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Path Tracking with Obstacle Avoidance for Pseudo-Omnidirectional
Mobile Robots Using Convex Optimization

Karl Berntorp, Björn Olofsson and Anders Robertsson

Abstract— We consider time-optimal path tracking for the
class of pseudo-omnidirectional mobile robots. An Euler-
Lagrange model of the robot dynamics is derived, and by
writing it on special form a convex reformulation of the
path-tracking problem can be utilized. This enables the use
and regeneration of time-optimal trajectories during runtime.
The proposed approach also incorporates avoidance of moving
obstacles, which are unknown a priori. Using sensor data,
objects along the desired path are detected. Subsequently, a new
path is planned and the corresponding time-optimal trajectory
for tracking of the generated path is found. The robustness of
the method and its sensitivity to model errors are analyzed and
discussed with extensive simulation results. Moreover, we verify
the approach by successful execution on a physical setup.

I. INTRODUCTION

The interest for mobile robots in production scenarios as
well as in domestic applications has increased during the
past decade as a result of the development of algorithms,
computing power, and sensors. In addition, to reduce the
complexity of the programming phase and to increase the
learning capabilities by cognitive functionalities, large efforts
have been put in the area of software services for mobile
robots. One example of this is the Robot Operating System
(ROS) [1]. In a production scenario with small batch sizes,
combination of a mobile robot platform with conventional
robot manipulators mounted on the base offers flexible and
cost-efficient assembly solutions. Hence, mobile robot plat-
forms have the potential of reducing the costs for production
and improving productivity.

An integral part of the programming and task execution
of mobile robots is the path and trajectory generation. A
common task is to move the robot from point A to point
B, without constraints on the path between the start and end
points. However, in certain applications the path between
the points is of explicit interest, and thus reliable path
tracking is desired. Another scenario is that a high-level path
planner determines the geometric path, and a subsequent
trajectory generation is to be made such that tracking of
the planned path is achieved given constraints on control
inputs. To this purpose, the decoupled approach to trajectory
generation has been established in literature [2]. Naturally,
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in a path-tracking application where the robot actuators
are the limiting factors, a near time-optimal solution robust
to model uncertainties is desired to maximize productivity.
Considering a stationary industrial manipulator and an Euler-
Lagrange model of the dynamics, the time-optimal path-
tracking problem was solved already in the 1980’s [3],
[4], [5]. By utilizing the special structure of the Euler-
Lagrange model and a parametrization of the path in a path
coordinate, the minimum-time problem can be reformulated
to an optimal control problem with fixed horizon of the
independent variable and significantly reduced number of
states. Further investigations of the mentioned method with
respect to singular control and model parameter uncertainties
were made in [6], [7], [8]. Note that solutions to these
optimal control problems were found offline. The obtained
trajectories were combined with feedback, thus taking care
of model uncertainties and disturbances in the online task
execution [9]. Utilizing recent advancements in convex op-
timization [10], it was shown how the time-optimal path-
tracking problem for stationary industrial manipulators can
be solved efficiently using convex optimization techniques
in [11]. However, certain approximations of the dynamic
model, such as neglecting the viscous friction in the joints,
were imposed. A subsequent online path-tracking algorithm
was proposed in [12]. Based on sensor data, the path to be
tracked was delivered online to the trajectory planner, and the
trajectory generation was performed in real-time. A method
for approximation of velocity-dependent constraints in the
convex optimization formulation was outlined in [13].

