate a new
attestation token.

Definition 4.1 (Attestation Scheme). An attestation scheme, denoted by TL.Attestation, is
defined by two algorithms (AttestVerify, AttestToken) such that:

1. AttestVerify is a deterministic algorithm that takes as input the encrypted message from
the requesting DMi and attestation data, ⟨c1,AttestData⟩, and outputs a result bit b. If
the attestation result is positive, b = 1; otherwise, b = 0. We denote this by b :=
AttestVerify(c1, σAIK,AttestData).

2. AttestToken is a probabilistic algorithm that produces a TPM-sealed attestation token.
The input of the algorithm is the result of AttestVerify, the message m to be sealed and
the CH AttestData. If AttestVerify evaluates to b = 1, the algorithm outputs an encrypted
message c2. We write this as c2 ← AttestToken(b,m,AttestData). Otherwise, if AttestVerify
evaluates to b = 0, AttestToken returns ⊥.

In the attestation step, TTP first runs AttestVerify to determine the trustworthiness of the tar-
get CHi. In AttestVerify, TTP verifies the signature σTCI and σAIK against a valid AIK certificate
contained in AttestData and examines the entries provided in the IML. AttestVerify returns b = 0
and TTP exits the protocol if the entries differ from values expected for the security profile SPi.
Otherwise, AttestVerify returns b = 1 and TTP runs AttestToken to generate a new encrypted
attestation token for CHi. Having verified that the entries in IML conform to the security pro-
file SPi, TTP generates a symmetric domain encryption key, DKi, to protect the communication
between the SC and TTP in future exchanges. Finally, TTP seals m2 =

{
τ∥H1∥H2∥DKi∥idvmi

l

}
to the trusted platform configuration of CHi, using the key pkTPM received through the at-
testation request. The encrypted message (c2 ← AttestToken(b,m2,AttestData), r), along with a
signature (σTTP) produced using skTTP is returned to SC.

Upon reception, SC checks the message integrity and freshness before unsealing it using the
corresponding TPM bind key skTPM. The encrypted message is unsealed to the plain text
m2 =

{
τ∥H1∥H2∥DKi∥idvmi

l

}
only if the platform state of CHi has remained unchanged. SC

calculates the hash (H′
1) of the VM image supplied for launch and verifies that its identifier

matches the expected identifier idvmi
l; SC also calculates the hash of pkDMi received from the
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cloud provider, denoted by H′
2. Finally, SC verifies that H1 = H′

1 and only in that case injects
τ into the VM image. Likewise, SC verifies that the public key registered by DMi with the
cloud provider in step TL.Setup has not been altered, i.e. H2 = H′

2 and only in that case injects
pkDMi into the VM image prior to launching it.

In the last protocol step, DMi verifies that vmi
l has been launched on a trusted platform with

security profile SPi, while vmi
l verifies the authenticity of DMi. This is done by establishing a

secure pre-shared key TLS session [215] between vmi
l and DMi using τ as the pre-shared secret.

4.4 Domain-Based Storage Protection Construction

We now continue with a description of the DBSP protocol. Along with three of the entities
already active in the TL protocol – domain manager, secure component, the trusted third party
– DBSP employs a fourth one: the storage resource. In this case, DMi interacts with the other
protocol components through a VM instance vmi

l running on CHi. We assume that vmi
l has

been launched following the TL protocol. The DBSP protocol includes a public and a private
encryption scheme, a pseudorandom function for domain key generation, a signature scheme
and a random generator. Figure B.3 presents the DBSP protocol mesage flow.

SR SC TTP

⟨{
SRi, H2,metaik, AttestData, r

}
DKi

, σAIK

⟩DBSP.DomKeyReqDBSP.DomKeyReq Request to generate keys for the domain Di
k

⟨{
c3, c4, µik,meta

i
k, r

}
, σTTP

⟩DBSP.DomKeyGenDBSP.DomKeyGen Verifies the state of CH & generates Ki
k, IK

i
k

⟨
metaik, c4, µ

i
k

⟩
to the header of the domain

WriteDBSPHeader to Storage Resource

Unlock Volume by releasing Ki
k

Figure B.3: Message Flow in the Domain-Based Storage Protection Protocol.

DBSP.Setup: We assume that in TL.Setup, each entity has obtained a public/private key pair
and published pk.

Assume DMi requests access for a certain VM vmi
l to a storage resource SRi in the domain

Di
k ∈ Di

vmi
l
. The request is intercepted by the SC, which proceeds to retrieve from TTP a

symmetric encryption key for the domain Di
k.
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DBSP.DomKeyReq: SC sends to TTP a request to generate keys for the domain Di
k. The

request contains the target storage resource SRi, hash H2 of pkDMi , the nonce r and metaik,
containing the unique domain identifier and the security profile required to access the domain
Di

k, i.e., metaik =
{
Di

k, SPi
}

pkTTP
; SC uses the symmetric key DKi received during TL.Attestation

to protect message confidentiality, and the local TPM to sign the message with skAIK, producing
σAIK (see DBSP.DomKeyReq in Figure B.3).

Upon the reception of DBSP.DomKeyReq, TTP verifies the freshness and integrity of the
request and proceeds to the next protocol step, DBSP.DomKeyGen, only if this verification
succeeds.

DBSP.DomKeyGen: A probabilistic algorithm enabling TTP to generate a symmetric encryp-
tion key (Ki

k) and integrity key (IKi
k) for a domain Di

k. TTP generates a nonce using a random
message mi ∈ {0, 1}n by executing ni = RAND (mi). Next, TTP uses a PRF to generate the
keys for domain Di

k, by evaluating the following:

Ki
k = PRF

(
KTTP,Di

k∥SPi∥ni
)
,

IKi
k = PRF

(
KTTP,Di

k∥ni
)
,

where KTTP is a master key that does not leave the security perimeter of TTP, Ki
k is a symmetric

encryption key to confidentiality protect the data and IKi
k a symmetric key to verify the integrity

of the stored data.

TTP seals Ki
k and IKi

k to the trusted configuration of CHi by calculating

c3 = EncpkTPM

(
Ki
k∥IKi

k

)
.

TTP encrypts the generated nonce ni and the provided security profile SPi by evaluating c4 =
EncKTTP (ni∥SPi) to later use it for verification. Next, TTP generates a message authentication
code µ by evaluating µik = MAC(KTTP, ni∥SPi). The domain key generation algorithm is denoted
by

(
c3, c4, µik

)
← DBSP.DomKeyGen(ni,KTTP, skTPM).

Having generated the domain key, TTP responds to the DBSP.DomKeyReq by sending {c3, c4,
µik,meta

i
k, r} with the signature σTTP. Upon reception, SC first verifies message integrity and

freshness, and calls the local TPM to unseal c3, producing Ki
k∥IKi

k if and only if CHi remains
in the earlier trusted state. Next, SC stores metaik, c4 and µik in the domain header and uses
Ki
k, IKi

k as inputs to the disk encryption subsystem on CHi, which decrypts and verifies the
data integrity of the mounted volume hosting Di

k before providing plain text access to vmi
l.

To recreate the encryption and integrity keys for the domain Di
k, SC sends a request similar to

DBSP.DomKeyReq, adding to the message the values c4 and µik, which are stored in the domain
header. Upon reception, TTP verifies the integrity of the received value c4 by calculating
µik = MAC(KTTP, ni∥SPi). If the integrity verification of c4 is positive, TTP decrypts it to
ni∥SPi = DecskTTP (c4) and calculates the domain key as in DBSP.DomKeyGen, using the existing
token ni instead of generating a new one4.

4Key retrieval is currently not covered in the security analysis due to space limitations
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5 Security Analysis

We now analyse the TL and DBSP protocols in the presence of an adversary. We prove the
security of both schemes through a theoretical analysis, showing that our protocols are resistant
to the attacks presented in Section 3.3.

Proposition 1 (VM Substitution Soundness). The TL protocol is sound against the VM
substitution attack.

Proof : An adversary Adv trying to launch vm ̸= vmi
l on CH can only get vm accepted by DMi

if the last mutual authentication step in the trusted launch procedure is successful. In turn,
this step only succeeds if at least one of the following two options is true:

a. The secure component SC uses a different token, τ ′ ̸= τ accepted by DMi in the final
secure channel establishment.

b. The secure component SC on CH uses the very same token τ used by DMi when launching
vmi

l.

Option a can only succeed if Adv can break the mutual authentication in the secure channel
setting. Given that the selected secure channel scheme is sound and τ is sufficiently long and
selected using a sound random generation process, the Adv fails to break the last protocol step.
Hence, as long as the secure channel protocol is sound, the overall protocol construction is also
sound against this attack option.

Option b can only succeed if the adversary either manages to guess a value τ ′ = τ when
launching vm or manages to either obtain τ when DMi launches vmi

l or replace the association
between τ and vmi

l with an association between τ and vm when DMi launches vmi
l, by attacking

any of the protocol steps preceding the final mutual authentication step. A successful attack
has in this case the probability τ ′ = τ equals to 1/2n, where n is the length of the token value
and is infeasible if n is large enough. Below, we show why the adversary also fails with respect
to the last option.

• TL.Token. Assume the adversary intercepts the TL.Token message. Then the adversary
has two options: she might either try to modify the TL.Token message (option 1) with
the goal to replace the association between τ and the vmi

l with τ and vm, or she might
try to obtain the secret value τ (option 2) and then launch vm with this τ value on an
arbitrary valid provider platform. We discuss both these options below.

- TL.Token Option 1: A modification can only be achieved by the adversary by either
breaking the public key encryption scheme used to produce c1 or trying to make
this modification on c1 by direct modification (without first decrypting it) and sign
the modified c1 with an own selected private key. The former option fails due to
the assumption of public key encryption scheme soundness and the latter due to
that modifying a public encrypted structure without knowledge of the private key
is infeasible.

- TL.Token Option 2: Direct decryption of c1 fails due to the assumption of sound-
ness of the public key encryption scheme used to produce c1. The only remaining
alternative for the adversary is relaying the TL.Token to a platform CH′ ∈ CHSPi ,
which is under the full control of the adversary. Further, Adv follows the protocol
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and issues the command TL.AttestRequest using the intercepted c1, AttestData and
σAIK. However, this fails at the TL.Attestation step since AttestData does not contain
a valid AIK certificate unless the adversary has managed to get control of a valid
platform in the provider network with a valid certificate or she has managed to
break the AIK certification scheme. The former option violates the assumption
of physical security of the provider computing resources while the latter option
violates the assumption of a sound public key and AIK certification schemes.

• TL.AttestRequest. The adversary could either try to impersonate this message with the
goal of obtaining τ or the association between τ and vmi

l. This impersonation attempt
fails as the whole sent structure is signed with the pkAIK with a secure public key signing
scheme. Furthermore, attempts to resend an old valid TL.AtttestRequest fail as the H1

verification that the SC receives in return fails as it does point on the old VM. Similarly,
any attempts to modify TL.AttestRequest fail as the whole structure is signed with a
secure signature scheme.

• TL.Attestation. Any attempt by the adversary to obtain τ would be equal to breaking
the public key encryption of TL.AttestToken. Similarly, any attempt to modify c2 fails
due to the fact that modification of a public encrypted structure without knowledge of
the private key is unfeasible if the public key encryption scheme is sound. Any attempt
by the adversary to replace an old recorded valid TL.AttestToken message fails as such
messages do contain a VM image hash H1 different than the one expected by the SC. □

Proposition 2 (CH Substitution Soundness). The TL protocol is sound against the CH
substitution attack.

Proof : DMi intends to launch a virtual machine vmi
l on an arbitrary compute host CHi with a

security profile SPi. An adversary Adv trying to launch vmi
l on CHj ∈ CHSPj , SPj ̸= SPi, can only

get vmi
l accepted by DMi if the last mutual authentication step in the trusted launch procedure

is successful. In turn, this step can only succeed if at least one of the following two options is
true:

a. The secure component SC is using a different token, τ ′ ̸= τ that is accepted by DMi in
the final secure channel establishment.

b. The secure component SC on CHj is using the very same token τ used by DMi when
launching vmi

l.

Option a is impossible as proved in Proposition 1. Option b can only succeed if the adversary
either manages to guess a value τ ′ = τ when launching vmi

l or manages to induce the TTP
to seal the token τ to the configuration of CHj. Finding τ ′ = τ is infeasible for the adversary
as shown in Proposition 1. Below, we show why the adversary also fails with respect to the
second option.

Assume Adv intercepts the TL.Token message. Then it has two options: either attempt to
launch vmi

l on a compute host CHj /∈ CHSPi or on CHj ∈ CHSPi .

- TL.Token CHj /∈ CHSPi : The Adv can replace the following information from the TL.Token
message: SPi with SPj, pkDMi with pkADV , which is a public key generated by the Adv
and σc1 with σADV = SignskADV (c1). By doing this, she can successfully proceed beyond
the TL.AttestRequest step since SC is not able to detect the substitution. However, this
attack fails at the TL.Attestation step since the AttestData sent to the TTP evaluates to a
security profile SPj ̸= SPi in contradiction with the preference of DMi contained in c1.

86



- TL.Token CHj ∈ CHSPi : The Adv can replace the following information from the TL.Token
message: pkDMi with pkADV , which is a public key generated by the Adv and σc1
with σADV = SignskADV (c1). By doing this, he can successfully proceed beyond the
TL.AttestRequest step since SC is unable to detect the substitution. However, this at-
tack fails at the TL.Attestation step since the pkAIK key used to produce the signature
σAIK is not among the keys enrolled with the TTP according to Section 4.2.

The cases of TL.AttestRequest and TL.Attestation fail as demonstrated in Proposition 1. □

Proposition 3 (Combined VM and CH Substitution Soundness). The TL protocol is sound
against the VM and CH substitution attack.

Proof : The exculpability of the VM substitution attack and the CH substitution attack implies
that the TL protocol is secure against the combined VM and CH substitution attack. □

Proposition 4 (Storage CH Substitution Soundness). The DBSP protocol is sound against
the storage CH attack.

Proof : Adversary Adv can only succeed with a storage CH substitution attack if she manages
to launch a VM instance vmi

l 7→ CHi, CHi ∈ CHSPi on a host CHj ∈ CHSPj , SPj ̸= SPi and
Di

vmi
l
∩ Dj

vmi
l
̸= ∅. This can only be achieved if she requests launch of vmi

l on a platform with
profile SPj. According to Proposition 2 and Proposition 3, such launch requests are rejected
by DMi; however, this does not prevent the Adv from attempting these options. The following
two alternatives are available to the adversary:

a. The Adv launches vmi
l 7→ CHj on a platform under its own control (i.e. outside the

provider domain).
b. The Adv launches vmi

l 7→ CHj on a valid platform in the provider network.

Option a: This option implies that the TL.AttestRequest step fails as shown in the proof of
Proposition 1. In this case, the platform controlled by Adv does not get the symmetric key
DKi in return to the attestation request. Without access to DKi, the only remaining option for
the adversary is to attempt to break the final key request or the disc encryption scheme. Thus
the following options are available:

• DBSP.DomKeyReq : The first option is to intercept a valid DBSP.DomKeyReq message
for a storage domain Di

k ∈ Di
vmi

l
and replace the intercepted signature σAIK with her own

own signature, σ′
AIK over the very same encrypted request (encrypted with a valid DKi).

However, similar to the earlier attempt to perform a TL.AttestRequest, this fails since
the Adv does not have access to a valid attestation key. Any other attempt to send the
adversary’s own DBSP.DomKeyReq fails for the same reason.

• DBSP.DomKeyGen : The remaining option is to observe a valid DBSP.DomKeyGen for
a domain Di

k ∈ Di
vmi

l
and attempt to access the encrypted storage keys. The latter fails

due to the assumption of the TPM public key scheme soundness.
• Attack Storage Encryption Scheme: The remaining option for the Adv in this case is to

directly break the disc encryption scheme. However, this is infeasible according to the
disc encryption scheme soundness.
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Option b: According to this option, the Adv tries launching vmi
l using TL.Token on a plat-

form with profile SPj using its own credentials. The following impersonation alternatives are
available:

• Own token: The adversary Adv sends a TL.Token message required by the protocol:
EncpkTTP

(
τ ∥ H1 ∥ H2 ∥ SPj ∥ idvmi

l ∥ Di
vmi

l

)
, SPj, pkADV , r, σADV , where H2 either is the

hash of pkDMi or the hash of pkADV . If the first option is used, the SC obtains in return
to TL.AttestRequest, i.e. the TL.Attestation message, a sealed value with a hash H′

2 ̸= H2

which causes the SC to abort the launch. If the second option is used, the complete
launch procedure succeeds as expected. However, when the SC later requests the key for
SRi using the DBSP.DomKeyReq message, it includes the hash H2 of the the Adv public
key (pkADV) in the encrypted and signed request. Adv cannot change the hash value in
this request unless she breaks the signature scheme of the request. Upon receiving the
request, TTP identifies that Adv is not allowed to access Di

k ∈ Di
vmi

l
and does not return

the storage keys in DBSP.DomKeyGen.
• Legitimate token: In this option, the Adv observes a valid c1 in TL.Token for another vm

with access rights to the intended domain and uses it to launch an own valid TL.Token
message: c1, SPj, pkADV , r, σADV. However, in this case the TL.AttestRequest fails as the
profile in c1 does not match the platform attested data. Furthermore, if the SC receives
a reply to TL.AttestRequest, i.e. a TL.Attestation message, it would receive a sealed value
with a hash H′

2 ̸= H2, causing the SC to abort the launch. □

Proposition 5 (Domain Violation Attack). The DBSP protocol is sound against the domain
violation attack.

Proof : Similar to the proof of Proposition 4, Adv has the following two options:

a. The Adv launches vmj
m 7→ CHj on a platform under its control (i.e. outside the provider

domain).
b. The Adv launches vmj

m 7→ CHj on a valid platform in the provider network.

Option a: This option fails in analogy with the proof of Proposition 4, as Adv fails to success-
fully launch vmj

m and her remaining options are to either attack the final key request or the
disc encryption scheme, which both fail (see proof of Proposition 4).

Option b: In analogy with the proof of Proposition 4, Adv has only two options available: a
full impersonation with an own chosen token of type EncpkTTP

(
τ ∥H1 ∥H2 ∥SPj∥idvmj

m∥Dj

vmj
m

)
,

SPj, pkADV , r, σADV , Dj

vmj
m
⊆ Di, or a partial impersonation reusing an observed c1 of type

c1, SPj, pkADV , r, σADV for a subset of target storage domain. Both options fail in analogy with
the arguments presented for the proof of Proposition 4. □

6 Implementation and Results

We next describe the implementation of the TL and DBSP protocols followed by experimental
evaluation results.
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6.1 Test bed Architecture

We describe the infrastructure of the prototype and the architecture of a distributed EHR
system installed and configured over multiple VM instances running on the test bed.

Infrastructure Description

The test bed resides on four Dell PowerEdge R320 hosts connected on a Cisco Catalyst 2960
switch with 801.2q support. We used Linux CentOS, kernel version 2.6.325 and the Open-
Stack cloud computing platform6 (version Icehouse) using KVM virtualization support. The
prototype IaaS includes one “controller” running essential platform services (scheduler, PKI
components, SDN control plane, VM image storage, etc.) and three compute hosts running
the VM guests. Compute hosts dedicate most of their resources to the VM guests, while the
controller runs essential platform services, such as: the scheduler, database wrappers, PKI com-
ponents, SDN control plane, web graphical user interface, VM image storage service, etc. All
hosts run additional processes necessary to support and integrate the IaaS platform function-
ality. The topology of the prototype SDN reflects three larger domains of the application-level
deployment (front-end, back-end and database components) in three virtual LAN (VLAN)
networks.

Compute host
Local cloud platform services

nova-api nova-scheduler nova-compute

Operating
System

Hardware NIC

TCP/IP

VT-x

KVM

iSCSI-initiator

TPM

SC

libvirt-hook

dm-crypt

libvirt

QEMU

VM 1

Storage host

* Remote host attestation
* Key management

Trusted Third Part

Figure B.4: Placement of the SC in the prototype implementation. ‘nova-api’, ‘nova-api’,
‘nova-compute’: implementation-specific OpenStack components; ‘QEMU’: open-source
machine emulator and virtualizer; ‘KVM’ virtualization infrastructure for the Linux ker-
nel; ‘VT-x’: processor extensions for virtualization support; ‘libvirt’: virtualization API;
‘libvirt-hook’: libvirt infrastructure for customization scripts; ‘dm-crypt’: disk encryption
library; ‘SC’: secure component; ‘TPM’: Trusted Platform Module; ‘iSCSI-initiator’: en-
dpoint to initiate the iSCSI protocol; ‘TCP/IP’: TCP/IP stack; ‘NIC’: network interface
card.

The compute hosts use libvirt7 for virtualization functionality. To implement the DBSP pro-
tocol we modified libvirt 0.10.2 and used the “libvirt-hooks” infrastructure to implement the
SC for the TL and DBSP protocols. SC unlocks the volumes on compute hosts and interacts
with the TPM and TTP (see Figure B.4). It uses a generic server architecture where the SC
daemon handles each request in a separate process. An inter process communication (IPC)

5Full version identifier: 2.6.32-358.123.2.openstack.el6.x86_64
6OpenStack project website: https://www.openstack.org/
7Libvirt website: http://libvirt.org/
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Table B.1: Overhead for unlocking a volume with DBSP (all times in ms)

Process Event Time
QEMU Begin handle unlock request 0.083
SC Requesting key from TTP 0.609
SC Unseal key in TPM 2700.870
SC Unlocking volume with cryptsetup 11.834
QEMU End handle unlock request 26

TOTAL 2714.004

protocol defines the types of messages processed by the SC. The IPC protocol uses sychronous
calls with several types of requests for the respective SC operations; the response contains the
exit code and response data. A detailed architecture of SC, including the main libraries that
it relies on, is presented in Figure B.5.

libvirt

nova-compute

TPM trousers

libcryptsetup dm-cryptTTP
Client

IPC
Endpoint

Metadata
Controller

SC
Core

Storage
Host

User
VM

Kernel
Code

IPC
Initiator

Trusted Third Party

Figure B.5: Close-up view of the secure component implementation architecture, presented
as a combination of components and existing libraries. Components are capitalized, while the
libraries start with lowercase. ‘nova-compute’: implementation-specific OpenStack compon-
ent; ‘libvirt’: virtualization API; ‘Kernel Code’: Linux Kernel; ‘IPC Initiator’: code to
initiate inter-process communication calls to the secure component; ‘IPC Endpoint’: code to
terminate inter-process communication calls to the secure component; ‘TTP Client’: client
code to communicate with the TTP; ‘SC Core’: secure component kernel code; ‘Metadata
Controller’: component to format and parse storage resource metadata; ‘libcryptsetup’:
communication api for dm-crypt; ‘dm-crypt’: disk encryption library; ‘trousers’: TPM
access library; ‘TPM’: Trusted Platform Module.

Application Description

The prototype also includes a distributed EHR system deployed over seven VM instances. This
system contains one client VM, two front-end VMs, two back-end VMs, a database VM and
an auxiliary external database VM. Six of the VM instances operate on Microsoft Windows
Server 2012 R2, with one VM running the client application operates on Windows 7. The
components of the EHR system communicate using statically defined IP addresses on the
respective VLANS described in Section 6.1. Load balancing functionality provided by the
underlying IaaS allots the load among front-end and back-end VM pairs. The hosts of the
cluster are compatible with the TL protocol, which allows an infrastructure administrator to
perform a trusted launch of VM instances on qualified hosts. Similarly, the infrastructure
administrator can apply the DBSP protocol to protect sensitive information stored on the
database servers.
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6.2 Performance evaluation

Trusted launch Figure B.6 shows the duration of a VM launch over 100 successful in-
stantiations: the TL protocol extends the duration of the VM instantiation (which does not
include the OS boot time) on average by 28%. However, in our experiments we have used
a minimalistic VM image (13.2 MB), based on CirrOS 8, while launching larger VM images
takes significantly more time and proportionally reduces the overhead induced by TL.
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Figure B.6: Overhead induced by the TL protocol during VM instantiations.

DBSP Processing time Table B.1 shows a breakdown of the time required to process
a storage unlock request, an average of 10 executions. Processing a volume unlock request
on the prototype returns in ≈2.714 seconds; however, this operation is performed only when
attaching the volume to a VM instance and does not affect the subsequent I/O operations on
the volume. A closer view highlights the share of the contributing components in the overall
overhead composition. Table B.1 clearly shows that the TPM unseal operation lasts on average
≈2.7 seconds, or 99.516% of the execution time. According to Section 4.2, in this prototype
we use TPMs v1.2, since a TPM v2.0 is not available on commodity platforms at the time
of writing. Given that the vast majority of the execution time is spent in the TPM unseal
operation, implementing the protocol with a TPM v2.0 may yield improved results.

DBSP Encryption Overhead Next, we examine the processing overhead introduced by
the DBSP protocol. Figure B.7 presents the results of a disk performance benchmark obtained
using IOmeter9. To measure the effect of background disk encryption with DBSP, we attached
two virtual disks to a deployed server VM described in 6.1. The storage volumes were physically
located on a different host and communicating over iSCSI. We ran a benchmark with two
parallel workers on the plaintext and DBSP-encrypted volumes over 12 hours. Next, we disabled
in the host BIOS the AES-NI acceleration, created and attached a new volume to the VM and
reran the benchmark. This has produced three performance data result sets: plaintext, DBSP
encryption and DBSP encryption with AES-NI acceleration. Figure B.7 summarises the total

8CirrOS project website: https://launchpad.net/cirros
9IOmeter project website: http://iometer.org
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IO, read IO and write IO results. It is visible that the measurements ‘4 KiB aligned (DBSP)
with AES-NI’ and ‘1 MiB (DBSP) with AES-NI’ are roughly on par with the plaintext baseline:
‘4 KiB aligned’ and ‘1 MiB’. The performance overhead induced by background encryption is
at 1.18% for read IO and 0.95% for write IO. We can expect that this performance penalty
will be further reduced as the hardware support for encryption is improved. Disk encryption
without hardware acceleration (‘4 KiB aligned (DBSP)’ and ‘1 MiB (DBSP)’) is significantly
slower, as expected, with a performance penalty of respectively 49.22% and 42.19% (total IO).
It is important to reemphasize that the runtime performance penalty is determined exclusively
by the performance of the disk encryption subsystem. DBSP only affects the time required to
unlock the volume when it is attached to the VM instance, as presented in Table B.1.
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Figure B.7: Benchmarks results on identical drives: plaintext, with DBSP, with DBSP
and AES-NI acceleration.

