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Abstract

Current market trends for industrial automation are the need for customizable pro-
duction, shorter time to market, and powerful global competitive pressure. Based
on these trends two challenges have been identified: 1) flexible production systems
and 2) integration and utilization of devices and software. Applications from both
process automation, manufacturing, and robotics have been considered.

More flexible languages and tools are needed to get a flexible production system.
The graphical programming language Grafchart, based on the IEC 61131-3 standard
language Sequential Function Charts (SFC), is considered with the aim to make
both the language and its implementation more flexible. In particular, new con-
structs have been added to the Grafchart language and modern compiler techniques
are evaluated for JGrafchart, a Grafchart implementation, with focus on an extensi-
ble language implementation. A first step toward real-time execution of Grafchart
applications is also taken to make it possible to use Grafchart for hard real-time
control. High execution rates often reveal concurrency issues and thus execution
concurrency has also been investigated.

Access to more data from industrial devices and software can be used to opti-
mize production. Architectures for factory integration have been considered as this
is the foundation to connect all devices and thus address the challenge of integrating
and utilizing devices and software. Service Oriented Architecture (SOA) is a flexi-
ble software design methodology widely used in IT systems and for business pro-
cesses. SOA service orchestration is brought to industrial automation by integrating
support for both Devices Profile for Web Services (DPWS) and OPC Unified Ar-
chitecture (OPC UA) in JGrafchart. Looking further, SOA 2.0 is event driven and
features extremely loose coupling between components. An architecture based on
SOA 2.0 where it is easy to integrate any device or software, in particular legacy
devices with limited knowledge and capabilities, has been developed with focus on
service choreography in industrial manufacturing. Another step toward real-time
execution of Grafchart applications is integrated support for the high performance
communication protocol LabComm. Additionally, it is investigated how Grafchart
can be connected to Functional Mock-up Interface (FMI) for co-simulation to fur-
ther address the shorter time to market trend by introducing simulation support.
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The PID controller is the most common controller for industrial automation.
A PID implementation has been added to a Grafchart library and a flaw with the
PID algorithm has been discovered. The problem occurs for PID controllers with a
derivative part when the process value saturates. The derivative part then backs off
which leads to undesired changes in the control signal. This issue has been analyzed
and a solution to the problem is proposed.
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Abbreviations

API Application Programming Interface, a software interface for an appli-
cation.

AST Abstract Syntax Tree, a common way for compilers to represent appli-
cations.

BPMN Business Process Model and Notation, a graphical language to model
business processes.

BV Basic Version, one of the two Grafchart versions.

DPWS Devices Profile for Web Services, a minimal set of mandatory web
service extensions targeted for resource constrained devices.

EDA Event-driven Architecture, a flexible and extremely loosely coupled
software architecture.

EIP Enterprise Integration Patterns, best practices for enterprise integra-
tion.

ESB Enterprise Service Bus, a component for message routing to dis-
tributed applications.

FBD Function Block Diagram, one of the graphical IEC 61131-3 standard
programming languages.

FC Function Chart, an SFC or Grafchart application.

FMI Functional Mock-up Interface, an interface standard for simulations.

FMU Functional Mock-up Unit, an exported FMI model.

FSM Finite State Machine, a modeling language for machines with a finite
number of states.

HLV High-Level Version, one of the two Grafchart versions.
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I/O Inputs and Outputs, how applications interact with the external en-
vironment.

IDE Integrated Development Environment, a software in which appli-
cations can be written, compiled, executed, and debugged.

IEC International Electrotechnical Commission, a standards organiza-
tion.

ISA The International Society of Automation, a standards organization.

ISO International Organization for Standardization, a standards organi-
zation.

IL Instruction List, one of the textual IEC 61131-3 standard program-
ming languages.

LD Ladder Diagram, one of the graphical IEC 61131-3 standard pro-
gramming languages.

LISA Line Information System Architecture, a research project and an
event driven architecture.

OPC The classic interoperability standard for industrial automation.

OPC AE OPC Alarm and Events, a classic OPC standard for alarms and
events.

OPC DA OPC Data Access, a classic OPC standard to read and write data.

OPC HDA OPC Historical Data Access, a classic OPC standard to read his-
torical data.

OPC UA OPC Unified Architecture, an interoperability standard for indus-
trial automation systems.

PLC Programmable Logic Controller, a control system used for indus-
trial automation.

PN Petri Nets, a mathematical language for system modeling.

PtP Point-to-Point, the traditional integration approach.

ReRAGs Rewritable Reference Attribute Grammars, a declarative way to
implement compiler semantics.

SFC Sequential Function Charts, one of the graphical IEC 61131-3 stan-
dard programming languages.

SLOC Source Lines Of Code, a metric for the size of software programs.

SOA Service Oriented Architecture, a flexible and loosely coupled soft-
ware architecture.
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SOA-AT SOA in Automation Technologies, SOA used for automation.

ST Structured Text, one of the textual IEC 61131-3 standard program-
ming languages.

UML Unified Modeling Language, a modeling language for software en-
gineering.

WSDL Web Services Description Language, a language to define the inter-
face of web services. Also used to refer to the interface of a particular
web service.

XML eXtensible Markup Language, a textual data format for structured
data.
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1
Introduction

One definition of automation is "the creation and application of technology to mon-
itor and control the production and delivery of products and services" [2]. Some ex-
amples where automation is used are for production of cars, consumer electronics,
medicine, plastics, paper, gasoline, and chemicals. They are all produced in facto-
ries where the production is highly automated. To produce with less manual labor
often means cheaper production, higher production rate, and a more stable product
quality. Companies need a high level of automation to be competitive and stay in
business. A company that can automate more or do it better than its competitors has
a competitive advantage. Even small improvements can potentially generate or save
a considerable amount of money. To improve existing automation and increase the
level of automation is thus always a relevant topic.

One current market trend is that the products are expected to be more customiz-
able. Take buying a new car for example. A few years back the only options were
the brand, the model, one of a few model configurations, and the color. Now it
is possible to choose freely among all the available options and colors and get a
completely customized configuration. This is often cheaper than buying one of the
default configurations of the product [3]. You can skip all the options that you do not
care about and do not have to buy the supreme configuration to get the less common
option that you want. For the manufacturer this means that more flexible production
systems are needed. However, the control systems and languages used for control
were developed with a more static production in mind.

At the same time there is an increasing demand for shorter time to market, that
is, to set up and make changes to the production systems faster. New environmental
impact legislation also introduce new boundaries for what is allowed which in turn
require changes to the production systems. The earlier a production system can
be up and running, the earlier it is possible to make money from the production.
Similarly, if a change can be applied faster there are less production losses and
it is possible to benefit from the change earlier. Considering the powerful global
competitive pressure this is important to stay in business.
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Chapter 1. Introduction

Based on these market trends the following challenges have been identified:

1. Flexible production systems

2. Integration and utilization of devices and software

With a flexible production system it is easier to produce customizable products
and to reduce the effort needed to add new options. Flexible languages and tools are
required to realize flexible production systems.

The smart factory is a concept which refers to future factories where all devices
and software are well integrated and utilized. The benefit of this is that the data from
devices and software is readily available and can be used to improve or optimize the
production. To make it possible to access the data, all devices and software must
first be integrated. To accomplish this, a flexible architecture is needed where it is
easy to integrate any application or device. Factories typically contain a wide range
of devices that are from different eras and based on different technologies. Some
devices are from when the factory was built and devices have then been added as
part of continuous improvements of for example quality, reliability, or efficiency. It
is thus particularly important that legacy devices regardless of age or capabilities
can be integrated in such an architecture.

1.1 Methodology

In this thesis the inductive research methodology has primarily been used. The start-
ing point has been the observation of current trends in industrial automation. Ap-
plications from both process automation (continuous, for example chemical plants
and paper mills), manufacturing (discrete, for example car factories), and robotics
(discrete, for example assembly and packaging) have been considered. Based on
the current trends, challenges related to control languages have been identified and
the research question has been how these challenges can be addressed through im-
provements and use of a sequential control language.

1.2 Publications

This thesis is based primarily on the following publications:

∙ A. Theorin, K.-E. Årzén, and C. Johnsson. “Rewriting JGrafchart with
Rewritable Reference Attribute Grammars”. In: Industrial Track of Software
Language Engineering 2012. Dresden, Germany, 2012.

∙ A. Theorin, L. Ollinger, and C. Johnsson. “Service-oriented process control
with Grafchart and the Devices Profile for Web Services”. In: T. Borangiu et al.
(Eds.). Proceedings of the 14th IFAC Symposium on Information Control Prob-
lems in Manufacturing (INCOM’12). Elsevier Ltd, Bucharest, Romania, 2012,
pp. 799–804. DOI: 10.3182/20120523-3-RO-2023.00131.
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1.2 Publications

∙ A. Theorin, L. Ollinger, and C. Johnsson. “Service-oriented process control
with Grafchart and the Devices Profile for Web Services”. In: T. Borangiu et
al. (Eds.). Service Orientation in Holonic and Multi Agent Manufacturing and
Robotics. Vol. 472. Studies in Computational Intelligence. Springer Berlin Hei-
delberg, 2013, pp. 213–228. ISBN: 978-3-642-35851-7. DOI: 10.1007/978-3-
642-35852-4_14. URL: http://dx.doi.org/10.1007/978-3-642-35852-4_14.

∙ A. Theorin and C. Johnsson. “Polymorphism for state machines”. In: ISA Au-
tomation Week 2012. Orlando, FL. USA, 2012.

∙ T. Gerber, A. Theorin, and C. Johnsson. “Towards a seamless integration be-
tween process modeling descriptions at business and production levels - work
in progress”. In: T. Borangiu et al. (Eds.). Proceedings of the 14th IFAC Sympo-
sium on Information Control Problems in Manufacturing (INCOM’12). Elsevier
Ltd, Bucharest, Romania, 2012, pp. 1537–1542. DOI: 10.3182/20120523- 3-
RO-2023.00309.

∙ T. Gerber, A. Theorin, and C. Johnsson. “Towards a seamless integration be-
tween process modeling descriptions at business and production levels: work
in progress”. English. Journal of Intelligent Manufacturing (2013), pp. 1–11.
ISSN: 0956-5515. DOI: 10.1007/s10845-013-0754-x. URL: http://dx.doi.org/10.
1007/s10845-013-0754-x.

∙ L. Ollinger, D. Zühlke, A. Theorin, and C. Johnsson. “A reference architecture
for service-oriented control procedures and its implementation with SysML and
Grafchart”. In: 18th IEEE International Conference on Emerging Technologies
and Factory Automation. Cagliari, Italy, 2013.

∙ A. Theorin and C. Johnsson. “An interactive PID learning module for educa-
tional purposes”. In: Proceedings of the 19th IFAC World Congress (IFAC’14),
Cape Town, South Africa. 2014.

∙ A. Theorin and C. Johnsson. “On extending jgrafchart with support for FMI
for co-simulation”. In: 10th International Modelica Conference. Lund, Sweden,
2014.

∙ A. Theorin, J. Hagsund, and C. Johnsson. “Service orchestration with OPC
UA in a graphical control language”. In: 19th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA’2014). Barcelona,
Spain, 2014.

∙ A. Theorin, K. Bengtsson, J. Provost, M. Lieder, C. Johnsson, T. Lundholm, and
B. Lennartsson. “An event-driven manufacturing information system architec-
ture”. In: In submission.

∙ A. Theorin and T. Hägglund. “Derivative backoff: a process value saturation
problem for PID controllers”. In journal submission (2014).
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Chapter 1. Introduction

1.3 Contributions

The main contributions of this thesis are:

∙ A way to do service orchestration in the smart factory using the service tech-
nologies Devices Profile for Web Services (DPWS) and OPC Unified Archi-
tecture (OPC UA).

∙ Establishing a foundation for service choreography in the smart factory with
Service Oriented Architecture (SOA) 2.0.

∙ Demonstrating the applicability of state of the art compiler techniques for an
industrial based sequential control language.

∙ A step toward real-time execution of a flexible industrial based sequential
control language.

∙ The discovery and solution of a PID algorithm issue regarding the derivative
part when the process value saturates.

1.4 Research Projects

The research presented in this thesis has been carried out in three research projects:
Line Information System Architecture (LISA), LCCC, and ELLIIT.

The aim of the LISA project is to support knowledge-based competitive pro-
duction through the development of methods for control, optimization, and mainte-
nance of sustainable discrete manufacturing processes. The LISA project is funded
by VINNOVA, the Swedish government agency for innovation, and is part of the
FFI initiative Sustainable Production Technology.

The aim of the LCCC Linnaeus Center is to develop theory, methods, and tools
for control of large scale engineering systems. Our society depends on flexible in-
frastructure for industrial production, energy supply, and communication systems.
This requires research and innovations on control of complex systems. Many chal-
lenges are common for a wide range of application areas and need to be addressed
with a combination of competences from control, communications, and computer
science. LCCC is facing these challenges. LCCC is funded by the Swedish Research
Council (VR).

The ELLIIT excellence center is a network organization for information and
communication technology. Its objective is scientific excellence in combination
with industrial relevance and impact. It is organized within the Swedish govern-
ment’s strategic research support initiative and is funded by VINNOVA and the
Swedish Research Council (VR).

Financial support from VINNOVA and VR through the research projects
LISA, LCCC, and ELLIIT is gratefully acknowledged. The research platform
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1.5 Thesis Outline

Figure 1.1 Logos for the research projects.

SmartFactoryKL [4] which has provided collaboration and evaluation opportunities
is also acknowledged.

1.5 Thesis Outline

The thesis is divided into chapters where the first chapters present the background
for the work and the following chapters describe the contributions in detail.

Chapter 2–4 are background chapters. In Chapter 2 the industrial automation
field and Industry 4.0 are presented. In Chapter 3 automation languages related to
this thesis are presented and graphical programming is compared to textual pro-
gramming. Chapter 4 describes the sequential control language Grafchart and its
implementation JGrafchart in detail.

In Chapter 5 improvements to the Grafchart language and the Grafchart im-
plementation JGrafchart are presented. In particular, new language constructs are
described, modern compiler techniques are evaluated for JGrafchart, and real-time
execution and execution concurrency for Grafchart applications are addressed. In
Chapter 6 factory integration is addressed by considering different architectures.
Integrated JGrafchart support for the SOA service technologies DPWS and OPC
UA, as well as the high performance communication protocol LabComm are pre-
sented. The SOA 2.0 architecture LISA as well as an investigation of how JGrafchart
can be connected to Functional Mock-up Interface (FMI) for co-simulation are also
presented. In Chapter 7 a newly discovered problem with the PID algorithm is de-
scribed in detail and a solution is proposed. Finally, Chapter 8 contains a summary
and future work.
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2
Industrial Automation

This chapter gives an overview of the industrial automation field and how it relates
to other fields.

2.1 Terminology

Industrial automation Industrial automation is a wide term which includes all sci-
ences and technologies used to implement an industrial production system. It in-
cludes for example mechanical systems, chemical reactions, sensor and actuator
technology, order handling, and logistics. In this thesis the term industrial automa-
tion is used to refer to this context and the focus is on control systems, control
languages, control algorithms, and control applications as well as their interaction
with other systems.

Field device The physical sensors and actuators used in a production machine
are known as field devices. They are the interface between the physical world and
the control systems.

Embedded system Many stand-alone embedded devices such as smart phones or
traffic lights are controlled internally by a dedicated microcontroller. This is known
as an embedded system.

Cyber-physical systems Cyber-physical systems are considered the next gener-
ation of embedded systems. Instead of focusing on a single stand-alone embedded
device, a network of distributed embedded devices with actuators and sensors and
with computing and communication capabilities is considered [5]. One example is
distributed control applications where the control is implemented through collabo-
ration between embedded devices.

Internet of Things The Internet of Things is a concept where embedded devices
are uniquely identified and can communicate with each other over the Internet [6].

7



Chapter 2. Industrial Automation

2.2 Functional Hierarchy

IEC 62264 is an international standard based on ISA95 [7] which describes inte-
gration of enterprise and control systems. Part 1 of the standard describes models
and terminology [8]. The standard classifies the production tasks in levels, see Fig-
ure 2.1.

Level 4 
Business Planning  

& Logistics 
Plant Production Scheduling, 
Operational Management, ... 

Level 3 

Manufacturing  

Operations Management 
Dispatching Production, Detailed Production 

Scheduling, Reliability Assurance, ... 

Level 0 

Level 5 
Company Management 

Level 1 

Level 2 
 

Batch 
Control 

 

Discrete 
Control 

Continuous 
Control 

Figure 2.1 Functional hierarchy of production according to IEC 62264-1.

Level 0 is the physical production process.
Level 1 and 2 contain tasks related to sensing and actuation of the physical

process, that is, real-time and supervisory control. This is also referred to as the
device level. The time frame ranges from hours to milliseconds. The implementation
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2.3 Field Buses

of the tasks on this level should ensure stable product quality, production reliability,
and energy efficiency.

Level 3 contains tasks such as detailed scheduling, data collection, performance,
and dispatching. The time frame ranges from work shifts to seconds. The imple-
mentation of the tasks on this level should ensure high utilization of the production
equipment.

Level 4 contains tasks related to business processes such as basic production
planning, delivery, and inventory handling. This is also referred to as the business
level. The time frame ranges from months to work shifts.

Level 5 contains tasks related to company management such as order handling
and customer relations. The time frame ranges from years to months.

The communication on level 2 and below is often integrated and data can be
fetched at any time. Communication between the upper and the lower levels on the
other hand is in many cases manual and thus data is not readily available. Integrated
support for communication between all levels is known as vertical integration. With
vertical integration it is possible to access and utilize all existing data at all levels.
This is important as more data means more opportunities for production optimiza-
tion.

2.3 Field Buses

To support hard real-time control, field device communication must be determin-
istic and reliable. The traditional physical architecture of control systems is rigid,
with each field device connected to one field bus which in turn is connected to one
controller, for example a Programmable Logic Controller (PLC). Industrial Ether-
net is the next generation of field buses which are based on Ethernet technology.
When the Ethernet infrastructure also includes the field devices there is an opportu-
nity to use Ethernet for control. As the communication with field devices no longer
has to go through a specific controller, the architectural flexibility can be increased
by decoupling the physical and functional hierarchy of field devices. Hence loose
physical coupling can be attained, which simplifies vertical integration.

2.4 Characteristics

Control logic in automation is almost exclusively implemented on computers. Like
ordinary computer programs are implemented in Java or C++, automation is im-
plemented in the languages defined in the international standard IEC 61131-3 [9]
for PLCs. Practically all languages for ordinary computer programs are textual. The
programs are written in plain text and are compiled to executable binaries. To trou-
bleshoot and inspect what is going on, a debugging environment is needed.

Implementing ordinary consumer applications for conventional computers,
smart phones, or tablets is similar to implementing automation in some aspects and

9



Chapter 2. Industrial Automation

completely different in other, see Figure 2.2. One similarity is that the applications
are executed on similar computer hardware and hardware architecture. Some char-
acteristics are also shared with embedded systems. An embedded system is closer
to the hardware and is often required to execute its applications in real-time, for
example to respond to an event within a given time to behave correctly.

Consumer Applications 

Industrial Automation 

Embedded Systems 

Figure 2.2 Comparison of implementation aspects for ordinary consumer applica-
tions, embedded systems, and automation.

The life cycle for consumer applications is roughly as long as the time between
the releases and can typically be measured in months. The life cycle for an embed-
ded system is roughly the life span of the product, typically a few years. The life
cycle for automation is roughly how long the production machine is running, which
is for as long as it is profitable to run it. For example, paper machine 1 at Stora
Enso Hylte Mill was shut down after operating for 41 years due to lower market de-
mand [10]. There is a demand for spare parts during the entire lifetime of production
machines and control system manufacturers need to make long term commitments
to attract customers. For example, ABB guarantees that they will actively produce
spare parts for the previous generation for at least 10 years [11].

For consumer applications the underlying hardware does not have to be consid-
ered, abstraction layers between the application and the hardware take care of this.
When implementing an embedded system the target hardware is known and it is suf-
ficient to make the software work on this particular hardware. In automation there is

10



2.5 Control Loops

much more uncertainty. For example, it is impossible to know if the hardware will
need to be changed in 20 years due to a lack of spare parts.

Another difference is the amount of hardware used. Embedded systems are only
concerned with its particular hardware while the primary objective for automation
is to use sensors and actuators to get the machines to behave properly. Typically
many different types of sensors and actuators are required and they all need to be
configured properly.

Since there is a considerable cost to start up a production machine, shutting it
down is avoided as far as possible. Changes may be applied during maintenance
stops or, if possible, on the fly. This is one reason why the languages used for au-
tomation differ from other fields. In other fields, debugging mode is only used dur-
ing development. In automation a mode close to debugging mode is always used.
It is not possible to set breakpoints and step through the code, but execution details
such as variable values are available during execution. This is needed to be able to
troubleshoot odd behavior without shutting down the production machine.

Considering the cost of errors, take for example a race condition that causes a
crash one time out of ten thousand and is otherwise harmless. For a consumer appli-
cation or an embedded system it is enough to restart the application or the device.
For a consumer application a fix can simply be rolled out with the next version.
Embedded systems are harder to update, often special equipment is required. If an
application stops in industrial automation, so does the production. Many production
machines take a long time to start up and they may consume raw material without
producing sellable products during startup. Also, many production machines are
hazardous and an error in the program can cause worker injuries.

2.5 Control Loops

An important part of industrial automation are the feedback loops which are ex-
ecuted in real-time to give production processes desired behavior. For example,
the control loops handle disturbances and ensure stable product quality. Figure 2.3
shows an overview of a simple feedback loop. The input to the controller is the
control error, e(t), which is the difference between the desired (reference/set-point)
process state, ysp(t), and the measured process state, y(t) is

e(t) = ysp(t)− y(t) (2.1)

The output of the controller is the manipulated variable (control signal), u(t).
The PID controller is by far the most commonly used controller in industry.

There are billions of control loops [12] and the PID controller is used for more than
95% of all control loops [13].
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∑
Controller Process

u

−1

ysp e y

Figure 2.3 A feedback loop where a controller is used to control the process by
considering the control error.

2.6 Service Oriented Architecture

As new functionality and systems are added they need to be rapidly integrated with
existing systems. The traditional integration approach is to connect applications on
a Point-to-Point (PtP) basis with the client/server pattern. The pattern mandates that
the client knows about the server and that the server knows about the client. The
number of connections in a fully connected network increases quadratically with
the number of applications. This is known as "spaghetti integration" and makes the
system rigid and hard to maintain [14]. Each time an application is added, all other
applications must also be updated.