In this paper, we propose a novel approach aimed at real-
time trajectory generation for mobile robots based on convex
optimization. A dynamic model of the robot is derived,
using the Euler-Lagrange approach. Subsequently, based on
the dynamic model we show how the theory developed for
generation of time-optimal trajectories for stationary robots
[11] can be extended to the case of pseudo-omnidirectional
mobile robots, which have significantly different dynamics
compared to stationary robots. In particular, a scenario is
considered where a nominal path to be tracked is planned
offline, using the available map information. Should an
obstacle be detected during runtime, the geometric path is
replanned avoiding the obstacle, ad modum [14] and others,
and generation of the time-optimal trajectory for tracking
of the planned path is performed. Moreover, we verify the
proposed method in simulation and discuss model error
sensitivity and computational aspects. Also, validation of
the approach is performed with experiments on a recently
developed pseudo-omnidirectional mobile robot base [15].
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The justification for this paper is that although trajectory
generation and collision avoidance for mobile robots have
been studied before, see [14], [16], [17], [18] for a few
examples, to the authors’ knowledge no approach to path
tracking for mobile robots based on convex optimization has
been reported. In addition, some of the previously proposed
methods are only based on the kinematic relations of the
robot, and do not consider a nonlinear dynamic model incor-
porating such properties as friction. Moreover, differential-
drive mobile robots are often considered in literature, yield-
ing less complex models. The characteristics of differential-
drive robots are considerably different compared to pseudo-
omnidirectional robots. For example, significant constraints
are enforced on the maneuverability and the required slip
modeling for the former.

II. MODELING

Here we model the dynamics of the robot and the inverse
kinematic relations are derived. To compute the inverse
kinematics, we assume that the wheels do not slip. In
reality this assumption does not hold during acceleration and
deceleration, but the deviations are handled in the low-level
wheel control loops. The slip will, however, be accounted
for in the modeling of the robot dynamics. Further, the no-
slip assumption will be evaluated in a simulation scenario in
Sec. V-A.

A. Modeling of the Dynamics

For modeling of the robot we assume that we can control
the motor torques directly; that is, we neglect the motor
dynamics. This is motivated by that the motor dynamics is
inherently fast compared to the other dynamics of the robot.
Also, the motor-current controllers used in the robot ensure
fast torque tracking. Further, we assume planar movement,
thus neglecting vertical dynamics. The Euler-Lagrange equa-
tions state that [19]

d
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dt

is the derivative with respect to an earth-fixed
inertial frame. In (1), q̇ is the time-derivative of q, L = T�V

is the difference between the kinetic and potential energy, q
i

is the ith generalized coordinate, ⌧
i

is the ith external torque,
and N is the number of generalized coordinates. Since we
assume planar movement, V = 0. Denote the coordinates of
the center-of-geometry (CoG) of the robot with respect to
an earth-fixed inertial frame as (X,Y ), see Fig. 1. Further,
denote the heading angle of the robot with respect to the
inertial frame with  . Then the kinetic energy is
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where m is the mass of the robot, I
r

is the robot moment-
of-inertia, I
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is the wheel moment-of-inertia in the drive
direction, I
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is the wheel moment-of-inertia in the steer
direction, and �
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are the drive and steer angles for wheel
i, respectively. A natural choice of generalized coordinates
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T, i = 1, . . . , 4. A more
convenient choice, however, is to express the dynamics in
local coordinates and linear base velocities, since velocity
references and torque commands are given in this frame. To
this end, we make use of the following set of generalized
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where c

 

= cos and s

 

= sin . The following transfor-
mation from global to local coordinates can be established:
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By insertion of (4) and (5) into (1) and premultiplying
with R( )

T, the following two modified Euler-Lagrange
equations are obtained:
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Using the partial derivatives of the kinetic energy and (6)–
(7), the following set of dynamic equations are established:

mv̇

x

�m

˙

 v

y

= ⌧

x

, mv̇

y

+m

˙

 v

x

= ⌧

y

, (8)

I

r

¨

 = ⌧

 

, (9)

I

�,i

¨

�

i

= ⌧

�,i

, I

�,i

¨

�

i

= ⌧

�,i

, i = 1, . . . , 4. (10)

We model the motor torques acting on wheel i as two
independent torques for driving and steering, M

�,i

and M

�,i

,
respectively. Moreover, we model friction forces and torques
acting on wheel i, denoted F

f
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, F f
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, and M

f

i

. Finally, the
drive torque generates a resultant force F

x,i

between the tire
and road, see Fig. 2. To calculate the right-hand sides in (8)–
(10), we note that the forces acting along the longitudinal and
lateral directions of the robot are
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where c
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�

= sin �, and F
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is the lateral force on
wheel i, whereas the resulting torque acting on the robot is
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Moreover, the torques in the wheels’ steering and driving
directions are

⌧
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Fig. 1. The robot and the coordinate systems used for modeling.