7 Application Domain

The presented results are based on work in collaboration with a regional public healthcare
authority to address some of its concerns regarding IaaS security. We have deployed the
prototype described in Section 6, further extended by integrating a medication database, and
evaluated it through end-user validation and performance tests. Our results demonstrate that
it is both possible and practical to provide strong platform software integrity guarantees to
IaaS tenants and efficiently isolate their data using established cryptographic tools. Platform
integrity guarantees allow tenants to take better decisions on both workload migration to the
cloud and workload placement within IaaS. This contrasts with the current, “flat” trust model,
where all IaaS hosts declare the same – but unverifiable for the tenant – trust level.

An essential conclusion of this practical exercise is that the additional cost of providing secur-
ity guarantees can be effectively offset by composing cloud services from different competing
providers, without having to delegate the trust among these providers. Thus, in our cloud
model the tenant can purchase cheaper cloud disk storage without any additional risk for data
confidentiality.

Another conclusion is that while organizations operating on sensitive data, e.g. public health-
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care authorities, consider the risks of migrating data to IaaS clouds as unacceptable, the ma-
jority of available providers use commercial-off-the-shelf (COTS) cloud platforms with limited
capabilities to enhance the security of their deployments, failing to meet the customer require-
ments. This demonstrates the need to incorporate integrity verification and data protection
mechanisms into popular COTS cloud platforms by default. We hope that these important
lessons will inspire new secure, usable and cost-effective solutions for cloud services.

On the practical side, specifically regarding the role of the TTP, we envision two scenarios.
The TTP could either be managed by the tenant itself (for organizations with enough resources
and expertise), or by an external organization (similar to a certificate authority). The first
scenario allows the tenant to retain the benefits of cloud services along with additional security
guarantees. Similarly, in the second scenario, smaller actors can obtain the same benefits
without the need to invest into own attestation infrastructure. In both scenarios, in order to
protect the cloud provider the TTP would only operate on a physical slice of the resources (i.e.
a subset of compute hosts) that correspond to the respective tenant domains.

8 Conclusion

From a tenant point of view, the cloud security model does not yet hold against threat mod-
els developed for the traditional model where the hosts are operated and used by the same
organization. However, there is a steady progress towards strengthening the IaaS security
model. In this work we presented a framework for trusted infrastructure cloud deployment,
with two focus points: VM deployment on trusted compute hosts and domain-based protec-
tion of stored data. We described in detail the design, implementation and security evaluation
of protocols for trusted VM launch and domain-based storage protection. The solutions are
based on requirements elicited by a public healthcare authority, have been implemented in a
popular open-source IaaS platform and tested on a prototype deployment of a distributed EHR
system. In the security analysis, we introduced a series of attacks and proved that the proto-
cols hold in the specified threat model. To obtain further confidence in the semantic security
properties of the protocols, we have modelled and verified them with ProVerif [216]. Finally,
our performance tests have shown that the protocols introduce a insignificant performance
overhead.

This work has covered only a fraction of the IaaS attack landscape. Important topics for
future work are strengthening the trust model in cloud network communications, data geo-
location [217], and applying searchable encryption schemes to create secure cloud storage
mechanisms. Our results show that it is possible and practical to provide strong platform
software integrity guarantees for tenants and efficiently isolate their data using established
cryptographic tools. With reasonable engineering effort the framework can be integrated into
production environments to strengthen their security properties.
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Paper C

Domain Based Storage
Protection with Secure Access
Control for the Cloud

Nicolae Paladi, Antonis Michalas and Christian Gehrmann

Abstract

Cloud computing has evolved from a promising concept to one of the fastest grow-
ing segments of the IT industry. However, many businesses and individuals con-
tinue to view cloud computing as a technology that risks exposing their data to
unauthorized users. We introduce a data confidentiality and integrity protection
mechanism for Infrastructure-as-a-Service (IaaS) clouds, which relies on trusted
computing principles to provide transparent storage isolation between IaaS clients.
We also address the absence of reliable data sharing mechanisms, by providing an
XML-based language framework which enables clients of IaaS clouds to securely
share data and clearly define access rights granted to peers. The proposed im-
provements have been prototyped as a code extension for a popular cloud platform.

1 Introduction

Cloud computing continues its path towards wider adoption, and more companies attempt to
tap into the promise of cost savings. Evidence to the success of the Infrastructure-as-a-Service
(IaaS) model are both the increasing competition among IaaS cloud providers and the rush to
migrate to IaaS clouds among businesses.

Moving traditional infrastructure to shared virtualized environments raises new security chal-
lenges. We can hope that users are aware of such security issues and strive to obtain from

95



IaaS clouds security properties – such as execution isolation and control over data – which
are on a par with on-site deployments. However, considering that clients of IaaS clouds share
execution and storage resources with other tenants, anonymous to them, currently available
security solutions have proved to be insufficient. In [17], the authors have achieved to map
the cloud infrastructure, collocate a malicious virtual machine (VM) instance with a target
instance and launch side-channel attacks to extract information. The authors of [18] describe a
range of attacks on management interfaces of public clouds using signature wrapping and XSS
attacks. As a result, the attackers would be able to compromise the control interfaces of the
IaaS cloud and misuse the cloud resources of other tenants. Finally, a recent example are the
“dirty disks” of a public IaaS provider [21], where clients were able to read from improperly
sanitised storage devices data stored by previous clients. This directly points to one of the
unsolved problems in public IaaS clouds – ensuring data protection and secure data sharing.

Full-disk encryption has emerged as a solid solution for data confidentiality protection and is
also mentioned in [21] as a solution to the “dirty disks” problem. However, full-disk encryption
creates hurdles for data sharing, widely recognized as an essential feature for cloud applications
[205]. Despite the variety of available open source cloud management platforms (e.g Open-
Stack, Eucalyptus, OpenNebula), allocation of read-write permissions for shared data between
collaborating tenants still remains an open problem. In this paper we address the outlined
gap. We improve and extend previous work by adding capabilities to both grant access to data
to other IaaS cloud clients and assign access permissions.

1.1 Our Contribution

The contribution of this work is twofold. We first present a secure storage protection protocol
that provides per-VM instance access control and allows the client to control a VM instance’s
read and write access rights over a storage device at launch time. We introduce an XML-based
language framework that allows users to define role-based access control in order to grant access,
based on permissions, to other users in the IaaS cloud. Our protocol allows a granular access
rights management per VM instance and storage device. In addition, we analyse our protocol
and show it is resistant under malicious behaviors. Second, we complement the analysis with
extensive experimental results that show the effectiveness of the protocol.

1.2 Organization

In Section 2, we review some of the most important protocols that provide domain storage
protection in public IaaS clouds and mechanisms for secure data sharing in clouds. In Section 3,
we describe the problem of data protection in IaaS clouds and define the important terms
used throughout the paper. In Section 4, we describe the system model of a cloud platform
(CP) which stands at the basis of our protocol implementation. In Section 5, we present
our protocol for secure storage protection data sharing mechanism in IaaS clouds. Section 7
contains experimental results of the protocol benchmarks, while Section 8 concludes the paper.
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2 Related Work

The importance of data confidentiality protection and isolation of data between IaaS cloud
tenants is underlined by the attention it has received from the research community.

In [218], authors propose a full disk background encryption model by introducing TCVisor, a
hypervisor with a parapass-through architecture that introduces TPM support and novel key-
management approach. Support for TPM is added in order to store parts of cryptographic keys
and whole-disk checksums for integrity checking. In addition to that, Merkle trees are used for
integrity verification and protection of the root value relying on TPM functionality. However,
the poor description of storing/sealing the root value of the Merkle tree hash, raises doubts
about protocol’s validity.

The authors of [107] focus on hypervisor-level data protection and introduce Cloudvisor –
a security monitor underneath the commodity hypervisor which provides protection to the
hosted VMs. CloudVisor runs in host mode and encrypts the data exchange between a VM
and the hypervisor and verifies the integrity, freshness and ordering of disk I/O data. One
immediate limitation of the solution in [107] are the severe functionality limitations, such as
support for a single VM instance. Our protocol uses the functionality offered by commodity
hypervisors in order to ensure data protection and does not introduce such severe limitations.

A solution for management of encrypted data is described in [204], where each information
block is encrypted with a different symmetric key, thus aiming for a cryptography-based access
control. An ‘information block’ represents an abstract concept of arbitrary size. The paper
assumes a lazy revocation model, where a user indefinitely maintains access to the data that
she could reach prior to revocation (regardless of whether or not the data has been accessed
before access revocation). While similar to our model in aspects such as information blocks
and encryption with different symmetric keys, we propose an active revocation model, where
the keys can not be retrieved once the access is revoked.

Few of the IaaS storage protection schemes address the problem of sharing files with certain
permissions. In [206], authors analysed access rights management of shared versioned en-
crypted data on cloud infrastructure for a restricted group. in their model they proposed an
adoption for enabling scalable and flexible key management within cloud. By representing
access rights as a graph and based on [219], authors were able to distinguish between the keys
used for encrypting data and the encrypted updates on the keys, enabling flexible join/leave
operations of clients. Despite being an attractive approach, the requirement for client-side
encryption limits the applicability of the scheme and ignores the limitations to functionality
(such as indexing and search) that it introduces. In our model all cryptographic operations
are performed on trusted IaaS compute hosts, which are able to allocate more computational
resources than client devices.

Data-Protection-as-a-Service (DPaaS) [205] is a conceptual architecture which aims to address
the need for integrity, privacy, access transparency, ease of verification and rich computation
in a cloud environment. DPaaS recognises the difficulties with full disk encryption and focuses
on data sharing, proposing flexible data units access control lists. Despite highlighting a range
of important issues related to cloud data protection, DPaaS falls short of proposing a clear
implementation strategy and specific sharing mechanisms that could be used by cloud tenants.
In the current paper, we address many of the concerns highlighted in [205], propose an XML-
based framework to enable data sharing and describe a test implementation in the context of
a cloud platform.
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3 Preliminaries

Our protocol assumes that basic functionality normally provided by a CP, such as registration
and authentication of a user, is available. Similar to [132], the active parties in our protocol
are domain managers (d), virtual machines (VM), a secure component (SC) as well as a trusted
third party (TTP). Domain managers can launch new VM instances, which can in turn create
data and securely share it with other VM instances both within the same and other IaaS
clouds. The proposed protocol also relies on the capabilities of the Trusted Platform Module
(TPM) [36].

For the purposes of our protocol, each domain manager, SC and TTP has a public/private key
pair (pk/sk). The private key is kept secret, while the public key is shared with the community.
Furthermore, we assume that during the initialization phase, each entity obtains a certificate
via the certification authority provided by the CP. These keys and certificates will be used
to protect internal message exchanges and hence the communication between the parties is
assumed to be secure. Finally, our protocol also relies on pseudorandom functions [220] – a
major tool for the design of shared key cryptography protocols – to create symmetric keys.

Next, we define the main components of our protocol.

Disk encryption subsystem The disk encryption subsystem is a software or hardware
component responsible for encryption and decryption of data during respectively writes or
reads from a storage device. It can encrypt storage units such as whole hard drives, parti-
tions, software RAID volumes, logical volumes, and files. For simplicity, this paper assumes
a software-based disk encryption subsystem, such as dm-crypt, a popular open-source disk
encryption subsystem which uses the Linux kernel Crypto API.

Domain Manager (di) Domain Managers are responsible for launching virtual machines
and handling the VM instances that they create. Let DM = {d1, . . . , dn} be the set of all
domain managers in our IaaS cloud. Then, the set of all VMs that each domain manager di
owns is defined as VMi =

{
vmi

1, . . . , vmi
n

}
.

Domain (Domi) A domain is an abstract concept referring to a collection of data. A
domain Domi can be created only from a domain manager which is also responsible for granting
permissions to VM instances within the cloud environment. As a storage unit, a domain can
be any unit supported by the disk encryption subsystem. Let Di =

{
Domi

1, . . . ,Domi
n

}
be the

set of all domains created by a domain manager di.

Trusted Platform Module (TPM) TPM is a tamper-evident hardware cryptographic
coprocessor which follows the specifications of the Trusted Computing Group (TCG) [36]. In
this work, we assume that the IaaS compute hosts are equipped with a TPM v1.2 chip. An
active TPM records the software state of the platform at boot time and stores it in its platform
configuration registers (PCRs) as a list of hashes. TPM enables data protection by securely
maintaining cryptographic keys, as well as though the set of functions it exposes. The bind and
seal functions are particularly relevant for the proposed solution. According to [36], a message
encrypted (“bound”) using a particular TPM’s public key is decryptable only by using the
private key of the same TPM. Sealing is a special case of the binding functionality, where the
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encrypted messages produced through binding are only decryptable in a certain platform state
(defined by the PCR values) to which the message is sealed. This ensures that an encrypted
message can only be decrypted by a platform found in a certain prescribed state. We refer to
[36] for a detailed description of the bind and seal operations.

Trusted Third Party (TTP) In this paper we assume a “trusted third party”, which is
trusted by the community and plays a key role in our protocol. We rely on the commonly
supported proposition that a large code base normally contains a proportionally large number
of vulnerabilities [221]. To reduce the code base, it is important that the TTP only supports
the minimal necessary functionality. TTP is able to communicate with components deployed
on compute hosts to exchange integrity attestation information, authentication tokens and
cryptographic keys. In addition, TTP can attest platform integrity based on the integrity
attestation quotes provided by the TPM on the respective compute hosts, as well as seal data
to a trusted configuration of the hosts. Finally, TTP can verify the authenticity of a client as
well as perform necessary cryptographic operations.

Secure Component (SC) SC is a verifiable execution module which performs confiden-
tiality and integrity protection operations on guest VM instance data. SC is present on all
compute hosts and acts as a mediator between the CP and the TTP. SC is responsible for for-
warding the requests of domain managers to either the TTP or the disk encryption subsystem,
depending on the type of request. In addition, SC is the only entity from which TTP accepts
requests.

Definition 3.1 (Pseudorandom Function). Let PRF (K, c) be a family of functions1 with two
inputs, a secret key K and a content c. We say that PRF is a pseudorandom function iff the input-
output behavior of a random instance of the family is “computationally indistinguishable” from
that of a random function.

In this paper, we focus on the following problem:

Problem Statement: A domain manager di, operates a set of VM instances VMi ={
vmi

1, . . . , vmi
n

}
. In addition to that, di operates a set of domains Di =

{
Domi

1, . . . ,Domi
k

}
made available to the VM instances as storage devices. Finally, a different domain manager
dj operates a set of VMs VMj =

{
vmj

1, . . . , vmj
n
}

. We aim to create secure mechanisms that will
satisfy the following requirements:

• Data stored in each Domi
l should be encrypted;

• Plaintext data from each Domi
l should be revealed only to VM instances with corresponding

access privileges;
• Access privileges for members of VMi to domains in Di should be exclusively controlled

by domain manager di;
• di should be able to share access privileges for domains in Di to other domain managers,

e.g. dj;
1A function family is a map F : K × D → R, where K is the set of keys of F, D is the domain of F

and R is the range of F. The two-input function F takes a key K and an input X to return a point Y
denoted by F(K, X).
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Adversarial Model Similar to existing works in the area, we assume that the adversary
is acting under the Dolev-Yao adversarial model [211]. In this model, malicious nodes can
overhear all messages and may attempt to use them to learn information that should otherwise
remain private. Adversaries can also create, replay and destroy messages; however, they are
not able to break any cryptographic mechanism.

The notation Ei(.) will refer to the results of the application of an asymmetric encryption
function that only entity i can decrypt with her private key.

4 IaaS Cloud System Model

We consider an IaaS cloud model as defined by the NIST, where an IaaS cloud provides “pro-
cessing, storage, networks, and other fundamental computing resources where the consumer
is able to deploy and run arbitrary software, which can include operating systems and applic-
ations.” [64]. The model is based on a CP deployed on multiple server platforms. The CP is
a distributed middleware composed of a series of management services on management hosts
and corresponding service agents deployed on service hosts.

Service hosts can be dedicated to compute resources (compute hosts hosting virtual machines)
and/or storage resources. Management services control vital aspects of the CP such as schedul-
ing, networking, identity, volume and virtual machine image management. In a typical CP
architecture, management services and service clients communicate among themselves using
the advanced message queuing protocol (AMQP) based on a publish-subscribe model. The
capabilities of a CP are exposed to domain managers through a set of APIs, graphical or com-
mand line interfaces. Domain managers use the functionality of the CP in order to operate
VM instances, create storage volumes and custom network topologies using software defined
networks.

The IaaS cloud is maintained by a cloud service provider, an organization responsible for the
operation of the IaaS cloud. The cloud service provider can be either private or public. In this
paper we assume a public cloud provider, with multiple domain managers sharing physical
resources through a virtualization layer. On the physical compute host level, virtualization
between the domain managers is ensured by the hypervisor; communication isolation is en-
sured though VLAN tagging (using the IEEE 801.2Q tags); CP level isolation relies on the
authentication service, which authenticates domain managers based on their credentials.

Domain managers can create and attach block storage volumes to one or more virtual machine
instances in the cloud environment. Support for storage encryption is offered by a standard
disk encryption subsystem. Domain managers can also grant access rights on a certain volume
to their peers.

5 Protocol Description

Our work is an extension of the protocol presented in [132] where the authors introduced the
principles of “domain-based storage protection” (DBSP) in a public IaaS cloud. DBSP is based
on a set of protocols that allow an IaaS client to shift the responsibility for data confidentiality
and integrity to an external TTP – away from the IaaS provider. This approach relies on two
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protocols: initial data write operation and subsequent data read and write operations. The
core idea of this approach is to store information necessary to derive the decryption key for a
given data volume in a header appended to the volume itself. The decryption key can only be
derived by the TTP using the information stored at write time in the volume header and TTP’s
own secret key. Besides withdrawing data protection responsibility from the IaaS provider, this
enables a fluid migration of the IaaS client’s encrypted data assets to a different IaaS provider,
while maintaining trust in the same TTP. In addition, the approach in [132] allows to precede
the release of the decryption key with a remote attestation of the platform done by the same
TTP. Remote attestation would: (i) ensure that the execution platform is in a certain trusted
state and (ii) allow the TTP to seal the decryption key to the trusted configuration of the
host to prevent its misuse in the form of migration to other platforms or usage in a different
platform configuration.

Having briefly covered the background, we proceed with a high-level overview of our protocol.
A domain manager di launches n VM instances and a set of domains Di =

{
Domi

1, . . . ,Domi
n

}
that the VM instances can access to read and write data. To this end, di authenticates to
the CP and requests to generate a domain Domi

k. The request also describes the VM instances
belonging to the set VMi that should have access to the specified domain and the respective
access rights. The CP is responsible for creating Domi

k and allocating the corresponding disk
space. During this process, the SC (part of the CP) contacts TTP, to generate a symmetric key
(KDomi

k

2) that will be used to encrypt data in Domi
k. Following the successful creation of Domi

k,
a domain manager must prove the right of a certain VM instance to access Domi

k.

In the following protocol, the participants exchange a number of messages. In order to ensure
the integrity of the communication, we assume that each message is signed by the sender and
the receiver can easily verify it.

5.1 Domain Sharing

One of the challenges of cloud computing is to enable users to securely administer data in a
shared environment. Despite the fact that the protocol in [132] achieves protection of data
in the cloud, it is considered a rudimentary work since it lacks sharing functionality. In the
following paragraphs, we bridge this gap by presenting an extension of the protocol introduced
in [132], which can be added to a typical CP to allow a domain manager to share a storage
domain with other VM instances in the IaaS cloud.

Domain Registration Assume that a domain manager di wishes to create a domain Domi
k.

As a first step, di defines the parameters needed to create the domain (e.g volume, size, name,
etc.) and a description of the type of data stored in Domi

k. This description constitutes the
metadata (metaik) of Domi

k and will be used for domain discovery and data search. Upon receiving
a domain creation request, the CP generates an XML document (Listing C.1), allocates the
corresponding disk space (by e.g. creating a logical volume) and adds metaik to the header of
the allocated volume. It also adds the domain credential that will later used by the TTP to
the header of the allocated volume.

2All data in a single domain is protected with the same storage protection master key, the domain
key. This key is generated by the TTP and cannot ever leave TTP′s logical perimeter.
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1 <DomainCredential scope=”create”>
2 <CredentialID>cred:id</CredentialID>
3 <Timestamp>issue:time</Timestamp>
4 <DomainDescription>
5 <DomainID Encoding=”xmlenc:rsa”>Domi

k
</DomainID>

6 <DomainName lang=”EN”>dom:name</DomainName>
7 <DomainManager Encoding=”xmlenc:rsa”>
8 ETTP (di)
9 </DomainManager>

10 <DomainVolume Encoding=”xmlenc:rsa”>
11 Edi

(volume : id)
12 </DomainVolume>
13 <DomainSize>Edi

(disk : size)</DomainSize>
14 <Metadata>metai

k
</Metadata>

15 </DomainDescription>
16 </DomainCredential>

Listing C.1: Credential specification for the creation of a new domain.

Once a domain has been created, di can grant access permissions to multiple VM instances.
We analyse the problem of sharing a domain in the following two use cases:

A. Grant access to Domi
k for a VM instance in the set VMi: Assume di intends to grant access to

Domi
k for a VM instance vmi

l, which is part of the set VMi. To do this, di requests the launch of
a new virtual machine vmi

l and defines the access domain(s) and respective permissions for vmi
l.

More precisely, di generates and sends to the CP an XML document as shown in Listing C.2
where each encrypted element (i.e xmlenc:rsa) is protected with pkTTP and thus TTP is the only
one who can decrypt it. Prior to launching the VM instance with the requested domain(s)
attached, SC checks that element DomainDescription matches the one stored in the header
of the domain Domi

k. If it does, SC updates the XML structure of Listing C.1 by adding the
element VirtualMachine contained in the VM instance launch request.

Once vmi
l is launched, di generates a credential as shown in Listing C.3 that will be used later

to prove that di has granted access permissions for Domi
k to vmi

l.

B. Grant access to Domi
k for a VM instance in the set VMj: Assume di intends to grant access

to Domi
k to a VM instance vmj

l, which is part of the set VMj (operated by domain manager dj).
As we have mentioned earlier, a VM instance must receive a credential from the corresponding
domain manager in order to access files in a specific domain. In this case though, the manager
of Domi

k is not the owner of vmj
l, so in order to grant access to vmj

l, dj requests a valid credential
from di. Upon reception – if di accepts to give access to vmj

l – it generates a credential as
described in Listing C.2 and sends it to the CP. Domain manager di also generates a random
nonce rj and sends Edj (rj) to dj as well as ESC (rj) to the CP. Upon reception, dj decrypts it
with skdj , and sends it to CP which validates that D (ESC (rj)) = D

(
Edj (rj)

)
. Then, SC adds the

corresponding VM to the credential of Domi
k as described in the previous case. More exactly,

SC will add a nonce, the VMID and the access permissions (presented in Listing C.4) to the
credential of Domi

k (XML document in Listing C.1).

5.2 Domain Access

Next, we describe the domain confidentiality protection mechanism and present the protocol
to retrieve encryption keys and provide access to plain text data for authorized VM instances.
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1 <DomainCredential scope=”addVM”>
2 <CredentialID>cred:id</CredentialID>
3 <Timestamp>issue:time</Timestamp>
4 <DomainDescription>
5 <DomainID>Domi

k
</DomainID>

6 <DomainName lang=”EN”>dom:name</DomainName>
7 <DomainManager>manager:id</DomainManager>
8 </DomainDescription>
9 <VirtualMachine manager=”di”>

10 <VMID Encoding=”xmlenc:rsa”>ETTP

(
vmi

l

)
</VMID>

11 <Nonce Encoding=”xmlenc:rsa”>ETTP (r)</Nonce>
12 <permissions Encoding=”xmlenc:rsa”>
13 <permission>r</permission>
14 <permission>w</permission>
15 </permissions>
16 </VirtualMachine>
17 </DomainCredential>

Listing C.2: Credential Specification for the addition of a VM to a domain.

We assume that vmi
l requires access to the data in Domi

k. To grant access, SC must retrieve
from TTP the symmetric key (Ki

k) used to confidentiality protect data in Domi
k. The domain

manager operating vmi
l sends a request to CP in order to mount Domi

k to the virtual machine
instance; the call is forwarded to and processed by SC. In the request, di sends the previously
generated credential (Listing C.3) and proves that vmi

l has access to Domi
k. SC extracts from

the header of the domain Domi
k a data structure (Listing C.1) that contains information about

the domain and sends it to TTP along with the unique identifier of vmi
l.

As a first case, we assume that no data has been stored in Domi
k yet, which implies that Ki

k has
not been generated yet. When TTP receives the message from SC, it first decrypts ETTP

(
vmi

l

)
from the XML document presented in Listing C.3 and locats the ID of the VM instance
contained in the credential. Next, TTP checks if the corresponding block (i.e where VMID
element is equal with vmi

l) exists in the credential of the domain. If it does, TTP decrypts the
metadata and checks that values match in both XML files. It then finds the permissions of
vmi

l for Domi
k by decrypting permissions from the domain credential.

Once TTP has validated that vmi
l is authorized to access Domi

k, it performs a remote attestation
of the compute host where vmi will be launched (for simplicity, we assume that this is is also the
source of the key request). The remote attestation involves obtaining a quote of the compute
host’s TPM platform configuration registers to evaluate whether the platform can be trusted.
We leave out the minutiae of remote attestation and evaluation of platform trust level and
refer the reader to [131].

In the event of a positive result of the TPM remote attestation, TTP generates a symmetric
key (Ki

k) that encrypts data in the domain. To create the key, TTP generates a random nonce
rk and evaluates the following:

Ki
k = PRF

(
metaik∥rk,KTTP

)
,

where metaik∥rk is respectively the concatenation of metadata and the random generated nonce,
and KTTP is a master key that does not leave the security perimeter of TTP. After generating
the symmetric key for Domi

k, TTP seals it to the trusted configuration of the compute host
(similar to the key sealing procedures already described in [131, 132]) and returns to SC the
response shown in Listing C.5.

103



1 <DomainCredential scope=”accessDomain”>
2 <CredentialID>cred:id</CredentialID>
3 <Timestamp>issue:time</Timestamp>
4 <DomainDescription>
5 <DomainID Encoding=”xmlenc:rsa”>dom:id</DomainID>
6 <DomainName lang=”EN”>dom:name</DomainName>
7 <DomainManager>manager:id</DomainManager>

8 <Metadata Encoding=”xmlenc:rsa”>ETTP

(
metai

k

)
</Metadata>

9 </DomainDescription>
10 <VirtualMachine manager=”di”>

11 <VMID Encoding=”xmlenc:rsa”>ETTP

(
vmi

l

)
</VMID>

12 <Nonce Encoding=”xmlenc:rsa”>ETTP (r)</Nonce>
13 </VirtualMachine>
14 </DomainCredential>

Listing C.3: Credential for presentation of granted permissions for a domain.