It is also common that applications are only able to communicate through pro-
prietary or limited protocols and applications may require external message transla-
tors to communicate with each other at all. This is for example the normal case for
communication between PLCs from different vendors.

The PtP approach is almost useless in supporting the expected business require-
ments [15]. Yet industry has been slow to migrate to new approaches, mainly due
to the cost to replace their established legacy systems based on PtP [14]. However,
migration has been significantly accelerated by the advent of SOA [14].

SOA is a component-based distributed software architecture. Each component
encapsulates a specific functionality and is called a service. Services are unasso-
ciated, loosely coupled, and self-contained. Preferably they are also discoverable.
Services are described with metadata so that they can be both language and plat-
form independent. To write an application which combines SOA services is known
as service orchestration. SOA enables a high degree of reusability and flexibility. To
use SOA for automation has potential to significantly reduce the integration effort.

SOA is widely used for business processes [16, 17] on level 4 of Figure 2.1. It
has also been recognized for use in automation in several research projects [18, 19,
20].

The term SOA in Automation Technologies (SOA-AT) is used to distinguish
SOA used for business processes from SOA used in automation since they differ
in many ways [21]. One difference is the execution environment. SOA for business
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processes is implemented on ordinary computers with practically unlimited memory
and processing power. In SOA-AT services are running on resource constrained
embedded devices with little memory and processing power. Only a minimal set of
features can then be supported. Another difference is that in SOA-AT the service
execution timing is more important.

In SOA-AT the functionality of a field device is encapsulated as a service and
the control application is implemented as orchestration of these services.

Even though SOA conceptually offers loose coupling and is intended to be dis-
tributed, service orchestration is typically done centrally with the orchestrator taking
control of the involved services.

SOA 2.0 [22], also known as advanced SOA or event-driven SOA, is the next
generation of SOA which is inspired by Event-Driven Architecture (EDA) [23] and
is more focused on events. SOA 2.0 enables service choreography, where each ser-
vice reacts to published events on its own, rather than being requested to do so by a
central orchestrator.

EDA is extremely loosely coupled and distributed by design. The creator of an
event only needs to know that the event occurred, it does not need to know anything
about who is interested in the event or how it will be processed [23]. Event data
should be immutable and it is then always (thread-)safe to pass events around both
within and between applications. Thus applications turn from being synchronized
and blocking to being asynchronous and non-blocking [24].

2.7 Industry 4.0

Industry 4.0 [25] is a term that refers to the fourth industrial revolution. Industrie 4.0
is also a German strategic research project with a time frame of more than 20 years
[26, 27]. The first industrial revolution began in the late 18th century. It introduced
mechanical automation, powered by steam and water, to replace manual labor. The
second industrial revolution began in the early 20th century. It introduced mass
production through the use of electricity. The third industrial revolution began in the
second half of the 20th century through digitalization, that is, use of electronics and
IT for further automatization. This was also when industrial robots were introduced.

Industry 4.0 envisions a factory where everything is connected, similar to In-
ternet of Things but for producing industries. Such a factory is often referred to as
a smart factory. Industry 4.0 includes moving from isolated embedded systems to
networked cyber-physical systems, which are easy to use and compose. Software
and software integration play important roles. With everything connected there is
an opportunity for improved production profitability [28].

It must be a low effort to integrate and use the many cyber-physical systems in
the smart factory. Loosely coupled components and an architecture which features
loose coupling will be needed to tackle the increased complexity. Hence SOA is
recognized as a key enabler for Industry 4.0 [26].
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3
Automation Languages

This chapter describes languages used for industrial automation, languages similar
or related to Grafchart, and other languages of relevance for this work.

3.1 Graphical Programming Languages in PLCs

The IEC 61131-3 standard defines five programming languages for PLCs [9]: the
three graphical languages Ladder Diagram (LD), Function Block Diagram (FBD),
and Sequential Function Charts (SFC) and the two textual languages Structured Text
(ST) and Instruction List (IL). These languages can also be combined.

The code for the textual languages is executed line by line from the top down. On
the other hand, the code for the graphical languages consists of graphical elements
which are connected to make up the program. This can be a more suitable way to
implement applications. Specifically, it suits automation very well.

Function Blocks
Function blocks are used to encapsulate reusable functions in IEC 61131-3. A func-
tion block may have input variables, output variables, and internal variables. They
are called similar to Java methods but may have internal states and must be instan-
tiated similar to Java classes.

Ladder Diagram
LD is a replacement for implementation of relay logic with physical relays. Engi-
neers thinking in terms of relay logic draw their applications as LD diagrams, see
Figure 3.1. Instead of then wiring relays the diagrams can be executed directly in a
PLC. The vertical lines on the sides are the power rails. The power of the diagram
flows from the left power rail to the right power rail. Coils are used to assign out-
puts and are drawn as a pair of round brackets, for example D in Figure 3.1. A coil’s
output is true whenever there is power flow through the coil. Contacts are used to
implement the logic and are drawn as a pair of vertical lines, for example A in Fig-
ure 3.1. Power can flow through a contact when its input variable is true. A diagonal
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line between the vertical lines means that the contact is inverted, see for example C
in Figure 3.1. Power can flow through an inverted contact when its input variable is
false.

A 

B 

C D 

Power flow 

Coil 

Power rails 

Contacts 

Figure 3.1 An LD diagram equivalent to D = (A | B) & !C.

Function Block Diagram
FBDs consist of function block instances whose inputs and outputs are connected
graphically, see Figure 3.2. This way it is easier to get an overview of the applica-
tion.

MyPID 

MV PV 

SP 

FF 

Temp Heat 

50.0 

0.0 

47.3 14.1 

Figure 3.2 An FBD implementation of a PID control loop. The inputs to the func-
tion block instance MyPID are the process value Temp (PV), a constant set point of
50.0 (SP), and no feed forward (FF). The manipulated variable (MV) of MyPID is
connected to the output Heat.

Sequential Function Charts
SFC is based on GRAFCET, which is a standardized specification language to de-
scribe the functional behavior of the sequential part of a control system. The stan-
dard that describes GRAFCET is IEC 60848 [29].

SFC consists of steps representing states, and transitions representing the
change of state. It is supported by most industrial automation systems, for exam-
ple 800xA by ABB, SIMANTIC S7 by Siemens, RSLogix 5000 by Rockwell Au-
tomation, DeltaV by Emerson, and CENTUM CS by Yokogawa. SFC is used to
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implement sequential, parallel, and general state-transition oriented applications. It
is hard to get a non-trivial state machine right in a textual language and once written
it is practically impossible to get an overview of the state machine. Typically, it is
first drawn on paper and then translated into textual code. Similarly, to understand
how things are connected the code is translated into a graphical representation. A
textual language also requires that all steps are named, otherwise they cannot be
referred to which is required to connect them to transitions. Working directly with
a graphical representation is more intuitive.

Figure 3.3 shows a comparison of a small application implemented both in SFC
and a minimal textual language. In the SFC application it is easier to follow the flow
and get an overview of the application. The textual implementation is more compact
but it is harder to get an overview.

Init

SFC

Start

PreFilling

S Fill = 1;

L0

Heating

N Heat;

Filling

Temp >= 7.5 L1

Full

S Fill = 0;

1

Emptying

N Empty;

!L0

Textual

Init*

PreFilling : S Fill = 1;

Heating : N Heat;

Heated

Filling

Full : S Fill = 0;

Emptying : N Empty;

Init -> PreFilling : Start

PreFilling -> (Heating, Filling) : L0

Heating -> Heated : Temp >= 7.5

Filling -> Full : L1

(Heated, Full) -> Emptying

Emptying -> Init : !L0

Heated

Figure 3.3 An application implemented in both SFC and a minimal textual lan-
guage.

Visualization
Visualization of the current execution state can be done for all these graphical lan-
guages and makes it easier to see what is happening. In SFC the current state can be
highlighted. In LD connections can be highlighted depending on if they are true or
false. In FBD the values of function block inputs and outputs can be written next to
the connections and, as for LD, Boolean connections can be highlighted depending
on their value.
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3.2 Petri Nets

Petri nets (PN) is a mathematical language for system modeling [30]. It consists
of places and transitions as well as directed arcs between places and transitions.
The places contain tokens which model a property of the current system state. All
tokens together represent the whole system’s state and is called a marking. The
initial marking corresponds to the system’s initial state.

The marking can be changed by firing transitions, one at a time. The places with
an arc leading to the transition are called the transition’s input places and the places
with an arc leading from the transition are called the transition’s output places. A
transition may fire if there is at least one token in each input place. When a transition
fires, a token in each input place is consumed and a token is produced in each output
place.

With a Petri net model it is possible to analyze a system to determine if it is for
example deadlock free, live, bounded, or if a certain marking is reachable. Deadlock
free means that it is not possible to reach a marking where no transition is fireable.
A transition is live if there from each valid marking exists a sequence of firings
which includes the transition. A Petri net is live if all its transitions are live. A place
is bounded if there is an upper limit on the number of tokens it may contain. A Petri
net is bounded if all its places are bounded. A marking is reachable if there exists a
sequence of firings that brings the initial marking to that marking.

Properties of the Petri net have a corresponding meaning for the modeled sys-
tem. It can for example be guaranteed that a forbidden state cannot occur if its
corresponding marking is not reachable. Another example is that a deadlock free
Petri net guarantees that the system will not freeze.

An example Petri net is shown in Figure 3.4. The modeled system is an assem-
bly station where the tokens represent workers. Workers in place p1 are unallocated,
workers in place p2 are producing part A, workers in place p3 are producing part B,
and workers in place p4 are assembling part A and B. An unallocated worker may
start producing part A, modeled by transition t1, or part B, modeled by transition
t2. When there is both a part A and a part B available they can be put together and
then one worker assembles the parts and the other becomes unallocated, modeled
by transition t3. Finally, when the assembling is complete, that worker also becomes
unallocated, modeled by transition t4. With the marking in Figure 3.4 there is one
worker producing part A, one worker producing part B, and one worker assembling.
Next, either another assembly can begin, that is, transition t3 is fired, or the current
assembling is finished, that is, transition t4 is fired as shown in Figure 3.5. By an-
alyzing Petri net properties it can be found that the net is not deadlock free which
corresponds to stalled production. This happens for example for the firing sequence
{t3, t4, t1, t1, t1} applied to the marking in Figure 3.5 which results in the marking in
Figure 3.6.

There exist many extensions to Petri nets. One example is colored Petri nets
where each token may contain individual data (its "color"). The data may be used in
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p1

p2 p3

p4

t1 t2

t3

t4

Figure 3.4 A Petri net consisting of the places p1, p2, p3, and p4 and the transitions
t1, t2, t3, and t4. In the current marking there is one token in p2, one in p3, and one
in p4.

p1

p2 p3

p4

t1 t2

t3

t4

Figure 3.5 The Petri net in Figure 3.4 after t4 has fired.
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p1

p2 p3

p4

t1 t2

t3

t4

Figure 3.6 The Petri net in Figure 3.5 after firing sequence {t3, t4, t1, t1, t1}, result-
ing in a deadlock.

guard conditions in transitions which means that the transition is only fireable when
the condition is true. The data may also be changed for example when a transition is
fired or when the token enters a place. Another example is timed Petri nets in which
each transition or place may have timing constraints, for example the transition may
not fire until it has been enabled for 3 seconds.

3.3 Finite State Machines

A finite state machine (FSM) [31], also known as finite state automaton or simply
state machine or automaton, consists of a set of possible states, inputs, and outputs.
FSMs are widely used for design of digital circuits and implementation of computer
applications with states. An FSM always has exactly one current state and can thus
be seen as a Petri net restricted to one token. For each state the next state and the
outputs are pre-specified, possibly depending on the input values. The two classic
FSMs are the Mealy machine and the Moore machine. For a Moore machine the
outputs are determined by the current state only. For a Mealy machine the outputs
are determined by both the current state and the current input values.

As an example, consider a state machine with one digital input, i, and one digital
output, o. The output value should be 1 when the two most recent input values are 1
and in all other cases it should be 0. This can be implemented with a Moore machine
represented either graphically, see Figure 3.7, or as a table, see Table 3.1.
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A/0 B/0 C/1
i = 1 i = 1

i = 0

i = 0

i = 1i = 0

Figure 3.7 A Moore machine represented graphically.

Table 3.1 A Moore machine represented with a state transition table.

Current State/Output Next State, Input = 0 Next State, Input = 1

A/0 A B

B/0 A C

C/1 A C

3.4 Statecharts

Statecharts [32] are known by many names such as Harel statechart, state diagram,
Unified Modeling Language (UML) state machine, and UML statechart and are
used to describe the behavior of systems. It is an extension to FSMs and consists
of states and transitions. Statecharts are, like state machines, event driven. States
may have entry and exit actions and transitions may have both guard conditions
and associated actions. In statecharts there is also a concept of composite states,
that is, states which have internal substates. A composite state may be divided into
orthogonal regions, then one substate in each orthogonal region is active simulta-
neously. Finally, a composite state may contain a history pseudostate which stores
the most recent substate history which can then later be restored. A shallow history
pseudostate only stores the active substates (non-recursive) while a deep history
pseudostate stores the complete configuration of a state (recursive).

3.5 Business Process Model and Notation

Business Process Model and Notation (BPMN) is a graphical language for business
process modeling based on flowcharts and similar to UML activity diagrams [33].
Business processes are used to formalize how various business related tasks on level
4 in Figure 2.1 proceed, for example the sequence of steps involved in a product
release.
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BPMN consists of flow objects, connecting objects, swim lanes, and artifacts.
The flow objects are: event, activity, and gateway. An event denotes that something
happens, an activity denotes something that should be done, and a gateway is used to
split and join paths. Connecting objects are used to connect the flow objects. Swim
lanes is a way to detail the flow between the participants involved in the process.
Finally, artifacts contain additional relevant information.
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4
Grafchart

In this chapter the graphical programming language Grafchart and its implemen-
tations are described. First there is a short section about the history of Grafchart.
Then the language is described in detail followed by implementation details for
JGrafchart, the Java implementation of Grafchart. After this, a task is implemented
in both Grafchart and SFC to exemplify the usefulness of some of Grafchart’s and
JGrafchart’s additional features. Finally, a few implementation details for the old
Grafchart implementation are mentioned.

4.1 History

Grafchart has been developed by the Department of Automatic Control at Lund Uni-
versity since 1991 [34]. It is based on SFC which is well-accepted by the automation
community. Like SFC, Grafchart uses the state-transition paradigm. Grafchart has
been inspired by ideas from statecharts, colored Petri nets, and ordinary object-
oriented programming languages among others. The goal is to make it possible to
write well structured, flexible, and maintainable applications. Grafchart was ini-
tially designed to be a language suited for batch control [35]. The main extensions
facilitate exception handling and enable hierarchical structuring and code reuse. Ap-
plications written in Grafchart are often referred to as Function Charts (FC) or step
sequences.

Grafchart has been shown to be a language well suited also for various other
automation applications. The state-transition paradigm does not target any specific
level in Figure 2.1 and thus Grafchart can be used to implement sequential applica-
tions on any level. It has been successfully used for a wide variety of applications,
for example batch control, discrete control, and diagnosis. Grafchart also has poten-
tial for formal description, validation, and analysis [35].

There are two implementations of Grafchart, see Figure 4.1. The first one is
also called Grafchart and was implemented in Gensym’s knowledge-based system
development environment G2 [36]. Here, this implementation is always referred to
as G2Grafchart to distinguish it from the language itself. It was desirable to have
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Grafchart Language 

Implementations G2Grafchart JGrafchart 

Versions 
Basic 

Version 
High-Level 

Version 
Basic 

Version 

Figure 4.1 There are two implementation of Grafchart, namely G2Grafchart and
JGrafchart. There are two versions of G2Grafchart and JGrafchart corresponds to the
Basic Version.

a freely available tool built on an open platform. Hence, G2Grafchart is no longer
developed or maintained.

The second implementation of Grafchart is written in Java and is called
JGrafchart. It is actively developed and publicly available for free [34]. JGrafchart is
a research tool that has been used in, for example, the EU/GROWTH project CHEM
for control in process industry [37], the EU FP7 project ROSETTA [38] for robotic
assembly [39], and several master’s theses for modeling [40] and code generation
[41, 42]. JGrafchart is also used for teaching, for example in laboratory exercises on
sequential and batch control, as well as for control of real industrial processes [43].

4.2 Function Chart Elements

Grafchart will be introduced through examples to highlight the main ideas before
describing the details.

Core Features
Grafchart’s two main building blocks are steps and transitions. Steps represent pos-
sible application states and transitions represent the change of application state.
Associated with the steps are actions which specify what to do. Associated with
the transitions are Boolean guard conditions which specify when the application is
allowed to change state.

A part of a running Grafchart application is shown in Figure 4.2. Two steps are
connected by a transition and there are two variables var and cond where cond is
set by another part of the application. When the first step is activated its S action
is executed, meaning that var is set to 7. That the step is active is indicated by a
token, drawn as a black dot. When cond becomes 4 the transition’s guard condition
becomes true. Then the first step is deactivated and the second step is activated, thus
setting var to 12.
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S var = 7; 

S var = 12; 

cond == 4 

var: 7 

S var = 7; 

S var = 12; 

cond == 4 

var: 12 

cond: 1 cond: 4 

Figure 4.2 A part of a running Grafchart application showing the main building
blocks of Grafchart, steps and transitions. The left part of the figure shows one ap-
plication state and the right part shows a later application state.

Figure 4.3 shows how to express alternative and parallel paths. At any time only
one alternative path may contain active steps. On the other hand, parallel paths are
executed in parallel and always contain active steps at the same time. To create
alternative paths a step is connected to several transitions. To create parallel paths a
Parallel Split is used to split the execution. A Parallel Join is then used to merge the
execution paths again.

b !b

c d

fe

g

Parallel Split

Parallel Join

Parallel paths

Alternative paths

Figure 4.3 A Grafchart application showing how to express alternative and parallel
paths.
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Hierarchical Structuring
A common extension to SFC that is not included in the IEC 61131-3 standard is
the Macro Step [44] which contains an internal FC, see Figure 4.4. It is, however,
defined in GRAFCET [29] and is also available in Grafchart to make it possible to
split up applications into understandable parts. When a Macro Step is activated its
Enter Step is also activated. The Exit Step is the final step of a Macro Step. A Macro
Step may only be deactivated when its Exit Step is active. When the Macro Step is
deactivated the Exit Step is also deactivated.

ExitStep

EnterStep

b

c

MacroStep

Figure 4.4 A Grafchart Macro Step and its internal FC.

Often, the same code is needed in more than one place. In Grafchart, reusable
Procedures can be used to avoid redundant code. Like Macro Steps, Procedures also
have an internal FC with an Enter Step and an Exit Step. In addition, Procedures
may also return values and take parameters. Procedure Steps and Process Steps are
used to call Procedures, see Figure 4.5. A Procedure Step may be deactivated once
its procedure call reaches the Exit Step, that is, the same as for the Macro Step.
The Process Step, on the other hand, spawns a new procedure call each time it is
activated and does not wait for the call to reach the Exit Step before proceeding.
Spawned procedure calls terminate automatically when the Exit Step is reached.

Yet another way to structure Grafchart applications is with a Workspace Object.
It also has an internal FC but no Enter or Exit Steps. It can be used to represent
objects with variables and methods, to group variables, or to structure applications.
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Procedure

ProcedureStep

ProcessStep

c

Procedure Calls

b

d

d

d

Figure 4.5 A Procedure can be thought of as a reusable Macro Step which can be
called from Procedure Steps and Process Steps. Each Procedure Step and Process
Step specifies which Procedure to call when activated. When ProcedureStep is
active it will proceed when the procedure call has reached the Exit Step and b is
true. When ProcessStep is active it will proceed as soon as c is true. The spawned
procedure call is unaffected by this.

Exception Handling
A common misconception is that exception handling is only a small part of the total
application. It is actually the other way around, the normal case is just one case to
handle while each fault condition is a separate case to handle [45].

FC elements have ports through which they are connected to other FC elements.
Ordinary Steps for example have an in port and an out port which have been used in
previous examples. Macro Steps also have two additional ports on the sides, namely
the exception port and the history port, which are used for exception handling. An
Exception Transition is a special kind of transition that can be connected to an
exception port, see Figure 4.6. If faultA or faultB becomes true while the Macro
Step is active the Macro Step will be aborted. The internal state of the Macro Step
is then stored and can later be restored through the history port. This is similar to
the history pseudostate of statecharts that was described in Section 3.4.
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faultA

faultB

HandleA

HandleB1

1

in port

out port

history port

exception port

Figure 4.6 Exception Transitions can be connected to Macro Steps and Procedure
Steps and are conceptually connected to all steps in the internal FC. When faultA
has been handled the Macro Step is restarted from its Enter Step. When faultB has
been handled the Macro Step resumes its execution from the stored state.

Step Fusion Set
The Step Fusion Set is another construct for exception handling which gives a step
multiple views, that is, to have one conceptual step appear as several steps. The
steps in a fusion set are all active at the same time. All steps in a fusion set are
activated together, that is, activate one step in a fusion set triggers the activation
of all steps in the fusion set. A fusion set may be either non-abortive and abortive,
which determine the deactivation semantics. For non-abortive fusion sets, all steps
are deactivated together and for deactivation to be allowed it is required that all
steps in the fusion set are allowed to be deactivated. For example, a Macro Step that
has not reached its Exit Step is not allowed to be deactivated. For abortive fusion
sets the deactivation of one step in the fusion set causes all other steps in the fusion
set to be aborted. An example where a fusion set is used for exception handling is
shown in Figure 4.7.

Connection Posts
Connection Posts is a way to connect elements without the whole graphical link
visible, see Figure 4.8. They can be used to make the FC clearer. Each Connection
Post In is connected to a Connection Post Out and each link that goes to the Con-
nection Post In is considered connected to all links from the connected Connection
Post Out.
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S1 S2

b

S3

c

SFS1

Main sequence Exception handling

Figure 4.7 In this example it is an exception if b becomes true while S1 is active.
The exception handling is implemented in S3, completely separate from the main
sequence. This is accomplished by using a Step Fusion Set, SFS1, which contains
the steps S1 and S2. When S1 is activated, S2 is also activated. If b becomes true
while S2 is active, S1 and S2 are deactivated and S3 is activated. When the exception
handling has completed, S2 is activated which also triggers the activation of S1.

in

out

S1

S2

Figure 4.8 The transition is connected to the Step S2 through Connection Posts.
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Function Chart Element Summary
Figure 4.9 shows the main FC elements of Grafchart. The Initial Step is activated
when the application starts and thus defines the initial application state. It is other-
wise the same as the ordinary Step.