B. Wheel-Force Modeling

We model the tire forces differently depending on if
the model is aimed for simulation or optimization. For
simulation purposes we assume that the applied wheel torque
gives rise to slip, which in its turn yields a resulting force. To
formulate a convex optimization problem for the particular
considered class of mobile robots, however, we assume that
the resulting force is directly proportional to the applied
torque, thus giving a model suitable for optimization.

The friction forces for each wheel are modeled as
Coulomb friction forces—that is,

F
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C
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w,{x,y}), (15)
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are the Coulomb friction parameters,
sign(·) is the signum function, and v
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, v
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are the
wheel velocities in the longitudinal and lateral direction,
respectively (see Fig. 2). The reason for only considering
Coulomb friction is that velocities necessary for, for example,
viscous friction to dominate will not be reached under normal
operating conditions.
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Fig. 2. An illustration of the forces acting on each wheel (left), and the
wheel together with its coordinate system seen from above (right).

1) Simulation: When the robot accelerates or decelerates,
longitudinal slip develops [20]. Here, the slip � is defined as
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The wheel velocities v

w,x

, v
w,y

for each wheel can be found
by using trigonometry and utilizing the velocity of the CoG,
obtained from the dynamic model derived in Sec. II-A. The
lateral slip angle ↵ is defined according to convention as

tan↵ = �v

w,y

v

w,x

. (18)

We assume that the longitudinal and lateral tire forces
are proportional to the respective slip quantity. This is an
assumption that is valid for the types of maneuvers con-
sidered in this paper, and for the maneuvers mobile robots
perform in general. Further, we assume that ↵ is small, that
is, we assume that the wheel velocity vector in Fig. 2 is
approximately pointing in the wheel direction. The wheel
forces caused by wheel slip are then

F
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↵, (19)

where C{�,↵} are parameters found from experiments, de-
pendent on the robot mass, wheel material, and surface
conditions. For small slip values, (19) is justified by experi-
mental verification [21]. With this wheel-force modeling, the
dynamic equations of the mobile robot base are constituted
by (8)–(19). Note that (15)–(19) hold for each wheel.

2) Optimization: With the no-slip assumption, the torques
applied to the wheels directly influence the movement of
the robot. Hence, the wheel dynamics, derived from (14) by
assuming F
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= 0, can be written in the form
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T, I(⇠) is the
inertia matrix, and F
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is the Coulomb friction parameter
vector.

C. Kinematics

The geometric robot path is in general determined in
Cartesian space by a high-level path planner. Hence, for the
optimization approach in Sec. III using the wheel dynamics, a
method is needed for transferring Cartesian path coordinates
{X,Y, } to joint-space coordinates {�

i

,�

i

}4
i=1

. Thus, we
want to find a transformation ⌦ : {X,Y, } ! {�

i
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.
Since wheels exhibit slip, a closed-form transformation
is in general not possible. To derive analytic expres-
sions, we impose the no-slip assumption, which means that
v
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= r

w

˙

�, v

w,y

= 0. The transformation for the drive
angles can conceptually be derived as follows: We are given
a path for the CoG of the robot for K grid points as
{X(k), Y (k), (k)}K
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. This implies knowledge of the path
at the wheel center point, for all wheels. From the assumption
that
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where p

w

is the moved distance, we know that
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where � is the difference operator. Thus, given the Cartesian
position, the wheel drive angle for each wheel at each grid
point k is found as

�(k) = �(k � 1) +�p

w

/r

w

, (21)

for small enough �p

w

=

p
(�p

w,x

)

2

+ (�p

w,y

)

2 and ��.
To find the steer angles we apply trigonometry, yielding

�(k) = arctan2(�p
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)�  (k), (22)

where arctan2(·, ·) is the four-quadrant inverse tangent func-
tion. Again the inequality holds for small enough differences.
Note that  is subtracted since we want to know � with
respect to the mobile platform. To summarize, a valid ap-
proximation of the inverse kinematics is given by (21) and
(22) for K large enough.