Upon receiving the message, SC first decrypts ESC
(
vmi

l

)
and checks if the request was sent from

the VM instance contained in the response. If it was, SC calls the local TPM to unseal the
key which – if the compute host remained in the earlier trusted state – reveals Ki

k. SC then
uses it as input to the disk encryption subsystem on the compute host where vmi

l is running.
The disk encryption subsystem seamlessly decrypts the mounted volume hosting Domi

k. Next,
the volume containing Domi

k is mounted as a disk device on vmi
l – with read-write or read-only

rights, depending on the permissions granted by the domain owner.

The case where Ki
k has already been generated is similar, with the only difference that to

recalculate Ki
k, TTP will have to decrypt ETTP (rk) contained in the updated metadata and use

it as an input to the pseudorandom function.

5.3 Revocation

There are cases when credentials of a VM may need to be revoked if a VM instance misbehaved,
lost access rights to a domain, or permissions have been changed. In this section we describe
the mechanism to change or revoke the permissions of a VM instance for a specific domain.

Following our previous scenario, we assume that di wants to change the access rights of vmi
l for

the domain Domi
k. We analyse the following two scenarios for di:

A. Prevent vmi
l from accessing Domi

k: Assume di wants to completely remove vmi
l from the list of

VMs that are authorized to access Domi
k. First, di generates the XML file shown in Listing C.6

and sends it to CP, which forwards the request to the SC on one of the host platforms. Upon
reception, SC extracts the credential for Domi

k from the header of the volume and sends it to
TTP along with the XML received from di. TTP decrypts ETTP

(
vmi

l

)
and finds the ID of the VM

that should remove its access rights. Then, TTP finds the corresponding block in the XML that
contains all the VM instances that have access to Domi

k and removes it. Finally, TTP returns
to SC an updated XML document which does not contain vmi

l and SC updates the header of
Domi

k with the fresh credential.

B. Change permissions of vmi
l on Domi

k: In this case we assume that di intends to just change
the permission for vmi

l ‘read-write’ to ‘read’. The procedure that is followed is identical to the
one in scenario A. di generates a new credential for vmi

l (Listing C.7) and sends it to TTP via
CP. Additionally, SC sends to TTP the credential of the domain that is stored in the header of
the volume. TTP follows the same steps in order to update the credential of Domi

k. Following
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1 <VirtualMachine manager=”di”>

2 <VMID Encoding=”xmlenc:rsa”>ETTP

(
vmj

l

)
</VMID>

3 <Nonce Encoding=”xmlenc:rsa”>ETTP

(
r′
)

</Nonce>

4 <permissions Encoding=”xmlenc:rsa”>
5 <permission>r</permission>
6 </permissions>
7 </VirtualMachine>

Listing C.4: Credential Specification for the addition of a VM to a domain.

the successful update of the domain credential, SC sends the fresh credential to di who can use
it in the future in order to prove that vmi

l is authorized to access the corresponding domain
under certain permissions.

In both cases A and B, di has the option to receive from the TTP a confirmation that the
permissions for vmi

l have indeed been withdrawn or modified. To do this, prior to the request
di generates a random nonce rrev, encrypts it with TTP and sends it along with the credential
of vmi

l. Upon reception TTP – apart from altering the permissions of the corresponding VM –
decrypts ETTP (rrev) and returns to di H(rrev||vmi

l))3. Given that by definition the TTP will not
deviate from the protocol, the returned hash is an implicit confirmation of the fact that TTP
has received the update request and has modified the credential accordingly.

6 Security Analysis

In this section, we analyse the behaviour of our protocol in several attack scenarios. In all of the
attack scenarios, we assume that the involved parties follow the Dolev-Yao adversarial model
[211] and can overhear all messages and may attempt to use them in order to learn information
that otherwise should remain private or gain access to domains that are not authorized to.

Unauthhorized access to a domain: Assume that a malicious domain manager dm attempts
to gain unauthorized access to a domain Domi

k for a VM instance vmm
l . To do so, the domain

manager will have to prove that she owns a credential for accessing Domi
k. The domain manager

self-generates a credential and presents it to the CP in order to gain access to Domi
k (as shown

in Listing C.3). This can be easily done since the encrypted information contained in a cre-
dential is mainly generated using the public key of TTP, which is also responsible for validating
the correctness of the credential. As described in Section 5, SC retrieves the corresponding
metadata from the header of Domi

k and forwards both artefacts to TTP. Upon reception, TTP
verifies the correctness of the credential received from dm. To this end, TTP decrypts the in-
formation contained in both artefacts and finds out that the ID of vmm

l is not in the list of the
authorized VM instances for the domain Domi

k. Thus, this attack cannot be launched.

Using a valid credential from another domain manager: In such a scenario we assume that
a malicious domain manager dm attempts to gain unauthorized access to a domain Domi

k for
vmm

k by providing a valid credential that belongs to another VM instance, i.e. effectively
impersonating the righteous domain manager. We assume that dm gets a valid credential for
Domi

k that was created for vmi
k. This can be done in two different ways: either dm can intercept

a message in which di sends the credential to SC in order to access Domi
k; or – if we assume that

3H(.) is a secure cryptographic hash function such as SHA3
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1 <response>
2 <DomainKey Encoding=”xmlenc:rsa”>

3 Edmcrypt

(
Ki
k

)
4 </DomainKey>

5 <VMID>ESC

(
vmi

l

)
</VMID>

6 <Metadata>metai
k
∥ETTP

(
rk

)
</Metadata>

7 <permissions>
8 <permission>r</permission>
9 <permission>w</permission>

10 </permissions>
11 </response>

Listing C.5: Response of TTP after the generation of the domain symmetric key.

1 <VMCredential scope=”Revoke”>
2 <CredentialID>cred:id</CredentialID>
3 <Timestamp>issue:time</Timestamp>
4 <DomainDescription>
5 <DomainID Encoding=”xmlenc:rsa”>dom:id</DomainID>
6 <DomainName lang=”EN”>dom:name</DomainName>
7 <DomainManager>manager:id</DomainManager>
8 </DomainDescription>
9 <VirtualMachine manager=”di”>

10 <VMID Encoding=”xmlenc:rsa”>ETTP

(
vmi

l

)
</VMID>

11 </VirtualMachine>
12 </VMCredential>

Listing C.6: Request to revoke the credential of a VM.

1 <VMCredential scope=”UpdatePermissions”>
2 <CredentialID>cred:id</CredentialID>
3 <Timestamp>issue:time</Timestamp>
4 <DomainDescription>
5 <DomainID Encoding=”xmlenc:rsa”>dom:id</DomainID>
6 <DomainName lang=”EN”>dom:name</DomainName>
7 <DomainManager>manager:id</DomainManager>
8 </DomainDescription>
9 <VirtualMachine manager=”di”>

10 <VMID Encoding=”xmlenc:rsa”>ETTP

(
vmi

l

)
</VMID>

11 <Nonce Encoding=”xmlenc:rsa”>ETTP

(
r′
)

</Nonce>

12 <permissions Encoding=”xmlenc:rsa”>
13 <permission>r</permission>
14 </permissions>
15 </VirtualMachine>
16 </VMCredential>

Listing C.7: Request for altering permissions of vmi
l on domain Domi

k.

di is also acting maliciously – di can cooperate with dm, and reveal to dm the credential created
for vmi

l. In both cases, dm will be able to convince TTP about the validity of the credential.
Thus, TTP will first attest the trusted configuration of the host where the virtual machine vmm

l
will reside, then will calculate the domain key and will send back to SC the metadata showed
in Listing C.5. Upon reception, SC first decrypts ESC

(
vmi

k

)
and checks whether the domain

manager requested to grant access to the VM instance stated in the response of the TTP. In
the above attack scenario, SC will drop the request since the VMID received from TTP does not
correspond to the VM instance for which access to Domi

k was requested. We can conclude that
such an attack would only be possible if malicious domain managers can change their identity.

Using remote TPM attestation and the TPM seal operation, we obtain the confidence that SC
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will act according to the protocol and will verify that the requesting VM instance identifier
matches the VM instance identifier authorized in the response obtained from the TTP. The
domain decryption key is only made available to the target compute host with a trusted
platform configuration, and can not be accessed in plain text once the compute host changes
its platform configuration.

7 Experimental Results

In order to measure the performance of the protocol, we have implemented the SC as a client
and a server application serving the role of the TTP. Our implementation follows the protocol:
SC creates a request for an encryption key and sends it to TTP, which derives the encryption
key and returns it in encrypted form together with the meta data.

(a) (b)

Figure C.1: Performance evaluation: (a) Time required by TTP to process a request and to
generate a key for a domain; (b) Proportion of execution time spent in functions during a key
request.

The experiments aimed to analyze two main performance metrics: processing time and com-
munication overhead. To this end, we ran several experiments, in order to measure the time
to request a new encryption key, the duration of the most computation-intensive or network-
intensive operations, as well as to measure the performance of TTP.

In the first phase of our experiments we measured the performance of TTP when serving
multiple parallel requests from SC. We tested the time TTP needed in order to perform encryp-
tion/decryption operations, generate a domain key as well as to parse an XML for 10 to 1000
parallel requests. For encryption and decryption, we used the RSA cryptosystem with a key
length of 1024 bits. Figure C.1a illustrates the results in seconds as a function of the number
of requests. As seen from the graph, the required processing time is negligible and does not
constitute any real burden to the functionality of the CP. We we have found that, on average,
the time needed for TTP to successfully respond to SC when receiving 1000 parallel requests is
approximately equal to 0.16 seconds.

In the second phase of our experiments, we measured the communication delay for a single
request sent to TTP by SC (with a sample of 1000 sequential requests), as well as the impact of
domain key requests on the duration of the VM instance launch. Table C.1 and Figure C.1b
show respectively the absolute and relative execution times for operations performed by the
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Table C.1: Execution times (in seconds) for some functions in the secure component,
1000 requests.

Cumulative time Per call Function
3.300 0.001 RSA Encryption
10.445 0.010 Call RTT
9.001 0.009 RSA Decryption
24.974 0.025 Total Execution Time

SC to obtain an encryption key. Figure C.1b indicates that most of the execution time is spent
on the decryption of the domain key and the call round trip time (call RTT). The absolute
duration of the encryption key request is on average 0.025 seconds.

In addition to that, we deployed an IaaS cluster using version “Havana” of OpenStack, a
popular CP in order to measure the time needed for a VM to be launched. This time would
then be compared with the time needed for the generation of a domain key. As the process
of key generation for the domain of a new VM instance is taking place in parallel with the
VM launch, this comparison would be a good metric to see whether our protocol affects the
performance of the CP or not. According to our measurements, the average time to launch a
VM instance is 20.57 seconds while the average time for a domain key request is 0.025 seconds.
Taking into consideration the fact that a domain key request will usually take place during the
launch of a VM, our protocol does not affect the overall performance of the CP.

8 Conclusion

In this paper we have considered the problem of secure storage in IaaS environments. More
precisely, we proposed a protocol that ensures confidentiality and integrity protection of stored
information in a cloud environment. Furthermore, we presented an XML-based language
framework that allows the clients of IaaS clouds to securely share their data and assign different
access rights to users. The analysis was coupled with experimental results which showed that
the proposed language adds only a reasonable overhead to the operation of a cloud management
platform. In our future work, we aim to improve the protocol and reduce the trust base by
removing the need for a TTP. While this may affect the performance of the protocol, it would
allow us to consider more complex attack scenarios which better reflect the complexity of
information flow in IaaS clouds.
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Paper D

Trusted Geolocation-Aware
Data Placement in
Infrastructure Clouds

Nicolae Paladi, Mudassar Aslam and Christian Gehrmann

Abstract

Data geolocation in the cloud is becoming an increasingly pressing problem, ag-
gravated by incompatible legislation in different jurisdictions and compliance re-
quirements of data owners. In this work we present a mechanism allowing cloud
users to control the geographical location of their data, stored or processed in
plaintext on the premises of Infrastructure-as-a-Service cloud providers. We use
trusted computing principles and remote attestation to establish platform state.
We enable cloud users to confine plaintext data exclusively to the jurisdictions
they specify, by sealing decryption keys used to obtain plaintext data to the com-
bination of cloud host geolocation and platform state. We provide a detailed
description of the implementation as well as performance measurements on an
open source cloud infrastructure platform using commodity hardware.

1 Introduction

Reliance on third-party providers for cloud storage and computing decouples data management
from both data ownership and responsibility for correct data usage. A data owner loses control
over the geographical placement of data once it is transferred to a cloud provider and earlier
agreements become the only available tool to manage future data placement. In some cases,
transfer of sensitive data to other countries is illegal and while agreements can be a basis for
compensation, they can only help post factum, when the damage is already done.
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The physical location of data storage and processing in cloud environments matters for several
reasons: tax rates may differ based on where a transaction is conducted (rather than where the
entity is registered); compliance rules or privacy laws may require that certain categories of
data are not stored or processed in a different jurisdiction; finally, organizations with geograph-
ically distributed field offices might conduct operations – such as certain types research – which
are illegal in some countries (e.g. stem cell research [222]). The above reasons are relevant
to both data processing and storage. In [147], the authors clarify the importance of geoloca-
tion assurance mechanisms in cloud storage services. One of the central arguments is that
data geolocation affects its confidentiality and privacy status. Similarly, [13,149,150,223,224]
mention concerns – such as compliance requirements – about the geolocation of data in cloud
computing environments in general and Infrastructure-as-a-Service (IaaS) in particular.

Calls for legal mitigation of issues related to data location in the cloud involve regulating cloud
storage services through binding inter-government regulations [224]. However, this in only part
of the solution, since agreements can be covertly breached – sometimes long before this fact is
revealed to other parties.

Recent innovations in data center design – such as ‘modular data centres’ – improve the
mobility of data centres. A central component of modular data centres are the standardized
ISO 6346 weatherproof containers, capable of housing thousands of servers and necessary
related components. This allows data center modules to be easily moved across large distances
using standard transportation means. The idea was originally described in [225] and widely
developed since then [226, 227]. This approach differs from the traditional, static data centre
architecture and along with advances in distributed storage systems architecture highlights
the necessity to consider the geolocation of hosts when transferring data to a cloud storage
provider.

Any practical solution for protection of data in cloud environments must consider its impact
on functionality – a major driving force for adoption of cloud computing – such that e.g.
distributed data processing capabilities are minimally affected. We propose a solution that
combines geolocation data and trusted computing principles to allow data to be processed and
transferred in plaintext only to geolocations approved by the data owner, without affecting
data processing capabilities of distributed data stores. We present a prototype implementation
based on Swift, a known distributed object storage system [228].

1.1 Contribution

Our contribution is as follows. First, we describe a protocol to securely store location informa-
tion on cloud host platforms and later use this information to ensure that data is only available
in plaintext on platforms that are placed in geolocations sanctioned by the data owner. Second,
we provide a detailed implementation description of the above protocol, based on a popular
cloud operating system and a known distributed object storage. Finally, we provide a security
analysis of the chain of trust that allows to seal data to a given platform state extended to
include the geolocation of the platform.
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1.2 Organization

In Section 2 we provide an overview of the related work that addresses data geolocation and
data protection in cloud storage. We continue by defining the important terms in Section 3 and
presenting the system model in Section 4. We present the protocol in Section 5, the detailed
implementation in Section 6 and the security analysis in Section 7. The prototype evaluation
results are presented in Section 8, followed by a conclusion in Section 9.

2 Background and Related Work

Related work on the topic has predominantly focused on establishing the fact that a certain
piece of data is stored in a certain location, ignoring any potential replicas.

The problem of “data sovereignty”, defined as “establishing data location at a granularity
sufficient for placing it within the borders of a nation-state” was first introduced in [149]. The
proposed solution combines provable data possession (PDP) schemes with a network-delay
based protocol for data geolocation, in order to get a proof of the fact that the data is located
in the respective data centre. This early paper lacks a specific adversary model and describes
only a high-level solution.

In a follow-up, Gondree and Peterson propose a “constraints-based data geolocation” solution
to determine the location of data and “bind” it to specific locations1 [150]. The adversary model
assumes an economically rational adversary aiming to reduce costs through data migration
in spite of contractual agreements. The protocol assumes an initial model building stage,
where landmarks (L) throughout the analysed geographical region each build a latency-distance
estimation model. Using this model, each landmark issues PDP challenges to the storage
and generates a circular constraint of a radius centred on L. The geolocation step of the
protocol uses the intersection of geolocation constraints to determine the region where the
data resides. The solution suffers from a series of limitations: it requires a set of landmarks
close to the data centres of the cloud service provider; incorrectly assumes that the cloud
service provider does not have dedicated communication channels between its data centres and
finally, does not discuss location-based storage protection and rather just verifies that a certain
file is placed on a given host. The authors of [229] outline some ideas regarding the use of
Trusted Platform Modules (TPM) on server platforms in the context of data location in cloud
networks. The solution assumes that the identity of the server’s TPM is stored along with the
server’s geographical position by the Certificate Authority and retrieved when needed. The
solution further assumes a “Location verification and integrity check“ module implemented
in a hypervisor and suggests a two-phase protocol: the initialization phase includes remote
attestation of the host and verification of its location; the verification phase includes a protocol
to confirm the identity of the host based on communication with the TPM deployed on it. This
solution is similar to our approach in the use of TPM as a hardware root of trust; however, it
assumes that verification of the location is done through administrative methods, i.e. costly
physical visit of the facilities. Furthermore, the paper does not describe any implementation
results.

The National Institute of Standards and Technology (NIST) has described a proof of concept
1Binding is here used in the sense of detecting occurrences of data misplacement, rather than data

binding in the meaning common in trusted computing
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implementation for trusted geolocation in the cloud [13]. The proof of concept uses a combin-
ation of trusted computing, Intel Trusted Execution Technology (TXT) and a set of manual
audit steps to verify and apply data location policies. The protocol establishes an automated
hardware root of trust – defined as “inherently trusted combination of hardware and firmware
that maintains the integrity of the geolocation information and the platform”, in order to
manage geolocation restrictions for hosts within an infrastructure cloud platform. The solu-
tion assumes that geolocation information is provisioned to the platform via an out-of-band
mechanism and – along with platform metadata – stored in the TPM. This information is later
accessed in order to verify the integrity of the host and the location of the platform. Similar
to both our approach and [229], the use of TPM for platform identification offers a reliable,
hardware-based root of trust. The solution in [13] assumes remote platform attestation – in-
cluding location data – in order to establish the trustworthiness of the platform, which is a
significant improvement compared to earlier work. However, we see several limitations of this
approach and address them in this paper.
First, the protocol in [13] does not provide any cryptographic protection of data; rather, data
placement is scheduled based on placement policies and thus data confidentiality depends on
the correctness of the location policy. We believe this approach does not protect data from ac-
cidental or malicious policy misconfiguration, in which case plaintext data could be scheduled
to an untrusted host. We address this by requiring that all uploaded client data is confidenti-
ality and integrity protected and is only stored in plaintext in the jurisdictions defined by the
user, a property achieved by performing remote attestation of the storage hosts and sealing
the confidentiality and integrity protection keys to the platforms with a correct configuration.
Second, [13] assumes out-of-band provisioning of geolocation data to the storage hosts, without
further clarification of the data format and delivery mechanisms. In this paper, we provide a
detailed description of the format of data required for the geolocation of storage hosts in an
infrastructure cloud. Furthermore, we address the question of secure out-of-band geolocation
data delivery to storage hosts and also suggest a complementary geolocation acquisition model
using dedicated GPS receivers.
Third, [13] does not describe a mechanism to re-provision geolocation tags and thus does not
hold in the case of modular data centres mentioned in § 1. Our proposed solution – which
assumes a distributed geolocation information acquisition model – holds even in the cases when
data hosts are relocated.

In [132] the authors discuss principles of domain-based storage protection in public infrastruc-
ture clouds. The principles outlined in the paper associate all objects stored in the IaaS cloud
with explicit storage domains. A storage domain in this context corresponds to an organ-
ization or administrative unit that uses public cloud services (including the storage service)
offered by the provider. All data in a single domain is protected with the same storage pro-
tection master key, the domain key. The paper further suggests that at guest VM launch,
it is securely associated with a particular storage domain throughout its lifetime. Keys used
for data encryption, decryption, integrity protection and verification in a single domain are
derived by an external, trusted third party (TTP). We extend this protocol to include inform-
ation about the geographical placement of data. We redefine the concept of “administrative
domain” in [132] to also include a certain geographical area corresponding to a jurisdiction.
Use of GPS signals in the context of data centres has been described in [230], where GPS and
atomic clocks are used for time synchronization in order to implement externally-consistent
distributed transactions. Besides addressing the limitations of the above papers, our solution
discusses cloud data storage protection including replicas of the data scattered throughout the
distributed data store, something which – to the best of our knowledge – has not been done
earlier.
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3 Preliminaries

3.1 Definitions

IaaS (cloud) platform (IP)

We assume an IaaS platform model as defined by NIST in [64], which offers “processing,
storage, networks, and other fundamental computing resources where the consumer is able
to deploy and run arbitrary software, which can include operating systems and applications”;
according to the same definition, users do not have control over the underlying infrastructure.
IaaS platforms in this paper are assumed to include a large data store distributed over several
data centres in distinct geographical areas.

User (U)

Users are capable to access (read and write) data objects in the cloud data store. Let U =
{u1, . . . , un} be the set of all users of a certain IP. Then, the set of all data objects that a
certain user u1 owns is denoted f1 =

{
f11, . . . , f1n

}
.

Cloud Service Provider (CSP)

We refer to a CSP as an entity that operates an IP and makes it available for users. The CSP
includes both the case when the respective entity owns and physically manages its data centres
and the case when an IP is deployed on computing resources provided by a third party supplier.
The IP operated by the CSP may be deployed throughout arbitrarily many data centres.

Geolocation (L)

We refer to a geolocation cell L as a bounding area (e.g. country, region, territory, etc.) defined
by a set of location points represented by their latitude and longitude (li = lati, loni) such that
L = {l1, l2, ...ln}. Each li represents the location of an IP in the data centre; every data centre
is associated with at most one L and no two geolocation cells overlap.

Jurisdiction (J)

We refer to a jurisdiction as “the territory or sphere of activity over which the legal authority
of a court or other institution extends” [231]. Let Ji, Jj be two jurisdictions with incompatible
data protection regulations. Consider a user u1 that operates on privacy-sensitive data and
uses the services of a CSP with data centres present in both Ji and Jj. For compliance reasons,
u1 may only process the data in Ji and faces penalties if data is processed or stored in plaintext
in Jj2. A valid jurisdiction is a non-empty set of Ls.

2Operating on encrypted text currently allows an impractically restricted set of operations [232]
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Trusted Platform Module (TPM)

A TPM is a tamper-evident hardware cryptographic coprocessor built according to the spe-
cifications of the Trusted Computing Group [36]. In this work, we assume that all IaaS hosts
underlying the IP are equipped with a TPM v1.2 chip. An active TPM records the software
state of the platform at boot time and stores it in its platform configuration registers (PCRs)
as a list of hashes. A TPM enables data protection by securely maintaining cryptographic keys,
as well as through the set of functions it exposes. The bind and seal functions are particularly
relevant for the proposed solution. According to [36], a message encrypted (“bound”) using
a particular TPM’s public key is decryptable only by using the private key of the same TPM.
Sealing is a special case of binding, where the encrypted messages produced through binding
are only decryptable in a certain platform state (defined by the PCR values). This ensures
that an encrypted message can only be decrypted by a platform found in a certain prescribed
state. We refer to [36] for a detailed coverage of the bind and seal operations.

Trusted Third Party (TTP)

The TTP is an entity which is trusted by the community and plays a key role in our protocol.
The TTP is able to communicate with components deployed on compute hosts to exchange
integrity attestation information, authentication tokens and cryptographic keys. In addition,
the TTP can attest platform integrity based on the integrity attestation quotes provided by
the TPM on the respective compute hosts, as well as seal data to a trusted configuration of
the hosts. Finally, the TTP can verify the authenticity of a client as well as perform necessary
cryptographic operations.

Trusted Platform (TP)

In this paper, we define trusted platforms as server platforms the integrity and trusted state
of which has been attested by the TTP. The trusted platforms of an IP comprise the Trusted
Computing Pool (T), introduced in [13], that is the collection of trusted platforms in a certain
IaaS cloud platform.

3.2 Adversary model

We share the adversary model with [131, 180] which assume that privileged access rights can
be maliciously used by CSP remote system administrators (Ar). This scenario assumes that Ar

can log in remotely to any host of the CSP and obtain root access. However, in this model Ar

does not have physical access to the hosts. We add a geolocation aspect to the security model:
u1 requires assurance that her data is not stored or processed in plaintext outside jurisdiction
Ji. The CSP may experience intermittent errors and has an incentive to optimize costs by
placing or processing data in a different jurisdiction, e.g. Jj. We explicitly exclude Denial-of-
Service attacks from our model, since we assume an economically rational CSP interested in
maximizing its profits by continuing to provide services to users.
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3.3 Problem Statement

Assume an authorized user u1 writes a file f1 to the storage provided by CSP. A trusted
distributed storage system shall then satisfy the following properties:

1. The file f1, as well as its replicas, must only be stored and processed in plaintext in the
set of jurisdictions Ji defined by u1.

2. The allowed jurisdictions Ji must be specified once, when f1 is first written to the dis-
tributed storage. It shall be impossible for an adversary to subsequently change the
association between f1 and the set of allowed jurisdictions.

3. Let f′1 be a file derived from a processing operation on file f1. The system shall make
sure that f′1 inherits all the jurisdiction restrictions from f1;

4 System Model

We consider a public IP managed by a CSP where multiple users lease processing and storage
capacity. To benefit from properties such as increased availability, scale flexibility and use
of distributed data processing algorithms, data is stored in distributed data stores. This is a
common system model in modern infrastructures (including infrastructure clouds) that deal
with massive amounts of data and allow data to be reliably stored, replicated and retrieved
within a very short time. Examples of such systems are Google BigTable [233], Amazon Dy-
namo [85], Windows Azure [88], etc. Current distributed data stores store redundant replicas
(often eventually synchonized) of data on different hosts, thus offering scalability and intra-
data center resilience to hardware failures. From a geographical point of view, a distributed
storage is either deployed within one data center (and hence in one jurisdiction), or spans
several data centres (and possibly several jurisdictions). In the latter case, in order to separate
data that is subject to conflicting regulations, users may choose to store the data in two or
more distinct IaaS platforms IP1 and IP2 – as for example in the case of Amazon Govcloud [23].
However, this restricts geographic redundancy and reduces service availability guarantees. An-
other possibility is to deploy distributed storage systems across data centres – there are efforts
towards this both in academic research ([234–236]) and industry implementation3. Emerging
capabilities of distributed data stores add geographical redundancy, such that the data store
is deployed across geographically distinct data centres and offers inter-data center redundancy
on a global scale while maintaining the eventual synchrony of data. For simplicity, we assume
a specific subtype of distributed data stores, namely distributed object storages depicted in
Fig. D.1 and described in § 4.1.