Initial Step Step Enter Step Exit Step

Procedure Macro Step Procedure Step Process Step

Workspace Object

Step Fusion Set

Transition Parallel Split / Join Connection Post In / OutException Transition

Figure 4.9 Summary of the FC elements of Grafchart.

4.3 Syntax and Semantics

Variables and Scoping
In Figure 4.2 variables were mentioned. Variables can be declared at any level, for
example at the top level or inside a Macro Step, Workspace Object, or Procedure.
Scoping in Grafchart is similar to ordinary programming languages, see Figure 4.10.

Languages
Grafchart consists of three parts which may be considered separate sub-languages:
the FC language (graphical), the action language (textual), and the condition lan-
guage (textual). The FC language consists of the graphical elements such as steps,
transitions, and variables. The action language is used for the actions of steps. The
condition language is used for the guard condition of transitions.

The action language uses prefixes to specify the action type of each statement,
that is, when it should be executed. In Figure 4.2 the S prefix was introduced. Ta-
ble 4.1 shows the complete list of prefixes.
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b

c

b

c

Bool 

b

0 Bool 

c

0

Bool 

b

0

Figure 4.10 Scoping in Grafchart. The arrows indicate which variable that is used.

Execution
For programming languages it is important to have deterministic execution.
Grafchart applications are like SFC applications executed periodically, one scan
cycle at a time.

To explain the Grafchart execution model it is useful to introduce a few defini-
tions first. A transition is enabled when all immediately preceding steps are active.
An enabled transition fires if its guard condition is true. Firing a transition involves
deactivating the immediately preceding steps and activating the immediately suc-
ceeding steps. In the left part of Figure 4.2 the transition is enabled since its only
immediately preceding step is active, but it cannot fire since its guard condition
is false. In the right part the transition’s guard condition is still true but it cannot
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Table 4.1 A complete list of Grafchart and JGrafchart prefixes.

Prefix Description

S Action type. Executed when the step is activated.

X Action type. Executed when the step is deactivated.

P Action type. Executed periodically while the step is active.

N Action type. Associates a variable with the status of the step. The vari-
able is set to true when the step is activated and to false when the step
is deactivated.

A Action type. Executed when the step is aborted.

V Procedure call parameter. Call-by-value (JGrafchart specific)

R Procedure call parameter. Call-by-reference (JGrafchart specific)

fire again since the immediately preceding step is now inactive and thus the tran-
sition is not enabled. For a transition following a Macro Step or Procedure Step to
be enabled the internal Exit Step must also be active. Exception Transitions have
priority over ordinary Transitions and are always enabled when the Macro Step or
Procedure Step is active.

Steps also have some additional properties, namely x, t, and s which are ac-
cessed through the step’s name, for example MyStep.s. x is true if the step is active
and false if the step is inactive. t stores the number of scan cycles that the step has
been active since the previous activation if the step is active. For inactive steps t is
0. s works the same as t but counts seconds instead of scan cycles.

A naive execution model could include "Iterate over the transitions and fire a
transition if it is enabled and its guard condition is true.". The application behavior
then depends on the transition iteration order, as shown in Figure 4.11.

If this behavior is avoided it is guaranteed that activated steps are active during
at least one scan cycle which makes it easier to reason about an application. For
example, for an N action, the variable will always be true during at least one scan
cycle. The same applies to the x property of steps.

Another issue is transitions for alternative paths which have conditions that may
be true at the same time. This is called a transition conflict and the transitions in-
volved in a transition conflict are called conflicting transitions. The semantics of
conflicting transitions in Grafchart is that they all fire. However, this is rarely the
intended behavior and is thus practically always a bug in the user application. Note
that there cannot be conflicts between Exception Transitions and ordinary Transi-
tions since Exception Transitions have priority over ordinary Transitions.
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b

b

b

b

b

b

?

T1

T2

Figure 4.11 With a naive execution model, what happens when b becomes true
depends on the transition iteration order. If T2 is checked before T1 the scan cycle
will end in the state to the left. If T1 is checked first it will fire and when T2 is then
checked it will also fire meaning that the scan cycle will end in the state to the right.
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The Grafchart execution model is to do the following during each scan cycle:

1. Read inputs.

2. Mark fireable transitions.

3. Remove mark for conflicting transitions of lower priority.

4. Fire marked transitions.

5. Update step properties t and s.

6. Execute P actions.

7. Mark variables subject to N actions.

8. Update marked variables.

9. Sleep until the start of the next scan cycle.

The execution model is compatible with GRAFCET [35], the language which
SFC is based on. It gives deterministic behavior for most cases and has the property
that a step which is activated always remains active for at least one scan cycle. The
remaining non-determinism is for cases where the application should not depend
on the execution order anyway. An example of this is the firing order of transitions,
affecting which step’s S and X actions are executed first. Another example is which
step’s P actions are executed first.

4.4 JGrafchart Specifics

JGrafchart has many additional features such as load/save in XML format and print-
ing. Some JGrafchart specific extensions and implementation details are described.

Data Types
There are four data types in JGrafchart: Boolean for Boolean values, Integer for in-
teger values, Real for float values, and String for strings. Boolean values are written
1 for true and 0 for false, Integer values are written like ordinary whole numbers,
Real values are written with decimal notation, and String values are written as the
string value enclosed by quotation marks.

JGrafchart uses loose typing and automatic type casting. The target data type
is determined by the context. For example, in Figure 4.12 the value of the Real
variable b is cast to a Boolean value since that is the data type for transition guard
conditions.
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b Real 

b

1.0

Figure 4.12 The target data type for a transition guard condition is Boolean. There-
fore the value of the Real variable b will automatically be cast to a Boolean. In
this case it is the value 1.0 that is cast and the condition will therefore be true. A
complete list of how values are reinterpreted by a cast is included in the JGrafchart
documentation.

Variables and I/O
Variables are declared by adding Variable elements to the application. There is a
Variable element for each data type. Variables may have an initial value and may
also be constant or configured to be updated automatically at the beginning of each
scan cycle according to an expression. There is also a List element for each data
type. Both Variables and Lists are internal to the application. To interact with an
external environment Inputs and Outputs (I/O) are needed.

Custom I/O is one I/O possibility in JGrafchart. It consists of the I/O elements
Digital In, Digital Out, Analog In, and Analog Out as well as inverted variant of
Digital In and Digital Out. At the beginning of each scan cycle each Analog and
Digital In is updated from the external environment. An Analog or Digital Out is
written to the external environment whenever assigned. How the I/Os interact with
the external environment depends on the chosen I/O implementation. A custom I/O
implementation is created by implementing a set of Java interfaces. With a custom
implementation it is possible to communicate with practically any external environ-
ment. However, note that it is limited to Boolean and float values.

Another I/O possibility is the Socket I/O elements. JGrafchart can connect to
a TCP server and communicate Boolean, Real, Integer, and String values over a
socket with the message protocol: <identifier> ’|’ <value> ’\n’. The TCP
server is then responsible for interaction with the external environment. Socket I/O
is often sufficient for implementation of adapters to other communication protocols.

Dynamic References
In most programming languages there are dynamic references which can be used to
create higher level applications. In C there are pointers that can be used as dynamic
references. In Java any variable used to refer to an object is a dynamic reference. In
JGrafchart String Variables can be used as dynamic references, similar to variable
variables in PHP. The String’s value is then the name of the element which it refer-
ences. To dereference a String Variable, the ^ operator is used, see Figure 4.13. The
result of a dereference operation can be any element with a name and it is used as
when the element is named explicitly.
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c^

Str 

b

c Str 

c

d Bool 

d

0

b^^

... b^ ...

Figure 4.13 The String Variable b has the value c. As a dynamic reference it thus
refers to the String Variable c. Similarly the String Variable c refers to the Boolean
Variable d. The expression b^ will dereference the String Variable b and return the
String Variable c. Similarly c^ will return the Boolean Variable d. Finally b^^ is
equivalent to (b^)^ which, as previously described, is dereferenced to c^ which in
turn is dereferenced to the Boolean Variable d.

If Statement
Conditional execution and evaluation are possible to express with states and tran-
sitions. After all, this is the core concept of Grafchart. However, for simple condi-
tional expression evaluations this creates overhead that makes both the expressions
and the application appear more complicated. Also, since each step is active at least
one scan cycle the evaluation of consecutive conditional expressions takes several
scan cycles.

Inline if, also known as the conditional operator and ternary if, is supported by
JGrafchart. Figure 4.14 shows a small FC written with and without inline if. The
implementations behave slightly different: The left part executes the initialization
in a separate scan cycle while the right part executes everything in the same scan
cycle.

Graphical Elements
The online view of the running application is useful for developers and maintenance
staff. For the operators of the production machine on the other hand, it is more intu-
itive with an interactive interface that resembles the machine. In JGrafchart it is pos-
sible to create interactive operator interfaces with graphical elements. Figure 4.15
shows a JGrafchart operator interface.
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!bb

S c = 42;

1
// Use c

X b = 0;

S c = b ? 42 : c;

// Use c

X b = 0;

Without Inline If With Inline If

Figure 4.14 The variable c needs to be initialized to 42 if b is true. The left part
shows how to implement this without inline if. The right part shows how it can be
implemented with inline if.

Figure 4.15 An operator interface with process alarms, the executed application,
and animated tanks and piping that resemble the controlled process.
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Basic graphical elements available are rectangles, ellipses, and lines. Custom
images, interactive buttons, and live plotters are also available. In fact, most figures
in this chapter were created with JGrafchart. It is also possible to manipulate the
graphical elements from the application to create animations.

Functions, Methods, and Properties
JGrafchart provides a library of built-in functions, for example mathematical func-
tions like sqrt, sin, and abs. Most elements also have methods. For example, a
graphical element has methods to get and set the element’s size and location. These
methods can be called from a Grafchart application to create animations. Some el-
ements also have properties, for example steps have the x, t, and s properties.

4.5 Comparative Example

As mentioned in Section 4.2, Macro Steps can make larger applications understand-
able. Here this is shown by comparing an application implemented in both standard
SFC, SFC with Macro Steps, and JGrafchart. Note that the example is rather small.
For larger applications Macro Steps and the additional JGrafchart features are even
more beneficial.

A bead sequencing and sorting process is shown in Figure 4.16. It consists of
two compartments, one with yellow beads and one with black beads. In sequencing
mode the task is to sequence a pattern of yellow and black beads. Turned upside
down the process is in sorting mode and the task is then to sort the beads back into
their corresponding compartments.

The sequencing process can be controlled by the SFC application in Figure 4.17.
In Figure 4.18 Macro Steps have been used to structure the application. The inner
loop has been moved into a separate Macro Step and the alternative paths have
been moved into Macro Steps to make the flow appear more linear. The over-
all control logic is then considerably clearer. The internal FC of the Macro Step
ReleaseBeads is shown in Figure 4.19. The other two Macro Steps contain the
black/yellow alternative paths in the SFC application and are omitted. Note that the
exception handling, the transitions concerning nAttempts, must be implemented
twice to move the inner loop into a Macro Step. The structured application is much
easier to overview, making it easier to understand and maintain.

In Figure 4.20 and Figure 4.21 additional Grafchart and JGrafchart features have
been used. With two exits from the Macro Step, one for the normal case and one for
the exceptional case, it was possible to remove the redundant exception handling.
With use of dynamic references (^) and inline if (?:) several alternative paths have
been removed. The resulting application has a linear flow with a minimal number
of loops. The state flow is thus as easy as possible.
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Figure 4.16 The bead sequencing and sorting process. In sequencing mode yellow
and black beads are sequenced into a pattern, here 3 black 3 yellow. Turned upside
down the process is in sorting mode and the task is then to sort the beads back into
their corresponding compartments.

S LED = 1;

S bBlack = 0;

S LED = 0;

S bDone = 0;

1

N ResetBead;

bBlack !bBlack

ReleaseBlack

N Sol1;

ReleaseYellow

N Sol2;

ReleaseBlack.t >= SeqReleaseTime ReleaseYellow.t >= SeqReleaseTime

WaitForBead

Bead!Bead & WaitForBead.t >= SeqWaitTime

NoBead

S nAttempts = nAttempts + 1;

nAttempts >= cnMaxAttemptsnAttempts < cnMaxAttempts !(nBeadsLeft > 0 | bDone) nBeadsLeft > 0 | bDone

S nAttempts = 0;

S nBeadsLeft = nBeadsLeft - 1;

X bDone = 1;

bDone !bDone

S nAttempts = 0;

bBlack !bBlack

Black

S nBeadsLeft = NbrBlack;

Yellow

S nBeadsLeft = NbrYellow;

1 1

SwitchCompartment

S bBlack = !bBlack;

1

Figure 4.17 An SFC application to control the bead sequencing process. Variables
are omitted and the code is not intended to be readable in the printed version.
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S LED = 1;

S bBlack = 0;

S bDone = 0;

S LED = 0;

X bDone = 1;

!bDonebDone

1

1

SelectCompartment

ReleaseBeads

nAttempts < cnMaxAttemptsnAttempts >= cnMaxAttempts

SwitchCompartment

S bBlack = !bBlack;

1

Figure 4.18 The application in Figure 4.17 structured with Macro Steps. The in-
ternal FC of ReleaseBeads is shown in Figure 4.19.

S nAttempts = 0;

WaitForBead

S nAttempts = nAttempts + 1;

!Bead & WaitForBead.t >= SeqWaitTime Bead

S nBeadsLeft = nBeadsLeft - 1;

S nAttempts = 0;

nBeadsLeft > 0 | bDone

NoBead

nAttempts >= cnMaxAttempts

nAttempts < cnMaxAttempts

ReleaseBead

1

N ResetBead;

1

1

nBeadsLeft == 0 & !bDone

Figure 4.19 The internal FC of the Macro Step ReleaseBeads in Figure 4.18.
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S LED = 1;

S bNextModeIsBlack = 1;

S bDone = 0;

S LED = 0;

1

X bDone = 1;

!bDonebDone

1

nAttempts >= cnMaxAttempts

1

ReleaseBeads

SelectAndSwitchCompartment

S nAttempts = 0;

S nBeadsLeft = bNextModeIsBlack ? NbrBlack : NbrYellow;

S refCompartment = bNextModeIsBlack ? "Sol1" : "Sol2";

S bNextModeIsBlack = !bNextModeIsBlack;

Figure 4.20 The application in Figure 4.18 simplified with additional features
of Grafchart and JGrafchart. The internal FC of ReleaseBeads is shown in Fig-
ure 4.21.

ReleaseBead

N refCompartment^;

ReleaseBead.t >= SeqReleaseTime

WaitForBead

X nAttempts = nAttempts + 1;

!Bead & WaitForBead.t >= SeqWaitTime Bead

S nBeadsLeft = nBeadsLeft - 1;

S nAttempts = 0;

N ResetBead;

nBeadsLeft == 0 & !bDonenBeadsLeft > 0 | bDone

1

1

Figure 4.21 The internal FC of the Macro Step ReleaseBeads in Figure 4.20.
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4.6 G2Grafchart Specifics

Everything so far describes the Basic Version (BV) of Grafchart which is imple-
mented in both G2Grafchart and JGrafchart. In G2Grafchart there is also a High-
Level Version (HLV) which is a superset of BV. In BV there is essentially only one
token while in HLV it is possible to have several tokens and to spawn and consume
tokens dynamically. Tokens in HLV may also contain data (compare to colored
Petri nets). They may also contain internal FCs, a feature called multi-dimensional
charts. Objects in G2Grafchart may also have parameters and attributes. The nota-
tion to access token and object data in actions and conditions is inv for token data,
sup for object parameters, and self for object attributes. For more details about
G2Grafchart, see [35].
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As shown in Section 4.5, Grafchart’s hierarchical structuring and exception han-
dling make it possible to create more well structured and conceivable applications.
Together with Grafchart’s features for reusability this leads to better flexibility. If
JGrafchart would support HLV or other new language constructs it would be pos-
sible to create even more flexible applications. JGrafchart would thus benefit from
a more extensible language implementation where new constructs are easier to add
and evaluate.

Currently, JGrafchart applications can only be executed in an interpreted man-
ner. Also, the same Java object instances are used both for execution and application
visualization. Hence, there are no timing guarantees which means that JGrafchart
cannot be used for hard real-time control. For core robotics applications, a scan
cycle time of a few milliseconds is often required. Forces build up quickly and a
missed deadline can be the difference between smooth and harmful behavior. With
the current version of JGrafchart (2.6.1) not even tiny applications execute reliably
at this rate.

In this chapter the challenge of flexible production systems is addressed by im-
proving the Grafchart language and its implementation JGrafchart to make them
more flexible. This is achieved by adding new constructs to Grafchart and by apply-
ing modern compiler techniques to JGrafchart to make the language implementa-
tion extensible. To make Grafchart usable for industrial automation on device level,
a step toward real-time execution is made. The new Grafchart constructs and real-
time execution are useful for both process automation, manufacturing, and robotics.
Hard real-time execution is particularly useful for robotics where the execution rate
is higher.
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5.1 New Constructs

Transition Priorities
To ensure that there are no conflicting transitions is tedious, error prone, and makes
the code verbose and hard to overview. It is tedious since it is repetitive and has
to be done everywhere where there are alternative paths. It is error prone since it
has to be done manually. It makes the code verbose since additional terms need to
be added to the otherwise conflicting transitions. An example of this is shown in
Figure 5.1.

WaitForPallet

(PalletIDRaw != PalletIDRaw_1) & (PalletIDRaw != 0)

(PalletIDRaw == PalletIDRaw_1) & (PalletIDRaw != 0)

(PalletIDRaw == 0) & (WaitForPallet.s > 3)

Figure 5.1 An example of an application where the guard conditions to the alterna-
tive paths have been manually resolved to avoid conflicting transitions. The intention
for this application was to first evaluate the left transition, then the middle transition,
and finally the right transition. The term (PalletIdRaw == PalletIDRaw_1) has
been added to the transition in the middle to make the left and the middle transi-
tions mutually exclusive. The term (PalletIDRaw == 0) has been added to the
transition to the right to make all transitions mutually exclusive.

Special care is needed for non-deterministic guard condition expressions, for
example expressions that use random number generators. Such expressions cannot
be directly used in alternative transitions. One solution is to use an intermediate
variable that is assigned with a P action in the immediately preceding step. Note,
however, that the transition will then be fired during the next scan cycle. The I/O
inputs have then been updated between the assignment of the intermediate variable
and the execution of S and X actions. This must also be taken into account. Similarly,
special care is required for expressions with side effects. In general, expressions
with side effects should be avoided in guard conditions.

A more robust way to resolve conflicting transitions is to use transition pri-
orities. Previously, step 3 of the Grafchart execution model, "Remove firing mark
for conflicting transitions of lower priority", only gave exception transitions priority
over ordinary transitions. Similarly, internal priorities among transitions of the same
kind can be introduced. Exception transitions still have priority over ordinary transi-
tions but an exception transition may have priority over another exception transition
and an ordinary transition may have priority over another ordinary transition.
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Priority 1 is the highest priority, priority 2 the second highest and so on. Tran-
sitions with no priority specified have the lowest possible priority. With priorities
the application fragment in Figure 5.1 can be simplified, see Figure 5.2. Here only
the core of the guard conditions are included and the code is more concise. As the
transitions have different priority it is trivial to conclude that they will never be con-
flicting. Transitions with the same priority may still be conflicting and, like before,
all conflicting transitions will then fire.

WaitForPallet

(PalletIDRaw != PalletIDRaw_1) & PalletIDRaw != 01

PalletIDRaw != 02

WaitForPallet.s > 33

Figure 5.2 A more concise implementation of Figure 5.1 where transition priorities
have been used. The transition priority is written to the left of the transition.

Another use of transition priorities is else paths, that is, a path which should
always be taken if no other path is taken. Without transition priorities, the guard
condition for the else path would be the and of the negation of the guard condition
of each otherwise conflicting transitions. For example, if the guard condition of
three otherwise conflicting transitions are c1, c2, and c3 the guard condition for the
else path is !c1 & !c2 & !c3. With transitions priorities, the transition to the else
path is simply given lowest priority and guard condition 1. The ReleaseBeads
Macro Step for the bead sequencing task in Figure 4.21 has alternatives in two
places, where one is a typical else path. With transition priorities it can be made
more concise, see Figure 5.3.

It is good practice to always assign priorities to alternative transitions to elimi-
nate the risk of conflicting transitions. Consider for example the transition with the
guard condition Bead in Figure 5.3. Without the priority there will be a transition
conflict in the rare case when the bead is detected in the same scan cycle as the
timeout occurs. This is also a case that is easy to forget.

To add transition priorities increases the expressive power of the Grafchart lan-
guage slightly but it is mainly syntactic sugar which makes it easier to deal with con-
flicting transitions. Most applications which use transition priorities can be trans-
formed to equivalent applications which do not use transition priorities. For each
transition, the negation of its condition is added to each alternative transition with
lower priority, see Figure 5.4. However, this only works for deterministic expres-
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ReleaseBead

N refCompartment^;

ReleaseBead.t >= SeqReleaseTime

WaitForBead

X nAttempts = nAttempts + 1;

WaitForBead.t >= SeqWaitTime Bead1

S nBeadsLeft = nBeadsLeft - 1;

S nAttempts = 0;

N ResetBead;

1nBeadsLeft > 0 | bDone1

1

1

Figure 5.3 The Grafchart application for bead sequencing in Figure 4.21 simpli-
fied with transition priorities. The WaitForBead condition and the else path for
nBeadsLeft are more concise.

b1

c2

d3

b

!b & c

!b & !c & d

Figure 5.4 A Grafchart application with priorities can be transformed to an appli-
cation that does not use transition priorities if the guard condition expressions are
deterministic.
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sions. In the general case, with side effects or non-deterministic functions, the appli-
cation behavior cannot be perfectly preserved. One example is when a high priority
transition has a guard condition which calls a non-deterministic function with the
current value of an input as an argument.