Remark 1: The inverse kinematics derivation assumes
that the global robot velocity is positive and that
�⇡/2    ⇡/2. The other cases are similar but omitted
here because of space limitations.

III. OPTIMAL TRAJECTORY GENERATION

For the trajectory generation, a convex optimization prob-
lem for time-optimal tracking of a given path f is formulated.
In the formulation, the constraints on the actuators in terms
of realizable torques are considered. The slip is neglected,
as discussed in Sec. II, which means that only the wheel
dynamics expressed in (20) are assumed. The path to be
tracked is parametrized in a path coordinate s(t), where the
time-dependency will be implicit in the rest of the paper,
according to
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where s
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and s
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are the path coordinates at the start and
end points of the path, respectively. To the purpose of path
tracking, the relation ⇠(t) = f(s(t)) must be imposed.
From this requirement, the following relations can easily be
established by using the chain rule:
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, ṡ(s) is the path velocity and s̈(s)

is the path acceleration. Utilizing the relations in (24), the
dynamic equations in (20) can be reformulated in the path
coordinate, [3], [4], [5], [22], according to
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A. Formulation of the Optimization Problem

Since we are interested in minimizing the execution time
of the path tracking, the optimal control problem is formu-
lated over the time horizon t 2 [0, t

f

], with the cost function
chosen as the final time t

f

. Utilizing the path coordinate and
its time-derivatives, the cost function can be reformulated
according to

t

f

=

Z
tf

0

1 dt =

Z
sf

s0

dt

ds

ds =

Z
sf

s0

1

ṡ
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With the state variable �(s) and the algebraic variable ↵(s)
introduced as
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2

, ↵(s) = s̈(s), (30)

the optimal control problem to be solved can be stated similar
to [11] as follows:

minimize
↵(s),�(s)

Z
sf

s0

1p
�(s)

+ ⌘

8X

i=1

|(M
�,�,i

)

0
(s)| ds

subject to M

�,�

(s) = �

1

(s)↵(s) + �

2

(s)�(s) + �

3

(s),

�(s

0

) = �(s

f

) = 0, �

0
(s) = 2↵(s), (31)

�(s) � 0,

M

�,�,min

 M

�,�

(s)  M

�,�,max

,

where the assumption that the robot starts and stops in
rest was made and regularization of the input-torque deriva-
tives with the weight ⌘ was introduced. An explicit time-
dependency is recovered by using the relation

t(s) =

Z
s

s0

1p
�(v)

dv, s

0

 s  s

f

, (32)

which can be utilized for determining the input trajectories
as functions of time. The optimal control problem is clearly
convex, since the cost function is a convex function of
the state variable and the model dynamics is affine in the
optimization variables and inputs. Note that only one state
is required for formulation of the optimal control problem,
compared to originally 16 states required for (20). Dis-
cretization of the continuous-time optimization problem (31)
using direct transcription for numerical solution with convex
optimization tools is straightforward, see [11], [23].

B. Obstacle Avoidance

In the case that an obstacle, not known in the map a
priori, is detected, the robot velocity is decreased rapidly to
zero. Then, a new geometric path is calculated such that the
robot avoids the obstacle with a certain safety distance, and
reaching the final target of the original nominal path. Based
on the new geometric path, the time-optimal trajectory is
found using the procedure proposed in Sec. III-A.