According to the model, the domain of the CSP includes the IaaS cloud platform components,
the hypervisor, as well as the underlying hardware.

3See for example issue HDSF-1432, discussing implementation of HDSF deployment across data
centres, https://issues.apache.org/jira/browse/HDFS-1432
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4.1 Distributed object storage

We assume an object storage capable of storing binary objects (similar to Amazon S3) which
can be geographically distributed across multiple data centres4. Below, we provide a simplified
description of some important components of a distributed object storage (see Fig. D.1).

Client data

ti3

ti4ti5

ti1

ti2

tin

Object Server Instances
(several object severs

may be located on one host)

The Ring
keeps a mapping of all objects across the hosts

API endpoint

Figure D.1: Sketch of a distributed object storage

The API endpoint is the public API of the object storage. Upon each request, the proxy
server looks up the location of the accounts or objects in the ring, routes requests and performs
error handling.

The ring is a logical structure implemented a distributed hash table that maps the names
of stored entities to their physical location. Rings maintain the mapping using zones, devices,
partitions and replicas. Partitions have a replication degree n and their locations are stored in
the mapping maintained by the ring. Data can be isolated using the zones of the ring, where
each zone can be a data center, switch, cabinet, server or drive. In this model, we assume that
each zone is a geographically distinct data centre.

Object server is a simple binary large object storage that can store, retrieve and delete objects
on local devices. The object meta data is stored in the extended file attributes (otherwise known
as “xattrs”).

Replicators maintain state consistency in the face of network or node failures. This is done by
comparing data with each remote copy to ensure freshness. Replication updates are push-based
(rsync file replication to peers).

5 Protocol Description

We describe a mechanism used by IP hosts to acquire their geographical location – mapped to
a geolocation cell (L) – and securely store it in TPM PCR 15. Next, we present a protocol that
allows the data owner to specify the list of geolocation cells where data is stored (or processed)

4While this is a fairly recent development, such distributed object storages already exist; see for
example https://github.com/openstack/swift/blob/master/CHANGELOG
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in plaintext (Fig. D.3), relying on the TPM functionality to seal the data decryption key to
the state of PCRs 0-7, 15.

5.1 Geolocation

The proposed solution is based on sealing user data to a set of geolocation cells, making
plaintext data only available to hosts physically placed in the jurisdiction authorized by the
user. This requires extending [36] the platform geolocation cell value L to a dedicated TPM
register during platform boot (we use PCR 15). The geolocation cell value is obtained through
reverse geocoding, which is the process of matching a location point with an administrative
unit, e.g. country, region, municipality, etc. For a detailed review of the concept, see [237] 5.

Listing D.1: Sample reverse geocoding result
1 <reversegeocode timestamp=”Thu, 22 May 14 08:17:17 +0000”>
2 <addressparts>
3 <suburb>Kista</suburb>
4 <city>Stockholm</city>
5 <county>Stockholms lan</county>
6 <state>Stockholms lan</state>
7 <country>Sweden</country>
8 <country_code>se</country_code>
9 </addressparts>

10 </reversegeocode>

In our example, reverse geocoding maps any given location point li to a geolocation cell L.
One approach to supply geolocation cell information to the platform is through out-of-band
provisioning at an earlier stage and store it in the TPM, as suggested in [13]. However,
such out-of-band provisioning can be prone to administrator error or misuse, therefore we
propose to report L to the TPM through an isolated daemon process (D), and introduce two
models for such a daemon to obtain L. The first model (presented in Fig. D.2) reuses the
concept of “geolocation master nodes” described in [230], where certain hosts are equipped
with GPS receivers and dedicated antennas, and are physically separated to reduce the effect
of antenna failures, radio interference and spoofing. We assume that the master geolocaton
node is previously attested and therefore trusted. The geolocation master node identifies its
location point li and uses a local geocoding database to map li to a geolocation cell L. At
boot time, D running on the storage hosts obtains L from the geolocation master and stores
it in the TPM register. Note that this approach does not rule out pre-configuring geolocation
cell information out-of-band, as suggested in [13], but reduces the amount of administrative
operations required on IP and eliminates a potential attack vector. In the second model, the
daemon process D running on the storage host, uses a navigation device natively attached
to the host’s motherboard to obtain its location point li; next, the daemon process D uses
a local geocoding database to map li to a geolocation cell L; finally, it extends L into the
TPM register (see § 3.1). While the feasibility of this model depends on the particular data
centre architecture, it complements the approach described in model 1 without additional
assumptions. We have chosen this latter approach for the rest of the paper, given the wider
applications it enables for mobile platforms equipped with a hardware root of trust. The
functionality of the location reporting D is explained below and presented in Algorithm 1.

5A sample call to the OpenSteet Map API – http://nominatim.openstreetmap.org/reverse?
format=xml&lat=59.406318&lon=17.947&zoom=12&addressdetails=1 – produces the reply presented in
Fig. D.1
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Figure D.2: Geolocation cell reporting to TPM

Data: Navigation Device Port
Result: Geolocation cell value hash in TPM PCR 15
initialization: enable GPS, configure GPS Port;
call:fork() to daemonize;
while satellites_tracked < 4 do

get GPGGA data from Navigation Device;
end
call:geolocationcell a← ReverseGeocode(lat, lon);
call:Ha ← SHA1(geolocationcell a);
call:Hexp ← Rebuild_Chain(Ha, Hdef);
call:Hcur ← TPM_ReadPCR(15);
if Hcur ̸= Hexp then

call:TPM_Extend (Ha);
end
sleep(time);

Algorithm 1: Location Reporting Daemon

In the first step of the protocol, the TTP uses the PCR aggregate of a particular trusted host
platform TP1 to create an asymmetric TPM key pair SealKey, which is used to seal data to TP1

in geolocation cell LA. Consequently, TPM only releases the private SealKey if the current PCR
values of TP1 match the ones specified in the PCR aggregate used in the key creation. For
performance reasons, a session key K – encrypted with the SealKey – is used for data encryption
and decryption operations.

The runtime state of the platform with respect to its identity TP1 and location LA is represented
by PCR 0-7 and PCR 15 respectively. These PCRs are populated with values at platform
boot time. While the platform state of TP1 is reported by the TCG-compliant BIOS and the
bootloader in PCR 0-7, we implement a component D that runs as a daemon process to report
the platform location LA to PCR 15. Component D is built with minimal functionality: read
the navigation device port for location data and extend it to PCR 15. The navigation device
is enabled at boot time and immediately starts tracking satellites. After a valid location fix
is found and the minimum number of required satellites are located6, D translates – through
reverse geocoding – the location point li to the corresponding geolocation cell (i.e. La).

Next, the geolocation cell value verification follows. Denote the default value of PCR 15 at
6A connection to 3 satellites suffices to provide a location point on Earth but a minimum of 4

satellites provides better accuracy.
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boot time by Hdef
7. D computes the SHA-18 hash (Ha) of La and rebuilds the hash chain for

PCR 15: Hdef extended by Ha yields the expected value for PCR 15, denoted Hexp = Hdef||Ha.
Next, D compares Hexp with Hcur, the current value in PCR 15. If Hexp ̸= Hcur, then Ha supersedes
Hcur and is extended to PCR 15; otherwise, no action is taken. D runs as a privileged process
and performs this operation recurrently. As a result, during the first check PCR 15 will be
extended with the hash value Ha of the current geolocation cell La and will maintain this value
unless the platform is relocated to a different geolocation cell, Lb. In that case, Lb results in a
new hash value Hb which supersedes Hcur and – according to the procedure above – is extended
to PCR 15, making SealKey unavailable on the respective platform.

Thus, data encrypted with SealKey is only available in plaintext to TP1 located in La, i.e.
preventing access to plaintext data to hosts located outside the authorized jurisdictions. SealKey
remains available in the face of restarts, as long as the host is rebooted in the same, trusted
state and geolocation cell. Implementation details are provided in §6.

5.2 Storage Protection Protocol

We propose the following protocol to ensure that data is available for processing and storage
in plaintext only on storage hosts deployed in a user-approved jurisdiction. A high-level model
of the protocol is depicted in Fig. D.4 and a detailed message flow is presented in Fig. D.3.
For the purposes of the protocol, we assume that the user u1 knows the public key of the TTP.
We further assume that u1 can generate a high-entropy symmetric key K and encrypt own
data prior to uploading them to the distributed object storage. Considering the adversary
model described in § 3.2, we do not explicitly include data integrity protection in the following
protocol. However, if integrity of the data is a requirement, the protocol can be easily extended
to include it. Finally, we assume that encrypted data is indistinguishable from random noise
and encrypted replicas of data may be stored without any legal consequences in any jurisdiction.

Protocol description follows; corresponding steps of the protocol and the message flow are also
presented in Fig. D.3.

1. User u1 uploads though the API endpoint the encrypted data (denoted by E(P, K)),
along with a signed user token containing a description of the location policy constraints
– represented by a list of geolocation cells, as shown in Listing D.2 – and the symmetric
key K, encrypted with TTPs public key. Thus, K can be accessed in plaintext only by
the TTP (and u1 who has generated it).

2. The API endpoint applies the provided location policy to determine the set of hosts that
are allowed – according to the policy specified by u1 in the token – to store (or process)
the uploaded data in plaintext. Denote this set by TJi .

3. The API endpoint writes E(P, K) to the hosts in TJi and returns a write confirmation to
the user;

4. The API endpoint forwards to the TTP the encrypted user token and the list in TJi .
5. The TTP verifies the authenticity of the user token, performs a remote attestation of

the hosts in TJi to verify their software platform state and confirm the claimed location
in jurisdiction Ji, decrypts K and seals it to the trusted configuration of the hosts in TJi ;

7The value of PCR 15 after TPM_Startup is 0, as specified in [36].
8The choice of SHA-1 is imposed by the TPM v1.2 specifications, see [36]
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Figure D.3: Protocol message flow: data placement with geolocation cell restrictions.

6. The hosts in TJi decrypt E(P, K) and use plaintext data (P) for storage or processing.
7. When requested by user or by the replicator component for synchronization, the storage

hosts encrypt data with the same key K and send E(P, K) to the requester (for clarity,
we have omitted this step from figures D.4, D.3).

Listing D.2: Location policy for a data object
1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <LocationPolicy>
3 <PolicyID>cred:id</PolicyID>
4 <Timestamp>1289123342</Timestamp>
5 <GeocellList>
6 <Geocell>
7 <Location>suburb:name</Location>
8 <Location>city:name</Location>
9 <Location>county:name</Location>

10 <Location>state:name</Location>
11 <Location>country:name</Location>
12 <Geocell>
13 </GeocellList>
14 </LocationPolicy>

Note that user u1 is free to specify either a single or more geolocation cells. The situation
when reverse geocoding maps the location point to a wrong geolocation cell is unlikely, and
reoccurring errors can be corrected by redefining the boundaries of the respective geolocation
cells.
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Figure D.4: Process model, data placement with geolocation cell restrictions

6 Prototype Implementation

In order to test the validity of the above protocol, we have implemented it using the Swift
distributed object storage [228]. Release 1.9.0 of the Swift distributed object storage introduced
support for global clusters. This includes capabilities for a separate replication network and
read/write affinity configuration, which combined enable Swift to run as a single cluster over a
wider geographic area, explicitly addressing our assumption about geographically distributed
data stores. In addition, Swift provides capabilities to define storage policies based on certain
attributes of the storage hosts. For this prototype, we have implemented a policy functionality
and configured our Swift deployment to only store the encrypted data on the hosts in a certain
jurisdiction Ji. Hosts with the correct location information were able to unseal the encryption
key when needed. A modification of the object storage used the unsealed encryption key
to decrypt the data before it was written to the node, thus only storing plaintext data on
authorized hosts. However, once a file is requested from the respective object storage (by the
replicator component for container synchronization, or by the API endpoint to be server to
the client), it is encrypted with the same encryption key.

We revisit the requirements outlined in §3.3. In protocol context, we identify two classes of
objects: (i) objects uploaded or created by the data owner; (ii) object replicas created by the
storage for operational purposes. The objects in class (i) are encrypted by the data owner and
the decryption key is made available – according to the above protocol – only to TP located in
the jurisdiction prescribed by the data owner. Objects in class (ii) are maintained encrypted
and placed on storage hosts at the discretion of the object storage.

For the second requirement, the location policy specified by the object owner enumerates
the geolocation cells where objects may be places in plaintext. The TTP will only seal the
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encryption key on TP that are located in the allowed jurisdiction; the adversary, as defined in
the adversary model above, can not force the TTP to seal the encryption key on other hosts.

For the third requirement, note that only storage nodes running on TP have access to the
plaintext data for storage and processing. All of the data (f′1) derived through processing will
be protected with the same symmetric encryption key prior to being copied by the replicators
to other hosts in the ring. In this way, f′1 will inherit the same locations policy: only TP placed
in the jurisdiction specified by the owner of object f1 will have access to the encryption key.

In our implementation, we have used a Lenovo Thinkpad T430s host which in a standard
configuration has a navigation device Ericsson H5321 gw Mobile Broadband GPS attached to
the motherboard on a PCIe slot. Navigation devices are widely deployed on mobile platforms
(including laptops), and can be easily added to other types of platforms which do not have them
pre-installed. Our test host runs Linux (CentOS 6.4) which assigns device name /dev/ttyACM2
to the navigation device according to the default udev rule9. In order to have a persistent device
name and to ensure that D reads location data from an authentic source, we define a custom
udev rule (shown in listing D.3) – protected by including it in the TCB – and place it in
/etc/udev/rules.d/, such that whenever the navigation device is switched on, a persistent
symbolic link /dev/navigation_device is created and D is started.

Listing D.3: 10-navigation-device.rules
1 ATTRS{modalias}==”usb:v0B. . . . ip01”,
2 ATTRS{interface}==”Ericsson H5321 GPS”,
3 SYMLINK+=”navigation_device”,
4 RUN+=/usr/bin/location_daemon

Given the limitations of GPS signal receivers, placing such receivers on individual platforms
might not be a viable solution in many cases, such as data centres located underground or
placed in sealed metal containers, as described in [225]. As an alternative, we apply the
solution described in [230] and presented in Fig. D.2, where a geolocation master server with
a dedicated GPS antenna provides signed geolocation cell information to all other hosts in the
cluster (e.g. a rack). In this case, the protocol would need to also include the attestation of
this dedicated geolocation master. Due to space limitations, we omit the description of these
alternative, yet justified scenarios.

For reverse geocoding, we have used the OpenStreet Maps dataset and the API provided by
the OpenStreet Maps project10. While the size of the complete planet data set is significant
(in the range of 400 G), a filtered version containing only country information, produced using
a tool such as Osmfilter11, is significantly smaller – 187 kb – and can be placed on each IP host
and included in the TCB.

7 Security Analysis

GPS signal security is an important aspect for the presented solution and is an active research
topic [238–240]. Forays into GPS signal security are out of the scope of this paper and for the
purposes of the solution we assume that the setup is capable to detect GPS spoofing attempts,

9https://www.kernel.org/pub/linux/utils/kernel/hotplug/udev/udev.html
10http://planet.openstreetmap.org/, http://nominatim.openstreetmap.org/
11http://wiki.openstreetmap.org/wiki/Osmfilter
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as described in [238, 240]. However, we consider GPS security at application level, to ensure
that daemon D is not tampered and it reads the location data from an interface which is
connected to a valid, physical navigation device. The integrity of D is protected by including
it in the TCB; moreover, in order to securely and persistently bind the navigation device to
a navigation interface, we create a custom udev rule, which is also protected by including it
in the TCB. Udev rules are loaded by the Linux kernel during the first boot stages and are
later used by the udev daemon (i.e. udevd which is also a part of TCB) to assign a device
name (e.g. /dev/navigation_device) when a uevent is triggered by that device (e.g. device
attached, removed, enabled, disabled, etc.). Including D, udevd service and udev rules into the
TCB prevents their modification under the adversarial model described in (§ 3.2).

When it comes to storage and processing of data in the cloud storage, in § 5 we propose
a protocol to both store and process data in plaintext only on trusted hosts in a certain
jurisdiction chosen by the user. In both cases, we rely on the remote attestation of hosts (the
procedure is described in [131]), expanded with information about the geographical position of
the host. The result is, that a host whose platform state has changed through either software
modification or change of physical location will not be able to obtain the plaintext version of
user data. An adversary in our model might have two goals – obtain the plaintext version of
user data or process data in plaintext in a jurisdiction that is not acceptable by the client,
in order to reduce operational costs. In both cases, given the physical security of the hosts,
confidentiality protection keys will not be made available in case of either a change of the boot
aggregate (PCR {0 − 7}) or the geographical position of the host PCR{15}. Here it is worth
mentioning that host physical security and change in the geographical position of the platform
are not mutually exclusive – considering the example of the modular data centres above, a
sealed container with intact platforms may be transferred to a different jurisdiction without
affecting the integrity of the platforms.

8 Performance

In our experiments, the average time for a commodity GPS receiver from a “cold” start to
acquire at least 4 satellites was 97.5 seconds (the GPS device was reset between measurements
using the command AT*E2RESET). The GPS device maintained a “hot” start between reboots
and thus could acquire at least 4 satellites immediately after initialization12. Important to
note, according to the protocol, acquiring satellites is only necessary at platform boot and
does not affect subsequent data access time, we thus exclude this factor from the following
performance assessment.

Given the steps of the protocol and considering that the TPM is a relatively slow device,
it is to be expected that the largest contributors to the performance impact are the TPM
unseal operation and most importantly the data encryption and decryption operations. The
TPM unseal operation to obtain the symmetric encryption key, is also a one-time operation,
performed once when the respective storage hosts process the data. Once the decryption key is
unsealed, it is maintained in memory and used for decryption and encryption of the respective
data. In our experiments, the average duration of the unseal operation was 1.23 s. To evaluate
the performance of the protocol, we have measured the execution time of a PUT operation using

12Cold Start: The receiver must download almanac and ephemeris information to achieve a position
fix. Hot Start: A hot start occurs when a receiver has up-to-date almanac and ephemeris information.
http://www.ni.com/white-paper/7189/en/
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file sizes between 1 and 100 M.

Figure D.5: Performance measurements for PUT operations to Swift distributed object
store, with and without the data placement protocol

The results – also presented in Fig. D.5 – showed that encrypting objects prior to writing to
the object storage implies a relatively small overhead (∼25%) which increases linearly with the
size of the file. The initial spike in the graph is due to the relatively long time to unseal the
SealKey. As it is clearly visible, this does not affect the following PUT operations. The above
results may vary, depending primarily on the configured number of replicas and consistency
policy. The optimal configuration is use case and deployment architecture specific, and is thus
out of the scope of this paper.

9 Conclusion

In this paper we propose a solution to control the geographic location of plaintext data placed
and processed in Infrastructure-as-a-Service deployments. Our analysis of the related work
reveals the need to advance beyond verifying that certain data is placed in a certain location.
We address this issue and propose several solutions on device, operating system, and object
storage platform levels to ensure that data is only stored and processed in plaintext in the
jurisdiction designated by the data owner. We use trusted computing protocols in order to
perform remote attestation of storage and processing hosts, as well as to seal cryptographic
material to trusted platforms of the hosts and their geolocation, which we obtain from either
a commercial off the shelf device on the host motherboard or a dedicated geolocation master
node. On the IaaS level, we leverage the trusted state of the platform to decrypt, store and
process user data in plaintext only on hosts located in a certain jurisdiction specified by the
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user prior to upload. Our performance tests have demonstrated the feasibility of the proposed
approach; further improvements in CPU architectures are expected to reduce the overhead
induced by the data encryption stages of the algorithm. Future work includes refinement
of the proposed geolocation cell model, integration of platform attestation with kernel-level
mandatory access control policies as well as minimization and eventual elimination of the
TTP, which would allow us to consider stronger adversary models.
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Paper E

Towards Secure Multi-tenant
Virtualized Networks

Nicolae Paladi and Christian Gehrmann

Abstract

Network virtualization enables multi-tenancy over physical network infrastructure,
with a side-effect of increased network complexity. Software-defined networking
(SDN) is a novel network architectural model – one where the control plane is
separated from the data plane by a standardized API – which aims to reduce the
network management overhead. However, as the SDN model itself is evolving,
its application to multi-tenant virtualized networks raises multiple security chal-
lenges. In this paper, we present a security analysis of SDN-based multi-tenant
virtualized networks: we outline the security assumptions applicable to such net-
works, define the relevant adversarial model, identify the main attack vectors
for such network infrastructure deployments and finally synthesize a set of high-
level security requirements for SDN-based multi-tenant virtualized networks. This
paper sets the foundation for future design of secure SDN-based multi-tenant vir-
tualized networks.

1 Introduction

Rapid development of cloud services made a successful case for virtualization, which allows
infrastructure providers to multiplex physical resources and provide complete platform and
network resources to multiple tenants.

Multi-tenant cloud infrastructure relies on virtualization of both hosts and network infra-
structure. In both cases, system virtualization presents a trade-off between portability and
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tenant isolation on one hand, and virtualization overhead on the other hand. For host virtu-
alization, virtual machines (VMs) are a widely used approach to enable multi-tenancy in the
Infrastructure-as-a-Service cloud model. Similarly, a variety of approaches exist for network
virtualization, operating on different levels. Sherwood [241] described five dimensions that
must be sliced to enable network virtualization: bandwidth, topology, traffic, device CPU and
the forwarding tables (also called forwarding information base, FIB).

Given the inherently distributed nature of network infrastructure, no single component modi-
fication can satisfactorily slice the network across all five dimensions. Multi-tenancy is among
the capabilities enabled by virtualization. In the context of infrastructure clouds, we consider
the following characteristics of network multi-tenancy:

• A tenant corresponds to a customer using a particular virtual network;
• Tenants may belong to different administrative domains;
• Tenants expect network isolation of their domain;
• Physical resource sharing is fully abstracted, with tenants unaware of other neighbours;
• Tenants may create multiple distinct virtual network instances and topologies.

By enabling network multi-tenancy with strong isolation, network virtualization allows infra-
structure providers to multiplex the network infrastructure among network service providers,
paving the way for new services and better hardware resource utilization. However, net-
work infrastructure multi-tenancy comes at the cost of increased complexity, leading to higher
management costs and new security risks. Software-defined networking (SDN) is a network
architectural approach evolved from the “Clean slate” initiative [92], which proposed to de-
couple the network forwarding functionality from the control and management logic. The
initiative aimed to improve network management flexibility based on clear network abstrac-
tions: the management applications, which expresses the operator goals on a high level; the
network hypervisor, which implements control program instructions based on a global network
view and computes forwarding state for search router/switch; the network operating system
(NOS), builds the global network view and implements configurations on switches; and finally
the routing and switching equipment, which forwards packets as instructed. This paved the
way for the wide-scale use of commodity hardware for network infrastructure, flexible soft-
ware implementation of network functionality and new network virtualization abstractions.
The SDN architectural approach continues to be a work in progress. Despite a large body
of contributions to the SDN architecture ([159,165,174,242–244]), network operating systems
([98,99,158,245]) and the communication between the data plane and the control plane (also
referred to as “southbound API”, [246]), SDN continues to evolve, requiring further attention
to aspects such as security, scalability and policy enforcement.

1.1 Contribution

In this paper, we review the security challenges for multi-tenant virtualized network infrastruc-
ture based on the SDN architecture. We briefly describe the application of the SDN approach
to the multi-tenant virtualized network infrastructure. We introduce an adversarial model
suitable for multi-tenant virtualized network infrastructure using the SDN architecture and
identify a set of relevant attack vectors. Finally, we present a list of security requirements
towards SDN-based multi-tenant virtualized network infrastructures.
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1.2 Organization

The paper is organized as follows: in Section 2 we present the related work; next, we intro-
duce the adversarial model for SDN-based multi-tenant virtualized network infrastructures in
Section 3, followed by a description of the relevant attack vectors in Section 4. We continue
by listing the requirements for SDN-based multi-tenant virtualized network infrastructures in
Section 5 and conclude in Section 6.

2 Related Work

In this section, we provide an overview of related work on secure SDN architectures.

In [174], the authors presented Ethane (Figure E.1), an enterprise network architecture which
allows network managers to control the network using a unified interface. Reflecting the identi-
fied enterprise network characteristics, the Ethane network consists of commodity switches and
one or multiple controllers. The former are responsible for maintaining the FIB and contain a
local switch manager to communicate with the controller. The latter handles host registration
and authentication, tracks network bindings, verifies permissions and grants access, as well as
enforces resource limits on the managed flows. In addition, the authors described a high-level
policy definition language for network management policies.
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Figure E.1: The main components in Ethane [174]

NOX was introduced in [98], as a network operating system which presents network manage-
ment programs with a centralized programming model and a global view of the system state.
This allows network management programs to rely on simpler graph processing algorithms to
compute the shortest paths and to operate with higher-level abstractions, such as users and
host names, rather than MAC and IP addresses. NOX consists of several distinct controller
processes operating on a global network view built by NOX based on the process communica-
tion with the data plane. The global view is based on switch topology, user location, connected
network components (e.g. hosts and middleboxes), as well as bindings between the names and
addresses. Controller processes use the global view to make management decisions, which are
later implemented on the routing and switching equipment over the OpenFlow API [246].

In [158], the authors presented FortNOX, a software extension for role-based authorization
and security constraints enforcement for the NOX OpenFlow Controller. FortNOX detects
rule conflicts, i.e. situations when candidate OpenFlow rules modify network flows specified
by existing rules, and takes appropriate actions, depending on the authorization of the rule
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requestor. Role-based authentication is used to determine the security authorization of each
rule producer, enforcing the principle of least privilege to ensure integrity of the mediation
process. FortNOX consists of four components: a role-based source authentication module to
validate signatures for each flow rule insertion request; a conflict analyzer to evaluate each
new flow rule against existing active flow rules; a state table manager to track the current
flow rules; and finally a flow rule time-out callback interface to update the aggregate flow
table upon rule expiration. For conflict resolution, FortNOX converts all flow rules into ‘Alias
Reduced Rules’, allowing to perform a rule set conflict evaluation. FortNOX includes a security
directive translator ifor the block, deny, allow, redirect, quarantine, undo, constrain, and info
directives; such directives are used for high-level threat mitigation which are in turn translated
to flow rules to handle suspicious traffic. FortNOX has been implemented and evaluated as an
extension to NOX and found to introduce an average overhead of less than 7 ms for evaluating
a candidate flow rule against 1000 existing flow rules.