Macro Step Resume Mode
If the execution of a Macro Steps is aborted by an exception transition, its internal
state is stored and can later be resumed, see Figure 4.6. Resume is recursive which
means that Macro Steps within Macro Steps will also be resumed. This corresponds
to a deep history pseudostate in statecharts, see Section 3.4. Another way to abort a
Macro Step is with an abortive Step Fusion Set. Recall that if one step in an abortive
Step Fusion Set is deactivated, all other steps in that Step Fusion Set are aborted.

A Macro Step activated through a Step Fusion Set is a normal activation, that
is, the same as an activation through the Macro Step’s in port. In [40] the desired
behavior was to have a resume activation for abortive Step Fusion Sets, that is, the
same as activation through the Macro Step’s history port, see Figure 4.6. To be able
to choose whether or not a Macro Step resume should be recursive, similar to the
shallow history state in statecharts, was also needed. A resume mode setting for
each Macro Step was thus added.

Three possible resume modes have been defined, namely default, always, and
never. A Macro Step with the default resume mode behaves the same as before the
resume mode setting was introduced, that is, the Macro Step is resumed recursively
on resume activation and activation through an abortive Step Fusion Set is a normal
activation. A Macro Step with the always resume mode is resumed recursively on
resume activation and activation through an abortive Step Fusion Set is a resume
activation. A Macro Step with the never resume mode is never resumed, that is, a
resume activation of the Macro Step will instead trigger a normal activation. This
is particularly useful to break a resume recursion and can, for example, be used to
implement shallow resume.

The Macro Step resume mode makes it possible to customize how and when a
Macro Step should be resumed. Without the setting, similar behavior could often
be obtained but would require much effort. To get a shallow resume for example
one way was to store which step was active when the Macro Step was aborted and
manually go back there on "resume" activation, see Figure 5.5.

5.2 Compiler Techniques

As mentioned in Section 4.6 there are two versions of G2Grafchart, namely the Ba-
sic Version (BV) and the High-Level Version (HLV). JGrafchart corresponds to BV
and extending it with HLV would enable more flexible ways to write applications.
It is also desirable to retain a pure BV and have both versions available. Since HLV
is a superset of BV it is desirable to reuse the BV implementation as base for the
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b c

With resume mode

d e

b c

d e

Without resume mode

!resumeresume

Figure 5.5 The internal FC of a Macro Step that should have a shallow resume.
Without resume mode the aborted state can be stored and resumed manually.

HLV implementation. Consequently, redundant code is avoided and maintainability
is improved. This imposes an extensibility requirement on both the editor and the
compilers.

The work presented in this section introduces modern compiler techniques to
an automation language with the goal to make it extensible. Thus a more flexi-
ble language implementation is obtained. To use modern compiler techniques for
JGrafchart is also a natural first step toward real-time execution as they make it eas-
ier to extend the implementation with code generation. This section concerns the
compilers for the textual languages of Grafchart [46].

Background
Programming Languages A programming language can be described by its syn-
tax, semantics, and pragmatics [47]. The syntax describes the allowed structure of
the language, the semantics describes the meaning of the syntactic elements, and
the pragmatics describes what the constructs in the language can be useful for. Take
assignments for example. The syntax describes how assignments are written, for
example a valid assignment in Grafchart is temp = 12 * y;. The semantics de-
scribes that an assignment means to evaluate an expression and assign the result to
a variable. In this case the expression 12 * y will be evaluated and assigned to the
variable temp. The pragmatics describe what an assignment can be useful for, in
this case to initialize a temporary variable.
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Compilers The task of a compiler is to transform written applications into some-
thing executable. A typical compiler works in a sequence of phases, see Figure 5.6.
The input to the compiler is the application source code. The scanner splits the
source code into a sequence of classified tokens. The parser uses these tokens to
build an Abstract Syntax Tree (AST). The AST contains all information needed
to execute the application. Executable code can be generated from the AST or an
interpreter can execute the AST directly.

Scanner Parser 
Code 

Generation 

x = y + 1; VAR(x) 
EQ 

VAR(y) 
ADD 

INT(1) 
";" 

Figure 5.6 The overview of a compiler. The scanner transforms the source code
x = y + 1 into a sequence of classified tokens. For example, x is classified as the
token variable x and 1 is classified as the token integer 1. The parser uses these
tokens to build an AST representation of the application.

The scanner and parser check that the application is syntactically correct, a pre-
requisite to build an AST. An AST must also be analyzed to check if the application
is semantically correct. In Figure 5.6 the application is always syntactically correct
but semantically correct only if the variables x and y exist.

Rewritable Reference Attribute Grammars Attribute grammars with synthesized
and inherited attributes were introduced by Donald Knuth [48]. The main difference
between attribute grammars and traditional compiler techniques is that attribute
grammars are declarative while traditional compilers are imperative. Instead of ex-
plicit AST traversal, the semantics are specified with equations. The main advantage
of declarative programming is that the evaluation order is determined automatically
and does not have to be considered. The focus shifts from designing the evaluation
order to just adding equations for the desired attributes. Rewritable Reference At-
tribute Grammars (ReRAGs) adds several new concepts such as reference attributes,
collection attributes, parametrized attributes, circular attributes, and node rewrites.

Consider the toy AST with integer nodes in Figure 5.7. It consists of a Root
node with one IntNode child node and each IntNode has an integer value and zero
or more IntNode child nodes.
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IntNode(7) 

IntNode(3) IntNode(2) 

IntNode(8) IntNode(5) IntNode(4) 

Root 

Root ::= IntNode; 
IntNode ::= <Value:int> IntNode*; 

Figure 5.7 A toy AST of integer nodes. Each IntNode has a value and zero or
more child nodes. For example, the Root node’s child node has the value 7.

Synthesized attributes are assigned locally and depend on the local subtree. In
Figure 5.8 the synthesized attribute localSum has been added for the local sum of
a subtree.

IntNode: 2 

IntNode: 8 IntNode: 5 IntNode: 4 

syn int IntNode.localSum() { 
  int localSum = getValue(); 
  for (IntNode child : getIntNodes()) { 
    localSum += child.localSum(); 
  } 
  return localSum; 
} 

localSum: 4 localSum: 5 localSum: 8 

localSum: 2 localSum: 20 

IntNode: 3 

localSum: 29 

IntNode: 7 

Root 

Figure 5.8 The AST from Figure 5.7 attributed with the local subtree sum for each
IntNode. This is done by adding a synthesized attribute called localSum of type
int, which is calculated as the node’s value plus the local sums of its child nodes.
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Inherited attributes are assigned by an ancestor. In Figure 5.9 the inherited at-
tribute globalSum has been added for the sum of the whole tree.

IntNode(2) 

IntNode(8) IntNode(5) IntNode(4) 

inh int IntNode.globalSum(); 
eq Root.getIntNode().globalSum() = getIntNode().localSum(); 

localSum: 4 
globalSum: 29 

localSum: 5 
globalSum: 29 

localSum: 8 
globalSum: 29 

localSum: 2 
globalSum: 29 

localSum: 20 
globalSum: 29 

IntNode(3) 

localSum: 29 
globalSum: 29 

IntNode(7) 

Root 

Figure 5.9 The AST from Figure 5.8 attributed with the sum of the whole tree for
each IntNode. On the first line the inherited attribute globalSum is declared for
all IntNodes. For each IntNode there must be an equation in an ancestor node that
defines the value of this attribute. The second line specifies an equation that applies
recursively to all nodes, starting from Root.getIntNode(), that is, the IntNode
directly below a Root node. The equation’s value is localSum from the IntNode
directly below the Root node, which is the sum of the whole tree.

Parametrized attributes are attributes which may depend on parameters. In Fig-
ure 5.10 a parametrized attribute has been added, which checks if the local sum is
greater than the supplied argument.

IntNode: 2 

IntNode: 8 IntNode: 5 IntNode: 4 

syn boolean IntNode.gt(int arg) = localSum() > arg; 

localSum: 4 
gt(7): false 

localSum: 5 
gt(7): false 

localSum: 8 
gt(7): true 

localSum: 2 
gt(7): false 

localSum: 20 
gt(7): true 

IntNode: 3 

localSum: 29 
gt(7): true 

IntNode: 7 

Root 

Figure 5.10 The AST from Figure 5.8 attributed with a parametrized attribute
called gt for each IntNode. It is used to check if the local sum is greater than the
argument, here gt(7) is shown.
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Reference attributes are attributes which refer to other nodes in the AST. This
was not allowed for the original attribute grammars as it may cause circular evalu-
ation dependencies. However, this can be detected by the evaluation framework. In
Figure 5.11 a reference attribute to the root node has been added for all nodes.

IntNode(2) 

IntNode(8) IntNode(5) IntNode(4) 

syn Root Root.root() = this; 
inh Root IntNode.root(); 
eq Root.getIntNode().root() = this; 

localSum: 4 
gt(7): false 

localSum: 5 
gt(7): false 

localSum: 8 
gt(7): true 

localSum: 2 
gt(7): false 

localSum: 20 
gt(7): true 

IntNode(3) 

localSum: 29 
gt(7): true 

IntNode(7) 

Root 
root 

root 

Figure 5.11 The AST from Figure 5.10 attributed with a reference attribute to
the root node for all nodes. The Root node specifies itself as its own root with a
synthesized attribute and as the root of all other nodes with an inherited attribute.

IntNode: 2 

IntNode: 8 IntNode: 5 IntNode: 4 

coll SortedList<Integer> Root.greatSums() 
  [new SortedList<Integer>()] with add; 
 
IntNode contributes localSum() 
  when gt(7) 
  to Root.greatSums() 
  for root(); 

localSum: 4 
gt(7): false 

localSum: 5 
gt(7): false 

localSum: 8 
gt(7): true 

localSum: 2 
gt(7): false 

localSum: 20 
gt(7): true 

IntNode: 3 

localSum: 29 
gt(7): true 

IntNode: 7 

greatSums(): 8, 20, 29 

Root 
root 

root 

Figure 5.12 The AST from Figure 5.11 attributed with a collection attribute which
contains all local sums greater than 7. It is defined for all Root nodes and the
IntNodes with a local sum greater than 7 contribute their sum to the collection of
their root reference.
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A collection attributes is a node local collection, to which any node in the tree
can contribute. In Figure 5.12 the collection attribute greatSums which contains
all local sums greater than 7 has been added to the Root node.

A circular attribute is an attribute which is allowed to depend on itself. Circu-
lar attributes are evaluated iteratively until the value has converged. Finally, node
rewrites are used to replace nodes in the original AST before attributes are evalu-
ated.

JastAdd ReRAGs are implemented in the open source compiler compiler system
JastAdd [49]. It has been used to successfully implement extensible compilers for a
wide variety of purposes, for example the JastAdd Java Compiler (JastAddJ) that is
written as a Java 1.4 compiler with Java 1.5 [50] and Java 7 [51] extensions, the Con-
trol Module Language with object-oriented extensions [52], and the Optimica ex-
tension to Modelica [53]. It was thus an attractive candidate to make the JGrafchart
compilers extensible. Other alternatives considered include Eli [54], Synthesizer
Generator [55], Silver [56], and Kiama [57].

In JastAdd, imperative compiler code can be mixed with attributes, which makes
it possible to convert a traditional compiler piece by piece. The semantics specifi-
cation can also be split up in modules (aspects) based on for example functionality.

JGrafchart Compilers
As mentioned in Section 4.3 Grafchart consists of three languages: the FC language,
the action language, and the condition language. In JGrafchart there is a separate
compiler for each language. The AST consists of an FC AST and ASTs built by the
action and condition compilers. The FC AST contains for example steps, transitions,
variables, I/O, and graphical elements. Below each step in the FC AST there is an
action language AST. Below each transition in the FC AST there is a condition
language AST. The action and condition ASTs depend on the FC AST, for example
variables are declared in the FC AST and used in actions and conditions. Thus the
complete AST is needed for semantics analysis.

The application in Figure 5.13 implements a controller for a batch tank that
is filled until full, then emptied until empty. The sequence is repeated indefi-
nitely, and each time the filling is initiated the cycles counter is incremented. In
the current execution state the fourth filling has just been initiated. The AST for the
application is shown in Figure 5.14.

The compilers for the action and condition languages were previously writ-
ten with traditional compiler construction techniques and tools (JGrafchart ver-
sion 1.5.3.4). The scanners and parsers were generated with JavaCC [58]. Semantic
checks were then added by inserting handwritten code into the generated files. In-
terpreter code for execution was also added to the same files. This is a common way
to implement compilers. It is similar to ordinary programming and most developers
are familiar with the techniques. It is also easier for developers without specific
compiler technique knowledge to work on these compilers. However, it has the
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Figure 5.13 A control application for a batch tank that is filled until full and then
emptied until empty.

Root

Steps Transitions Links Variables

S1 S2 T1 T2

from

to
... empty inlet cycles ...

Root

S N

Assignment

Var: cycles Add

Num: 1Var: cycles

Var: inlet

Root

Var: empty

......

Function Chart AST

Actions AST
Conditions AST

Figure 5.14 The AST for the application in Figure 5.13. The steps, transitions, and
variables are used to build an FC AST by the FC compiler. For each step the actions
source code is read by the action compiler to build an action AST. The condition text
of each transition is used by the condition compiler to build a condition AST.
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following drawbacks and trying to create an extension under these circumstances
would be error-prone:

∙ The semantics is written with imperative code which is inherently hard to
extend.

∙ The semantics code, the interpreter code, and the generated code are inter-
mixed.

∙ The functionalities are hard to overview since they are split up in all con-
tributing Java classes.

Rewriting the Compilers
The following strategy to rewrite the compilers was used, see Figure 5.15:

1. Separate handwritten code from generated code.

2. Split the handwritten code into logical modules based on functionality.

3. Simplify the semantics analysis with ReRAGs.

Fresh

Handwritten

Modules Simplified

Old

Compile

Interpret

Generated

1
2

3

Figure 5.15 How the JGrafchart compilers were rewritten. First the handwritten
code was extracted, then it was split up into modules, and finally the compile module
was simplified.

55



Chapter 5. Grafchart Language Improvements

These steps were applied to both the action and the condition language imple-
mentation in turn. For convenience the condition language was considered first as it
is roughly a subset of the action language.

Step 1: Separation To separate generated from handwritten code was straight-
forward. The scanner and parser were generated from specification into an empty
directory and then compared to the current code. Code only present in the current
code was considered handwritten and moved into a single JastAdd module.

JastAdd must be told which node types are available. As a starting point a plain
list of all node types was used. Later it was rewritten to make the AST structure
explicit (like the toy AST specification in Figure 5.7).

Step 2: Split Into Modules The modules chosen for both language implementa-
tions were Compile, Interpret, and Utilities. The Compile module handles the se-
mantic analysis of the AST, the Interpret module handles interpreted execution, and
the Utilities module contains various helper functions.

Built-in functions and methods do not belong in either module since information
about them is required during compilation and their implementation is required dur-
ing execution. Previously, they were implemented separately for the action language
and the condition language. Since most of them are available in both languages it
is better to only have them implemented once. Therefore they were extracted to
a separate package which is used by both language implementations during both
compilation and execution.

Step 3: Simplification The Compile modules were transformed piece by piece to
ReRAG equations. In parallel, automatic tests were created to verify that nothing
was broken. For this purpose the Java unit testing framework JUnit [59] was used.

The old implementation performed a one-pass traversal of the entire AST and
compilation messages were sent directly to the editor during traversal. To deter-
mine if the compilation was successful a separate Boolean variable was propagated
upward in the tree and returned by the root node.

The new implementation uses a collection attribute in the root node for the com-
pilation messages which the editor fetches. The root node determines if the com-
pilation was successful by checking if the collection attribute contains any error
messages. In fact, all the new compiler interface implementation does is to receive
the compilation context and check the collection attribute, see Figure 5.16.

Since the interpreters specify what to do, rather than what to calculate, the In-
terpreter modules were kept as imperative code.

Evaluation
Confirming Extensibility In object-oriented programming a useful and common
feature is method overriding. When using the hierarchical constructs of Grafchart
for object-orientation it is useful to be able to override variables and procedures.
However, in many cases the overriding implementation needs to use the overridden
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public boolean Root.compile(Context c) { 
  if (!isValidContext(c)) 
    return false; 
  this.c = c; 
  for (CompilationMessage msg : messages()) 
    if (msg.isError()) 
      return false; 
  return true; 
} 

Figure 5.16 The new compiler interface implementation.

variable or procedure. Currently this is not possible in JGrafchart. To support this
there must be a way to bypass the local context during lookup. The sup notation
is proposed to bypass the local context, see Figure 5.17. To add sup as an exten-
sion to the new implementation was straightforward. This indicates that the new
implementation is indeed extensible.

b

sup.b

Bool 

b

0

Bool 

b

0

Figure 5.17 Variable bindings with and without sup. Without sup the local vari-
able b is found. With sup the local context is skipped and the non-local variable b is
found.

Code Size Comparison A common metric for the size of software programs is
Source Lines Of Code (SLOC). It was chosen to show the difference in implemen-
tation size between the old and the new implementation, see Table 5.1. Care has
been taken to make the comparison as fair as possible.
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Table 5.1 SLOC comparison of the old and the new implementation. Neweq is
equivalent to New, but written equally dense as Old. In Totalexcl Built-ins are ex-
cluded. In Total f air Separate Generated has also been excluded.

Old New Neweq
Compile 1537 380 209
Interpret 1389 1089 983
Built-ins 3462 3514 -
Utilities 110 134 126
AST 2 114 52
Includes 230 - -
Mixed Generated 1513 - -
Separate Generated 6628 - -
Dead 723 - -
Total 15594 5231 -
Totalexcl 12132 - 1370
Total f air 5504 - 1370
sup - 53 38

Initially, all lines were counted regardless of whether they were statements,
comments, or empty lines. Then an equivalent new implementation was created
by making it as dense as the old implementation, that is, with a similar amount of
comments and empty lines. This is denoted Neweq in Table 5.1.

Since the functionalities in the old implementation were intermixed, both with
each other and with the generated code, to determine the number of lines for each
functionality had to be done manually by reviewing each line. To make the com-
parison as fair as possible, there are separate categories for dead code and files that
only contain generated code.

Import statements in the old implementation have been counted separately while
in the new implementation they have been counted with the corresponding modules.

In the old implementation the AST structure was implicitly determined by the
parser specification together with the JJTree (part of JavaCC) stack implementation.
The two lines counted as AST in the old implementation are manual AST structure
modifications to the generated code.

The new Compile modules are 75% smaller than the old ones. Also, the new
implementation is not as dense as the old one. Comparing the old implementation
to the equally dense Neweq, the new implementation is 86% smaller. In addition,
the new Compile modules have been enhanced with several new compiler checks
and additional attributes have been added to simplify the interpreter. The simplified
compilers use in total eleven different synthetic attributes, five different inherited
attributes, and one collection attribute. There are also three different node rewrites.
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One of the attributes is a reference attribute and one is a parameterized attribute.
The new Interpret modules are smaller, mainly because duplicate code has been

removed. With all interpreter code gathered in one place it was easy to detect and
eliminate the redundant code. The new implementation has also been enhanced, for
example with support for multiple dereferences within an expression, like b^^ in
Figure 4.13.

Previously, built-in functions and methods (Built-ins) were implemented in both
the action compiler and the condition compiler with anonymous classes. In the new
implementation they are only implemented once and discrepancies between the im-
plementations have been detected and resolved. The anonymous classes have been
converted to public classes, which require more overhead but are easier to maintain.
The overhead of the public classes is the reason why the new implementation is
much larger than, as would be expected, half the size of the old implementation.

The Mixed Generated lines in the old implementation are roughly 20% of the
lines in the manually maintained files. With the new implementation no generated
files have to be maintained.

The most fair comparison is Total f air where the implementations are equally
dense and separate generated files and built-ins are excluded. The new implementa-
tion is then 75% smaller than the old one.

To implement the sup extension required only 53 lines of code, whereof 20 lines
for the scanners and parsers and 33 lines for the semantics.

Performance Comparison A drawback with attribute grammars is longer compi-
lation time. Here it is evaluated to check if this is an issue. The compilation code
of the old and the new implementation of JGrafchart were instrumented manually.
Compilation was performed 100 times in a burst and the best compilation time of
these was considered. The Online Tutorial application in JGrafchart 2.1.0 was used
since it exercises most features.

The compilation time was 17.3 ms for the old and 39.3 ms for the new im-
plementation. The new implementation performs more checks and has also been
rewritten to use a more extensible and maintainable, but slower name lookup. The
rewritten lookup alone added 7 ms. The rest of the new implementation thus takes
about twice as long as the old implementation.

Interpreted performance has also been analyzed since it is currently the only way
to execute JGrafchart applications. The interpreters were also profiled on the Online
Tutorial with the scan cycle time reduced to 10 ms. The execution code was instru-
mented manually and the execution time was accumulated during approximately
5.7 million scan cycles. The average execution time per scan cycle was 0.204 ms
for the new implementation and 0.212 ms for the old implementation. The execu-
tion performance is practically the same with the new and the old implementation.
Better handling of dots and references weigh up the performance loss due to larger
overhead and the new lookup. Lookup is involved since dereferencing performs
dynamic name lookup during execution.
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Conclusions
To extend JGrafchart with HLV would enable more flexible ways to write applica-
tions. It is desirable to also keep a pure BV. Since HLV is a superset of BV it is
desirable to reuse the BV implementation as a base, meaning the BV implementa-
tion needs to be extensible.

ReRAGs and JastAdd are used to make the JGrafchart implementation of the
action and condition languages extensible. To confirm extensibility, the sup notation
was added as an extension to the rewritten implementation of BV. The sup extension
was straightforward to add and required only a few lines of code.

In summary the pros and cons of the new implementation are:

∙ The new compiler is extensible.

∙ Improved maintainability: No files with generated code have to be main-
tained.

∙ The different functionalities are defined in separate modules which make
them easier to overview.

∙ Considerably fewer lines of code.

∙ Improved compilation checks that fetch application errors at compile time.

∙ Increased robustness: Automatic tests have been created. They can be used to
verify that the compiler has not been broken when new functionality is added.

∙ The compiler takes longer to execute.

∙ JGrafchart developers must understand attribute grammars to be able to main-
tain the compilers.

Improved maintainability and increased robustness lead to fewer bugs and better
quality. The increased time to compile an application is acceptable and typically not
noticeable for the user. On the other hand fewer compiler bugs increase the tool’s
reliability and added compilation checks and improved features are also of great
value. Improved compilation checks mean that errors are found at compile time and
consequently less time is needed for debugging.