IV. EXPERIMENTAL SETUP

The robot used for the experimental validation was a four-
wheeled pseudo-omnidirectional mobile robot equipped with
eight motors, two for each wheel realizing the steering and
driving, see Fig. 3. The mobile robot, which was built and
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Fig. 3. The pseudo-omnidirectional mobile platform used for the experi-
mental validation together with the basket that served as an obstacle during
the experiments. The yellow laser scanner attached to the left corner of the
robot was used for obstacle detection.

designed at Fraunhofer IPA in Stuttgart, is the successor
to the Care-O-Bot 3 mobile base [15]. It was equipped
with two SICK s300 laser scanners, which delivered laser
range measurements with a rate of 100 Hz. The robot
was controlled using the ROS software package [1]. The
wheel-encoder position and velocity measurements were also
extracted with a rate of 100 Hz. The individual wheels were
controlled with torque-resolved cascaded position and veloc-
ity controllers implemented in C++ and executed internally
in ROS. Wheel velocity references were sent to the low-
level control loops via a Python abstraction of ROS, denoted
ROSPy. From ROSPy we detected whether an object was
within a predetermined safety distance from the robot, and,
hence, if collision was imminent. If this was the case, the
estimated position of the robot together with the laser range
measurements were used to perform a replanning of the
geometric path and a subsequent regeneration of the time-
optimal trajectory. The new, time-optimal trajectory was then
sent back to the low-level wheel control loops for execution.

V. RESULTS

We present results from simulations using the dynamic
model incorporating wheel slip derived in Sec. II and
experiments using the setup described in Sec. IV. Since
measurements of the wheel slip were not available in the ex-
perimental setup, the simulation results serve as an indication
that the model used for optimization is not over-simplified.
For solving the discretized convex optimization problem for
path tracking in (31), we implemented a Newton solver in
MATLAB. Logarithmic barriers were used for handling the
inequality constraints, inspired by the method in [12]. The
solver was transformed into C++ code and compiled for
subsequent execution. Moreover, utilizing that the Hessian
in the Newton iterations is tridiagonal, it can be shown that
the time complexity for solving the inherent linear equation
system is linear in the number of discretization elements [24].

A. Simulation Results

We used torque-resolved velocity controllers instead of
applying the torques found by optimization directly. The

reason is that even for the slightest error in the dynamic
model, the torques would propagate in the dynamics and
give large errors in position as, for example, the nonlinear
motor dynamics and the wheel slip are not accounted for
in the dynamic model used in the trajectory generation. As
an illustration of this we performed a trajectory generation
over the same path that was used for the experimental
results in Sec. V-B, see Fig. 7. Then two simulations were
performed; one simulation where the torques were used as
inputs to the dynamic model with slip derived in Sec. II-A,
and one simulation where the optimized velocity references
were used as inputs to the dynamic model. For the second
simulation, cascaded PI controllers were designed for wheel
position and velocity control, to mimic the control loops
in the experimental setup. The same robot inertias as in
the experimental results were used, see Sec. V-B.1. The
masses were set to values reasonable for the mechanical parts
involved. The maximum torques were set to reproduce what
can be achieved from the motors on the physical mobile base.

Figure 4 shows the torques for wheel 2 generated in the
optimization (red) and the torques generated by the cascaded
PI controllers when using the optimized velocity trajectories
as inputs (black). Moreover, Fig. 5 visualizes the longitudinal
and lateral slip for wheel 2 using the torque-resolved velocity
controllers. The longitudinal slip values hardly exceed 0.015,
and the lateral slip is at most approximately 0.5 deg. Thus,
for the maneuvers and robot characteristics considered, ne-
glecting slip in the model aimed at optimization is indeed
a valid assumption. The largest discrepancies in the torques
occur where the robot changes velocity rapidly, and hence
where the slip is largest.

Figure 6 shows the desired path (blue), the path followed
by using the optimized torques as inputs (red), and the path
followed by using the optimized velocities as inputs (black).
Noticeable is that although the torques are similar in size and
shape (Fig. 4), the trajectory when using the torques as inputs
quickly deteriorates. This motivates why using the velocities
as references is advantageous. Because of the model errors
in the initial and final transient phases, the maximum torques
used in the optimization are in practical implementations
chosen to be slightly smaller than the physical torque-
constraints. Further, it is clear that feeding the velocity PI
controllers with the optimal velocity trajectories produces
almost the same torques as calculated in the optimization for
most parts of the path, hence maintaining the time-optimality.