In [159] the authors presented ‘Fresco’, an OpenFlow security application development frame-
work, which facilitates rapid prototyping of composable detection and mitigation modules.
Such modules represent elementary building blocks of Fresco and contain the following inter-
faces: input, output, event, parameter, and action. The main functions provided by Fresco are
script to module translation, database management, event management and instance execu-
tion. Implementation of policies defined by composable applications is ensured by the Security
Enforcement Kernel built into the fabric of the network operating system. Furthermore, the
paper contains a description of a collection of Fresco modules, several composed security ap-
plications and a performance evaluation of Fresco. Fresco can be integrated as a security
extension module into other network operating systems – such as NOX.

Finally, in “Rosemary: A Robust, Secure, and High-Performance Network Operating Sys-
tem” [99], the authors present a network operating system focusing on network resilience
in the presence of faulty or malicious applications by creating sandboxed environments for
network applications. Sandboxing (also called ‘micro-NOS’) is achieved by launching each
application in a separate process context with access to all of the libraries that the application
requires. Each Micro-NOS also contains a resource monitor to supervise the applications and
operates within the permission structure of ‘Rosemary’ network operating system. In turn, the
‘Rosemary’ network operating system is an application running on a commodity Linux distribu-
tion. The isolation offered by the ‘micro-NOS’ allows to improve robustness, such that faulty
or malicious applications are prevented from crashing the entire network operating system.
Furthermore, the paper also aims to address security aspects in order to prevent malicious
network applications from accessing internal data structures of other network applications.
This is achieved by implementing an ‘AppZone’ sandbox, where privileged system calls made
by a network application are interposed and verified by the sandbox framework. To avoid the
declared ‘20-30%’ performance overhead, the authors recommend two optimisations called ‘re-
quest pipelining’ and ‘trusted execution’. The latter in essence removes the sandbox isolation,
allowing the application to run as a kernel process; however, this makes the security advantages
of ‘Rosemary’ less evident. Finally, the authors present the performance evaluation results,
which show that the ‘Rosemary’ network operating system performs roughly on par with the
NOX [98] approach on a 1G link and can perform on par with NOX on a 10G link with the
‘trusted execution’ optimisation in place. This contribution highlights the need for improved
security in the architectures of the proposed network operating system. However, one major
drawback of the proposed approach is that it ignores distribution aspects, despite significant
progresses in distributed network operating system design [245] and the demonstrated need
for physical distribution of the control plane [247].
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Kreutz et al presented a list of seven attack vectors identified in SDNs [155]: a. Forged or
faked traffic flows; b. Attacks on vulnerabilities in switches; c. Attacks on control plane com-
munications; d. Attacks on and vulnerabilities in network controllers; e. Lack of mechanisms
to ensure trust between the controller and management applications; f. Attacks on and vulner-
abilities in administrative stations; g. Lack of trusted resources for forensics and remediation.
However, only part of the above attack vectors are exclusively relevant to SDN networks. In
this paper, we focus on attack vectors specific for SDN deployments.

The SDN network architectural model abstracts the complexity of network virtualization;
however, in adopting it we must revisit the set of network virtualization mechanisms, identify
the most relevant attack vectors, define a relevant adversarial model and outline a set of
security requirements towards SDN-based multi-tenant virtualized networks.

3 System and Threat Model

In this section, we introduce the SDN system model followed by an example scenario. We next
define an adversarial model for SDN-based multi-tenant virtualized networks.

3.1 SDN system model

A conceptual model of the SDN architecture is depicted in Figure E.2, and described below
based on the SDN architectural model presented in [165].

• The data plane contains both hardware and software routing equipment. This component
implements the routing policies that satisfy the goals of the network administrator. It
lacks decision logic and is optimized for forwarding speed. Packets that do not match any
policy are either discarded or communicated to the control plane through the southbound
API.

• Southbound API is a vendor-agnostic set of instructions implemented by the routing
equipment on the data plane. It allows bi-directional communication between the data
and the control planes.

• Control plane is a logically distributed abstraction layer that transforms high-level net-
work operator goals into discrete routing policies based on a global network view. It
contains a distributed network operating system, which builds and maintains the global
network view as well as communicates with the equipment on the data plane. The con-
trol plane also includes the network hypervisor, which multiplexes the available network
resources among multiple users with distinct virtual network topologies.

• Management applications are used by network administrators to express their network
configuration goals using a set of high-level comments. They could also include software-
based network management components such as firewalls, intrusion detection systems,
traffic shapers, etc.

The above SDN system model will be used as a basis for the adversarial model and threat
analysis in the subsequent sections.
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Figure E.2: SDN system model. Letters mark attack vectors, presented in Section 4.

3.2 SDN Multi-tenant Network Scenario

As an example scenario, consider the cloud network infrastructure model, where tenants pur-
chase virtual network resources (e.g. bandwidth, switching capabilities) from network infra-
structure providers. Tenants are represented by the Virtual Topologies layer in Figure E.2.
The parameters of the virtual network resources agreed upon by the network infrastructure
provider and tenants are defined by a Quality of Service (QoS) agreement.

In a shared, multi-tenant virtual network environment, the tenants only have a view of the
network infrastructure limited to their administrative domain and are not aware about the
presence of other tenants. Furthermore, tenants do not have direct access to the configuration
of the underlying data plane infrastructure and instead administer their own network domain
through routing policies, which are then interposed by the network hypervisor and communic-
ated through the southbound API to the data plane. Enabled by the capabilities of the SDN
architectural model, tenants launch their own network management applications (as defined
in Section 3.1). Such network management applications can be made available both by the
network infrastructure provider and by third party application providers.

3.3 Adversarial model assumptions

We present our assumptions regarding SDN-based multi-tenant virtualized networks in the
presence of an adversary.

Assumption of hardware integrity Recent media revelations have raised the issue of
hardware tampering en route to deployment sites [2,213]. We assume that the cloud provider
has taken necessary technical and non-technical measures to prevent such hardware tampering.
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Assumption of physical security We assume physical security of the data centres where
the network infrastructure is deployed. This assumption holds both when the network infra-
structure provider owns and manages the respective data center (as in the case of Amazon Web
Services, Google Compute Engine, Microsoft Azure, etc.) and when the network infrastructure
provider utilizes the capacity of a data center operated by a third party (e.g. CloudSigma),
since physical security can be observed, enforced and verified through known best practices
by third-party organizations. This assumption is important for building higher-level hardware
and software security guarantees for the components of the network infrastructure.

Assumption of cryptographic security We assume symmetric and public-key en-
cryption schemes are semantically secure and that the adversary cannot obtain the plain text
of encrypted messages. We also assume the signature scheme is unforgeable, and that the
message authentication code algorithm correctly verifies message integrity and authenticity.
Finally, we assume that the adversary, with a high probability, cannot predict the output of
a pseudorandom function.

3.4 Adversary capabilities

We next describe specific capabilities for adversaries (denoted by ADV). We adopt the Yao-
Dolev threat model [211], such that the adversary can overhear, intercept, and synthesize
any message and is only limited by the constraints of the employed cryptographic methods.
Furthermore, we assume that the adversary can analyse the traffic patterns in the network
through passive attacks and may disrupt or degrade network connectivity to achieve its goals,
such as e.g. force the sender and the receiver to choose a less secure form of communication.
While we prioritise adversaries aiming to compromise the confidentiality and integrity of data
in network infrastructure deployments, we also aim to limit the capabilities of attackers to
mount Denial-of-Service attacks to disrupt connectivity. We denote this as ADV A.

We define two additional complementary adversarial types. Acting as a tenant (e.g. through
impersonation), the adversary obtains new capabilities in addition to the ones described above;
we define this as ADV B. In this case the adversary is able to perform the following actions
using valid network tenant credentials1:

1. Send valid tenant packages with an arbitrary content and frequency to the components
it can reach;

2. Attempt to impersonate other tenants;
3. Install arbitrary management applications and issue arbitrary policies within its network

domain;
4. Use the cryptographic material at its disposal to attempt to decrypt intercepted network

traffic that is sent and received by other tenants.

Furthermore, the adversary may manage to take over one of the SDN controller components
or some control of the network operating system. We denote this as ADV C; it will be able to
perform the following actions:

1Related adversary capabilities are defined in: https://tools.ietf.org/html/
draft-ietf-nvo3-security-requirements-04

133

https://tools.ietf.org/html/draft-ietf-nvo3-security-requirements-04
https://tools.ietf.org/html/draft-ietf-nvo3-security-requirements-04


1. Affect the network communication of the SDN-based infrastructure by sending valid
packets with an arbitrary content and frequency to all reachable network components;

2. Attempt to impersonate network infrastructure components;
3. Issue malicious policies aiming to either monitor, distort or disrupt network traffic;
4. Use the cryptographic material at its disposal to attempt to decrypt intercepted network

traffic that is sent and received by other network infrastructure components.

4 Attack Vectors

We review the attack vectors relevant for SDN-based multi-tenant virtualized networks con-
sidering the adversarial models presented in Section 3.

4.1 Vulnerabilities in the control plane

Along with ease of network administration, a central control plane introduces a primary attack
target for an adversary motivated to take control of the network. Taking over the control plane
component in the SDN architecture allows the adversary to obtain full control of the network
communication, different from traditional networks where communication control is distributed
throughout various network components. Possible solutions include splitting the controller into
several domains or distributing the control plane over several hosts, such that issued policies
are verified on a different component before deployment.

4.2 Attacks on control plane communications

To manipulate network policies, the adversary may attempt to spoof the control plane com-
munication (both among the components of a distributed controller and between management
applications, controller and data plane). Possible solutions include enforcing authenticated
and encrypted communication between all of the control plane components, as well as secure
enrolment mechanism for management applications and data plane devices.

4.3 Lack of a trust chain between the management applications
and the data plane

While the effort on defining the SDN architecture is still in progress, it is clear that management
applications belong to a different security domain than the network operating system, and
can be launched by malicious administrators or issue conflicting policies. Both detecting and
preventing malicious policy deviations is challenging: a tenant can only observe the traffic
after a change has been applied, but cannot obtain and examine snapshots of the data plane
FIB; similarly, there is no mechanism to establish a trust chain between tenant commands
and entries in the FIB. Possible solutions can be adapted from the ones employed – with
varying success – on platform operating systems: verification of code origin and information
flow control; however, such mechanisms do not satisfy malicious policy detection requirements.
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4.4 Attacks on policies and rules in programmable networks

Even if the integrity of policies remains intact, the adversary may issue malicious policies that
modify or disable the effect of legitimate policies already in place (specifically in the scenario
with such network management applications implement functionality of network middleboxes).
This type of attack is difficult to detect and prevent, since the malicious policies might be
indistinguishable from legitimate ones up to the point when the combined policy is deployed
(furthermore, it requires a robust definition of a “malicious policy”). Possible solutions are
to establish policy hierarchies and perform policy integration verification against some pre-
determined invariants prior to deployment, to ensure that the resulting modifications remain
within the basic policy framework. As policy updates may occur interactively in response to
changing network patterns, both static analysis of policies and a pre-deployment simulation
may be required.

4.5 Resource limit violations

A malicious tenant may deploy network management applications that exploit vulnerabilities in
network service isolation in order to gain network resources beyond the allocated quota defined
in the QoS agreement. Possible solutions include adding network operating system capabilities
for fine-grained monitoring of management applications to prevent resource overallocation.
This in turn requires a well-defined network resource model based on clear definitions of network
resources and their respective capacities.

4.6 Attacks on virtual switches and network gateways

As pointed out in Section 3.4, an adversary that controls a virtual network infrastructure
component (such as a virtual switch) can attempt to impersonate other virtual network infra-
structure components, spoof traffic and negatively affect tenant isolation. Possible solutions
include integrity verification of virtual network infrastructure components and protecting the
cryptographic secrets necessary for network access using a hardware root of trust.

4.7 Weak bandwidth isolation as attack vehicle

One of the consequences of NIC virtualization is a weakening of QoS guarantees, since most
NIC virtualization implementations do not support guaranteed bandwidth [248]. While this
does not directly affect data integrity and confidentiality, manipulating bandwidth allocation
between tenants sharing a resource can be used in order to force a policy change (e.g. trigger
a more permissive policy that is activated when the available bandwidth falls below a certain
threshold). Possible solutions include widespread proliferation of bandwidth isolation tech-
niques such as described in [249], as well as including the effects of bandwidth changes into
network policy security testing.
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5 Security Requirements

In this section, we outline a set of initial security requirements for SDN-based multi-tenant
virtualized networks, based on the adversarial model described in Section 3 and the attack
vectors in Section 4:

1. 4.1: The SDN control plane must implement an access control model that limits the
effects that vulnerabilities in controllers can have on tenant domains. This can prevent
an adversary from simultaneously gaining control over the functionality of the SDN
controller component at all privilege levels and in all roles.

2. 4.1: A dedicated entity must verify the policies to be implemented by the SDN control
plane before deployment.

3. 4.2: All communication between control plane components must the authenticated, and
a secure enrolment mechanism for management applications and data plane devices must
be in place.

4. 4.3: A mechanism must be in place to offer traceability and non-repudiation for all
configuration commands and policies issued by network management applications.

5. 4.4: A mechanism must be in place to enforce strong network policy isolation, such
that the effects of policies in a certain tenant domain have no effect on other domains.
Furthermore, the infrastructure provider must be able to enforce strict boundaries on
the effects of policies within tenant domains.

6. 4.4: New network management policies must run through an integration verification
engine prior to deployment, to minimize or exclude the effect of malicious policies on
the network configuration.

7. 4.5: A mechanism must be in place to ensure that network management applications
do not allocate resources beyond the assigned quota. To do this, the NOS may apply
advanced policing mechanisms – e.g. based on existing extensions, such as in [158] – that
keep fine-grained tracking of management applications resource utilization and prevent
them from making over-allocations.

8. 4.6: Integrity of virtual network components must be verified prior to deployment and
the cryptographic material required for their network access must be protected with a
hardware root of trust.

9. 4.7: Policy-based routing decisions must not be affected by vulnerabilities in band-
with isolation between tenants. To clarify, consider a network setup with two types
of paths: low-bandwidth, low-cost, low-security permanent paths (type-A paths) and
high-bandwidth, high-cost, high-security switched paths (type-B paths).
Consider further that a legitimate tenant has configured a policy to distribute different
types of traffic (low-value and high-value traffic) among the type-A and type-B paths
respectively. An adversary capable of modifying the bandwidth allocated to the paths
of the legitimate tenant should not succeed in redirecting high-value traffic through
type-A paths.

10. 4.7: Software and hardware network components must offer equally strong bandwidth
isolation properties. In the current networks, the data plane components include both
software switches and routers deployed on commodity platforms and specialized hard-
ware equipment implemented using application-specific integrated circuits. As pointed
out in [248], software-based data plane components lack many of the features currently
implemented in specialized hardware switches and routers. Strong bandwidth isolation
is one of the features which must be improved in the software implementations.
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We plan to address in our forthcoming work the above security requirements towards SDN-
based multi-tenant virtualized networks.

6 Conclusion

Integration of large-scale multi-tenant virtualized network infrastructure with the SDN ar-
chitectural model presents a set of unsolved security challenges. In this paper, we perform
a high-level analysis of SDN-based multi-tenant virtualized networks. We present three se-
curity assumptions about such networks, that are necessary for defining a secure virtualized
network infrastructure. Based on these assumptions, we define the relevant adversarial model
and identify the main attack vectors for such network infrastructure deployments. Finally,
based on the defined adversarial model and resulting attack vectors, we outlined a set of high-
level security requirements for SDN-based multi-tenant virtualized networks. The adversarial
model, attack vector analysis and high-level security requirements defined in this paper serve
as an initial input towards future design work of secure and trusted SDN-based multi-tenant
virtualized networks.

137





Paper F

TruSDN: Bootstrapping Trust
in Cloud Network
Infrastructure

Nicolae Paladi and Christian Gehrmann

Abstract

Software-Defined Networking (SDN) is a novel architectural model for cloud net-
work infrastructure, improving resource utilization, scalability and administration.
SDN deployments increasingly rely on virtual switches executing on commodity
operating systems with large code bases, which are prime targets for adversar-
ies attacking the network infrastructure. We describe and implement TruSDN,
a framework for bootstrapping trust in SDN infrastructure using Intel Software
Guard Extensions (SGX), allowing to securely deploy SDN components and pro-
tect communication between network endpoints. We introduce ephemeral flow-
specific pre-shared keys and propose a novel defense against cuckoo attacks on
SGX enclaves. TruSDN is secure under a powerful adversary model, with a minor
performance overhead.

1 Introduction

Renewed and widespread interest in virtualization – along with proliferation of cloud computing
– has spurred a series of innovations, allowing cloud service providers to deliver on-demand
compute, storage and network resources for highly dynamic workloads. Consequently, more
hardware and virtual components are added to already large networks, complicating network
management. To help address this, SDN emerged as a novel network architecture model.
Separation of the data and control planes is its core principle, allowing network operators to
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implement high-level configuration goals by interacting with a single network controller, rather
than configuring discrete network components. The controller applies the configuration to the
network edge, i.e. to its global view of the data plane [98]. Data and control plane separation
in SDN challenges network infrastructure security best practices evolved in the decades since
packet-switched digital network communication gained popularity [155], [250].

In the cloud infrastructure model, SDN allows tenants to configure complex topologies with
rich network functionality, managed by a network controller. The availability of a global view
of the data plane enables advanced controller capabilities – from pre-calculating optimized
traffic routing to managing applications that replace hardware middleboxes. However, these
capabilities also make the controller a valuable attack target: once compromised, it yields the
adversary complete control over the network [251]. The global view itself is security sensitive:
an adversary capable of impersonating network components may distort a controller’s global
view and influence network-wide routing policies [252].

Virtual switches are another category of security sensitive components in SDN deployments.
They execute on commodity operating systems (OS) and are often assigned the same trust level
and privileges as hardware switches – specialized network components with compact embedded
software [253] or application-specific integrated circuits. Commodity OS are likely to contain
security flaws which can be exploited to compromise virtual switches. For example, their
configuration can be modified to disobey the protocol, breach network isolation and reroute
traffic to a malicious destination or compromise other network edge elements through lateral
attacks. Such risks are accentuated by the extensive control a cloud provider has over the
infrastructure of its tenants.

Security and isolation of tenant infrastructure can be strengthened by confining select SDN
components to trusted execution environments (TEE) and attesting their integrity before pro-
visioning security-sensitive data. TEEs with strong security guarantees can be built using
SGX, a set of recently introduced extensions to the x86 instruction set architecture and re-
lated hardware [50,51]. Earlier work used SGX to protect computation in cloud environments,
by executing modified OS instances in SGX enclaves [61] or a data processing framework in
a set of SGX enclaves [63]. However, while both of the above efforts highlighted the need to
secure network communication, they did not address it.

1.1 Contribution

This paper makes the following contributions:

• We present TruSDN, a framework to bootstrap trust in SDN infrastructure.
• We introduce flow-specific pre-shared keys for communication protection.
• We propose a defense against cuckoo attacks [62], based on properties of the enhanced

privacy ID (EPID) scheme [55] used for remote enclave attestation.
• We describe the implementation and a performance evaluation of TruSDN.

1.2 Organization

We introduce the system model in Section 2, describe the adversary model in Section 3 and
the design of TruSDN in Section 4. In Section 5 we provide a security analysis, describe the
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prototype implementation and performance evaluation in Section 6 and review the related
work in Section 7. We discuss future work in Section 8 and conclude in Section 9.

2 System Model

In this section we describe the SDN architectural model and the SDN deployment layers.
Furthermore, we describe the use of TEEs based on Intel SGX.

2.1 Software Defined Networking

In this paper we target SDN in infrastructure cloud deployments. The system model follows
the architecture presented in [165] and depicted in Figure F.1a.

The data plane includes hardware and software switch implementations. Software switching is
used in cloud deployments due to its scalability and configuration flexibility. Figure F.1b illus-
trates the software switching approaches for communication between two collocated endpoints.
In a typical switch implementation, its kernel-space component is optimized for forwarding
performance, lacks decision logic and only forwards packets matching rules in its forwarding
information base (FIB) [254]. The FIB comprises packet forwarding rules deployed to satisfy
network administrator goals. Mismatching packets are discarded or redirected to the control
plane through the southbound API. While the data plane uses complementary functionality of
both virtual and physical switches, the role of the latter is often reduced to routing IP-tunneled
traffic between hypervisors [95]. In this paper we do not address control of hardware switches
and traffic routing between hosts; we assume that the physical network provides uniform ca-
pacity across hosts, based on e.g. equal-cost multi-path routing [255], such that if multiple
equal-cost routes to the same destination exist, they can be discovered and used to provide
load balancing among redundant paths. Overlay networks – e.g. VLANs or GRE [256] – are
used for communication between endpoints. In this work, we focus exclusively on software
switching and use the term “switch” to denote a virtual, software implementation. We refer
to hardware switch implementations as “hardware switches”.
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In the control plane, high-level network operator goals are translated into discrete routing
policies based on the global network view, i.e. a graph representation of the virtual network
topology. The main component of a control plane is the network controller, which we define
as follows:

Definition 2.1. Network Controller (NC) is a logically centralized component that manages
network communication in a given deployment by updating the FIB with specific forwarding
rules. The NC compiles forwarding rules based on three inputs: the dynamic global network
view, the high-level configuration goals of the network operator, and the output of the network
management applications.

The NC is typically implemented as part of a logically centralized network OS, which builds
and maintains the global network view and may include a network hypervisor, to multiplex
network resources among distinct virtual network deployments.

Southbound API is a set of vendor-agnostic instructions for communication between data
and control planes. It is often limited to flow-based traffic control of the data plane, with
management done through a configuration database [95].

Network operators use network management applications (NMAs), e.g. firewalls, traffic shapers,
etc., to configure the network using high-level commands.

2.2 Deployment layers

We next describe the deployment layers of SDN infrastructure (Figure F.2a).

The hardware layer includes infrastructure for data transfer, processing and storage and is
comprised of network hardware (including hardware switches and communication channels),
hardware server platforms and data storage.

The infrastructure layer includes software components for virtualization and resource provi-
sioning to infrastructure users, referred to as tenants. For network resources, this layer includes
the network hypervisor, which creates network slices by multiplexing physical network infra-
structure between tenants. Infrastructure providers expose a slice (i.e. a quota) of network
resources to the tenants.

The service layer includes components controlled by tenants. Network components operated
by tenants are grouped into network domains, comprising the virtual network resources and
topologies that logically belong to the same organizational unit and network slice, and perform
related tasks or provide a common service. The network hypervisor ensures that a tenant’s
control plane can only control switches in its own slice. Within their slice, tenants have ex-
haustive creation, destruction and configuration privileges over components, such as instances
of switches, the NC, NMAs and network domains. We define three logical communication
segments (Figure F.2b): between the network controller and switches (α segments); among
the switches on each host (β segments); between host-local switches and network endpoints (γ
segments).

The user layer includes endpoint consumers of network services, e.g. virtualization guests,
containers and applications in a network domain.
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2.3 Trusted Execution Environments

The proposed solution relies on TEEs that both provide strong isolation and allow remote code
and data integrity attestation. Such a TEE can be created using Intel SGX enclaves (introduced
in [50, 51]) during OS runtime and relies for its security on a trusted computing base (TCB)
of code and data loaded at build time, processor firmware and processor hardware. At build
time, the CPU measures the loaded code, data and memory page layout. At initialization
time, the CPU produces a final measurement, after which the enclave becomes immutable and
cannot be externally modified. The CPU maintains the measurement throughout the enclave’s
lifetime to later assert the integrity of the enclave contents. Processor firmware is the root of
trust (ROT) of an enclave. It prevents access to the enclave’s memory segment by either the
platform OS, other enclaves, or other external agents. Enclaves operate in a separate memory
region inaccessible to non-enclave processes, called the enclave page cache (EPC). Multiple
mutually distrusting enclaves can operate on the platform. The processor enforces separation
of memory access among enclaves based on the layout in the EPC map. Program execution
within an enclave is transparent to both the underlying OS and other enclaves.

Remote attestation allows an enclave to provide integrity guarantees of its contents [50]. For
this, the platform produces an attestation assertion with information about the identity of the
enclave and details of its state (e.g. the mode of the software environment, associated data,
and a cryptographic binding to the platform TCB making the assertion). For intra-platform
attestation (i.e. between enclaves on the same platform), the reporting enclave (reporter)
invokes the EREPORT instruction to create a REPORT structure with the assertion and calculate
a message authentication code (MAC), using a report key, known only to the target enclave
(target) and the CPU. The structure contains a user data field, where the reporter can store
a hash of the auxiliary data provided. The target recomputes the MAC with its report key to
verify the authenticity of the structure, and compares the hash in the user data with the hash
of the auxiliary data, to verify its integrity. Enclaves then use the auxiliary data to establish a
secure communication channel. For inter-platform attestation the remote verifier first sends a
challenge to the enclave platform, where the challenge is complemented with the indentity of
a quoting enclave (QE) and forwarded to the reporter, which appends the challenge response
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to the REPORT and attests itself to the QE. The QE verifies the structure, signs it with a
platform-specific key using the enhanced privacy ID group signature scheme (EPID) [55] and
returns it to the verifier, to check the authenticity of the signature and the report itself [50].
The use of the EPID scheme is part of the SGX implementation and allows to maintain the
privacy of the platform which hosts the enclave.

3 Adversary Model

We now describe the adopted adversary model, as well as the core security assumptions on
which we base our design. The adversary model we adopt can be described by the capabilities
of the adversary at the network and platform levels respectively (overview in Table F.1).

3.1 Network infrastructure

For SDN infrastructure, we adopt the adversary model introduced in [211] and extended with
SDN-specific attack vectors in [250]. We assume a powerful adversary (Adv), which controls the
cloud deployment network infrastructure; it can intercept, record, forge, drop and replay any
message on the network, and is only limited by the constraints of the employed cryptographic
methods. Particularly, the Adv may forge messages that do not match any of the rules installed
in the FIB. Furthermore the Adv may create own instances of switches and launch Sybil
attacks [257] and launch other types of topology poisoning attacks [252] to distort the global
network view. Finally, Adv can store arbitrary quantities of intercepted communication and
attempt its decryption with encryption keys intercepted or leaked at a later point. It can
analyze the traffic patterns in the network through passive probing and may disrupt or degrade
network connectivity to achieve its goals. We explicitly exclude Denial-of-Service attacks on
the SDN infrastructure.

Table F.1: Summary of the Adv capabilities in relation to the adversary model.