In conclusion, the new JGrafchart implementation of the textual languages
should be ready for implementing HLV as an extension. However, first the com-
piler of the FC language must also be made extensible.

5.3 Toward Real-time Execution

JGrafchart is an Integrated Development Environment (IDE) with interpreted exe-
cution. To execute an application it must first be compiled. The compiler checks if
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the application is valid and prepares it for execution by attaching additional data.
Applications are executed directly from the IDE in an interpreted manner using the
same Java instances as the editor. Thus the editor is reused as a visualizer. To im-
plement visualization is then easier since the editor, visualizer, and interpreter are
interlinked. There are, however, several drawbacks which are typically not accept-
able in an industrial context:

∙ The execution has to be performed on hardware with graphics support since
the applications can only be executed in the IDE.

∙ It is not possible to make changes to a running application since the execution
must be stopped to go to editing mode.

∙ The visualization is tied to the computer that executes the application.

∙ Visualization can only be made on one computer.

Another approach would be to let the compiler prepare a separate representation
which contains all data required for execution and to execute the applications sep-
arately. With this approach none of the mentioned drawbacks are inherent but the
cost is explicit connections between editor, interpreter, and visualizers. To separate
the execution engine from the editor also makes it easier to enable real-time exe-
cution, something that is difficult to attain when execution is interconnected with
visual updates.

In most IDEs the editor, compiler, and runtime are separate. This is a great
structure which would bring several advantages and opportunities for JGrafchart.
In future versions of JGrafchart (3.0.0 and later) the editor, compiler, and execution
engine are separated and the editor still has visualization capabilities. The main goal
for the work presented in this section is to make it possible to execute Grafchart
application in real-time.

Background
JGrafchart has been developed with the focus to add new features quickly. Many
shortcuts have been taken, a strategy that pays off in the short run. However, accu-
mulation of less appropriate dependencies and shortcuts makes it more time con-
suming to add new features, something that is often referred to as technical debt
[60]. For new developers it is also harder to understand how things are connected
and why. To split JGrafchart into smaller self-contained parts enforces removal of
several less appropriate dependencies and shortcuts.

To split the implementation into stand-alone editor, compiler, and execution en-
gine requires deep understanding of all parts of the JGrafchart implementation. This
was obtained by fixing bugs, adding smaller features, and refactoring the code. All
existing features were retained but the focus was now instead to create a clear and
robust structure where it is easier and less error-prone to add new features. After
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rewriting the compilers for the textual languages (Section 5.2) and refactoring the
code, the earlier 85,000 lines of code (JGrafchart version 1.5.3.4) were reduced to
45,000 lines of code.

In Section 5.2 a more clean interface between the textual compilers and the ed-
itor was created, which was a first step toward a stand-alone compiler. The textual
compilers depend on the FC AST which was still interconnected with the editor.
To create a stand-alone compiler the FC compiler must also be separated. To make
real-time execution possible, execution related code must be stand-alone. This en-
sures that there are no dependencies on graphical painting operations or other user
interactions.

Stand-alone Editor
Each line of code in the whole implementation of JGrafchart was analyzed. Editor,
compiler, and execution engine code were moved to separate packages. FC compiler
related code was put in a single JastAdd module (see Section 5.2). After this oper-
ation, only the editor worked. A new FC AST for the compiler and the execution
engine, without the graphics library dependency, had to be created. New explicit
interfaces were also needed to get the parts to work together again.

Explicit Interface Design
To design the explicit interfaces between the parts was an iterative process. Several
designs have been discarded as trying to reconnect parts gave new insights and ideas
on how the design could be improved. Figure 5.18 shows an overview of the final
design. The new IDE contains both the editor, compiler, and an internal execution
engine. Hence the previous workflow can still be used. It is also possible to use an
external Execution component which consists of the execution engine and the com-
piler. The new execution engine is still an interpreter but both the execution engine
and the interpreted AST are different. Another new feature is that it is possible to
run the compiler and the execution engine from a command line.

The application XML is used in most interfaces and is the same as when appli-
cations are saved to file. An advantage of this is that no additional exchange format
is needed. The editor sends the application XML to the compiler and shows com-
pilation messages to the user. To start execution the application XML is sent to the
Execution component. The compiler is then used to build the AST, verify that the
application is valid, and prepare the execution data. The compiler is also used during
execution for dynamic features such as reference lookups and procedure calls. Visu-
alization is driven by both the editor and the execution engine. Operator commands
are passed to the execution engine and the execution engine sends information about
visual updates to the editor.

With well defined interfaces the parts are interchangeable. It is for example pos-
sible to attach a completely different visualizer, which for example just prints out
which steps are activated/deactivated or visualizes interesting variable statistics.
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Editor 

Execution 
Engine 

Compiler 

IDE 

Execution 

Figure 5.18 This figure shows an overview of the interface design between the
stand-alone editor, compiler, and execution engine.

Stand-alone Compiler
Previously, the FC compiler code had been added to the existing editor classes with
many interdependencies. For example, the FC compiler directly manipulated the
text color of transition conditions for error highlighting. The FC AST was implicitly
given by the used graphics library and the AST structure was adapted to fit the
graphics library.

Most compiler code had to be rewritten when the editor dependencies were
removed. The new compiler was written with ReRAGs to make it extensible. JUnit
tests were added to verify the new implementation.

The AST structure was changed to better fit the language. This was also an iter-
ative process, the AST structure was refined as additional pieces of compiler code
were added. The new AST structure does not require as many Java interfaces since,
for several cases, inheritance could be used instead. For example, the previous im-
plementation required an interface for elements with a name since they extended
different classes in the graphics library. Consequently there were 35 implementa-
tions of each method in that interface. In the new implementation a super class
could be used and thus only a single implementation of each method was required.
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One of the methods could be implemented with a Java 8 default method, which was
useful for the editor where this Java interface was still also required.

A new XML parser was implemented to build the new AST from the application
XML. This was straightforward and required less than 200 lines of code.

Some compiler checks were previously implied by editor code. For example
there were no checks for connections between elements as it was assumed that only
valid connections could exist in the editor. This had been ensured for most cases
but with for example Connection Posts, which can be connected to any element,
could be used to create invalid connections. Such checks have been added to the
new compiler.

Some less appropriate shortcuts were found when rewriting the compiler code.
Some of these would have to be implemented in both the editor and the compiler.
Where possible, the code was instead redesigned. Several changes were also made
to the application XML format to simplify the compiler implementation and make
it more robust. For example, the way to save connections between elements was
changed. Previously, a link identified the connected elements by their identifiers
only. For many cases it can be inferred which element ports the link should be
connected to but in some cases additional information is needed. For a link from
a Transition to a Macro Step for example it might either be connected to the in
port or to the history port, see Figure 4.6. For such cases, a port identifier was
added as a suffix to the identifier. In the new implementation both an element and
a port identifier are always used. Less reasoning is then needed to find the right
ports. Also, with the old implementation there was a risk that a suffixed identifier
would be identical to another, unsuffixed, identifier. This cannot happen with the
new implementation.

Several changes were made regarding Connection Posts. Previously, the connec-
tion was specified at both ends which meant that there was a 1 to 1 connection and
a risk for inconsistencies. Now the connection is only specified at the Connection
Post In which means that several Connection Post Ins can be connected to the same
Connection Post Out and that there cannot be any inconsistencies. To simplify com-
pilation, Connection Post connections are replaced by links in the compiler before
the connection check.

Stand-alone Execution Engine
Application Execution At a first glance, step execution and transition evaluation
and firing might seem straightforward to implement. However, with all Grafchart
constructs such as Connection Posts, Step Fusion Sets, and abort/resume of Macro
Steps as well as combinations of these there are many cases to consider.

For the new execution engine a thorough analysis of all different cases and com-
binations was made. The old implementation contained several bugs and there were
several combinations which did not work. These would be very hard to fix, partly
due to some less appropriate shortcuts. The old implementation without the short-
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cuts was used as a base for the new implementation where most combinations are
supported.

The core idea in the new implementation is that Step activation and deactivation
is always performed through one of the Step’s ports. For an ordinary Step there is
the normal activation through the Step’s in port and the normal deactivation through
the Step’s out port. There are also many other special cases where activation and de-
activation should be handled differently, for example when stopping the application,
activation or deactivation through a Step Fusion Set, and abort/resume due to an en-
closing Macro Step being aborted/resumed. For the special cases there are internal
ports such as stop which means deactivation due to stopping the application, fusion-
Set which means activation/deactivation through a Step Fusion Set, abort/resume
which mean deactivation/activation as a result of a Macro Step abort/resume, and
self which is used for deactivation/activation of a Macro Step itself only. This core
idea led to a more concise implementation.

As an example, consider the application in Figure 5.19 which has a Step Fusion
Set for S1 and S2. In the old implementation this is a combination of Step Fusion
Sets and Macro Steps which does not work. In the new implementation, when the
b transition fires, S1 is activated through its in port, just as if it were not part of a
Step Fusion Set. Then S2 is activated through its fusionSet port, which means that
first M1 is activated through its self port. Similarly, when the c transition fires, M1
is activated through its in port and S2 is activated through its self port, just as if it
were not part of a Step Fusion Set. Then S1 is activated through its fusionSet port.

M1

e

b

d

SF

c S2

f
S1

Figure 5.19 An application which did not work with the old implementation.
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Flank Detection Conceptually there is a flank if the value of an expression has
changed since the previous scan cycle. The old implementation was limited to
Boolean variables and the previous and current variable values were considered.
For example, if a value was false in the previous scan cycle and assigned true twice
it would not count as a positive flank. Similarly, if the last two values were false and
true it would count as a positive flank during each scan cycle until a new value was
assigned.

In the new implementation, each application element receives a notification after
the completion of each scan cycle and expressions use this for proper flank detec-
tion.

Concurrency An execution model is the foundation for deterministic execution.
For an implementation, concurrency also has to be considered to ensure determin-
ism. Without proper concurrency handling it cannot be guaranteed that the appli-
cation is executed with consistent data and then the execution not deterministic.
Concurrency issues are hard to spot and cause intricate and confusing behavior.

Consider the application in Figure 5.20. It may look harmless but since b is
a socket input a message with a new value may arrive at any time, for example
in between the evaluation of the guard conditions, which might cause a transition
conflict unless concurrency has been considered.

B

b

b !b

S1 S2

Figure 5.20 If the socket input is updated in between the evaluation of the guard
conditions might cause a transition conflict.

If b would be a Boolean variable, a transition conflict could still occur since
the user may change the value of variables during execution, again for example
in between the evaluation of the guard conditions. Transition priorities could be
used to resolve the conflict but that only helps for the particular case of conflicting
transitions. Another case which has no workaround is consecutive actions which are
executed on inconsistent data.
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Based on these examples it should be clear that Grafchart needs a concurrency
model.

The easiest solution to ensure thread safe interaction between Grafchart appli-
cations is serialized execution, that is, only one Grafchart application at a time may
execute its scan cycle. Also, to update asynchronous inputs or apply changes made
by the user must only be allowed when no Grafchart application is executing. A
sensible approach is to make the changes visible during the read input phase of
the execution model, as this phase is already dedicated to let externals affect the
application. This is the strategy that was used in the new execution engine.

Performance An early version of the new execution engine was profiled to get
an initial estimate of its expected performance. A small application that only uses
constructs which were available in that version is shown in Figure 5.21.

S1

S i = i + 1;

P b = !b;

S1.s > 2

Int 

i

0

S2

Bool 

b

0

b !b

S3

1 1

Figure 5.21 The profiled application. Its sole purpose is to exercise the basic con-
structs.

The interpreted execution was profiled by manually instrumenting the execution
code and removing the sleep between the scan cycles. The execution time was then
accumulated over 100 million scan cycles. The average execution time per scan
cycle was 500 ns for the new implementation and 4,000 ns for the old implementa-
tion. The execution code was barely changed and the main difference is that graph-
ical painting had been removed. If painting is removed in the old implementation
the average execution time per scan cycle was also 500 ns. Provided that nothing
else is changed, the performance should thus be an order of magnitude faster. Note,
however, that it is only faster, there are still no timing guarantees.
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Editor/Compiler Interaction
In graphical programming languages compilation messages cannot refer to prob-
lems by file and line numbers. In JGrafchart, compilation issues are highlighted in
the editor. For example, the text color becomes red for incorrect transition condi-
tions.

In the previous implementation the error highlight feature was limited to a few
elements and only worked under certain conditions. To retain and enhance this fea-
ture was desirable. To use direct references is not possible with a stand-alone editor
and compiler. Instead unique identifiers for the elements are included in each com-
pilation message. Graphically connectable elements already had unique identifiers
which were used to store the graphical connections. All other elements were ex-
tended with similar unique identifiers to make it possible to refer to them as well.

Figure 5.22 and Figure 5.23 show the error highlighting of an application in
the previous and the new implementation respectively. Compiling the application
results in a warning about an uncorrected transition and an error in the actions of
the step.

Note that the previous implementation changed the name of the unnamed step
to #0 to be able to refer to the unnamed step. It also gives an additional compilation
message to specify that the other compilation message is related to this step. If the
actions for the step were shown they would be colored red. The warning can only
state that there is an unconnected transitions, not which one, since transitions do not
have names.

In the new implementation no modifications are made to the application. The
step that causes the error and the transition that causes the warning are clearly high-
lighted. Another new feature is that clicking on a compilation message now selects
the corresponding element in the editor. This is particularly useful for unnamed
elements, like transitions, and for elements which are currently not visible in the
editor. Clicking on a compilation message for an element in another workspace for
example opens that workspace and selects the element.

#0

0

Figure 5.22 Error highlighting with the previous implementation. Warnings are
not highlighted at all and the error in the step actions is not highlighted since the
actions for the step are hidden.
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0

Figure 5.23 Highlighting with the new implementation. The step with an error is
colored red and the unconnected transition is colored orange.

Compiler/Execution Engine Interaction
To verify that the application does not contain any errors and to obtain and prepare
the AST to interpret, the execution engine first sends the application XML to the
compiler.

A JastAdd module for FC language execution has been created. The module
basically creates execution nodes and tie these to the FC AST, see Figure 5.24. The
interpreted execution of the FC AST is implemented in the execution tree. The main
reason to have it in a separate tree is to make the execution engine easier to debug.
To create execution engine extensions, the execution module can be refined to create
other execution nodes. The interpreted execution of the action and condition ASTs
are still implemented as interpreter modules as described in Section 5.2.

Root

Initial Step Workspace Object

Int Variable Real Variable

Root

Initial Step Workspace Object

Int Variable Real Variable

FC AST Execution Tree

Figure 5.24 The compiler FC AST and the parallel execution tree. The execution
tree nodes do not reference each other, instead the execution tree is traversed via the
FC AST.

Reference evaluation and procedure calls make use of the compiler at runtime
as well. This is a dependency that was kept from the previous implementation and
must be removed for code generation for hard real-time control to be possible. Most
use cases can be replaced by lookup calls but for the spawn method for example this
is not possible. spawn is a method that spawns a call to a Procedure. The argument
to the method is a string with the call parameters. The string must be compiled
during execution which requires a lightweight compiler.

69



Chapter 5. Grafchart Language Improvements

Execution Engine/Visualizer Interaction
Visualizers register themselves with the execution engine to receive visual updates,
such as when a step is activated, when a variable or I/O gets a new value, when
a rectangle is moved, or when the application execution is stopped. The unique
identifiers that were added for compiler feedback are also used as references for
visual updates. However, as these identifiers are only unique within an application
a unique execution instance id is also supplied.

At the end of the execution of each scan cycle a tick message is sent. It informs
the visualizer that one scan cycle has passed and that the variable values are consis-
tent, which can for example be used to create a visualizer that logs execution data
for application debugging.

Commands from the visualizer, for example to change a variable value, are sent
in a similar manner to the execution engine. Elements are identified with the same
identifiers as for visual updates. As discussed in the concurrency section, commands
are only processed in between the execution of scan cycles.

A bonus feature with a stand-alone execution engine is that it is possible for
JGrafchart developers to use the editor while debugging the execution and to debug
the visualization without interrupting the execution.

In the IDE the calls between the visualizer and the execution engine are Java
method calls. Only primitive types and strings are allowed as parameters to the
methods to simplify use of remote execution engines as well as support language
independence. It is possible to connect to a remote execution engine with LabComm
[61] over a TCP socket. LabComm was chosen since it has minimum communica-
tion overhead and is supported in several languages. LabComm is described further
in Section 6.5. Each update and command are implemented as a separate LabComm
sample. For example, notification about when a step is activated or deactivated has
the sample specification shown in Figure 5.25.

sample struct { 
  int appId; 
  string nodeId; 
  boolean active; 
} setStepActive; 

Figure 5.25 The LabComm sample specification to notify about when a step is
activated or deactivated.

Evaluation
To reuse the application XML for some of the interactions is sufficient since it con-
tains all information about the application and means that no additional exchange
formats are required. A running application also contains visualization data and can
receive operator commands. These are sent separately.
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With all compilers implemented with ReRAGs it is possible to add extensions,
for example to generate code for hard real-time control. Application refactoring
like renaming a JGrafchart variable should also be possible to implement by using
the new AST. To be able to edit an application while a previous version of it is
running is also a necessary first step toward making it possible to update a running
application. With a stand-alone execution engine, distributed applications can also
be implemented more easily.

Conclusions
There are several advantages and opportunities with the new structure:

∙ The execution performance is improved considerably.

∙ The interfaces between the parts are clear which means that they are inter-
changeable.

∙ It is easier to add new features and to do so without breaking anything as
several less appropriate dependencies and shortcuts have been removed.

∙ The compiler is stand-alone and implemented with ReRAGs and should thus
be extensible.

∙ Improved maintainability as the interaction between the different parts are
explicit. It is thus easier to focus on one part at a time.

The performance measurements indicate that the new interpreter is an order of
magnitude faster. The improved error highlighting is an example of where clear in-
terfaces between the parts makes it easier to add new features. The whole JGrafchart
compiler is now implemented with ReRAGs and should be ready for adding exten-
sions, for example HLV or code generation for real-time execution. With separate
parts it is easier to get an overview of each part which improves maintainability and
robustness.
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6
Grafchart for Factory
Integration

This chapter addresses the challenge of integration and utilization of devices and
software. A new way to do SOA service orchestration with DPWS and OPC UA as
well as a new way to do SOA 2.0 service choreography are presented. The primary
focus has been on manufacturing but the concepts are useful for process automation
and robotics as well. Next, support for the high performance communication proto-
col LabComm [61] is added. Finally, it is investigated how Grafchart can be con-
nected to FMI for Co-Simulation, a standardized co-simulation environment, to be
able to co-simulate Grafchart applications with simulation or modeling tools. This
addresses the shorter time to market trend by making it possible to perform simula-
tions before commissioning. The high performance communication and simulation
support are useful for both process automation, manufacturing, and robotics. High
performance communication is, however, particularly useful for robotics where the
execution rate is higher.

6.1 Service Technologies

Most SOA tools are tailored for business processes. In [62] several tools were eval-
uated and DPWS [63] was the tool deemed best suited for SOA-AT. DPWS is based
on existing web service standards and defines a minimal set of implementation con-
straints to enable web services on resource constrained devices [64].

DPWS has been shown to be useful for industrial automation [65], but OPC UA
[66], which is feature backward compatible with classic OPC, the current de facto
standard for interoperability in the automation domain, is likely to spread faster
[67].

As concluded in [65], both OPC UA and DPWS are required to to cope with all
industrial requirements on device level.
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6.2 Devices Profile for Web Services

An outcome of the SIRENA project [68] is an open source DPWS implementation
targeted at embedded devices [69, 70], thus pushing the web services technology
used at business level down to device level.

The work presented in this section enables automation to be built in a service
oriented way by making it possible to use JGrafchart as a generic DPWS client [71,
72]. It has been carried out in collaboration with DFKI in Kaiserslautern, Germany.

Background
DPWS Plain web services are complicated to use since for each service the de-
sired web service standard extensions may or may not be supported. DPWS defines
a minimal set of mandatory extensions which are always available.

The hierarchy of DPWS is shown in Figure 6.1. At the root is a DPWS device.
Below the device are services, portTypes, and operations which is the same struc-
ture as for ordinary web services. A service encapsulates a specific functionality. In
SOA-AT this is the functionality provided by a field device, for example the fea-
tures of a motor. A device hosts services, for example it could host services for a
group of co-located motors. An operation corresponds to an action that a service is
able to perform, for example a motor could have the operation setTorque(t). The
portType is used to group operations, for example a motor could have the portTypes
torqueControl and rotationSpeedControl.

Device

Service Service ...

PortType PortType ...

Operation Operation ...

Figure 6.1 The DPWS hierarchy. A DPWS device hosts services, services contain
portTypes, and portTypes contain operations.

Figure 6.2 shows an overview of the DPWS stack [73]. At the base level is the
IP protocol for the actual communication. Both IPv4 and IPv6 may be used and IP
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multicast is used for discovery. On top of this either HTTP/TCP or UDP are used.
XML is used as the underlying message structure. On top of this SOAP-over-UDP
and SOAP define the message exchange protocol and Web Services Description
Language (WSDL) is used to define the messages. Finally, additional web service
extensions like WS-Discovery, WS-Addressing, WS-MetadataExchange, and WS-
Eventing are included and mandatory in DPWS.

IPv4 / IPv6 / IP  multicast 

UDP 
TCP 

HTTP 

SOAP-over-UDP, SOAP, WSDL 

WS-Security, WS-Policy, WS-Addressing 

WS-Discovery WS-Eventing WS-MetadataExchange 

XML 

Figure 6.2 Overview of the DPWS stack.

WS-Discovery The WS-Discovery extension makes it possible to find devices
dynamically on the local network, see Figure 6.3. To find devices a client multicasts
a Probe message. Devices on the local network should receive this message and
respond with a Probe Match message to the client. Devices also multicast Hello and
Bye messages when they join and leave the network. Ideally, clients should only
need to send a Probe message when they join the network.

With WS-Discovery it is possible to find and connect to a device without any
prior knowledge about it. However, WS-Discovery only works on the local network
and since multicast uses UDP it is inherently not reliable. For devices not found
with WS-Discovery the connection can be set up manually.