B. Experimental Results

To verify the proposed method for trajectory generation in
experiments, we considered a scenario where an obstacle was
placed such that it crossed the nominal geometric path of the
robot. The nominal path was a straight line in the global XY

coordinate system starting at (0, 0) m and ending at (5, 0) m,
with the heading angle chosen as  = 0 deg. The trajectory
generation for time-optimal tracking of the nominal path
was made by solving (31) as described in Sec. III-A. The
obstacle was placed approximately two meters from the start
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Fig. 4. Normalized torques for wheel 2 generated by optimization (red) and
by using the optimized velocities (black) as inputs to cascaded PI controllers.
The steering torques are shown as dashed. The torques are similar in shape
and size, but the resulting trajectories differ significantly, see Fig. 6. Note
that the differences in the torques are largest in the transient phases, which
is expected since it is during acceleration the slip gives the largest impact.
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Fig. 5. The longitudinal and lateral slip for wheel 2 developed by the
torques (black) in Fig. 4 for the path in Fig. 6 (black). The slip values are
close to zero throughout the simulation, a verification that neglecting slip
in the optimization model can be justified. Only the slip for one wheel is
shown, since the considered maneuver gives similar slip on all wheels.

point, after the planning of the nominal path was made. The
location was unknown a priori, and was determined during
execution of the path tracking using the laser sensor of the
robot.

1) Parameter Identification: To estimate the parameters in
the matrix I(⇠) and Coulomb friction parameter vector F

⇠

C

required for the adopted robot model in (20), experimental
data were collected. Under the assumption that the trans-
lational motion of the robot is significantly larger than the
rotational motion, the mass matrix is assumed to be diagonal
with inertia elements

I(⇠) = diag (I
�,1

, I

�,2

, I

�,3

, I

�,4

, I

�,1

, I

�,2

, I

�,3

, I

�,4

) , (33)
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Fig. 6. Simulation results for the same path as used in the experimental
evaluation, see Fig. 7. The nominal path, the path using velocity references
(black), and the path using the torques (red) are shown. The maximum
deviation for the path using velocity references is a few centimeters.

where diag(·) is the diagonal matrix. The parameters were
estimated by linearly increasing the velocity references to
the wheel controllers, starting at rest. A linearly increasing
velocity corresponds to a constant applied torque in the robot
model. Hence the inertia elements in the mass matrix can be
estimated as the ratio between the applied torque and the
corresponding angular acceleration. The motor torque mea-
surements were accessible within the mobile robot platform
via ROS. For estimating the Coulomb friction parameters F ⇠

C

for the respective wheel, a series of constant low-velocity
references, with different signs, were applied to the wheels
while the motor torques were monitored. Consequently,
the robot was moving both forward and backward at low
velocities, thus providing the necessary data for the friction
parameter estimation with a method similar to [25].

2) Path-Tracking Experiment: The path-tracking experi-
ment described in the beginning of this section was executed
on the robot. For the replanned geometric path, we set the
desired robot platform angle  to zero. The nominal path and
the resulting replanned path are displayed in Fig. 7, together
with the detected obstacle. In addition, the experimentally
tracked path, computed based on the wheel sensor data, is
shown in the figure. The path tracking is satisfactory, with
only small deviations in the range of centimeters from the
desired path. Further, the obtained experimental results are
in excellent agreement with the behavior observed in the
simulations in Sec V-A, which is a verification of the utilized
models and method.