Type Network Platform
Included Intercept, record, forge, drop,

replay messages;
Analyze the traffic patterns;
Disrupt or degrade network connectivity;
Launch topology poisoning attacks

Control non-processor hardware;
Control software stack OS, hypervisor;
Pause execution;
Deploy arbitrary software components;
“Cuckoo attack”: Forward function calls
to compromised SGX enclaves;
Return arbitrary values to system calls

Not included,
mitigations known

Side-channels: cache-collision,
controlled channel;
Attacks on shielded execution;

Excplicitly
excluded

Denial-of-Service (DoS) attacks Side-channels: power analysis; DoS
attacks

3.2 Platform

For platform security, we consider a powerful adversary, similar to [61, 63], that may control
the entire software stack in the cloud provider’s infrastructure.

144



On the hardware level, we assume the processor is correctly implemented and remains un-
compromised; furthermore, we assume a reliable and secure source of random numbers (which
can be provided by the CPU). Adv has full control over the remaining hardware, including
memory, I/O devices, periferials, etc. Similarly, Adv fully controls the software stack, includ-
ing the platform OS and the hypervisor. This implies that Adv may pause indefinitely the
execution of the code in the TEE and return arbitrary values in response to OS system calls.
However, a deployment orchestrator and NC execute under tenant control, on a fully trus-
ted platform and software stack. We exclude side-channel attacks. While some side-channel
attacks – e.g. timing, cache-collision, controlled channel attacks – can be mitigated through
software modification [56], preventing other side-channel attacks – such as power analysis –
requires hardware modifications. An Adv with advanced capabilities may leverage its full con-
trol over the OS to utilize the class of known attacks on shielded execution; while we do not
address such attacks, they have known countermeasures [60,61].

SGX, similar to other trusted computing solutions, is vulnerable to cuckoo attacks [62]. In
one attack scenario, malware on the target platform forwards the messages intended for the
local SGX enclave (SGXE

L) to a remote enclave under Adv’s physical control (malicious enclave,
SGXE

M). Having physical access to SGXE
M, Adv can apply hardware attacks to violate its security

guarantees. As a result, Adv controls all communication between the verifier and SGXE
L, with

access to an oracle that provides all of the answers a benign SGXE would, but without its
expected security properties.

Briefly, the adversary model for platform security largely matches the remote administrator
capabilities of an infrastructure cloud provider.

4 Solution Description

In this section we present TruSDN, a framework for bootstrapping trust in SDN deployments.
Its goal is to allow tenants to securely deploy computing tasks and create virtualized network
infrastructure deployments, given the adversary model defined in Section 3. To satisfy this
goal, the framework must satisfy the following set of requirements:

• Authentication: communication in the domain must the authenticated, and a secure
enrollment mechanism for data plane components must be in place.

• Topology integrity: the NC must be protected from network components that attempt
to distort the global network view.

• Component integrity: integrity of switches must be attested prior to enrollment and
the cryptographic material required for their network access must be protected with a
hardware ROT.

• Confidentiality protection of domain secrets: network domain secrets – such as VPN
session keys – should not be revealed to the Adv.

• Protected network communication: network communication in the tenant domain must
be confidentiality and integrity protected.
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4.1 TruSDN overview

We begin by introducing the building blocks of TruSDN (Figure F.3).

Trusted Execution Environments: TruSDN uses TEEs that guarantee secure execu-
tion in the given adversary model, assuming the CPU and executed code are correctly imple-
mented.

Host 1

Compute Task 1.1

TEE1.1
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Figure F.3: Illustration of core building blocks of TruSDN.

Protected Compute Tasks: Security sensitive compute tasks (CT) are deployed in
TEEs. Such tasks include all operations that tenants aim to protect from the Adv. How-
ever, CTs rely on the untrusted OS for I/O and support functionality.

Protected Data Plane: Switches are deployed in TEEs – they route traffic between CTs
according to forwarding rules communicated through secure channels and maintained in the
FIB. The FIB of the switches, and the key material necessary to establish the secure channels
are stored in TEEs.

Attested code in TEEs: An orchestrator under tenant control attests the TEEs during
network infrastructure deployment, to ensure integrity of the deployed code and data before
keys or key material are provisioned to the respective TEE.

In a typical deployment scenario, the tenant invokes an orchestrator to deploy a switch bootstrap
application on the hosts in the tenant’s domain. The bootstrap application invokes a host-
local SGX driver to build an SGX enclave containing a switch. Next, the orchestrator attests
the created enclave (as described in Section 2.3) prior to enrolling the switch with the NC.
The orchestrator uses the enclave’s public key from the attestation quote to securely transfer
the enclave-specific integrity and confidentiality protection session keys used to establish a
protected communication channel between the NC and the TEE. Finally, the NC communicates
any remaining security-sensitive payload to the created TEE, e.g. the initial FIB. Next, CTs
are deployed in TEEs on the host and the switch forwards packets between the CTs, matching
them against the rules in the FIB. Mismatching packets are forwarded to the NC, which may
update the FIB with new rules. For clarity, we assume the orchestrator and NC are collocated
on a platform under tenant control and view both as a single component, further referred to
as “NC”.
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Secure Communication: TruSDN protects the communication between CTs, between
switches and the NC, as well as among the switches, in the above adversary model. Commu-
nication security is ensured using confidentiality and integrity protection keys provisioned to
authenticated network components and endpoints executing in TEEs. Furthermore, TruSDN
leverages SDN principles to introduce a novel mechanism – per-flow communication protection
using ephemeral flow-specific pre-shared keys (PSKs).

4.2 Cryptographic Primitives

We now define the cryptographic primitives and notations used in the remainder of this paper.
We denote by {0, 1}n the set of all binary strings of length n, and by {0, 1}∗ the set of all finite
binary strings. In a set U, we refer to the ith element as ui, and use the following notation for
cryptographic operations:

• Given an arbitrary message m ∈ {0, 1}∗, we denote by c = Enc (K,m) a symmetric en-
cryption of m using the secret key K ∈ {0, 1}∗. The corresponding symmetric decryption
operation is m = Dec(K, c) = Dec(K, Enc(K,m)).

• We denote by pk/sk a public/private key pair for a public key encryption scheme. We
denote by c = Encpk (m) the encryption of message m with the public key pk, and the
decryption by m = Decsk(c) = Decsk(Encpk(m)).

• We denote a digital signature over a message m by σ = Signsk(m) and the corresponding
verification of a digital signature by ν = Verifypk(m, σ), where ν = 1 if the signature is
valid and ν = 0 otherwise.

• We denote a Message Authentication Code (MAC) using a secret key K over a message
m by µ = MAC(K,m).

We next describe key sharing and communication protection mechanisms on the identified
logical segments. Table F.2 summarizes the keys used by TruSDN.

Table F.2: Summary of keys used in the TruSDN framework.

Key Created by Access Usage
Kα
i NC NC, switch Enclave-specific session, segment α

Kβ
j NC NC , switch Domain-specific session, segment β

K′ NC NC, switch Ephemeral session key
K′′ NC NC, switch Ephemeral MAC key
EKpk

i switch public Public key of the switch enclave
EKsk

i switch switch Private key of the switch enclave
CKpk

i CT public Public key of the compute task
CKsk

i CT CT Private key of the compute task
QEpk vendor public Public key of the quoting enclave
QEsk vendor vendor, QE Private key of the quoting enclave
SKγ

ij NC NC, CTi, CTj Ephemeral flow-specific pre-shared key

4.3 SDN Trust Bootstrapping and Secure Communication

The first step in deploying a TruSDN infrastructure is to launch a set of trusted switches
for connectivity and topology building. The NC requests the creation of switch enclaves to
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deploy switches in TEEs on hosts in its domain. Switches are deployed based on parameters
provided by the NC in plaintext (application code and configuration). Next, the NC attests
the integrity of switch enclaves and only enrolls the successfully attested ones (Figure F.4).
A TEE Ei is attested following the protocol introduced in [50]. With TruSDN however, the
reporter generates an enclave-specific public-private keypair and submits its public key EKpk

i
along with the attestation data; a hash of the public key is stored in the user data field. The
switch enclave is only enrolled to the global network view if its reported state matches the one
expected by NC.

BE NC API E QE

1.n
2.QEi, n

3.m = REPORT, EKpk
i

4.σ = Signsk(m)

5. σ, m

TruSDN.ObtainQuoteTruSDN.ObtainQuote Obtain Enclave Quote

6.Verifypk(m, σ)

ν

7.Attest Emi
Enrollment message

ack

8. Updated Global View

TruSDN.EnrolTruSDN.Enrol Attest and Enrol Enclave

Figure F.4: TruSDN enclave attestation and enrollment: (1.) Random nonce n is (2.)
supplemented with the host QE identity; (3.) Quote m produced by the enclave is (4.)
signed by the QE. (6.) The verifier checks the signature of the QE, (7.) attests the
integrity of the enclave and (8.) only enrolls the enclave upon success. BE: back-end.

Having attested enclave Ei, NC communicates an Enrollment message (Table F.3) with the
enclave-specific pre-shared key Kα

i and domain-specific pre-shared key Kβ
j , encrypted with an

ephemeral key K′
i . Switches within a domain use Kβ

j to protect communication on β segments.
The NC appends a MAC of the message calculated with K′′

i and encrypts the keys K′
i , K′′

i with
EKpk

i .

Once switches are deployed and enrolled, tenants may configure the network topology using
the NC to update the switch FIBs. Communication on α segments – e.g. FIB updates or
unmatched packets forwarded to the NC – is protected using the session key Kα

i (e.g. using
TLS [215]), which never leaves the TEE.

Similarly, a secure channel is established among the switches within the same domain, using
the pre-shared key Kβ

j , to protect communication between switches on different hosts (e.g.
TEEs 1.2 and 2.3 in Figure F.3). Kβ

j never leaves the TEEs, has a limited validity time and
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Table F.3: Enrollment message sent by the NC upon switch enrollment.

m = Enc(K′
i , (Kα

i , Kβ
j )) µ = MAC(K′′

i , m) Enc(EKpk
i , (K′

i , K
′′
i )

is periodically redeployed by the NC. On β segments, traffic may traverse multiple hardware
switches, forwarded to the host over tunnels deployed on top of a standard routing protocol
(e.g. [255]).

Next, the tenant may deploy CTs in TEEs and attest their integrity using the very same
scheme and principles as for the switch deployment described above. The CTs and the network
controller use the Enrollment message to establish a secure communication channel (e.g. TLS).

Once the NC has deployed and attested the TEEs with switches and CTs, intra-host com-
munication (i.e. between two CT enclaves on the same host) is straightforward (Figure F.5):
when a packet m sent from C1 (e.g. a TLS ClientHello message) reaches the local host switch
A, it attempts to match m against a FIB entry; if no suitable flow rule f is present, the switch
forwards Enc(Kα

A ,m) to NC, which processes the packet, generates and deploys on the CTs
C1, C2 a flow-specific pre-shared key SKγ

12 and finally updates the switch FIB with f, after
which steps 2 and 3 are ignored; once the FIB is updated, the switch forwards m to C2, which
continues the message exchange and uses SKγ

12 to protect the communication with C1, using
e.g. TLS with a PSK ciphersuite [215].

Communication between CTs C1 and C3 deployed on distinct hosts is similar, with the only
notable difference that the NC updates the FIB of the local switches on both hosts where C1,
C3 are deployed.

In the above scenarios TruSDN leverages two aspects of the SDN model – (1) the deployment
has a central authority (the NC) and (2) the first packet of a flow is forwarded to the central
authority – to deliver on demand ephemeral PSKs to communication endpoints. This allows
to relax the need for high-quality entropy being available to CTs (a known issue in virtualized
environments [258]). Furthermore, this approach ensures communication security without
compromising packet visibility – having control over the keys used to protect communication
between the CTs allows the NC to maintain fine-grained insight into the traffic.

4.4 Preventing Cuckoo Attacks

To prevent cuckoo attacks [62], we propose a solution that leverages cryptographic properties
of the EPID scheme used by the QE [55] and the SIGn and Message Authentication (SIGMA)
protocol [259], which are both part of the Intel SGX implementation. The EPID scheme
supports two signature modes: fully anonymous mode – the verifier cannot associate a given
signature with a particular member of the group; pseudo-anonymous mode – the verifier can
determine whether it has verified the platform previously. The unlinkability property distin-
guished in the two modes depends on the chosen base. A signature includes a pseudonym Bf ,
where B is the base chosen for a signature and revealed during the signature; f is unique per
member and private. For a random base R, the pseudonym is Rf – in this case the signatures
are unlinkable. For a name base, the pseudonym is Nf , where N is the name of the verifier
– in this case the signatures remain unlinkable for different verifiers, while signatures with a
common N can be linked. For privacy reasons, the EPID scheme currently implemented in
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Figure F.5: Intra-host communication with TruSDN.

Intel SGX accepts name base pseudonyms only from verifiers authorized by the EPID author-
ity [260], which is done by provisioning qualified verifiers with an X.509 certificate – e.g. an
intermediate certification authority (CA) certificate – signed by the EPID authority acting as
root CA.

We propose the following algorithm to prevent cuckoo attacks. At deployment time, the EPID
authority issues, to an authorized verifier VP, an intermediate CA verifier certificate for the
platforms in the cloud provider’s data center. Next, VP attests its platforms following the
SIGMA protocol and publishes a list of resulting platform EPID signatures and the signature
name base, BN

P . To guard against cuckoo attacks, tenants first request VP to issue an X.509
certificate and enable them to become authorized verifiers. Next, tenants choose the same
pseudonym base BN

P (and a private f), follow the SIGMA protocol, and verify that the resulting
signature is linkable to a signature in the published list. The cloud provider has multiple tools
to protect platform privacy and prevent untrusted tenants from fingerprinting the platform
infrastructure, e.g. limiting the validity of issued certificates, changing the name base, etc.
Considering that the EPID scheme is currently not implemented in the SGX emulation software
we used for prototyping, we intend to describe the implementation of the above algorithm in
a follow-up report.

5 Security Analysis

In this section we analyze the security properties of the proposed framework in the adversary
model described in Section 3. On the network level, many of the Adv capabilities are thwarted
by first authenticating the switches deployed on the data plane, as well as the network edge
(i.e. the compute tasks that generate or receive the network traffic), in combination with
confidentiality and integrity protection of the traffic on the three identified segments. Au-
thenticating the network components prevents topology poisoning attacks (a countermeasure
mentioned in [252]), while confidentiality and integrity protection of all of the network traffic
in the deployment prevents the Adv from either learning the contents of the exchanged packets
or successfully forging packets. The Adv may in this case still intercept and record messages.
However, collecting encrypted traffic does not yield the Adv any more information about the
contents of the exchanged packets. Similarly, the Adv does not gain an advantage by simply
dropping or replaying messages, since these actions would at most simply reduce the channel
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capacity (as would the ability of the Adv to disrupt network connectivity). Finally, the pro-
posed framework does not prevent the Adv from analyzing the traffic patterns and does not
prevent it from fingerprinting the components of the deployment, making it vulnerable to rule
scanning and denial of service attacks. While the goals of TruSDN did not include this, such
traffic analysis could be prevented using anti-fingerprinting techniques, as proposed in [261].

On the platform level, the security of the proposed framework relies to a large extent on the
security properties of Intel SGX enclaves. This allows to protect the execution of switches
and network edge components deployed in TEEs from the capabilities of an Adv controlling
non-processor hardware, the software stack of the OS and the hypervisor. Similarly, pausing
execution of switches executing in TEEs, while possible, would have no further effect than
degrading network connectivity, already discussed above. While the Adv may attempt to
deploy own arbitrary components on the data plane or the network edge in order to launch
Sybill attacks, the integrity of such components would not be successfully attested, unless they
are identical to legitimate components, which are assumed to be executing correctly – rendering
Sybill behavior impossible. The Adv is prevented from launching cuckoo attacks by enabling
tenants to verify the platforms, as described in Section 4.4. As presented in Table F.1, several
relevant classes of attacks are not addressed by TruSDN, but have known mitigations, namely
cache-collision, controlled channel and attacks on shielded execution (addressed in [56, 63]).
The capability of the Adv to return arbitrary values to system calls, while not addressed in
this work, can be mitigated by a validation component as described in [61].

6 Implementation and Evaluation

We now describe the implementation and evaluation of TruSDN.

6.1 TruSDN Implementation

The TruSDN prototype deployment follows the design presented in Section 4 and is illustrated in
Figure F.6. Host 1 and Host 2 are instances of Ubuntu OS 15.04. In each instance, we deployed
Linux Containers1, similarly based on Ubuntu OS 15.04. Containers create an environment
with own process and network space, implemented using namespaces, with a distinct user
ID, network stack, mount points, file systems, processes, inter-process communication, and
hostname. We chose containers to facilitate prototype implementation, using their lightweight
process isolation. Containers are part of the untrusted OS and this implementation choice is
orthogonal to the security of TruSDN. Compute tasks are deployed in TEEs created using
SGX enclaves (Figure F.6): enclaves E1, E2, E4, E5 are placed respectively within containers
C1, C2, C3, C4. The switches are deployed in TEEs created using SGX enclaves (enclaves E3,
E6 in Figure F.6).

Considering that platforms with hardware and software support for SGX were not publicly
available at the time of writing, we used OpenSGX [184] to emulate the TEEs. It is a software
SGX emulator and a platform for SGX development, implemented using binary translation
of QEMU and emulating Intel SGX hardware components at instruction level. It includes
emulated hardware and OS components, enclave program loader, the OpenSGX user libraries,
debugging and performance monitoring support. The emulator allows to implement, debug,

1Linux Containers Project Website: https://linuxcontainers.org/
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Figure F.6: Prototype deployment of TruSDN

and evaluate SGX applications, but does not support binary compatibility with Intel SGX. Fur-
thermore, OpenSGX does not implement all instructions, e.g. debugging instructions. While
OpenSGX does not provide security gurantees, it allows us to obtain performance estimates
for the proposed approach. We used mbedTLS2 v1.3.11 (distributed with the emulator) for
attestation of the SGX enclaves. We used OpenSSL v1.0.2d (distributed with the emulator)
to set up protected communication channels between the CT enclaves and the local switches,
and among switches within the same domain.

An SDN network controller is deployed in a third instance (Host 3). We used the Ryu3 SDN
framework, due to its flexibility and versatile APIs.

6.2 TruSDN Evaluation

We now analyze the performance impact, present evaluation results and discuss aspects that
cannot be measured with the current prototype.

Sources of Performance Impact

TruSDN introduces several potential sources of performance impact (Table F.4). We distinguish
between transient performance overhead, which occurs occasionally (e.g. TLS key negotiation)
and continuous performance overhead, present throughout the infrastructure operation. We
do not consider the one-time cost of infrastructure deployment, e.g. provisioning the software,
attesting TEEs and enrolling the components.

Measured Performance Impact

To evaluate the performance impact, we measured the footprint of establishing TLS sessions
on α and γ segments. We used iperf, openssl s_time and an own Ryu application (Table F.5).

2mbed TLS project website https://tls.mbed.org/
3Ryu SDN framework: https://osrg.github.io/ryu/
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Table F.4: Sources and types of performance overhead in TruSDN

Source Type Clarification
TLS negotiation all segments transient Negotiate session keys for TLS
PSK distribution transient Distribute PSK for γ segments
TLS protection all segments continuous Overhead induced by TLS
Compute task execution in TEEs continuous Overhead induced by TEE
Switch execution in TEEs continuous Overhead induced by TEE

TLS overhead on the α segment: We measured the round-trip latency of packets sent
in plaintext and with TLS, over 1000 tests, each request sending messages of 100 bytes with
the 80 bit OpenFlow header. Furthermore, we measured the data transfer rates for plaintext
and TLS communication. Use of TLS increased total transfer time by 14.2% and reduced the
transfer rate by 15.98%.

Delay on γ segment As mentioned above, the first packet of the flow is intercepted by the
switch and forwarded to the NC in a packet_in message [96]. At this point the NC processes
the flow and installs a flow rule on the switch. TruSDN extends this procedure by generating
and distributing to the communicating CTs a pre-shared key, to be used for communication
protection. Since this must be done prior to both forwarding the message to the destination
CT and installing the flow rule, generating and distributing the PSK would normally delay
the installation of the flow rule and increase the latency of the first packet (all subsequent
packets are forwarded according to the flow rule). To measure the introduced delay, we have
sequentially established 1000 TLS sessions between compute tasks C1 and C2 (according to
Figure F.6). After each TLS session, we flushed the installed flow rules (with ovs-ofctl
del-flows br0), which resulted in a packet_in message upon each new session. The latency
of the first packet is shown in Figure F.7a, and compared against the latency of a first packet
without the TruSDN extension.

The induced delay is primarily caused by two operations performed by the NC: generating
a 256-bit PSK and distributing it to the CTs. Figure F.7b displays a fine-grained picture
of the induced delay. Key generation lasted on average 0.178 ms, while key distribution on
average 0.54 ms (Table F.5). We remind that the test environment is fully virtualized and
posit that overhead of key generation can be reduced in a production environment, either by
using pre-generated keys or with specialized hardware (e.g. crypto processors). In our tests,
the duration of establishing a TLS session with ephemeral flow-specific pre-shared keys using
the PSK-AES256-CBC-SHA cipher suite was 2.41% less compared to the use of e.g. ECDH-
RSA-AES128-SHA256. Thus, TruSDN enables flexible use of pre-shared keys, which in turn
reduces the duration of the TLS handshake, by avoiding expensive public key cryptographic
operations [262]. Moreover, it reduces the CPU utilization for key derivation in CTs, at the
cost of a minimal flow rule installation delay. The above approach may be applicable to other
protocols. For example, none of the differences between the datagram TLS (DTLS) and TLS
protocols specified in [263] indicate that the above approach is incompatible with DTLS. We
leave further investigation for future work.
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Figure F.7: Performance evaluation of TruSDN

Unmeasured Performance Overhead

Implementing TEEs with OpenSGX limits the level of detail when it comes to performance
evaluation, since: (a) the OpenSGX emulator is not binary compatible with Intel SGX [184];
(b) in its current version4 and unlike Intel’s description of SGX [50], OpenSGX has yet to im-
plement support multithreaded applications5. Thus, a fully accurate measurement on TruSDN
performance cannot be done until Intel SGX hardware and software is made available. How-
ever, we believe our experiments yield a fair picture of the expected performance impact.

7 Related work

Adversary models: Kreutz et al. presented a list of attack vectors in SDN [155] (forged
traffic flows, vulnerabilities in switches and NCs, lack of trust establishment mechanisms, etc.).
However, only part of the described attack vectors are exclusively relevant to SDN networks
and no specific solutions are proposed. Work in [250] introduced an adversary model, attack
vectors, and security requirements towards multi-tenant SDN infrastructure, highlighting the
need to limit the effect of NC vulnerabilities, protect internal SDN communication, verify
integrity of SDN components prior to enrollment, and enforce policy and quota isolation.
TruSDN addresses several of the attack vectors described in [155,250].

Secure SDN controllers: The “NOX” network OS [98] presents NMAs with a central-
ized programming model, allowing to operate with higher-level abstractions and apply graph
processing algorithms to compute paths. It consists of several controller processes which use
the global view for network management decisions and update switch FIBs over the OpenFlow
API [246]. FortNOX [158] extends NOX with role-based authorization (RBA) and enforce-
ment of security constraints. It translates high-level threats into flow rules to handle suspi-

4Commit e0713c7 on https://github.com/sslab-gatech/opensgx
5Issue #34 on https://github.com/sslab-gatech/opensgx/issues/34
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Table F.5: Summary of performance evaluation of TruSDN

Data Minimum Maximum Mean Median Stddev
Total transfer time, ms 0.4 1.1 0.66 0.7 0.07
Total transfer time w. TruSDN, ms 0.5 7.1 0.8 0.8 0.22
TruSDN overhead, total transfer time 21.2% 14.2%
Transfer rate, bytes per second 1225 2095 1595 1583 98.07
Transfer rate w. TruSDN, bytes per second 919 1589 1338 1330 64.86
TruSDN overhead, transfer rate 16.11% 15.98%
First packet latency γ 1.53 6.50 3.48 3.38 0.42
First packet latency γ w. TruSDN 3.35 10.7 5.37 5.14 0.93
TruSDN overhead, first packet latency 54.31% 52.07%
TLS handshake, ms 36.53 77.72 67.97 67.48 7.42
TLS handshake w. TruSDN, ms 52.35 76.44 67.15 66.53 3.93
TruSDN overhead, TLS handshake -2.21% -2.41%
Key generation NC, ms 0.11 0.51 0.178 0.16 0.04
Key distribution γ, ms 0.37 1.06 0.54 0.53 0.08
Key total γ, ms 0.50 1.30 0.71 0.7 0.11

cious traffic as well as detects rule conflicts, resolves them depending on the authorization
of the rule requestor and enforces least privilege authorization. Neither NOX nor FortNOX
address malicious network components and Sybill attacks, addressed by TruSDN. “Rosemary”
NOS [99] uses NMA sandboxing to improve network resilience, by launching each NMA in a
separate process context with access to the required libraries, along with a resource monitor
to supervise NMA compliance. It does not address data plane security; TruSDN complements
it and creates a foundation for trusted deployment of a secure NOS. TopoGuard [252] detects
network topology poisoning and mitigates this through port property management, network
edge probing and verification of topology updates. TruSDN complements this by verifying the
integrity of switches prior to enrollment into the topology.

Software Guard Extensions: SGX was introduced in [51] with a description of the
software model, extensions to the x86 ISA and hardware modifications for isolated execution;
work in [50] described CPU based attestation. SGX-based solutions in a cloud setting are
first described in [61, 63]. “Haven”[61] is a modified version of Windows 8 OS ported to an
SGX enclave, evaluated with Apache Web Server and SQL Server using synthetic data sets. It
includes a mechanism to protect the enclave from a malicious kernel and a semantically secure
data store protecting data and file metadata confidentiality against malicious hosts. TruSDN
protects network communication for a similar adversary model. While we deploy compute
tasks in SGX enclave-based TEEs, the work in [61] is largely complementary, and similar
“Haven”-like OSs could be used.

“VC3” [63] is a Map-Reduce deployment using SGX enclaves. Map and reduce functions are
compiled into private (encrypted) code and public code implementing key exchange and job
execution protocols. Code is initialized in enclaves and attested by the users. Public code
performs the key exchange, decrypts the private code and runs the job execution protocol.
To defend against cuckoo attacks, cloud quoting enclaves are created on each platform in the
cloud provider data centers, to “countersign” quotes produced by the QE. The approach is
largely complementary to protecting communication between CTs with TruSDN. However, the
proposed defense against cuckoo attacks increases the complexity of the attestation protocol
and does not prevent Adv from exploiting a compromised cloud QE outside of the physically
secure datacenter perimeter. Instead, the approach described in Section 4.4 leverages the
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cryptographic properties of EPID scheme, without modifying the attestation protocol.