WSDL Services are specified with the WSDL language. Each service is defined
by its WSDL description, also referred to as its WSDL. It defines all portTypes
and operations supported by the service. It also defines the message structure of all
messages and specifies which messages are used for the operations. In other words,
the WSDL contains all information required to interact with a connected service.

WSDL specifies four types of operations, namely one-way, request-response,
solicit-response, and notification. One-way and request-response operations are in-
voked by the client by sending the corresponding message. For request-response
operations the service also returns a corresponding response message. Symmetri-
cally, notification and solicit-response operations are invoked by the service and for
solicit-response operations the client returns a response message.
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Network 

Client 2 

Device 1 
Device 2 

1 

1 1 

Probe (multicast) 1 

Hello (multicast) 3 

Bye (multicast) 4 

Probe Match 2 

2 
2 

Device 3 3 

3 

Client 1 

3 

4 

4 

4 

Figure 6.3 Initially Client 1, Device 1, and Device 2 are connected to the network.
Client 2 joins and multicasts a Probe message. Device 1 and 2 receive this message
and each respond with a Probe Match message to Client 2. Now Device 3 joins the
network and multicasts a Hello message which is received by Client 1 and Client 2.
Finally Device 2 is about to leave the network and multicasts a Bye message. It is
received by Client 1 and Client 2.

WS-MetadataExchange DPWS devices must expose various metadata such as
manufacturer and model name which is useful to retrieve additional details about a
discovered device. The WS-MetadataExchange extension also requires services to
expose their WSDL.

WS-Addressing For a client to ensure that the correct device is used, an unam-
biguous way to identify the device is required. The WS-Addressing extension re-
quires that each device has a unique identifier. It is then possible to recognize a
previously used device and be sure that this is the exact same device.

WS-Eventing Events are often preferred over polling. The WS-Eventing exten-
sion provides support for eventing.

Summary Figure 6.4 shows a sequence diagram where WS-Discovery is used
to detect a device, that is, the client sends a Probe message and receives a Probe
Match response from the device. WS-Addressing metadata is then fetched to en-
sure that this is the correct device. Then hosted services are listed and WS-
MetadataExchange is used to fetch the desired service’s WSDL. Then the one-way
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operation oneWayOp is called, followed by a call to the request-response operation
reqRespOp. Notice that the call to oneWayOp only consists of one message while
reqRespOp consists of one message in each direction. After this a subscription is
created and finally, when an event happens, a notification operation named myEvent
is received from the service.

By relying on the DPWS mandatory extensions WS-Discovery, WS-
Addressing, and WS-MetadataExchange it is possible to create a generic client
that can be used for service orchestration, as shown in Figure 6.4. However, no such
tool existed. JGrafchart was considered a suitable candidate for being extended
with generic DPWS support. It is based on SFC which is widely used in industrial
automation and, compared to business process tools, has a higher chance of being
accepted by the automation community.

Device Client Service 

Probe 

Probe Match 

getServices() 

getWSDL() 

getMetadata() 

oneWayOp() 

reqRespOp() 

subscribe 

myEvent() 

Setup 
phase 

Figure 6.4 A sequence diagram for the interaction between a generic client, a de-
vice, and a service hosted by the device. First the device is discovered and the ser-
vice’s WSDL is fetched. Then operations in the service are called, a subscription is
created, and finally a notification is received.
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DPWS in JGrafchart
As shown in Figure 6.2, DPWS communication uses XML messages and thus re-
quires to possibility to send and receive strings. The previously existing I/O men-
tioned in Section 4.4 are Digital/Analog In/Out and Socket I/O. Digital/Analog
In/Out are insufficient as they only support Boolean and float values. Socket I/O on
the other hand can send and receive any strings without newline characters. Since
newline characters are considered whitespace in XML this is not a problem. The
first prototype to integrate DPWS in JGrafchart was implemented with Socket I/O.

The Socket I/O Prototype A TCP/IP server was implemented to translate assign-
ments to socket outputs in JGrafchart to DPWS operation call messages, as well
as DPWS response messages to socket inputs in JGrafchart, see Figure 6.5. Each
DPWS operation used requires its own translation code in the TCP/IP server. Some
special socket inputs and outputs as well as some extra code to detect event arrival
were also required for subscriptions and event notifications.

JGrafchart DPWS Device 
 TCP/IP Server 
DPWS Client 

Translation 

TCP/IP SOAP • Operation call 
• Subscription 

• Operation response 
• Event notification 

S 

SocketOut 

SocketIn 

S TCP/IP SOAP 

Figure 6.5 Overview of the Socket I/O prototype.

Previously, JGrafchart would only send a message to the server if the value of
the assigned socket output changed. Since the assignments in the prototype cor-
respond to DPWS operation calls this means that consecutive calls with identical
arguments were lost. A send mode setting has been added to workspaces and in-
dividual socket outputs to control when messages are sent. With the default send
mode changed, a message is only sent when the value changes, just like before.
With the new send mode assigned, a message is sent each time the socket output
is assigned. It is also possible to inherit the setting from the enclosing workspace.
With the prototype the entire JGrafchart application should be configured to use
socket send mode assigned.

A possible improvement to this prototype would be to implement a more generic
translation in the server, thus reducing the amount of specific code for each opera-
tion. Another improvement would be a JGrafchart helper library for subscriptions
and event notifications.
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A major problem with the prototype is that it is hard to make calls to request-
response operations synchronous. When JGrafchart has written to the socket buffer
related to a request-response operation, it does not know that it should wait for the
update of a specific socket input before resuming execution. A request-response call
using the Socket I/O prototype is shown in Figure 6.6. To call the same operation
from several parts of the application at the same time is also complicated. There are
also the aesthetical issues that operation calls are represented by assignments and
that returned values are fetched from separate socket inputs.

S

GetStatus

S1

S GetStatus = "";

S1.s > 0.5

//...

//GetStatusResponse S

GetStatusResponse

Figure 6.6 A request-response call with the Socket I/O prototype. The call is in-
voked by the assignment to GetStatus. The TCP/IP Server translates this into a
DPWS call. When the TCP/IP Server receives the response message it forwards it
to GetStatusResponse. In the application the response is assumed to be available
after 0.5 seconds. It would be possible to use extra socket I/O to signal when the
response is available but that would be even more complicated.

Integrated Generic DPWS A generic DPWS implementation has been integrated
directly into JGrafchart using the DPWS4J toolkit [74]. With WS-Discovery, ex-
isting devices and device startups and shutdowns are automatically detected. With
WS-MetadataExchange, each service’s WSDL is obtained. It is possible to browse
available devices, services, and operations in JGrafchart, see Figure 6.7. Device
metadata and WSDL documentation are also displayed.

To call DPWS operations a new I/O element in JGrafchart called DPWS Object
is bound to a portType, see Figure 6.8. The unique identifiers provided by WS-
Addressing are stored to later restore the binding automatically, for example when
a saved JGrafchart application is opened or when a device joins the network.
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Figure 6.7 The service explorer in JGrafchart shows details about the available
devices. The WSDL can also be saved, which is useful for example if the documen-
tation is not sufficient.

Figure 6.8 The configuration dialog for the new DPWS Object. It is bound to a
specific portType of a specific service in a specific device.
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To Call DPWS Operations JGrafchart supports all operation types except solicit-
response. DPWS operation calls look like other method calls in JGrafchart, see Fig-
ure 6.9. Here the DPWS Object myDPWSObj is bound to the portType SwitchPower.
In the Grafchart application, a 10 minute subscription is first created. Then the one-
way operation Switch is called. The application then waits for a StatusChanged
notification. Finally the request-response operation GetStatus is called and its re-
sponse is stored in the variable newStatus. In this example the new built-in func-
tions dpwsSubscribe and dpwsHasEvent are used for eventing. There are also
new built-in functions for XML handling and fault detection.

S dpwsSubscribe(myDPWSObj, "PT10M"); 
S myDPWSObj.Switch("ON"); 

S newStatus = myDPWSObj.GetStatus(); 

dpwsHasEvent(myDPWSObj, "StatusChanged"); 

myDPWSObj 

Figure 6.9 How to use the integrated DPWS feature in JGrafchart. The second ar-
gument to dpwsSubscribe is an ISO 8601 [75] duration string, in this case "PT10M"
which means 10 minutes.

Calls to request-response operations are synchronous which means that when a
request-response operation is called, execution pauses until the response message is
received. The behavior is thus more deterministic and it is easier to reason about the
execution. It also means that the execution is delayed if it an operation takes a long
time to finish. Also, if either message is lost, the execution will freeze indefinitely.
This should be improved in future versions of JGrafchart.

Compiler Aspects The WSDL contains all data needed to check if an operation
call is valid. Some DPWS operations have content while others do not. For exam-
ple, GetStatus in Figure 6.9 has no content while Switch has content that tells
if it is a switch on or switch off request. In JGrafchart a call has 0 or 1 parameters
corresponding to no content and content respectively and the compiler checks that a
call has the correct number of parameters. The actual content is often built dynami-
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cally and cannot be checked at compile time. For this kind of errors runtime SOAP
fault handling is used. Applications can check for and handle these faults with the
new built-in function dpwsHasFault and dpwsGetFault.

Devices might not be present during development or at compile time. The editor,
compiler, and execution engine may be on separate local networks and the devices
might then only be available to the execution engine. Devices could also be optional
and only present at certain times. In the editor, bindings can be specified both with
and without the device present. If a device is unavailable at compile time, the com-
piler will just warn about not being able to perform these compilation checks. If a
device is unavailable during execution dpwsHasFault returns true and the message
returned by dpwsGetFault states that the device is unavailable.

Evaluation
SmartFactoryKL is a manufacturer-independent research platform [4] where for ex-
ample demonstrators are created to evaluate new ideas. The DPWS integration was
evaluated on a SOA demonstrator at SmartFactoryKL.

The demonstrator consists of two stations, namely the filling station and the
quality control station. At the filling station bins are filled with pills. The quality
control station checks that bins contain the correct number of pills. The demonstra-
tor uses real industrial field devices encapsulated as DPWS devices. It consists of a
conveyor belt that transports carriers with bins to the stations. The bins have RFID
tags where various information about the product is stored, for example the number
of pills, if the bin has been filled, and the result of the quality control.

In the evaluation the quality control station was considered, see Figure 6.10. It
consists of five field devices: a sensor that detects the arrival of carriers, a stopper
that can stop the carriers, a sensor to check if there is a bin on the carrier, an RFID
device to read/write from/to the RFID tag on the bin, and a camera to take a top
view image of the contents of the bin to count the number of pills.

The coordination sequence for the station can be modeled as in Figure 6.11.
Based on the model a JGrafchart application to coordinate the station was imple-
mented, see Figure 6.12. As some states in the model have a straight flow they could
be implemented in the same JGrafchart step. The step named CheckBinRFID and
QC in JGrafchart correspond to model states (3)-(4) and (5)-(7) respectively. The
application gives the desired behavior and is reliable.

The new built-in XML utility functions have been used to simplify the code.
For example, xmlFetch is used to obtain a derived value from an XML string.
The camera’s count operation returns a sequence of value elements where each
element describes the number of pills of a specific color. The total number of pills
is fetched with xmlFetch(resp, "value", "sum") where resp is the returned
string, "value" is an XPath [76] that selects all elements with the tag name value,
and "sum" is a built-in handler that calculates the arithmetic sum of the selected
elements’ texts interpreted as numbers.
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Figure 6.10 The quality control station of the SOA demonstrator.
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(1) 
Wait for Carrier 

(2) 
Check for bin 

(3) 
Is bin checked? 

(RFID) 

Carrier arrived 

Bin present 

(4) 
Is bin filled? 

(RFID) 

(5) 
Expected pills 

(RFID) 

(6) 
Actual pills 
(Camera) 

(7) 
Write result 

(RFID) 

(8) 
Release carrier 

Bin NOT checked 

Bin filled 

Bin NOT filled 

Bin already checked 

No bin present 

Figure 6.11 A conceptual coordination sequence for the demonstrator in Fig-
ure 6.10 where (1) is the initial state.
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/sensorEvent

WaitForCarrier

S stopper.hold("");

!performQC performQC

CheckBinRFID

S readResponse = RFIDReader.read(xmlAdd("tns:varName", "Status")); // Bin filled

S readFilledResult = xmlFetch(readResponse, "status") == 0 ?

   xmlFetch(readResponse, "value") : 0;

S readResponse =

   RFIDReader.read(xmlAdd("tns:varName", "Qualitaetsstatus")); // Bin QC state

S readQCResult = xmlFetch(readResponse, "status") == 0 ?

   xmlFetch(readResponse, "value") == QCNotChecked : 0;

S performQC = readFilledResult & readQCResult;

CheckForBin

S sensorEventR = dpwsGetEvent(stopper, "sensorEvent");

S checkResponse = sensor.check("");

S isBinPresent = xmlFetch(checkResponse, "isObject");

isBinPresent!isBinPresent

QC

S readResponse = RFIDReader.read(xmlAdd("varName", "Pillenzahl"));

S readPillResult = xmlFetch(readResponse, "status") == 0 ?

   xmlFetch(readResponse, "value") : -1;

S countResponse = pillCounter.count("");

S countResult = xmlFetch(countResponse, "value", "sum");

S write = xmlAdd("tns:varName", "Qualitaetsstatus");

S QCResult = readPillResult == countResult;

S write = xmlAdd("tns:value", QCResult ? QCCorrect : QCIncorrect, write);

S writeResponse = RFIDReader.write(write);

ReleaseCarrier.s > 1

1

ReleaseCarrier

S stopper.release("");

Figure 6.12 A service orchestration for the demonstrator in Figure 6.10 imple-
mented with the integrated generic DPWS feature of JGrafchart. The actions are
shown to give an idea of the amount of code required, they are not intended to be
readable in the printed version.
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Conclusions
SOA is a design methodology which can improve flexibility and reusability for
industrial automation systems. With SOA, vertical integration is simplified since
services can be used directly at any level in Figure 2.1.

It was shown that SOA works very well on a demonstrator with real industrial
field devices. The implementation turned out to be practically identical to the con-
ceptual coordination sequence. This means that it might as well have been modeled
in JGrafchart and then implemented by adding the actions and transition conditions.
Thanks to the successful use in the SOA demonstrator, the DPWS support has been
used by SmartFactoryKL to implement more demonstrators, for example the auto-
mated assembly station of the keyfinder production line [77].

As a result of this work there is a generic tool for DPWS service orchestration.
This enables anyone to try out SOA-AT and experience the advantages.

6.3 OPC Unified Architecture

In this section it is presented how SOA service orchestration for control of OPC UA
services can be done with Grafchart. Generic support to use OPC UA servers has
been integrated into JGrafchart [78] and as an example it has been used to control
a physical process which has been modeled, encapsulated, and exposed as an OPC
UA server by wrapping it with an Ethernet capable microcontroller. In other words
the physical process has been retrofitted to become a service capable device.

OPC UA Standard
OPC UA is a recent standard [66] which incorporates all the features from the three
classic OPC specifications OPC Data Access (OPC DA), OPC Alarm and Events
(OPC AE), and OPC Historical Data Access (OPC HDA) which are all based on
the Microsoft proprietary COM/DCOM technology. OPC UA on the other hand is
platform and language independent and also incorporates SOA features [79]. OPC
UA was developed with the goal to offer robust communication in distributed sys-
tems with high security, connecting everything from small embedded field devices
to large enterprise systems.

Information Model OPC UA offers more flexible modeling possibilities than
classic OPC in which only simple data could be represented [79]. Types and in-
stances in a specific device are defined in its address space. OPC UA data modeling
uses the concepts of nodes and references. Types and instances are represented by
nodes and the relationship between two nodes are represented by references. Each
node has a number of node attributes, some mandatory and some optional. The data
type for all attributes except the value are defined by the OPC UA specification.
The specification defines a fixed number of built-in data types such as the common
Double, Int32, Boolean, and String as well as the OPC UA specific NodeId and

86



6.3 OPC Unified Architecture

QualifiedName. Each node has a NodeId with a unique id number that is used for
example to find a specific node in the address space.

Eight node classes are defined in the OPC UA specification and the three most
important ones are variables, methods, and objects [79]. Variables represent values
on the server. Methods are functions/operations which can be called and they may
have multiple input and output parameters. Objects consist of a set of variables,
methods, and objects and they and are typically used to represent real world objects.
Each node also has a set of references to other nodes in the server’s address space.

Unlike classic OPC where only data types information can be expressed, it is
possible to express type information in OPC UA. There are two node classes for
type definitions, namely object type and variable type [79]. It is possible to create
extended (sub-)types based on another type. OPC UA thus allows type program-
ming, that is, object or variable types can be defined and then instantiated to create
concrete instances [79]. For example, a motor type can be created and there could
then be five instances of the motor type which correspond to five physical motors.
The motor instances have the exact same structure (variables, methods, and objects)
as the motor type and can thus be used in the exact same way.

Discovery Unlike DPWS, OPC UA does not support discovery of services on the
network without any prior knowledge. On the other hand, OPC UA discovery is
reliable and works both across networks boundaries and over the Internet. A set of
standard services for discovery is defined as the Discovery Service Set [79]. In the
simplest setting, there is one discover server that all OPC UA servers and clients
know about. Servers register themselves to the discovery server, which maintains a
list of servers. The list can be fetched by OPC UA clients. OPC UA servers must
register themselves periodically and notify when they intend to go offline so that the
discovery server knows which OPC UA servers are currently available.

Client-Server Interaction The server decides the desired security level [79] and
the client must meet the security requirements to be able to connect. All information
modeling is done on the server side and connected clients can obtain this informa-
tion by browsing the server’s address space.

The client can access a variable value in the server in two ways: by subscribing
to it (recommended) or by explicitly asking for it. The client can also specify how
often values should be received in a subscription.

OPC UA has support for two transport protocols namely UA Binary and UA
XML [80]. The binary TCP protocol offers best performance and interoperability
whereas SOAP is for web service interoperability and is more widely supported
by various tools [81]. Figure 6.13 shows an overview of the OPC UA stack. At the
bottom is the transport protocol layer. Which transport protocol to use is determined
by the URI scheme name (http, https, or opc.tcp). Above this is the security protocol
layer which takes care of message signing and encryption. Next is the data encoding
layer which determines the structure, encoding, and serialization of messages. In
the application layer at the top are the user applications, implemented in the desired
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Figure 6.13 An overview of the OPC UA stack.

programming language, typically using an OPC UA toolkit for this language.
OPC UA supports server state monitoring which means that connected clients

can choose to be notified about the current server state when the state changes. It is
for example possible to detect when the server is shut down, if there is a communi-
cation problem, if the server is not functioning, and when the server is healthy and
back online again. It can be used for example for automatic client error handling
and reconnect.

Backward Compatibility One goal with the new OPC UA standard was to make
it platform independent and thus it was necessary to remove dependencies to pro-
prietary technologies such as DCOM which classic OPC is based on. Thus it is not
possible to directly connect an OPC UA client to a classic OPC server or a clas-
sic OPC client to an OPC UA server. However, OPC UA is backward compatible
feature-wise, which means that all features supported by classic OPC are also sup-
ported by OPC UA. It is thus possible to convert calls between OPC UA and classic
OPC [82]. In this way it is possible to connect OPC UA clients to classic OPC
servers and classic OPC clients to OPC UA servers.

OPC UA Integration in JGrafchart
OPC DA is currently used the most in industry. Among products that use classic
OPC, 99% implement OPC DA while OPC AE and OPC HDA are mostly imple-
mented in addition to OPC DA [79]. This work is thus mainly focused on support
for OPC UA data access. OPC UA methods are also considered as this is a key part
of web service interoperability.

JGrafchart has been extended with integrated support to connect to and inter-
act with OPC UA servers over the UA Binary transport protocol. All OPC UA data
types needed for controlling purposes are supported. A new I/O element called OPC
UA Object has been added to JGrafchart to make it possible to connect JGrafchart
applications to OPC UA servers. Each OPC UA Object is bound to a variable or
object node in an OPC UA server’s address space, see Figure 6.14. Multiple OPC
UA Objects can be added to a JGrafchart application to set up connections to mul-
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tiple nodes on one or more OPC UA servers. The binding for each OPC UA Object
is configured by specifying the Server URI and the full BrowsePath to the desired
node.

Figure 6.14 The OPC UA Object configuration dialog.

Figure 6.15 The dialog to explore the address space of OPC UA servers in
JGrafchart.
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A dialog to browse the address space of connected servers has been added to
JGrafchart and is illustrated in Figure 6.15. The right side of the dialog shows the
currently selected node’s metadata, such as its BrowsePath, data types of variables,
and input and output parameters for methods, as well as the node’s device’s meta-
data such as Server URI and Application Name. It is also possible to connect and
disconnect OPC UA servers. At the bottom of the dialog is another way to configure
OPC UA Object bindings.

When an application with configured bindings is opened, JGrafchart tries to con-
nect to the bound OPC UA servers automatically. Support for OPC UA ServerState
monitoring has also been implemented and there is an automatic reconnect when a
previously connected server comes back online.

The integrated OPC UA support has been designed so that OPC UA variable ac-
cesses and OPC UA method calls look like other JGrafchart variable accesses and
method calls. Variables and methods at any level in the bound node’s subtree are ac-
cessed with dot notation. It is always possible to write to variables and call methods.
To receive variable value updates requires subscriptions which are managed with the
new JGrafchart functions opcSubscribe and opcUnsubscribe. Figure 6.16 illus-
trates how to use OPC UA variables and methods. On the first line a subscription
for the variable MyLevel’s value is created. On the second line the Boolean variable
MySwitch’s value is set to true (1). On the third line the method MyMethod is called
with two input arguments and the call’s output argument is stored in the JGrafchart
variable ret (not shown). Finally, the variable MyLevel’s value is accessed in the
transition condition.

S opcSubscribe(myDevice.MyLevel.Value); 
S myDevice.MySwitch.Value = 1; 
S ret = myDevice.MyMethod("sin", 45); 

myDevice.MyLevel.Value > 15 

myDevice 

OPC 

Figure 6.16 How to use OPC UA variables and methods in JGrafchart.
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To choose which node in the address space to bind to is a trade off between
the number of required OPC UA Objects and the number of levels to type for each
variable and method access. The extremes are binding to the root node and binding
to a variable node. Binding to the root node means that everything on the server is
accessible through the same OPC UA Object but that each access requires typing
the maximum number of levels. Binding to a variable node means that only that
variable can be accessed through the OPC UA Object but each access only requires
typing the minimum number of levels.