The time-optimal trajectories from the point where the
obstacle is detected until the target position were determined
using the implemented Newton solver, with the constraints
on the steering actuators as M

�,max

= 0.5 and on the driving
actuators as M

�,max

= 1.5, which were chosen based on
the physical properties of the motors in the mobile robot.
The optimal input torques M

�

(t) and M

�

(t) are displayed
in Fig. 8. Note that the input torques have been normalized
in the optimization. From the optimal torque trajectories it
is clear that the drive torques are saturated a major part of
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Fig. 7. Nominal, replanned, and experimentally measured path. The obstacle is placed such that the nominal path is not possible to follow. Hence, a new
path is computed and subsequently tracked, while minimizing the execution time.
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Fig. 8. Time-optimal normalized wheel torque trajectories for tracking of
the replanned path after detection of the obstacle on the nominal path. At
least one of the inputs is saturated, as a result of the desired time-optimality.
Note that the front and rear wheels are mounted in opposite direction to each
other.

the path. However, during the critical part of the maneuver
where the robot is turning in order to avoid the obstacle,
it is instead the steering torques that are saturated. Since
at least one of the actuators are at its limit in each time
instance, the time-optimality is implied [8]. The angular
velocity profiles ˙

�(t) and ˙

�(t) are provided in Fig. 9. The
corresponding experimentally measured velocity profiles are
shown in Fig. 10. The angular velocity data series have been
merged at the time point when the obstacle was detected.
Comparing Fig. 9 and Fig. 10, we observe that the robot is
tracking the optimal velocity trajectories closely.

VI. DISCUSSION

As an alternative to traditional methods for trajectory
generation for mobile robots, we proposed a method based on
the decoupled approach, with a preplanned geometric path,
and convex optimization. The main advantages of the method
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Fig. 9. Time-optimal angular velocity trajectories for tracking of the
replanned path after detection of the obstacle on the nominal path. Same
colors as in Fig. 8. As a result of the robot configuration, the steer angle
velocities are equal and the drive angle velocities are pairwise equal, since
 = 0.

compared to previous approaches are the time-efficient com-
putation and the guarantee of finding the globally time-
optimal solution, given the geometric path and constraints on
the motor torques. To investigate the computational perfor-
mance of the method, the time-optimal trajectory generation
for the replanned path in Fig. 7 was performed with the
generated C++ code, where no measures to code optimization
have been taken. The experiments were executed on a
standard PC with an Intel Core i7 2.3 GHz processor for
a varying number of discretization elements. The average
time of 500 executions, when utilizing one of the cores in
the CPU, for each configuration are displayed in Table I. For
the current path, 199 elements were sufficient for achieving
satisfying path accuracy. The measured computation time of
approximately 68 ms is competitive. It should also be noted
that the dedicated solver is several orders of magnitudes
faster than general-purpose solvers in MATLAB. The results
are also an indication that the computational time scales
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Fig. 10. Experimentally measured wheel angular velocities for the right
front wheel of the mobile robot. The vertical red dashed lines indicate the
time when the obstacle was detected. For the angular velocity during the
replanned path, that is, after the red dashed line, cf. Fig. 9. The results for
the remaining wheels are similar and are thus not presented in the plot.

TABLE I
COMPUTATIONAL TIME FOR TRAJECTORY GENERATION WITH THE

PROPOSED METHOD.

No. of Elements Computation Time [s]

199 0.068
499 0.21
999 0.62

linearly with the number of discretization elements.
The class of pseudo-omnidirectional robots, as opposed

to differential-drive mobile robots, considered in this paper
enabled us to neglect the slip in the robot modeling used in
the trajectory generation procedure. Consequently, a convex
optimization problem was made possible. An Euler-Lagrange
model of the robot, including wheel slip, was derived and
used in simulations as a reference. The model was shown
to exhibit behavior in simulation that was remarkably close
to the experimental results. To reduce the influence of the
slip further, an additional high-level feedback loop from
global robot-base coordinates (estimated using localization
algorithms) can be introduced, which would imply even
higher path-tracking accuracy.

VII. CONCLUSIONS

This paper showed how convex optimization techniques
can be used for time-optimal trajectory generation for
pseudo-omnidirectional mobile robots. Experiments verified
that the accuracy of the path tracking is within a few
centimeters, and that the desired time-optimality is obtained.
Hence it is clear that the results presented here open up
new possibilities for using convex optimization for real-time
trajectory generation in mobile robotics.
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