8 Future Work

Along with security guarantees, the use of Intel SGX imposes limitations on TruSDN. Further
performance evaluation may be done once software and hardware support for Intel SGX be-
comes available; moreover, we note several security limitations. Controlled-channel attacks [56]
are a novel type of side-channel attacks allowing the OS to extract data from protected applic-
ations. They were successfully applied to “Haven” [61] and TruSDN could also be vulnerable;
however, we explicitly excluded such attacks from the adversary model. Known mitigations
are: rewriting applications to decouple memory access patterns from sensitive data, prohibiting
paging by the OS, or obfuscating memory access patterns [56]. Another limitation stems from
the reliance on the platform vendor, which could leak QEsk, to create a “deniable back-door” and
allow person-in-the-middle attacks on attestation [264]. This challenge remains unaddressed.

In future work we aim to integrate TruSDN with other approaches to cloud infrastructure
security, such as in [265], to provide a complete framework for secure cloud infrastructure
deployments in the given adversarial model.

9 Conclusion

We described, implemented and evaluated TruSDN – a framework for bootstrapping trust in
SDN infrastructure. It isolates network endpoints and switches in SGX enclaves, remotely
attests their integrity, and establishes secure communication channels. We leveraged the prin-
ciples of SDN to introduce ephemeral flow-specific PSK distributed at flow creation, which
reduce the overhead of key derivation and reduce the total time to establish protected chan-
nels, at the cost of a minor delay in the flow rule installation. Finally, we leveraged the
properties of the EPID scheme to propose an improved approach to prevent cuckoo attacks.
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SDN Access Control for the
Masses

Nicolae Paladi and Christian Gehrmann

Abstract

The evolution of Software-Defined Networking has so far been predominantly
geared towards defining and refining the abstractions on the forwarding and con-
trol planes. However, despite a maturing south-bound interface and a range of
proposed network operating systems, the network management application layer
is yet to be specified and standardized. It has currently poorly defined – if any –
access control mechanisms that could be exposed to network applications. Avail-
able mechanisms allow only rudimentary control and lack procedures to partition
resource access across multiple dimensions. We address this by extending the
software-defined networking north-bound interface to provide control over shared
resources to key stakeholders of network infrastructure: network providers, oper-
ators and application developers. We introduce a taxonomy of software-defined
networking access models, describe a comprehensive design for software-defined
networking access control and implement the proposed solution as an extension of
the ONOS network controller intent framework.

1 Introduction

In recent years, research focus on software-defined networking (SDN) has shifted from the
maturing forwarding plane abstraction [95, 266] and corresponding south-bound application
programming interfaces (APIs) [246, 267], towards richer network control, management and
functionality, as well as initial attempts to define a north-bound API. However, the field has
advanced unevenly. Currently available north-bound APIs introduce new security risks [172],
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and the lack of network resource access control is one vivid example of this. Security research
in SDN has focused on managing access using topology-specific, low-level resources – such as
switch ports and fine-grained bit-matching of packet flows. While this approach is valid and
necessary, it does not meaningfully address the needs of either network application developers
(who create applications operating with network functionality on a higher level of abstraction)
or network operators (who must consider the security and resource management implications
of deploying such applications). As a result, developers face a choice between two undesirable
alternatives: assume during development that applications have full, exclusive, and continuous
access to deployment resources, or develop custom applications with in-built awareness of the
network topology. However, development perils do not end there: in either case network
applications operate with low-level device resources, mostly unfamiliar to system developers.
Finally, at deployment time, operators lack an overview of the resource access granted to
network applications once they have been deployed.

Recent efforts aim to provide a declarative paradigm for implementation - independent in-
teraction between network service consumers and providers [268]. However, such efforts do
not currently include any access control mechanisms beyond specifying service resource con-
straints, mostly aimed towards satisfying Quality-Of-Service network provider policies. Several
important prior contributions to SDN access control [172,175,269] do not provide the necessary
abstraction level to allow exposing access control functionality to potentially malicious SDN
applications. We address the above issues by introducing a novel taxonomy of access models
for SDN infrastructure resources and by describing and implementing a North-bound Access
Control API (NACA) enforcement mechanism for SDN deployments.

For developers, NACA brings simple, clear and usable tools to declare resource requirements of
their network applications.

For operators, the API provides the tools to (1) obtain an overview of the access to network
resources provided to the applications deployed on the SDN infrastructure and (2) assess the
security implications of deploying network applications, considering the resource access they
require. This fills the gap in the available tools for managing access control to device resources
in SDN deployments and helps answer common questions – such as “Which applications can
read the complete topology of the network?”, or “Which applications can modify network flows
and in which ways?” – that are currently difficult to answer in a given SDN deployment; (3)
limit the extent of application access to network resources through resource-specific policies.

To implement the API on the control plane1, we build our approach on best practices from
the fields of operating system security and programming language security – such as code
signing for origin verification; code integrity verification; capability-based access control, use
of a reference monitor, etc. – to enforce access restrictions to SDN infrastructure resources.
Furthermore, we propose leveraging recent developments in execution isolation in order to
ensure the robustness of the deployment in the face of a powerful adversary.

In a nutshell, the proposed approach is as follows. We adopt the common access control
convention and identify two types of entities: subjects – network applications2, often referred
to as “Virtual Network Function” (VNFs), and objects – network resources. NACA access masks
are policies that describe the objects that a certain subject can access, as well as the types of
and constraints on actions that can be performed on the object attributes. Examples of types

1In the remainder of this paper, we use the terms forwarding plane, control plane, management
plane, application plane as defined in [270].

2And implicitly their users
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of actions on objects are reading statistics, modifying configuration state, or subscribing to
notifications. Examples of object attributes are geographical placement of objects, temporal
limitations, execution environment visibility, etc. Resource access requirements declared by
a subject are combined with operator policies to define a distinct immutable access mask
that persists throughout the lifetime of subject instances. Next, we reliably tag requests
issued by subjects with their assigned access mask and use a reference monitor to ensure that
access to the network information base is only granted to requests satisfying the constraints
of the access mask. In contrast to previous work in this area, NACA does not depend on the
use of a particular south-bound-API. It operates entirely on the north-bound API and the
implementation on the controller plane. Our contribution is as follows:

• We introduce a taxonomy of access models for network infrastructure resources;
• We introduce a North-bound Access Control API for network infrastructure operators

and application developers;
• We propose a novel access control enforcement mechanism for network resources in the

software-defined networking model;
• We describe an implementation of the proposed API on the control plane;
• We demonstrate the feasibility of the solution through an integration with an open source

SDN controller platform.

The remainder of the paper is organized as follows: in Section 2 we introduce the system and
adversary model; next, in Section 3 we describe the north-bound access control API and its
internals, followed in Section 4 by a detailed description of the implementation with the ONOS
SDN platform and the evaluation results in Section 5. We review the related work in Section 6,
outline future work in Section 7 and conclude in Section 8.

2 System and Adversary model

2.1 System model

The software-defined networking model aims to separate the network forwarding plane – i.e.
the collection of network devices responsible for forwarding traffic – from the control plane –
i.e. a collection of functions controlling network devices, defining the network topology and
network connectivity policies [165, 270]. Figure G.1 illustrates a high-level architecture of the
software-defined networking model.

The forwarding plane includes hardware and software switches. Early SDN models envisioned
switches that are optimized for forwarding performance, lack decision logic and only forward
packets matching flow definitions – i.e. packet forwarding rules – in their forwarding informa-
tion base [254]. Later contributions delegate more functional responsibility to switches, while
maintaining the capability to selectively upstream packets (or packet data) to controllers [97].
Mismatching packets are discarded or redirected to the control plane through the south-bound
API – a set of vendor-agnostic instructions for communication between forwarding and control
planes; this API is often limited to flow-based traffic control of the forwarding plane, while
management of the forwarding plane is done through a configuration database [95].
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Figure G.1: The SDN architectural model: (1) populate service catalogue; (2) deploy applic-
ations; (3) applications interact with network controller and (4) query the NIB; (5) Network
controller performs configuration actions on forwarding plane.

On the control plane, network operator goals are translated into discrete routing policies based
on the global network view, e.g. a graph representation of the network topology. A core
element is the network controller – a logically centralized component that manages network
communication in a deployment by updating the FIB with specific forwarding rules. The
network controller compiles forwarding rules based on three inputs: the (dynamic) global
network view, the configuration goals of the network operator, and the output of the installed
network applications. The network view built by the controller is maintained in a network
information base (NIB) [245]. This may either include the entire network topology or a slice
of it (e.g. in multi-tenant deployments).

The NIB describes all resources of the SDN deployment reachable by the controller. We use
a broad definition of the term resources, to encompass software components used to achieve
network communication goals (e.g. virtual or physical switches), information about such net-
work components, and interactions involving them. From a network application point of view,
we distinguish three resource categories: device resources, e.g. forwarding plane components;
data resources, e.g. network topology, flow statistics, forwarding logic; and control resources,
e.g. management policies (Figure G.2).

Operators use network management applications to implement network functionality using
high-level commands. Network applications – also known as “middleboxes” – often appear
as hardware components in traditional networks; however, alternatives such as VNFs – e.g.
software implementations of firewalls, traffic shapers, etc. – are better suited for dynamic
SDN deployments and hence are becoming increasingly popular. Applications communicate
with the network controller and are used for network management, based on operator-defined
policies and network state.

There is currently no single widely adopted interface between applications and network control-
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Figure G.2: SDN infrastructure network resources.

lers (i.e. a “north-bound API”). Multiple distinct implementation-specific interfaces are used
by network controllers [93,94]. We distinguish three emerging network application deployment
models:

1. Locally installed applications, developed in-house or deployed through e.g. “SDN App
Stores” [271].

2. Managed applications, operating in an “Software-as-a-Service” model, i.e. on the premises
of a network function provider [272,273].

3. Hybrid applications, where a back-end executing on the application provider premises
interacts with a front-end on the network provider infrastructure.

To facilitate function isolation, scalability and deployment flexibility, applications are com-
monly deployed as virtualized components, in e.g. virtual machines or containers. We define
candidate applications as the applications available for deployment from the service catalogue,
which can contain both complete application images for locally installed applications or con-
figuration definitions in the managed applications.

A management and network orchestration (MANO) component monitors the SDN infrastruc-
ture and takes actions to ensure availability and satisfy performance requirements. Such actions
include component creation, deployment, migration and destruction. A candidate application
becomes an installed application once it is granted access to the SDN resources described in
the NIB.

We define access by an application to SDN resources as the capability to execute commands
on device resources or modify their state; create, read or write control resources and data
resources. Applications exercise access through requests submitted to the controller over the
north-bound API; the requests are further compiled into a limited number of queries by the
network controller and submitted to the network information base. A network controller can
only issue queries following a corresponding request by a network application.

2.2 Adversary model

We next describe the adversary model (illustrated in Figure G.3), along with core security
assumptions on which we base our design. The adversary (Adv) controls the applications
installed on the network slice and can request access to arbitrary device resources. Furthermore,
the Adv can collude several applications to achieve a defined purpose, e.g. take over the
device resources allocated to benign applications (provoking a Denial-of-Service attack on
them). It can intercept, record, forge, drop and replay any message on its network slice and
is only limited by the constraints of the employed cryptographic methods. Furthermore, it
can analyze network traffic patterns through passive probing and may disrupt or degrade
network connectivity to achieve its goals. The adversary can craft malicious packets to exploit
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Figure G.3: Adversary capabilities

vulnerabilities in the request processing functionality of the network controller: an adversary
may use a network application to submit malicious requests to trigger escalation of resource
access permissions for the respective application. However, the Adv can only interact with the
NIB through queries produced by the network controller, based on requests issued by installed
network applications. Briefly, the capabilities of the adversary are similar to the ones of a
malicious application provider or operator, whose applications are installed on a network slice
in a “Network-as-a-Service” provisioning model.

2.3 Notation and Cryptographic Primitives

The set of all binary strings of length n is denoted by {0, 1}n, and the set of all finite binary
strings as {0, 1}∗. Given a set U, we refer to the ith element as ui. Additionally, we use the
following notations for cryptographic operations:

• For an arbitrary message m ∈ {0, 1}∗, we denote by c = Enc (K,m) a symmetric encryption
of m using the secret key K ∈ {0, 1}∗. The corresponding symmetric decryption operation
is denoted by m = Dec(K, c) = Dec(K, Enc(K,m)).

• We denote by pk/sk a public/private key pair for a public key encryption scheme. En-
cryption of message m under the public key pk is denoted by c = Encpk (m)3 and the
corresponding decryption operation by m = Decsk(c) = Decsk(Encpk(m)).

• A digital signature over a message m is denoted by σ = Signsk(m). The corresponding
verification operation for a digital signature is denoted by b = Verifypk(m, σ), where b = 1
if the signature is valid and b = 0 otherwise.

• A Message Authentication Code (MAC) using a secret key K over a message m is denoted
by µ = MAC(K,m).

3Alternative notation used for clarity is {m}pk.
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3 Taking Control Over Network Resources

Decoupling abstraction layers is a core benefit of the SDN model. It allows to combine solu-
tions from distinct providers across the abstraction layers of a network infrastructure while
maintaining encapsulation. This also applies to the interface between the application layer
and the rest of the SDN deployment: on the one hand, application developers are often ob-
livious to packet switching details and network functionality internals. On the other hand,
operators may want to withhold details of their SDN deployments from potentially malicious
applications and only allow them to interact with the SDN infrastructure through a restricted
policy interface.

3.1 Access Classification Scheme

Network applications require a variety of network resources to fulfill their functional require-
ments. In some cases, they may require temporary exclusive access, e.g. for atomic updates
to the NIB [274]. However, they seldom – if ever – require complete and indefinite access to
all resources. Furthermore, operators may wish to limit the access of applications to SDN
resources. For example, a passive network intrusion detection function may only need “read”
access to device resources, control resources and data resources, but it need not be able to
modify the network state; in addition, the network operator may intend to limit the access of
the intrusion-detection application to traffic from endpoints located in a certain jurisdiction.
Similar to other domains where multiple parties access distributed resources (e.g. radio spec-
trum access [275]), we foresee multiple models of managing access to SDN resources. Based on
an extensive review of existing literature on software-defined networking [156,245,254,274,276],
as well as earlier classifications of access to resources in distributed systems [275,277], we next
propose a taxonomy of SDN resource access models (see Figure G.4). While this scheme covers
the access models and use cases identified in the reviewed literature, it can be extended with
novel and emerging access models in the future.
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Figure G.4: Taxonomy of SDN resource access models.

Direct Explicit Assignment

In this model, the operator explicitly prescribes the SDN resources each application can ac-
cess, the actions that can be performed on the resources, the duration of the granted access
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and other (potentially resource-specific) attributes. This approach is suitable in cases when
applications must have guaranteed access to certain resources or vice-versa, when particularly
limited or security-sensitive SDN resources must be explicitly assigned to certain applications
to be accessible. Direct explicit assignment might not be applicable to either all applications
or SDN resources in the deployment. The direct assignment model is the most restrictive in
the proposed taxonomy.

Exclusive Unlimited Access

In this model, the operator allows the application exclusive, unlimited access to listed SDN
resources under defined constraints – e.g. geographical placement, jurisdiction, duration, etc;
it encompasses two variants:

• Long-term exclusive unlimited access: an installed application A has unfettered
access to SDN resources until its termination and cannot delegate its access permissions
to a different application;

• Dynamic exclusive access: the installed application A has unfettered access to SDN
resources. However it can delegate its permissions to other installed applications (e.g.
B and C). All permissions for applications A, B, C are revoked once application A is
terminated.

Shared Access

In this model, the access to SDN resources allocated to an installed application A is shared
with one or more installed applications (e.g. B and C). This model is further detailed into the
following two variants:

• Priority policy: in this case, if applications B and C may attempt to access the SDN
resources allocated to A, their requests will always be denied in case of a conflicting
request from A.

• Dynamic negotiation: application A may issue requests with varying priorities when
prompted by other installed applications B and C. In this case, higher-priority requests
from applications B and C would be accepted. Implementation of this variant may
involve intricate details on dynamic access negotiation between applications.

Commons

The network operator may apply this least restrictive model to applications which require
access to the same pool of SDN resources and have the same trust level. This model contains
three variants:

• Uncontrolled commons: installed applications compete unrestricted for access to the
allocated SDN resources. Conflict resolution mechanisms (as proposed in [172,278]) can
be used to prioritize conflicting requests. Lack of effective conflict resolution can impair
the functionality of this variant.
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• Managed commons: installed applications compete for access to the allocated SDN
resources; in case of request conflicts, applications negotiate access using peer-to-peer
protocols. Compared to the uncontrolled commons variant, this reduces the conflict res-
olution overhead, at the cost of increased communication between installed applications.

• Private commons: this variant includes elements of the dynamic exclusive access
variant described above. Installed application A with exclusive unlimited access to a set
of SDN resources (and delegation permissions) may allow access for other applications
using one of the commons variants described above.

Once one or more SDN resource access models have been selected, the resource access control
is expressed through policies, as described below.

3.2 Policies for infrastructure management

Kephart et al [279] describe three types of infrastructure management policies: goal policies,
utility function policies and action policies. Goal policies and utility function policies are
most suitable to specify enterprise business objectives and Service Level Agreements. In a
datacenter scenario, a goal policy example may be “Response time of Gold Class should be
less than 100ms”, while a utility function policy can be “Maximize the sum of Gold and Silver
Classes”. In practice, such high-level commands are transformed into action policies, often in
the form of ‘IF (Condition) THEN (Action)’, e.g. ‘IF (Gold_Class.Response_Time > 100
ms) THEN (increase CPU by 5%)’. Considering the widely adopted SDN south-bound API
protocols, it is clear that they are unsuitable for expressing goal policies or utility function
policies; it is equally clear that formulating action policies requires intimate knowledge of the
SDN deployment. Instead, functional details of SDN deployments can be encapsulated and
selectively exposed to network applications through a north-bound interface (NBI).

The north-bound interface intent framework (Intent NBI) [268] proposed by the Open Net-
working Foundation and implemented in the ONOS intent framework [178], adopts this ap-
proach. Intent NBI aims to separate consumer and provider system implementations and
simplify consumer-originated requests to provider systems. This is realized through non-
prescriptive and composable requests, independent of network operator implementations and
internal policies [268]. The non-prescriptive property allows the network controller the largest
degrees of freedom in fulfilling service requests and thus facilitates conflict resolution, since
intent requests do not specify which resources providers must allocate to specific services.
Implementation independence is supported by a mapping mechanism, to provide the bridge
between application and controller frame-of-reference terms. Figure G.5 presents a high-level
view of the intent NBI approach to translating the policies – expressed in consumer application
terms – to configurations – expressed in network controller terms.

The intent NBI currently lacks a mechanism to encapsulate the details of access control over
network resources, in order to shield them from installed network applications. We extend
the Intent NBI with a north-bound access control API (NACA) that exposes such higher-level
abstractions to applications and implements them on the control plane. NACA allows to both
produce policy-defined network slices and complement the intent framework with additional
attributes, such as physical resource visibility, execution environment access, concurrency, etc.
It is flexible enough to accommodate the various access models of the taxonomy introduced
in §3.1.
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We introduce NACA by first describing its concepts and underlying mechanisms. We next
delve into the underlying implementation by describing: the north-bound access control API,
which extends the Intent NBI introduced above and allows applications to declare the network
resources and type of access necessary for their functionality; a mechanism to reliably tag
application requests with their respective access mask; finally, a reference monitor, which
ensures that illegal queries issued by applications are detected and discarded even in the event
of a network controller compromise.

3.3 Scalable Access Control for SDN Resources

Beyond managing access to network resources, the centralized NIB introduced in the SDN
model allows to limit access to resources using partial views of the system according to various
dimensions, such as geographical or logical placement of resources, visibility of the underlying
execution platform, etc.

This approach differs from both network slicing and from network virtualization. In [241,276],
FlowVisor defines slices along any combination of ten packet header fields, including physical,
link, network, and transport layers; furthermore, such slices can be defined with negation (“all
packets but TCP packets with dst port 80”), unions (“ethertype is ARP or IP dst address is
255.255.255.255”), or intersections (“netblock 192.168/16 and IP protocol is TCP”). Network
virtualization decouples virtual topologies from the physical infrastructure, without exposing
the mappings; instead, tenants only see their virtual networks [280]. However, neither slicing
nor network virtualization can support the rich variety of access models introduced in §3.1.

We propose dividing the flowspace, on the north-bound API level, according to: (1) the re-
source access requests of the subjects and (2) access masks, defined – per subject – by the
MANO component. Subjects (i.e. the installed applications) declare the resource access re-
quests in a deployment manifest (§3.4). Access masks describe limitations to resource access
on a higher abstraction level and can depend on the attributes of the network resources them-
selves, of the environment where they execute, or on the state of the SDN deployment (§3.4).
Finally, limitations described by the access masks are enforced by NACA on the controller
platform (§3.4).
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This approach – first outlined in [250] – is based on a combination of earlier introduced access
control approaches, such as capability-based access (CBA) [281, 282], attribute-based access
control (ABAC) [283] and policy-based access control (PBAC) [284]. CBA is a subject-oriented
approach, where a capability represents an unforgeable token used to access a resource. Sub-
jects store their capabilities as sets of pairs (xi, {R}), where x represents a resource and {R}
represents the set of access rights to the resource granted to the subject. PBAC allows flexible
management of access rules using policies – expressed as sets of rules combined to decide au-
thorization and determine authorization level – and can be seen as a standardization of ABAC
for governance-oriented structures [285]. Restricting user access to resources using an access
control API has been introduced earlier [175,286], as well as limiting access to data based on
higher-level attributes (e.g. based on geographical location [287]). However, to the best of our
knowledge there is currently no support for access control based on higher-level attributes for
SDN controllers.

We describe the framework allowing attributes to be used as input for access masks that limit
access to network resources. We do not aim to provide an exhaustive list of resource attributes
that can serve as input for access masks, since attributes are resource- and implementation-
specific. The rationale behind the proposed approach is based on the portability, performance,
elasticity and (multiple) security requirements formulated for VNFs [288]. We start by defining
a resource attribute in the context of NACA:

Definition 3.1. A resource attribute is a property of the SDN resource that can be used to
describe access constraints on the respective resource. The values of a collection of resource
attributes can determine the type and scope of access to an SDN resource granted to a subject.

Table G.1 outlines several examples of attributes (beyond trivial ones such as e.g. instance
name or identifier). Recall the example introduced by Kephart [279] and described above. The
network resource attributes presented in Table G.1 can be used to create access restrictions
on the goal policy level, without specifying details about either the deployment itself or the
various protocols that it uses for internal communication among the components.

Table G.1: Example attributes and clarifications

Placement Geogr./logical placement of accessible resources
Scope Aggregate vs domain-specific access
Time Continuous updates vs discrete updates
Jurisdiction Jurisdictional placement of accessible resources
Physical resource visibility Visibility of underlying execution environment
Execution environment access Direct vs mediated access to physical resources
Resource modification types Read state vs modify state
Concurrency Exclusive (locking) or non-exclusive access
Authority delegation Ability to delegate access capabilities

In a typical workflow, network operators define for each available resource R (and based on its
attributes) a set of resource access rules (G.1).

Ri = {rar1i , ..., rarni }; Rj = {rar1j , ..., rarnj }; ...; Rm = {rar1m, ..., rarnm} (G.1)

The resource access rules contain values for the relevant attributes (e.g. as in Table G.1) of
each resource.

A candidate application declares through an application deployment manifest the network
resources it requires for its functionality. Besides a structured enumeration of the required
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resources, the manifest optionally contains the types of actions to be performed. The set of
requested resources must be a subset of available resources advertised by the network control-
ler (G.2).

{ri, rj, ..., rm} ∈ AvailableResources (G.2)
The resource enumeration in the deployment manifest (DM) consists of a list of tuples, where
each tuple contains a requested resource and a set of actions on the resource that the application
requires for its functionality. This has the form ⟨resource, actions⟩, as shown in (G.4):

DM = {⟨ri, {a1, a2, ..., an}⟩, ⟨rj, {a1, a2, ..., an}⟩, ..., ⟨rm, {a1, a2, ..., an}⟩} (G.3)

The actions listed in the deployment manifest (G.3) are resource and implementation specific:
Ferguson et al. describe two types of actions – read and write [278]; Klaedtke et al. propose an
expanded action set, including permissions for reading statistics (stat), requesting information
about an object (config_read), modifying the state of an object (config_mod), as well as for
subscription permissions (subscr) [172]. Investigation of a comprehensive taxonomy of actions
applicable to SDN resources is out of the scope of this paper and left for future work.

The MANO component computes the access mask. First, it selects the resource access rules
applicable to the requested resources and relevant to the application and builds an operator
policy set (G.4):

OP = {⟨rar1i , ..., rarni ⟩, ⟨rar1j , ..., rarnj ⟩, ..., ⟨rar1m, ..., rarnm⟩} (G.4)
Next, it applies a function fAM to map each element in the operator policy set OP to at most
one element in DM (G.5). Note that depending on the number and scope of the resource
access rules, fAM is either a surjective, bijective or injective mapping of resource access rules to
requested resources.

fAM : OP −→ DM (G.5)
The resulting access mask AM is a three element tuple of the form ⟨resource, actions, resourceAccessRules⟩
(G.6). Note that there is no requirement that resource access rules describe all possible attrib-
utes of a resource.

AM = {⟨ri, {a1, ..., an}, {rar1i , ..., rarni }⟩, ..., ⟨rm, {a1...an}, {rar1m, ..., rarnm}⟩} (G.6)

The MANO component maintains a dictionary of installed applications and their resource
masks. For each new installed application, conflict detection is done by recursively checking
matching resources, matching resource access rules and finally matching resource attribute
values. Applications with conflicting resource requests can only be installed once the conflict
is resolved. This approach to specifying access masks allows to implement any of the resource
access models described in the taxonomy introduced in §3.1.

The resulting access mask is communicated to the Request Tagger, which – in combination
with the Reference Monitor – ensures that the respective application cannot access resources
outside the access mask, as described below.

3.4 NACA Internals

To implement support for capability-based access control policies in NACA, we have applied the
Policy Core Information Model (PCIM) IETF specification [289], which describes an object-
oriented information model for representing policy information. The architecture of NACA
is aligned with the PCIM approach. The flow of intents issued by installed applications is
illustrated in Figure G.6. The depicted components can be directly mapped to the elements of
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the SDN architectural model (see Figure G.1), with the exception of Request Tagger (RT) and
Reference Monitor (RM), both introduced as supporting mechanisms for NACA. Figure G.6
also depicts the trust relationship between the included components, according to the adversary
model in §2.2: the MANO component, Request Tagger, Reference Monitor and the NIB are
considered to be trusted, while the application(s) and network controller are untrusted.