Limitations So far, only unsecure communication is supported. However, security
handling is implemented in the OPC UA toolkits and it should thus not be a large
effort to add support for secure communication.

OPC UA method calls from JGrafchart are currently limited to one output argu-
ment as support for several output arguments would require extensive modifications
to the JGrafchart action language syntax. Hence, for methods with more than one
output parameter only the first output parameter can be obtained. It would probably
be a large effort to support multiple output parameters.

Method calls in OPC UA are asynchronous by design which is a new features
compared to classic OPC. However, for convenience the toolkit also provides a
synchronous version and this is used by JGrafchart. The server may also decide
to apply a variable write asynchronously. If this happens a warning is printed in
JGrafchart.

Example
A device from fischertechnik [83] has been used to evaluate the new integrated sup-
port for OPC UA in JGrafchart, see Figure 6.17. The device consists of a punching
machine (1) which can punch goods, and a conveyor belt (2) which can transport
goods to and from the punching machine. The device has four digital inputs and
two DC motors. Two light barriers detect the position of the goods and two limit
switches detect the vertical position of the punching machine. One motor drives
the punching machine and the other motor drives the conveyor belt. The device is
controlled by electrical signals (voltages) and to expose it as an OPC UA server it
is connected to an Ethernet capable microcontroller (3), namely an Aria G25 from
Acme Systems [84].

The task for the device is to process arriving goods (4). When goods arrive the
conveyor should move it to the punching machine, punch it, and then move it back
to the entry again.

Server Side Device Modeling The device is wrapped by its own OPC UA server
that runs on the microcontroller, making the functionality of the device available for
OPC UA clients to access and control. The conveyor belt is modeled as an object
with two variables, Forward and Backward, which determine how to move the
conveyor belt and two variables, AtEntry and AtPunch, which sense when the
goods is at the entry or by the punching machine. Similarly, the punching machine
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1

2

4

3

Figure 6.17 The fischertechnik device and the microcontroller circuit board.
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Figure 6.18 The OPC UA server’s address space.

92



6.3 OPC Unified Architecture

is modeled as an object with the variables MoveUp, MoveDown, IsUp, and IsDown,
Figure 6.18.

To prevent networking issues or a poorly written client application from damag-
ing the device, the server should contain interlocks to avoid situations which might
harm the device, for example prevent the punching machine from moving further
up when IsUp is set.

The OPC UA server was implemented with the C++ OPC UA toolkit from Soft-
ing [85] cross compiled to the Aria G25 which runs Debian on an ARM9 processor.
To implement the server was straightforward.

Device Control The device is controlled from a JGrafchart application which con-
nects to the OPC UA server, see Figure 6.19. In the application cb (conveyor belt)
and pm (punching machine) are OPC UA Objects bound to the corresponding ob-
ject nodes on the OPC UA server that runs on the microcontroller connected to the
fischertechnik device. In addition to what is shown in the figure there is also a sepa-
rate initial step which sets up subscriptions to variables and forward their values to
internal variables used in the transitions.

In the initial step the application waits until goods arrives at the entry of the con-
veyor belt (transition GoodsAtEntry) and it then starts to move the goods toward
the punching machine. When the goods arrives at the punching machine (transi-
tion GoodsAtPunch) the conveyor belt is stopped and the punching machine starts
to move down. When the punching machine is in the bottom position (transition
IsPunchDown) it starts to move up again until it reaches the top position (tran-
sition IsPunchUp). Then the conveyor belt starts to move the goods back to the
entry position and when it arrives (transition GoodsAtEntry) the conveyor belt is
stopped and the application waits for the current goods to be removed (transition
!GoodsAtEntry) before going back to the initial state to wait for the next goods to
arrive.

Modeling Alternatives The main reason to implement everything as variables is
that they are easier to implement on the server side than methods. An alternative
would be to have a move method for each motor which accepts an argument with
the desired direction, for example an integer where positive numbers mean forward,
0 means stop, and negative numbers mean backward. It would also be possible to
have both the variables and the methods so that the client can choose which to use.

Another alternative that makes use of OPC UA’s modeling capabilities is to
model the sensors and motors as types. The sensors and motors can be modeled as
two types and then four sensor instances and two motor instances can be created to
model the device. The benefit of using types is that each instance of a type will have
the same structure and functionality. More alternative ways to model and design
OPC UA devices are discussed in [86].
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Figure 6.19 Control application for the device’s task implemented in JGrafchart
with the new OPC UA capability.
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Conclusions
A way to implement service orchestration with OPC UA has been presented. The
support for OPC UA in JGrafchart is well integrated. OPC UA variables are used
like other JGrafchart variables, OPC UA method are used like other JGrafchart
method calls, and OPC UA objects are traversed with dot notation like for hierar-
chical structures in JGrafchart. Automatic connect and reconnect to servers is also
supported during both development and execution. The new OPC UA support was
successfully used for control of an embedded device which had been made self-
contained by wrapping it with an Ethernet capable microcontroller and exposing it
as an OPC UA server, a service capable device. JGrafchart can be used to control
any device that is accessible through an OPC UA server. Note that with an adapter
for classic OPC this includes the field devices used by industrial control systems
that support classic OPC.

As concluded in [65], both OPC UA and DPWS are required to to cope with all
industrial requirements on device level. As JGrafchart now supports both integrated
DPWS and OPC UA it can be used regardless of which is more suitable in a specific
scenario.

Data access is by far the most commonly used part of the OPC UA standard. The
focus has so far been to integrate OPC UA data access and methods in JGrafchart.
Alarm and events and historical data access are part of future work. Method sup-
port has also been integrated as this is a key part of web service interoperability.
However, unfortunately this interoperability has not yet been possible to test since
the OPC Foundation OPC UA Java stack currently only supports the OPC UA TCP
transport protocol.

6.4 Service Oriented Architecture 2.0

The key to achieve integration of the smart factory is loose coupling and flexibility
of the stand-alone devices. As most factories are modified rather than rebuilt, ease
of retrofitting legacy devices to expose their data to the higher levels is also an
important aspect.

There is no vendor independent integration architecture for such information
management and many companies use their own solutions. Due to increasing de-
mand on customizable production they require flexible and scalable information
systems. In this section a new information system architecture that enables flexibil-
ity and scalability is presented [87]. It was developed with discrete manufacturing in
mind and is called Line Information System Architecture (LISA). The architecture
is event-based and uses a prototype-based information model. LISA is able to han-
dle layout and structural changes. As event data is immutable, event sourcing can be
utilized to add new aggregated values, not only for new data but also retroactively
for historical data. This also makes it possible to modify formulas and re-evaluate
them for the historical data.
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LISA is currently being installed by a company that has been involved in this
research. Previously, at the company, a workstation did only send out predefined
KPIs regarding each work cycle. With LISA, all communication is event-based and
devices like PLCs, robots, product carriers, and operators only send and receive
events. LISA has also been evaluated on historical data from another automotive
manufacturer. The data did not at all conform with the LISA structure but due to the
flexible nature of LISA, events could be identified and generated from the data.

LISA
A common approach for information systems is an object-oriented structure for
event types and events. LISA on the other hand uses a prototype-based approach.
Prototypal inheritance, unlike object-oriented inheritance, is achieved by cloning
and refining an object, here an event. This makes the event creation, identification,
and filtering less rigid since the strict hierarchical relation enforced by a class struc-
ture is removed.

The core components of LISA are the message bus, communication endpoints,
and the LISA message format. Creation and transformation of raw event data into
valuable information is done in a modular and loosely coupled way. An overview
of the LISA communication architecture is shown in Figure 6.20.

Message Bus 

Filter 

Data 

converter 

Endpoint 1 

Device or 

Application 1 

Endpoint 2 

Device or 

Application 2 

Channels 

. . . 

LISA 

Filter 

Data 

converter 

. . . 

Figure 6.20 An overview of the LISA architecture.

Message Bus
LISA uses an Enterprise Service Bus (ESB) for messaging that takes care of the
routing of data/information to distributed applications. To avoid PtP connections,
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the ESB should support the following patterns defined by the Enterprise Integration
Patterns (EIP) [88, 89]:

∙ Message: The data or information are packaged into a message that the mes-
saging system can transmit through a message bus.

∙ Messaging: Packets of data are transferred frequently, immediately, reliably,
and asynchronously using customizable formats. Messaging is an event-based
process: as soon as a new message is ready it is sent to the message bus.

∙ Publish-subscribe channel: When a message is sent on a publish-subscribe
channel, a copy of this particular message is delivered to each channel sub-
scriber.

∙ Message filter: If the content of an incoming message does not match the
criteria specified by the message filter the message is discarded. This pat-
tern allows each application that subscribes to a publish-subscribe channel to
further filter incoming messages.

In the LISA prototype Apache ActiveMQ [90] has been used, but it could be
replaced by any ESB that supports these patterns.

Communication Endpoints
The connection between applications (communication devices, services, external
applications) over the ESB is done through communication endpoints. Many de-
vices have limited capabilities and limited knowledge and they communicate with
different device specific protocols and interfaces, for example OPC or RS-232. To
exchange all production equipment to new devices which all support the same spe-
cific protocol and interface is unfeasible. Instead, the diversity of devices has been
embraced and in LISA a communication endpoint is the way to integrate a device.

The communication endpoints are adapters between the messages on the ESB
and the device. Device event data are converted to the LISA message format and are
published on ESB channels. Similarly, the communication endpoint filters events
and converts and communicates event data to the device. The communication end-
point responsibilities are thus:

1. Communicate with the device.

2. Convert between the device’s data format and the LISA message for-
mat.

3. Publish LISA messages on ESB channels.

4. Filter incoming LISA messages from the ESB.

If an application is modified (for example due to hardware replacement, vari-
ables renaming, or new sensors), only the corresponding communication endpoint
needs to be updated.
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LISA Messages
The LISA message format is designed to be simple and enforce as little structure
as possible. It consists of a header and a body. The header has information related
to message sending and routing. The body is an ordered key-value map between
attributes (the keys) and their values. Values are usually of primitive data types
like strings or integers but can also be lists or maps. Hence arbitrary hierarchical
structures can be built and sent in a LISA message. Two attributes are mandatory
in the body, namely an event id and an event timestamp, otherwise there are no
constraints. This makes LISA flexible as it is easy to update, change, and add new
attributes. On the other hand, LISA users need to decide the structure themselves.

LISA messages sent on the ESB are immutable. To refine a LISA message, a
new LISA message is created and sent to the ESB. The new message will have
the same id and timestamp but the content of the message may otherwise change
arbitrarily.

Persistence
When an application failure occurs, for example a random application crash, the
application should be able to recover gracefully and it should behave the same as
if it had not failed. Ideally, other applications should not be able to tell if it has
crashed or not. Of course, the timeliness will be affected but the events generated
by the crashed application should not be affected.

If all events are persisted they can be replayed in the restarted application to
make it reach the same state as when it crashed. Then the application can proceed
from there and produce the same events as if it had not crashed. Replay performance
can be improved by occasionally persisting a state snapshot to limit how much his-
tory has to be replayed. For practical reasons there should be logic to avoid event
duplicates during replay.

To store the whole history of events with the purpose to persist an application’s
state is called event sourcing [24]. Compared to persisting the state itself there are
some notable differences. With event sourcing the exact same application behavior
can be replayed and analyzed in detail. For example, if an application is found to
be in an incorrect state it is possible to step through the replay of events to find out
which event processing introduced the error. It might even be possible to go back
and correct some such errors retroactively.

Another advantage of event sourcing is that it is possible to apply the event
history to new applications. For example, if an application that calculates a new
KPI is added it might be possible to calculate that KPI retroactively for the whole
history. Since LISA is based on event sourcing and store only the events in a journal,
it is possible to change and add services and then replay the events to update the
information. The disadvantage is that it uses more storage space, but since storage
is cheap and there are many potential benefits it is often well worth it [91].
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Event-Based Control
Events originating from different levels can be used to perform high-level coordi-
nation and control. The production could for example be initiated by business level
order event and carried out by interaction between production machines, coordina-
tion software, and field devices. As there is no central coordinator, this is classified
as service choreography rather than service orchestration.

Manufacturing Views Two manufacturing views are machine-centered and order-
centered. A machine-centered view focuses on the flow through each machine while
an order-centered view focuses on flow of the product being produced for each or-
der. On the lower level, a machine-centered view makes more sense since it is easier
to get the control right for one stand-alone machine than for a group of coupled ma-
chines. On the higher level, an order-centered view is more relevant as produced
products are parts of orders which should be possible to trace and visualize. For the
coordination in between, either view may be chosen and both have their advantages.
Either you get a good overview of the machines or of the order. With the right events
both views can be constructed.

Control Unlike the upper levels which should not depend on details about the
lower levels, control and coordination require some knowledge about the lower lev-
els. A coordination application should also select a manufacturing view. With a
machine-centered view, each machine selects which product to process next and
gets information about how to process the product. With an order-centered view,
each product selects where it should be processed and tells the machine how it
should be processed.

With three similar workstations a machine-centered application could look like
in Figure 6.21 and an order-centered application could look like in Figure 6.22. Here
reusable procedures are particularly useful for workstation and order control.

A difference between event-driven control and service orchestration with DPWS
or OPC UA is that these have built in error handling to make it possible to detect if
an operation call fails. With event-driven control, a request is sent as an event and
to tell if the operation was successful an acknowledgment event is required.

JGrafchart to LISA Connection A communication endpoint for JGrafchart’s
Socket I/O was created. There is a mismatch between LISA which is event-driven
and JGrafchart which is executed periodically. If events are allowed to arrive at any
rate to JGrafchart, pulse events might be invisible to the JGrafchart application. To
avoid this kind of issues the communication endpoint throttles the message delivery
rate to JGrafchart according to the application’s scan cycle time.

Demonstrator Control with LISA was evaluated against a system consisting of a
real PLC connected to a physical system, a simulated CNC machine, and a simu-
lated order system. The CNC and order system consist of communication endpoints
only and the PLC system is connected via an OPC communication endpoint. In the
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Figure 6.21 A pseudo chart for machine-centered control. The workstation has
been extracted as a procedure which is parameterized by its I/O and processing in-
formation for each product.
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Figure 6.22 A pseudo chart for order-centered control. The control for each prod-
uct is executed in a separate procedure call.
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Figure 6.23 An overview of the production of an order in the LISA demonstrator.
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OPC communication endpoint, all writable variables generate an event when they
change which ensures acknowledgments for write requests.

An overview of the production of an order is shown in Figure 6.23. For the
demonstrator an order-centered view was selected and when a new product is re-
quested by the order system its control in JGrafchart is executed in a separate pro-
cedure call. The request for a new product also triggers the CNC machine to start
producing the product. When the CNCing is completed the product enters the physi-
cal system controlled by the PLC and JGrafchart begins to send requests to the PLC
which handles the real-time control. When the production is completed, an event
containing the production log is sent. The resulting control program in JGrafchart
is similar to that of Figure 6.22.

Conclusions
Application integration in LISA was straightforward for the demonstrator. The ad-
vantages of the extreme loose coupling of EDA were also experienced. In particular,
applications could be developed and tested in isolation as the other application were
easily replaced by mockups which produce events without their respective physical
device.

The presented architecture has been developed with discrete manufacturing in
mind, where processes are running asynchronously. One core feature of LISA is that
it should be usable for any device and application. As a result the LISA message
format is very flexible.

Involvement of several industrial partners provided valuable feedback on the ap-
plicability of the research. Off-the-shelf solutions, for example ActiveMQ, permits
reuse of well-proven technology. The industrial involvement also permitted evalua-
tion of the architecture.

As a result, LISA is an event-based service oriented architecture which offers
flexibility and scalability both for control of low-level applications and aggregation
of higher level information, such as KPIs.

6.5 LabComm

LabComm [61] is a binary communication protocol for one-way communication
of structured data samples. When a connection is made the signature of all pos-
sible samples are sent. The protocol is thus self-describing and compatibility can
be ensured at runtime by comparing received and expected signatures. When the
signatures have been sent, samples are sent with minimum communication over-
head. LabComm is thus suitable for performance critical communication. Primitive
data types such as boolean, int, double, and string are supported as well as structs,
fixed and variable size arrays, multidimensional arrays, and arrays of arrays. A Lab-
Comm sample is described by a specification which can be used to generate code
for various programming languages such as C, C#, Java, and Python.
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There exists two versions of LabComm, namely the 2006 and the 2013 ver-
sion. The sample specification language is the same but the binary format has been
changed and thus the versions are runtime incompatible.

Motivation
With real-time execution of JGrafchart applications, high performance interaction
with the applications should also be possible. Integrated LabComm support has
been added to support high performance communication of structured data.

LabComm is and has been used in several robotics research projects at the de-
partment, for example ROSETTA [39, 38] and PRACE [92] where it is used for
sequence control with JGrafchart. However, as there was no integrated support for
LabComm in JGrafchart a LabComm Custom I/O based on an internally modified
Custom I/O interface was used. This had several drawbacks such as a hard coded
LabComm specification, only support for the 2006 version, hard coded TCP con-
nection, and the lack of Custom I/O array support. The hard coded LabComm speci-
fication consisted of a few LabComm samples where each sample was a large array.
Instead of a few arrays in JGrafchart, there were nearly 1,000 Custom I/O elements.

In the robotics environment the LabComm connection is made through an Orca
[93] server which requires some additional special handling.

Normal LabComm Use
The LabComm implementation primarily consists of two parts, the compiler and
the runtime library. The compiler parses and checks the LabComm specification and
produces generated code for the target language. The semantics and code generation
are implemented with JastAdd. The runtime library provides communication classes
and implements the low-level communication details.

The typical workflow is to, see Figure 6.24:

1. Write a LabComm specification

2. Generate code to handle the LabComm samples in the specification in
the target language

3. Integrate the generated code

Since it should be possible to write JGrafchart applications with custom samples
this workflow cannot be used.

LabComm Integration in JGrafchart
To use LabComm in JGrafchart the new I/O element LabComm Object has been
added. Each LabComm Object has its own LabComm sample specification and set-
tings for the connection, LabComm version, and channel direction, see Figure 6.25.

The workflow to use LabComm with the integrated support in JGrafchart is to
add a LabComm Object to the application, configure it, and write the application to
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1 Generated 

LabComm 
library 

2 
sample struct { 
  int appId; 
  string nodeId; 
  boolean active; 
} setStepActive; 
 
sample int tick; 
sample int stopped; 

LabComm specification 

3 

User application 

Figure 6.24 The typical workflow to write an application that supports LabComm.
1) write the LabComm specification, 2) generate code for the target language, and 3)
integrate the generated code.

Figure 6.25 Configuration dialog for a LabComm Object. This particular Lab-
Comm object is configured to run a socket server on port 9999, to communicate
using the binary format of LabComm version 2013, and to be allowed to both send
(output) and receive (input) samples. In the LabComm specification, a custom type
called myUserType and the two samples s1 and s2 are declared.
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send and receive samples and use the sample data. Compared to the normal work-
flow, the steps to generate and integrate code are automatic and the user does not
have to know the internals of the LabComm implementation.

The structured data in the LabComm specification are mapped to invisible in-
ternal JGrafchart elements. Primitive LabComm types are mapped to the corre-
sponding JGrafchart variable types, for example a LabComm double is mapped to a
JGrafchart Real variable. LabComm structs are mapped to Workspace Objects. One-
dimensional LabComm arrays of primitive types are mapped to JGrafchart lists.
Other arrays are not supported. The internals of the LabComm Object are accessed
with dot notation. The samples are accessed by their respective sample name and
are placed immediately below the LabComm Object. Figure 6.26 shows the inter-
nals of the LabComm Object in Figure 6.25 and how to use it. As the sample s2 has
a fixed length, the internal JGrafchart list is initialized with that number of elements
with its data type’s default value.

LC

lc

s1

I I

s2

c

Real 

d

3.3

S lc.s1.b = 1;

S lc.s1.c.d = lc.s1.b + 2.3;

S lc.s2.set(1, 4);

S lcSend(lc);

Bool 

b

1

(0, 4, 0)

Figure 6.26 How to use the data in the LabComm Object from Figure 6.25, here
named lc. The internal structure of lc is shown to the left. s1 is a struct and has thus
be mapped to a Workspace Object and s2 is an int array and has thus been mapped to
an Integer List. In the first action the boolean b of sample s1 is assigned the value 1.
In the third action the second element of the int array is assigned the value 4. Finally,
all samples in lc are sent, that is, both s1 and s2.

LabComm samples are sent with the new built-in function lcSend() which
takes either one or two parameters. The first parameter to lcSend() is the Lab-
Comm Object and the second parameter is the name of the sample to send. If the
second parameter is omitted, all samples in the LabComm Object are sent.

When a LabComm sample is received the data in the LabComm Object is up-
dated accordingly. The new built-in function lcReceived() can be used to check
if a LabComm sample has been received since the previous scan cycle.
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Implementation
The LabComm compiler code was added to JGrafchart together with two new
JastAdd extensions. One extension adds interpreted execution of the LabComm
sample specification AST. It does what the generated classes typically do, that is,
registers, encodes, and decodes samples. The other extension adds JGrafchart spe-
cific features. It performs JGrafchart specific checks, such as checking that only
supported arrays are used. It is also the glue between the LabComm samples and
the LabComm Object. It creates the LabComm Object’s internal structure and inte-
grates it with sending and receiving of samples.

The LabComm runtime library code for Java for both version 2006 and 2013
were also added to JGrafchart. They had to be modified slightly since it assumed
that code generation would be used.

Special code to connect through an Orca server for LabComm version 2006 was
also added.

Conclusions
The LabComm integration in JGrafchart has been tested and works both for normal
use and through an Orca server. Less knowledge about LabComm is needed to use
LabComm in JGrafchart than in for example Java since more is taken care of auto-
matically. The next step is to replace the special Custom I/O implementation which
should be straightforward.

To add code generation for the integrated LabComm support in JGrafchart
should also be straightforward as this is closer to the normal LabComm use, see
Figure 6.24. The LabComm specification is given by the application and code gen-
eration for LabComm as well as the LabComm library are already available for
several languages. What remains to be added is code generation for the language
specific glue code.

6.6 Functional Mock-up Interface

FMI [94] is a recent standard which aims to combine dynamic system models de-
veloped in various tools. Modelica [95], the state of the art language to express
dynamic behavior of technical systems, promotes this standard and the number of
tools that support FMI is increasing rapidly.