Application

MANO RT RMNC

NIB

(2)
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(5)
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(7)

(9)(10)

(11)

(13)(1)

trusted

component
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Figure G.6: NACA communication model. Components: MANO: management and orches-
tration component; RT: request tagger; NC: network controller; RM: reference monitor; NIB:
network information base. Communication steps: (1) MANO deploys application and com-
putes the access mask; (2) Send access masks of installed applications to RT; (3) submit
application request; (4) compute the tag and an alias, communicate them to RM; (5) forward
the request, along with the access mask and alias, to the NC; (6) compile request to set of
queries; (7) forward compiled queries reference monitor; if verification successful (8), forward
to NIB (9); return result (10-13).

In a vanilla approach, application intents are forwarded to the network controller which maps
them to its internal frame of reference (recall Figure G.5), compiles them to a set of config-
uration instructions and applies the instructions on the network information base. We next
motivate the introduction of additional components and describe their functionality.

North-bound Access Control API

Network applications vary significantly in their intended functionality. While software devel-
opment best-practices emphasize data and function encapsulation [290], application developers
cannot be expected to either develop applications that efficiently use limited SDN resources or
have an understanding of resource partitioning within any particular SDN deployment. On the
other hand, it is reasonable to expect that application developers are interested in explicitly
specifying the complete set of sufficient resources for correct application functionality. This
may include elements of all resource categories introduced in §2.1 – device, control, and data
resources.

A network operator uses the deployment manifest (among other parameters) to decide whether
a certain application should be installed or included in the application service catalog. List-
ing G.1 shows an example deployment manifest in a notation based on the standardized OASIS
eXtensible Access Control Markup Language (XACML) Version 3.0 [291] (pruned for clarity
and brevity).
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Listing G.1: Deployment manifest frag-
ment

1 <AnyOf>
2 <AllOf>
3 <Match MatchId=”string−equal”>
4 <AttributeValue>dataplane topology</

AttributeValue>
5 <AttributeDesignator AttributeId = ”resource−

id” Category=”resource”/>
6 </Match>
7 </AllOf>
8 </AnyOf>
9 <AnyOf>

10 <AllOf>
11 <Match MatchId=”string−equal”>
12 <AttributeValue>read</AttributeValue>
13 <AttributeDesignator AttributeId = ”action−id

” Category=”action”/>
14 </Match>
15 </AllOf>
16 <AllOf>
17 <Match MatchId=”string−equal”>
18 <AttributeValue>modify</AttributeValue>
19 <AttributeDesignator AttributeId = ”action−id”

Category=”action”/>
20 </Match>
21 </AllOf>
22 </AnyOf>

Listing G.2: Resource mask fragment based on
deployment manifest

1 <AnyOf>
2 <AllOf>
3 <Match MatchId=”string−equal”>
4 <AttributeValue> dataplane topology </AttributeValue>
5 <AttributeDesignator AttributeId=”resource−id”

Category=”resource”></AttributeDesignator>
6 </Match>
7 <Match MatchId=”string−equal”>
8 <AttributeValue DataType=”string”>region−A</

AttributeValue>
9 <AttributeDesignator AttributeId=”jurisdiction”

Category=”resource”></AttributeDesignator>
10 </Match>
11 <Match MatchId=”string−equal”>
12 <AttributeValue DataType=”string”>dataplane topology</

AttributeValue>
13 <AttributeDesignator AttributeId=”resource−id”

Category=”resource”></AttributeDesignator>
14 </Match>
15 </AllOf>
16 </AnyOf>
17 <AnyOf>
18 <AllOf>
19 <Match MatchId=”string−equal”>
20 <AttributeValue DataType=”string”>read</AttributeValue>
21 <AttributeDesignator AttributeId=”action−id

” Category=”action”>
22 </AttributeDesignator>
23 </Match>
24 </AllOf>
25 </AnyOf>

Once installed, an application containing in its deployment manifest the fragment from List-
ing G.1 can read and modify the topology on the data plane. While the application requires
read permissions to the network topology, revealing the entire topology might be unacceptable
to the network operator. Instead, the operator may consider allowing the application to access
only a restricted subset of the topology and present the rest as a black box. Therefore, the
operator uses the MANO component to apply a simple resource access rule to the resource
“dataplane-topology”. The rule comprises only one attribute – jurisdiction – with the value
“region-A”. Once applied, the resource access rule reduces the visibility of the topology for the
application exclusively to the selected region, while the rest of the topology is not reported.

To represent access masks, we extend the OASIS XACML notation [291] (see Listing G.2).
The resource mask example in Listing G.2 allows an application to access the topology of
the SDN deployment; however, it is only limited to the resources located in region “A”. The
MANO component communicates the access masks for each installed application to the Request
Tagger.

Request tagging

Application requests must be authenticated and tagged with an access mask prior to reaching
the network controller. While such functionality can be implemented by the network con-
troller, we have chosen a modular approach for the following reasons: first, authentication
and tagging are generic functions that can be implemented independently from a deployment-
specific network controller; second, this approach allows to minimize the network controller
modifications, required to implement NACA; finally, the network controller is a high-value,
high-risk target which may contain API vulnerabilities which can be exploited by untrusted
applications; moreover, query parsing is a common attack vector [292] which could be used to
corrupt the network controller. The reasons above motivate the introduction of a Request Tag-
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ger – a pre-processing component implementing access control on the north-bound interface,
resilient to a potentially compromised network controller (Figure G.6).

At deployment time, the MANO component communicates to the Request Tagger a set of
tuples describing the installed applications and their access mask; the set of tuples is updated
for every new installed application. We consider the Request Tagger a trusted component
(see discussion in §4.2) and assume the integrity of such messages can be ensured and reliably
verified. Application requests on the north-bound interface must contain a reliably verified
application identifier, the set of requested resources (i.e. elements included in the application
deployment manifest), and an intent that can be compiled into one or more implementable
queries to the NIB. An incoming request is pre-processed by the Request Tagger, which:

1. verifies the authenticity of the request;
2. matches the application instance – identified by (Appi) – with one of the access masks

(AMi) earlier communicated by the MANO component;
3. assigns a unique identifier to the request (Reqj

i);
4. tags the request with the identified access mask.

For step 4, the Request Tagger constructs a tag (G.7) which is a MAC over the following
elements: identifier of the requesting application (Appi); unique identity of the request (Reqj

i);
application access mask AMi; monotonically increasing sequence counter n. The MAC value is
computed using a shared key K distributed by the MANO component at deployment time to
the Request Tagger and Reference Monitor (see Figure G.7).

= MAC(K, (Appi, Reqj
i, AMi, n)) (G.7)

Next, the application request is forwarded to the network controller without further processing,
along with AMi – the application access mask. The network controller processes the request,
applies operator-defined policies and compiles a request Reqj

i into a set of discrete queries
{Qj1

i ..Qjn
i }. Note that the compiled queries contain the identifier of the requesting application

(Appi) and the unique request identifier (Reqj
i). Internals of network controller processing are

out of the scope of this description and can be found in [100,178].

Access Reference Monitor

The queries produced by the network controller describe discrete changes made to e.g. the
configuration of network elements or flow tables on the forwarding plane. However, a network
controller containing API vulnerabilities, implementation bugs or maliciously modified through
an attack [293] may produce queries that invoke resources outside of the application’s access
mask. To address this, we introduce a Reference Monitor as a discrete component (similar to
the approach described in §3.4). It validates the network controller output (i.e. queries ready
for execution on the NIB) and ensures that illegal application queries fail to reach the NIB.

Definition 3.2. Illegal application queries are those that on behalf of an application invoke
resources outside of its access mask.

The workflow of the Reference Monitor is as follows. At deployment time, the MANO com-
ponent pre-seeds the Reference Monitor with the key material (e.g. public key infrastructure
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Figure G.7: Message flow in NACA (we assume communication over a secure channel). Com-
ponents: MANO: management and orchestration component; RT: request tagger; NC: network
controller; RM: reference monitor; NIB: network information base. Flow: (1) MANO computes
access mask and (2) deploys the app; (3) MANO distributes to Request Tagger the access mask
for Appi; once the application Appi issues a request (4), RT computes a tag and communicates
it to the RM (5), prior to forwarding the request to the NC where the request is processed and
compiled into a set of queries (6), forwarded to the RM (7). RM verifies the queries, computes
a MAC over each query with a nonce – producing {{Qj1

i , u1, j1
i }..{Q

jn
i , un, jn

i }} and forwards them
to the NIB (8).

certificate) required to establish an authenticated, confidentiality and integrity-protected com-
munication channel, as well as a shared key K used for authenticating incoming request tags.
This communication channel is maintained throughout the component lifetime. In-transit
component protection can be ensured using mechanisms described in [265].

Request matching For each application request, the Request Tagger communicates to
the Reference Monitor, over a secure channel, the tag µ computed according to (G.7), along
with the application identifier (Appi), its current access mask (AMi) and a request counter n.
Similarly, the network controller forwards to the Reference Monitor for verification all queries,
produced from application requests according to the respective access mask.

Upon receiving a set of queries from the network controller, the Reference Monitor first verifies
the freshness of the monotonically increasing counter n (it is expected that a correctly func-
tioning network controller compiles requests in first-in-first-out order). It next computes a tag
µ′ according to operation (G.7) and compares the result with the received tag µ; execution
only continues if µ′ = µ. Finally, it parses the queries and verifies them against the access
mask of the application. This is done by checking that:

• queries exclusively invoke resources enumerated in the access mask;
• resources are invoked according to the actions specified in the access mask.

Query invalidation While duration of request compilation into queries can vary depending
on the complexity of the requests, a malicious network controller may delay or reorder output of
queries. To prevent the reuse of a more permissive access mask for lower-privileged applications,
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we use a sliding window for invalidating the computed queries. The approach is as follows:
a delayed request Req1

a issued by application Appa can be followed by a limited number of
requests Req2

a...Reqn
a issued by the same application, while a delay of Reqn+1

a requests from the
same application invalidates the entire batch (the limit is configuration-specific); delay of a
request Req1

a issued by Appa followed by a request Req1
b issued by Appb, as well as reordering

of the requests issued by Appa and Appb, invalidates both requests.

The verification by the Reference Monitor adds an essential element of the direct explicit
assignment resource access model introduced in §3.1: access is only permitted to SDN resources
that have been explicitly described and over actions that have been explicitly listed. We
exemplify this below.

Recall the access mask fragment in Listing G.2. Example 3.1 shows a query to install a new
flow between source IP w, port w1 and destination IP x, port x1 over the user datagram
protocol. The Reference Monitor would trivially reject this query since it invokes a resource
(flow) that is not enumerated in the deployment manifest (and hence would not be present in
the access mask).

Example 3.1. New flow installation query
⟨flow, allow, srcIP = w, dstIP = x proto = UDP, srcPort = w1, dstPort = x1⟩

Depending on the size and complexity of the query set, verifying queries may require multiple
interactions between the Reference Monitor and NIB to learn the attributes of the invoked
resources. In Example 3.2 the application requests a list of logical termination points that
bound a node ‘j’:

Example 3.2. Application request
⟨topo, nodej, ltpRefList⟩

To verify this query, the Reference Monitor must first obtain the topology reference of the
respective node (nodej), identify its jurisdiction and compare it with the jurisdiction in the
access mask (region-A in Listing G.2). If nodej is located in region-A, a list of logical ter-
mination points (also located in the same jurisdiction) is returned to the caller. Otherwise the
request is denied.

In case of an access mask mismatch – which may indicate an intent compiler bug or a com-
promise of the network controller – the Reference Monitor drops the illegal query and notifies
the MANO component to take an appropriate mitigation action. While the access mask veri-
fication prevents illegal queries, a compromised network controller may attempt other attacks
as well, such as attempt to circumvent the Reference Monitor by compiling a request into a
set of unintended queries (which nevertheless comply with the access mask). Considering that
a vulnerability in the network controller must be exploited (or triggered) through a request
from a malicious application, such an attack is prevented by the sliding window invalidating
delayed or reordered queries. This prevents the adversary from inserting malicious queries
into the set of queries compiled from the request of a benign application. The ordering, origin
and privileges of submitted requests – communicated from the Request Tagger to the Request
Manager – provide the information necessary for invalidating queries in case of suspected net-
work controller compromise. Note however that these steps help prevent exploitation of a
compromise and do not aim to detect all occurrences of compilation errors. Likewise, the steps
above do not prevent malicious actions by code built into the intent compiler. This problem
(first formulated in [294]) is out of the current scope.
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For valid requests, the Reference Monitor computes a MAC over each query and a nonce ‘u’
using the key KNIB, shared between Reference Monitor and NIB (G.8).

{µj1i ..µjni } = MAC(KNIB, (Qj1
i , u1))..MAC(KNIB, (Qjn

i , un)) (G.8)

Finally, the Reference Monitor forwards the queries, nonces and computed MACs to the NIB,
which first recomputes the MACs and only processes queries with verified integrity and a fresh
nonce.

4 Implementation

We have implemented NACA as an extension to ONOS, a popular open-source SDN control-
ler [100]. ONOS includes an intent framework, allowing applications to specify their network
control desires as policies rather than specific mechanisms. This raises the abstraction level for
applications from specifying details about how the SDN infrastructure configuration should be
updated to achieve certain functional changes (e.g. by updating network flows, instantiating
new applications, etc.) to conveying through high-level intents what functionality should be
enabled. This shift is equivalent to replacing the need to specify network mechanisms act-
ing through OpenFlow operations with tools that are more durable and robust in the face of
topology changes. Once created by an application, intents become immutable objects commu-
nicated to the ONOS core which – when installed – alter the network state.

4.1 Extending the ONOS Intent Framework

In ONOS, intent objects contain the identifier of the issuing application
(ApplicationId) and are uniquely identifiable through the intent identifier (IntentId), gener-
ated when the query object is created in the intent framework based on an application request.
An ONOS intent is additionally described by the following elements: the required device re-
sources (a collection of networkResource objects, similar to the the NACA queries described
above); the intent priority and constraints prescribed by the application (criteria enumer-
ating e.g. packet header fields or patterns describing slices of traffic); instructions describing
actions to be applied to a slice of traffic. To implement NACA, we extend the intent framework
with two components – RequestTagger and ReferenceMonitor. Figure G.8 depicts the state
transition diagram for compilation of application intents, along with the NACA extensions.

The RequestTagger pre-processes intents submitted by applications. It first reliably determ-
ines the identity of the issuing application by checking the intent signature and certificate,
and assigns a corresponding ApplicationId. It next identifies the access mask matching the
ApplicationId, computes the tag T (see G.9), communicates it to the Reference Monitor
and transitions to the InstallRequest state (transition 2 in Figure G.8).

T = MAC(K, (ApplicationId, IntentIdnetworkResource, priority, AM, n)) (G.9)

In ONOS, we implemented the RequestTagger as a state of the intent framework, invoked
directly from the IntentManager class. The intent framework compiles requests issued by the
applications into queries according to constraints specified in the access mask. Prior to execut-
ing the compiled query on the NIB and transitioning to the Installed state, the execution flow
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Figure G.8: NACA Extended intent framework state diagram. Transitions: (1) application
request; (2) tagged query request; (3) submit for compilation; (4) compile succeeded; (5) install
succeeded; (6) verify access compliance; (7) withdrawal installed request; (8) remove topo or
flow event; (9) add/update topo event; (10) compile failed; (11) retry compile; (12) install
failed; (13) retry install; (14) compile failed or same result; (15) withdrawal of failed requests;
(16) reference monitor rejected request; (17) retry install intent.

transitions to the ReferenceMonitor (transition 5 in Figure G.8). The ReferenceMonitor
first verifies tag T by recomputing the MAC:

MAC(K, (ApplicationId, IntentIdnetworkResource, priority, AM, n)) (G.10)

It next verifies that the queries fall into the validation sliding window, by checking that all
earlier expected queries have been output (sliding window for delayed requests was configured
to n=2) and that queries have the expected source application and access mask. Finally,
it checks that the compiled queries do not violate the access mask assigned by the MANO
component, as described in §3.4: the ReferenceMonitor parses the query to check if all invoked
resources are included in the access mask, if queries follow the limits of the resource attributes,
as well as whether the queries invoke only actions allowed by the access mask. A MAC is
computed over valid queries and submitted – along with the requests – to the NIB.

Similar to the RequestTagger above, the ReferenceMonitor is implemented as a state of the
ONOS intent framework. Every intent must transition to the ReferenceMonitor state before
the resulting compiled queries can be applied. Queries submitted directly to the NIB are
ignored, as they lack a valid MAC that must be computed by the ReferenceMonitor.

The Constraint implementation in ONOS allows applications to formulate filters which are
applied on the submitted intents. We leverage this implementation to apply the access masks
assigned by the MANO component – the ReferenceMonitor ensures that the candidate in-
tents comply with the access mask constraints. If an access mask violation is detected, the
ReferenceMonitor transitions to the Failed state (transition 16 in Figure G.8).
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Figure G.9: NACA testbed

4.2 Component Isolation

Request Tagger and Reference Monitor are of central importance in verifying access of untrusted
applications to limited, potentially confidentiality and integrity sensitive resources. To protect
them from a malicious network controller, the Request Tagger and Reference Monitor are
executed in a trusted execution environment isolated from a potentially malicious underlying
operating system [63,116,265]. We adopt the definition of trust from [14], namely “confidence in
the integrity of an entity for reliance on that entity to fulfill specific responsibilities”. A trusted
execution environment can be created using operating system level virtualization [26], platform
virtualization [108], or using hardware-assisted isolated execution environments [134] – such
as ARM TrustZone [79], Intel SGX enclaves [51] or AMD secure memory encryption [77].
The exact implementation approach depends of multiple factors, such as adversary model,
deployment context, acceptable performance penalty or hardware capabilities. In the current
implementation, as further described in Section 5, we have chosen operating system level
virtualization to separate the trusted components – such as RequestTagger, ReferenceMonitor
and the NIB – from the vulnerable network controller. This approach allows to isolate the
process and address spaces of the components, while avoiding excessive overhead.

5 Evaluation

NACA was evaluated in a virtualized testbed, as illustrated in Figure G.9.

In order to limit the influence of system configuration options on the results of the evaluation,
we have chosen a lightweight approach to isolation between the components and used Linux
Containers [295] to isolate the address and memory spaces of the NACA components. Thus,
the modified ONOS controller, RequestTagger and ReferenceMonitor were deployed in three
separate containers (LXC A, LXC B, and LXC C respectively). Note that this deployment
choice is not binding and allows for alternative isolation approaches to be used. The testbed
containers were deployed on a Ubuntu 16.04 VirtualBox4 virtual machine, with 1 CPU and 8
GB memory, default paravirtualization interface.

4Oracle VirtualBox https://www.virtualbox.org/wiki/VirtualBox
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(a) compileIntent, time in s. (b) submitIntent, time in s.

Figure G.10: NACA performance evaluation.

We evaluated NACA using the intents and test case coverage available in ONOS. Figure G.10a
illustrates the performance of intent compilation over 40 test runs. Here the NACA extensions
induce only a minor performance impact, namely 9% increase on the median intent compilation
time (8% mean increase). Figure G.10b illustrates the performance of intent installation over 40
test runs. Intent installation includes the entire flow from request submission by the application
to the queries accepted by the NIB. In this case, the induced performance overhead reflects
implementation and deployment decisions (including choice of isolation mechanism and target
deployment platform).

6 Related Work

From the origins of SDN, access control and network programambility have received significant
attention.

Access control for SDN controllers Casado et al. describe in Ethane [174] an enter-
prise network architecture allowing network managers to control deployments using system-
wide fine-grained policies. Ethane includes two component types: (1) ‘dumb’ switches main-
taining flow table entries and communicating with the controller, and (2) one or more control-
lers handling host registration and authentication, tracking network bindings, implementing
access control, and enforcing resource limits on the managed flows. The proposed high-level
language for Ethane network management policies – despite its shortcomings such as lack of
support for dynamic policy updates and assumption of a fixed network topology – has inspired
a rich collection of subsequent network policy languages [296–299]. While such network con-
trol languages fueled a rapid development of network controller capabilities, they operate on a
lower abstraction level than required for network management applications. Several outstand-
ing issues of the Ethane model are broadcast and service discovery, application-layer routing,
knowledge about application-layer configuration and potential damage from spoofing Ethernet
addresses.

Ferguson et al. [175] rely on hierarchical composition of policies to define access to actions
performed on traffic flows, as well as to control resource allocation. Furthermore, the frame-
work contains a policy conflict resolution mechanism based on user-defined operators. Conflict
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resolution is essential to enable a distributed approach to policy definition, where distinct ap-
plications requiring device resources and services define access policies and Quality-of-Service
requirements. While this approach brings control over network access to applications using
network services, it does not hide the details of device resources and requires from the applic-
ation knowledge of the network internals. NACA maintains the higher-level control of network
access, while abstracting the network internals from the application programmers.

The access control scheme for SDN controllers proposed in [172] accounts for device resources,
multiple security requirements, conflicts originating from reconfiguration of network compon-
ents, and delegation of access permissions. This scheme mimics access control schemes for
operating systems, with contextual adjustments. In this case network users are the subjects
and the network components are the objects. A follow-up prototype is described in [173].

APIs for Network Configuration The Pane controller [278] allows applications to
control SDN deployments. It delegates read-write privileges on network configuration to end-
users or applications acting on their behalf. The Pane API allows three messages types –
requests, queries and hints. Requests affect the state of the network following the intention
of the application. Applications can issue queries about the state of the network and provide
hints to notify the controller about upcoming changes, e.g. in the network resource usage. In
this model, principals are included in one or more shares and have complete access control
privileges – including recursive delegation of privileges – over the set of network flows in
the respective shares. Intra-share resource over-subscription is allowed and is monitored by
the controller, which also detects and resolves potential conflicts. NACA takes a different
approach by restricting applications to network control privileges explicitly declared, verified
and validated at deployment time. Furthermore, it verifies that control messages issued by
network applications comply with the allowed control privileges.

A low-level API for dynamic configuration of Quality-of-Service resources in network devices
can be implemented through a plugin to the OVSDB protocol [300]. Such low-level configura-
tion allows granular control across three levels: port, switch and network-wide controls. While
this allows extensive control over the forwarding plane configuration, the proposed approach
does not discuss mechanisms to prevent applications using such an API from monopolizing
network control, nor any resolution mechanism in case of conflicting policies.

A Network Overlay Framework [301] addresses the challenge of configuring network deploy-
ments according to application requirements. Through its API and programming language,
the Network Overlay Framework allows developers to program the network according to the
needs of the application. This replaces the “best-effort” packet delivery approach with expli-
cit Quality-of-Service guarantees tailored to a specific application. While the approach has
been implemented for the Hadoop data processing framework, it does not consider any multi-
application or multi-tennant scenarios. Likewise, it does not describe any resolution mechanism
that would be needed in the case of configuration conflicts. Furthermore, this approach allows
the forwarding plane to manipulate the configuration of the control plane, disregarding the
possibility of malicious or misconfigured applications. This in turn creates network security
and safety concerns.

SDN controller functionality can be implemented by extending an existing operating system
and leveraging its software ecosystem, i.e. operating system utilities and a distributed file sys-
tem, as proposed in yanc [269]. Here, file I/O is used as a single API for SDN applications, al-
lowing to avoid the restriction to use programming languages mandated by the implementation
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of the SDN controller. The authors indicate the possibility of using permissions implemented
by the virtual file system layer for fine-grained access control of network resources. Yanc could
leverage NACA by storing resource masks in the extended file attributes and further integrating
the NACA API with existing access control policies.

Eden is a framework for enabling end-host network functions [302], assuming a single-domain
network deployment, where at least a subset of end-hosts can be trusted, e.g. in datacenters.
The design builds on the observation that a large class of network functions feature three
key requirements: data-plane computation, data-plane state, and operation on application
semantics. It includes a flexible scheme for application-level classification of network traffic
based on a custom language as well as a compiler and run-time for action functions – constructs
able to access and modify packet classes and endpoint enclaves. In Eden, network applications
are “first-class principals”, and can classify packets based on application-internal semantics.
The classification follows the packet through the end host stack and is used to determine the
rules to apply. A similar approach has been used in NACA for access control. However, Eden
assumes a single-domain, controlled and trusted environment, and does not feature policy
conflict resolution or access control mechanisms.

An early concept of intent-based network abstractions has been introduced in [303], allowing
to specify networks as a policy governed service. Such intents describe the functionality of
the network – i.e. what connectivity a certain application requires, connectivity between en-
dpoints and policies associated with the connectivity – while leaving out the specifics on how
to implement the required connectivity. This approach is further developed in projects such
as “Boulder North-bound Interface (NBI)” [268]. NACA reuses the NBI implementation in the
ONOS intent framework and extends the intent concept described in [303] with an API to
specify access control constraints on the intents.

Maple [304] enables developers to use programming languages such as Haskell and Java to
define network behaviors through centralized algorithms (algorithmic policies). The use of
algorithmic policies hides the challenges of implementing high-level policies into sets of rules
on distributed individual switches.

In large distributed systems such as SDN deployments configuration updates may lead to
undefined network behavior and security vulnerabilities, if applied incorrectly due to long
latency, dropped packets or weak consistency. To address this, event-driven consistent up-
dates [299] preserve well-defined behaviors when transitioning between configurations in re-
sponse to events. The approach places strong locality requirements towards configuration
updates: it allows exclusively configuration changes decidable with local (rather than remote)
information in a distributed system. NACA allows to control the locality access of network
applications to SDN resources (recall Extent and Placement resource masks in Table G.1), and
can be extended to include other access types.

7 Future Work

We aim to extend and improve several aspects of this contribution in future work. One im-
portant direction is integration with other controller platforms, in particular yanc [269] in
order to adapt the NACA intent approach to existing operating system access control mech-
anisms. Extending NACA with hints as in [175] can improve the overall performance of the
deployment. Finally, implementing and evaluating the approach using alternative isolation
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solutions discussed in §4.2 can yield new insights into trade-offs between security guarantees
and performance for network controllers.

8 Conclusion

Design and implementation of a controller-agnostic north-bound interface is the current fo-
cus of SDN development. Such an interface will allow network operators to deploy multiple
applications on their SDN infrastructure and unlock rich network management functionality.
However, the currently available north-bound interfaces do not offer access control mechanisms
to allow applications to negotiate network resource access or operators to obtain a compre-
hensive overview of the resource access of the installed applications. We have addressed this
by first introducing a taxonomy of resource access models for SDN infrastructure, along with a
network access control API which allow applications to commit at deployment time to a set of
resource access requirements, which are then enforced by discrete components on the network
controller platform. We described the design, implementation and performance evaluation of
the proposed solution.
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