A tool can export a model as a Functional Mock-up Unit (FMU) which can then
be combined with other FMUs to compose the whole system. The FMI standard
consists of two parts, namely FMI for Model Exchange and FMI for Co-Simulation.
The difference is that an FMI for Model Exchange FMU only provides a model
while an FMI for Co-Simulation FMU provides both a model and an individual
solver to simulate the system’s behavior. For FMI for Model Exchange all models
can be combined and simulated by the same solver. For FMI for Co-Simulation all
individual solvers are instead coordinated.
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In this section it is investigated if and how FMI for Co-Simulation support can be
added to JGrafchart [96]. First FMI for Co-Simulation is described in more detail.
Then the need to connect JGrafchart to FMI for Co-Simulation is motivated and
possible ways to implement it is discussed.

FMI for Co-Simulation
FMI for Co-Simulation is a standard which enables simulation of coupled technical
systems with focus on time-dependent problems. It is designed for both stand-alone
FMUs and FMUs which are wrappers for simulation tools.

A co-simulation is executed from a given starting time to a stop time which is
not necessarily pre-specified, see Figure 6.27. There is an FMI master which co-
ordinates the co-simulation and there are FMU slaves which correspond to models
or subsystems. Each slave has a pre-specified set of inputs and outputs which are
known by the master. The master is responsible to initialize the slaves and handle
the coupling between them by getting and setting their inputs and outputs.

The co-simulation is executed for one time interval at a time, known as a com-
munication step, during which each slave executes independently. Between the com-
munication steps are the communication points where the master communicates
the inputs and outputs between the slaves. Slaves can specify their desired com-
munication step size and the communication step size may also vary during the
co-simulation provided that all slaves support this. A communication step may also
fail. Then a new communication step of different size may be attempted if all slaves
support this. It is the master who decides the communication step size and what to
do when one fails.

Start time Stop time Communication points 

Communication steps 

Slave 1 

Slave 2 

Slave i 

Figure 6.27 Overview of an FMI co-simulation.

The standard does not define an FMI master algorithm, and the level of sophis-
tication is depends on the master implementation. What the standard does define is
the Application Programming Interface (API), a set of slave capabilities, and rules
for how these may be used.

An FMU is described by an XML metadata file which primarily contains the
inputs and outputs. It also contains co-simulation capabilities such as support for
variable communication step size and communication step redo.
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Motivation
In a laboratory exercise at the department, JGrafchart is used to control both a sim-
ulated and a real batch tank. The simulated process is implemented as a simplified
model in Java. It is also possible to implement simulations of simple processes di-
rectly in JGrafchart. However, there is much potential for improvement in terms
of effort to specify the simulated model, quality of the models, support to inspect
simulation results, and time required to simulate, especially for more complicated
physical systems. To extend JGrafchart with support for FMI for Co-Simulation
gives more and better opportunities to connect JGrafchart to other tools.

There is also a need to efficiently develop and test JGrafchart control applica-
tions before they are used to control the real system. This may save a lot of time as
many industrial systems have slow dynamics and to run simple test on the real sys-
tem could take days. With a good model of the system the development time could
be reduced considerably, and the quality of the control application will be higher.
Industrial systems are often hazardous and to run a proper simulation first could be
essential for safety reasons. For the batch tank in the laboratory exercise, the simu-
lated process is 10 times as fast as the real process. Special code is required to add
support for this which both makes it fragile and susceptible to errors as it is possible
to run the control application in the wrong mode, for example in simulation mode
against the real system. With a simulation environment that does not run according
to wall clock time, it can be run faster and without the special code.

It is also important to verify that the system behaves properly when controlled by
a JGrafchart application. JGrafchart executes periodically and only sees the sampled
behavior. When controlling a continuous system, the behavior between the sampling
points may also be of interest. Also, JGrafchart applications can currently only be
executed according to wall clock time. With a large or complex simulated system
the JGrafchart application might execute faster than system can be simulated.

Support for state machines were introduced in Modelica 3.3 [97], providing a
way to implement hierarchical state machines directly in Modelica. On one hand,
JGrafchart does not provide the mutual hierarchical structuring property with data
flow that Modelica state machines do [97]. On the other hand JGrafchart supports
high-level features such as object-orientation, hierarchical structuring, code reuse,
and exception handling and is based on an industrial automation language.

JGrafchart with FMI Support
The JGrafchart data types Real, Integer, Boolean, and String correspond to the FMI
data types fmiReal, fmiBoolean, fmiInteger, and fmiString. Both variables, lists (ar-
rays), and I/O in JGrafchart use only these data types. As the I/O in the JGrafchart
application are the means to connect it to external components, these would ideally
be the FMU inputs and outputs. The mapping for Custom I/O and Socket I/O is
straightforward. DPWS on the other hand is based on method calls instead of data
and need some configuration to be able to expose the methods as data instead. The
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same applies to OPC UA methods. Thus DPWS and OPC UA methods should be
excluded initially. Something similar to the socket I/O prototype for DPWS could
be added later. The number of FMU inputs and output is fixed. The only case where
this is an issue is for variable size arrays in LabComm samples. A workaround for
this could be to specify an upper bound for the array size.

Regarding communication step redo, the state of a JGrafchart application is de-
scribed by variable, list, and I/O values as well as which steps are active, how long
they have been active, and current procedure calls. The number of simultaneous pro-
cedure calls and the list sizes are unbounded. However, as these are internal states
this should not be an issue.

JGrafchart applications are executed periodically, one scan cycle at a time, as
described in Chapter 4. The execution can be modeled as discrete events at the be-
ginning of each scan cycle. During the rest of the scan cycle nothing happens. Ide-
ally, there would be communication points just before and just after the beginning
of each scan cycle. With a sufficiently small communication step size this should be
sufficient for all JGrafchart applications, regardless of scan cycle time. This could be
requested by setting the stepSize attribute of the DefaultExperiment element
in the FMU XML.

JGrafchart applications are currently always executed according to wall clock
time and it is not possible to get and set the execution state as there has been no
need for this before. However, it should be possible to extend JGrafchart with the
possibility to get and set the current execution state to support communication step
redo.

Next, ways to connect a JGrafchart application to an FMI master are discussed.

Hardware-in-the-loop The simplest way is to consider the JGrafchart application
as a hardware-in-the-loop, see Figure 6.28. Then the JGrafchart application executes
as usual, with the FMI master getting and setting its I/O. The co-simulation must
then be able to keep up with and synchronize with JGrafchart’s wall clock time ex-
ecution. The main advantage of this approach is that no modifications to JGrafchart
are necessary, it would be sufficient to create an FMU compatible Custom I/O or
TCP server for Socket I/O. This is a suitable approach for FMU integration proto-
typing but it does not improve matters for systems with slow dynamics.

FMI 
CustomIO 
SocketIO 

Hardware-in-the-loop 

Figure 6.28 Overview of connecting JGrafchart as a hardware-in-the-loop. The
FMI Wrapper has been written for a specific JGrafchart application.
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Generic FMI Wrapper Another approach is to implement a generic FMI wrap-
per for JGrafchart and extend JGrafchart with support for external clocks, see Fig-
ure 6.29. It is a small effort to add this feature. The same FMI wrapper would
be possible to use with any JGrafchart application and the wrapper would expose
different inputs and outputs to the FMI master depending on the JGrafchart appli-
cation that it currently wraps. This approach only requires slightly more effort than
the hardware-in-the-loop approach and gives more benefits as the co-simulation is
no longer executed according to wall clock time. For this approach it is suitable to
also add support for playback and to be able to inspect individual scan cycles of
the JGrafchart application during the co-simulation. To add these features should
only be a moderate effort, it could be as simple as trace printouts or as advanced
as interactive scan cycle stepping. Compared to the hardware-in-the-loop case, the
main drawback is that modifications to JGrafchart are required. However, these ad-
ditions are not solely useful for FMI for Co-Simulation. They open up possibilities
for integration with other tools and improves JGrafchart’s debugging capabilities.

FMI 
CustomIO 
SocketIO 

Figure 6.29 Overview of connecting JGrafchart with a generic FMI wrapper. The
FMI Wrapper is written so that it can be used for any JGrafchart application. Here,
JGrafchart has also been extended to make it possible to run application according
to an external clock.

Stand-alone FMU Yet another approach is to generate a stand-alone FMU for a
JGrafchart application, see Figure 6.30. The FMU is then self-contained and does
not rely on JGrafchart running in parallel. This is a clean and portable approach
but requires the most effort and might make it harder to inspect the co-simulation
results.

FMI CodeGen 

Figure 6.30 Overview of using code generation to create a stand-alone FMU for a
JGrafchart application. The FMU is executed without JGrafchart.

A hybrid approach is to use a generic FMI wrapper with both JGrafchart and
the JGrafchart application embedded as additional FMU resources, see Figure 6.31.
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Then the FMU is stand-alone but no code generation is required. A drawback with
this approach is that the FMUs would be roughly 20 MB larger, this is, the size of
JGrafchart.

FMI Export 

Figure 6.31 Overview of exporting a stand-alone FMU with JGrafchart and the
JGrafchart application embedded.

Implementation
The FMI API is defined for C and FMUs are distributed with C source code and/or
binary executables for supported platforms. JGrafchart is written in Java and is plat-
form independent. However, the FMU itself can be implemented in any language
which is able to interact with C code, that is, practically any language. There are
language specific wrappers for FMI, for example PyFMI for Python [98] and JFMI
for Java [99] which uses JNA [100] to interface with native code. Which language
that is used is less important and up to the one who implements the FMU. Note,
however, that parts of the Custom I/O implementation must be written in Java.

Conclusions
It has been investigated if and how support for FMI for Co-Simulation can be added
to JGrafchart. It appears to be possible and there are several alternative ways that it
could be realized.

The next step is to implement a prototype to verify that it actually works. A suit-
able first attempt would be the hardware-in-the-loop approach with an unmodified
JGrafchart implementation and the use of Custom I/O and/or Socket I/O. A desirable
future solution would be either Generic FMI Wrapper or Stand-alone FMU.
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7
Grafchart for PID Control

In this chapter, work related to PID control is presented [101] [102]. As control
loops typically need to be executed in real-time, this work is related to the real-time
execution described in previous chapters.

First, PID control is introduced. Next, a PID controller that has been imple-
mented as a reusable library component in JGrafchart is described. It makes it easy
to use Grafchart for PID control in general and for education in particular. Finally,
a previously unknown problem with the PID controller algorithm is presented and a
solution to the problem is proposed. Both the PID component and the improvements
to the PID algorithm are immediately usable wherever PIDs are used. This includes
for example both process automation, manufacturing, and robotics.

7.1 PID Control

The PID controller is used in more than 95% of all control loops [13] and is by far
the most commonly used controller in industry. A basic PID controller in continuous
time is described by

u(t) = K
(

e(t)+
1
Ti

∫ t

0
e(τ)dτ −Td

dy f (t)
dt

)
(7.1)

where u(t) is the control signal, e(t) is the control error (2.1), y f (t) is the filtered
process value, K is the controller gain, Ti is the integral time, and Td is the derivative
time.

PID Features
A PID implementation must consider many aspects to ensure good behavior un-
der all circumstances. In particular for the work described later, physical limits of
signals need to be considered. If the physical limits for the control signal are not
considered, there is integrator windup [103] when the control signal saturates, see
Figure 7.1. Here, the integrator, and thus the desired control signal, continues to
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grow even though the real control signal is saturated and cannot be increased fur-
ther. When the set-point is reached and the integral terms starts to decrease, it takes
a long time before the desired control signal is in the allowed range again. This
causes a large process value overshoot which is not desirable. The solution to in-
tegrator windup is known as anti-windup and involves adjusting the integral part
according to the actually actuated control signal. This means that the control signal
limitation is considered and that this knowledge is used to make sure that the control
signal does not grow outside the control signal range. Hence, there is no overshoot,
see Figure 7.2.
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Figure 7.1 An example that illustrates integrator windup. The upper plot shows
the process value (solid) and set-point (dashed). The lower plot shows the actually
actuated control signal (solid) and the control signal requested by the PID (dashed).

In (7.1) the controller parameters are constant, which is not true for practical
applications as the operator may change them at any time. A change in controller
parameters should be bumpless, that is, the change should not cause a sudden con-
trol signal change. Many PID implementation also support manual mode, that is,
the PID is temporarily turned off and the control signal is chosen manually. To turn
manual mode on and off should also be bumpless.

Tracking is a feature similar to anti-windup which applies to all situations where
the actually actuated control signal is not the same as the PID’s requested control
signal. One example is selectors, where several controllers are run in parallel and,
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Figure 7.2 The same experiment as in Figure 7.1 but with anti-windup included in
the controller. The requested and actuated control signals are almost the same.

depending on the circumstances, the control signal from one of the controllers is
selected and actually actuated. All controllers then need to track the actuated control
signal to make sure that switching between the controllers is bumpless.

PID Algorithms
Most PID controllers are implemented on positional form, which means that the
control signal is calculated directly. Each sample, a new control signal is calculated
based on the new and/or previous process and set-point values as well as on the
internal state of the PID controller. A drawback with positional form is that the
internal states, primarily the integrator state, are sensitive to mode and parameter
changes and many special cases are require to get proper behavior.

An alternative to positional form is velocity form, which instead calculates an
increment to the control signal each sample. An advantage with velocity form is that
it has fewer internal states. Most notably, the integral term is not an internal state
of the controller. Instead it is included in the control signal itself, which means that
several controller features like anti-windup, tracking, and bumpless mode changes
practically come for free. In conclusion, the velocity form implementation does not
require as many special cases which makes it more compact and easier to implement
correctly.
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A discrete PID algorithm on velocity form [103] is described by

∆u(tk) = u(tk)−u(tk−1) = (7.2)
= ∆P(tk)+∆I(tk)+∆D(tk)+∆uff (tk) (7.3)

∆P(tk) = P(tk)−P(tk−1) =

= K(bysp(tk)− y(tk))−K(bysp(tk−1)− y(tk−1)) (7.4)
∆I(tk) = I(tk)− I(tk−1) = bi1e(tk)+bi2e(tk−1) (7.5)

∆D(tk) = D(tk)−D(tk−1) =

= ad∆D(tk−1)−bd(y(tk)−2y(tk−1)+ y(tk−2)) (7.6)
∆uff (tk) = uff (tk)−uff (tk−1) (7.7)

where y is the process value, ysp is the reference value, ∆u is the control signal
increment, and ∆P, ∆I, and ∆D are the increments for the proportional, integral,
and derivative part respectively. K is the controller gain and b is the scalar set-point
weight for the proportional part. bi1 and bi2 are constants which depend on how
the integral term is discretized. Similarly ad and bd are constants which depend on
how the derivative term is discretized. Most derivative part discretizations except for
backward difference either have issues with overflow or instability. For backward
difference the constants are ad = Td

Td+Nh and bd = KTdN
Td+Nh , where Td is the derivative

time and N is the maximum derivative gain. Finally, uff is the feedforward signal.
Without integral action the velocity form has arbitrary stationary error. The rea-

son is that the proportional part is assumed to be included in the control signal and
only needs to be adjusted when the measurement value changes. This assumption
does not hold, for example, when tracking or when the control signal saturates. To
avoid this issue, the proportional part is then instead

∆P(tk) = P(tk)+ub(tk)−u(tk−1) =

= K(ysp(tk)− y(tk))+ub(tk)−u(tk−1) (7.8)

where ub is the bias term which will be set to uff to support feedforward for
controllers without integral action. Note also that set-point weighting ha removed
for this case.

7.2 Grafchart for PID Control and Education

The PID controller concept is taught in most introductory automatic control courses
and given its wide use it is important that the students get a deep understanding
for PID control. The availability of interactive learning tools in these courses play
an important role. Examples of interactive learning tools in the field of automatic
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control are ICtools [104] and Interactive Learning Modules for PID [105]. ICtools
is an interactive MATLAB based tool for learning the basics of automatic control
whereas Interactive Learning Modules for PID is a learning tool which covers many
aspects of PID controller design and tuning in an intuitive and interactive way. Stu-
dents should also be familiarized with PID controllers in a realistic setting, that is,
controlling a physical process. If a physical process is not available, although this is
not ideal, an animated simulation of the process can be used instead. The idea is that
the students control the process, and by doing so develop an understanding of the
basic ideas of automatic control and get an intuitive feel for how the PID controller
and its parameters work.

A reusable PID implementation and an interactive PID learning module for
educational purposes have been implemented in JGrafchart. The learning module
is designed for users without any knowledge about JGrafchart. Unlike MATLAB,
JGrafchart is free and based on an industrial control language. Unlike many other
learning tools, JGrafchart can be connected to physical processes and can be used
in industrial environments.

PID Implementation
A full-fledged PID controller has been implemented as a reusable Grafchart Proce-
dure which means that it can be used for any number of control loops by adding a
Procedure Step or Process Step for each control loop. The Procedure is called PID
and is shown in Figure 7.3. The Procedure parameters are explained in Table 7.1.

S PV2 = PV;

S PV1 = PV;

S SP1 = SP;

S FF1 = FF;

S useFF1 = useFF;
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execFreq

1

exec

// Execute one increment

S h = execFreq * getTickTime() / 1000.0;

S dP = (Ti != 0) ? K*(b*SP-PV) - K*(b*SP1-PV1) : K*(SP-PV) + (useFF ? FF : 0) - TR;

S dI = (Ti != 0) ? K*h/Ti*(SP-PV) : 0;

S dD = (Td/(Td+Nd*h))*dD - (K*Td*Nd/(Td+Nd*h))*(PV-2*PV1+PV2);

S dFF = (useFF & useFF1) ? FF - FF1 : 0;

S dMV = dP + dI + dD + dFF;

S MV = manualMode ? Man : TR + dMV;

// Update previous values

S PV2 = PV1;

S PV1 = PV;

S SP1 = SP;

S FF1 = FF;

S useFF1 = useFF;

exec.t >= execFreqstop1Bool 

stop

0

Real 

useFF1

0.0

Figure 7.3 The new PID Procedure. The parameter values here are the default
values. See Table 7.1 for parameter descriptions. The step actions are not intended
to be readable in the printed version.
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Table 7.1 Parameter descriptions for the parameters of the PID Procedure in Fig-
ure 7.3.

Parameter Description
PV Process Value, the measurement value for the process.
SP Set-Point, the reference value.
TR TRacking signal, the actually actuated control signal in the pre-

vious scan cycle.
MV Manipulated Variable, the control signal.
FF FeedForward, an external signal added to the control signal.
Man Manual, the control signal when in manual mode.
K Controller gain.
Ti Integral time.
Td Derivative time.
Nd Maximum derivative gain, usually called N but that is a reserved

word in JGrafchart.
b Set-point weight for the proportional part.
execFreq Execution Frequency, the PID controller sample time is

execFreq times the calling Grafchart application’s scan cycle
time.

useFF Signal to turn feedforward on/off.
manualMode Signal to turn manual mode on/off.
stop Signal to terminate the Procedure call and thus stop executing

the PID controller.

A Procedure executes at the same rate as the application it is called from. The
PID sample time is thus limited to a multiple of the application’s scan cycle time.
The PID algorithm is implemented in a single step and can thus execute at the same
rate as the caller.

In Procedure calls, each Procedure parameters can be set as either call-by-
reference (R), call-by-value (V), or default (omitted). For call-by-value and default
the parameter gets its value when the call is made. For call-by-reference the param-
eter will be a reference to a variable or I/O in the calling context. To be useful, PV,
SP, TR, and MV should all be call-by-reference and the caller should set and update
all parameters except MV which is the PID Procedure’s sole output.

A call to the PID Procedure is shown in Figure 7.4. Here, the parameters for
feedforward, manual mode, set-point weighting, and the D-part are omitted and will
thus get their default values, which means that these features are not used. Call-by-
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Figure 7.4 A Process Step that calls the PID Procedure.

reference is used for all parameters. For example, the parameter PV in the call will
be a reference to the variable Level in the calling context. Changing the value of
the variable also updates the parameter and vice versa.

Code The code for the main step (exec) of Figure 7.3 is shown in Figure 7.5. It
is a straightforward implementation of the discrete equations in Section 7.1. The
velocity form was chosen as it requires fewer special cases which means less code,
specifically considerably less special code which is rarely executed and thus more
likely to contain errors. For no particular reason, backward difference was selected
for the integral part which gives bi1 =

Kh
Ti and bi2 = 0.

// Execute one increment 
S h = execFreq * getTickTime() / 1000.0; 
S dP = (Ti != 0) ? 
         K*(b*SP-PV) - K*(b*SP1-PV1) : 
         K*(SP-PV) + (useFF ? FF : 0) - TR; 
S dI = (Ti != 0) ? K*h/Ti*(SP-PV) : 0; 
S dD = (Td/(Td+Nd*h))*dD - 
         (K*Td*Nd/(Td+Nd*h))*(PV-2*PV1+PV2); 
S dFF = (useFF & useFF1) ? FF - FF1 : 0; 
S dMV = dP + dI + dD + dFF; 
S MV = manualMode ? Man : TR + dMV; 
 
// Update previous values 
S PV2 = PV1; 
S PV1 = PV; 
S SP1 = SP; 
S FF1 = FF; 
S useFF1 = useFF; 

Figure 7.5 The code for the main step (exec) of the PID Procedure in Figure 7.3.

In Figure 7.5, first the current PID controller sample time is calculated. Then,
the P, I, D, and feedforward increments are calculated. dP and dI have special han-
dling if the integrator is turned off as discussed in Section 7.1. The feedforward
calculation has special handling to avoid bumps when feedforward is enabled at the
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same time as the feedforward value is changed. After this, the whole control signal
increment dMV is calculated and then the control signal is selected depending on the
current mode, that is, manual or automatic. Note that TR is typically the limited MV
from the previous scan cycle and that the caller is responsible to update TR. Finally,
values for use in following samples are stored in internal variables. The suffix tells
how many scan cycles old the value is, for example PV1 is PV from the previous
scan cycle.

Execution Order Using the PID Procedure properly requires that the proper exe-
cution order is ensured, that is:

1. Execute the PID controller.

2. Limit the control signal.

3. Update the simulated process.

The PID Procedure uses S actions to make it execute as early as possible (step
4 in the execution model). Hence, to implement a process simulation or to model
control signal limitations, P actions can be used (step 6 in the execution model).
To ensure that an update of a simulated process uses the limited control signal, the
limiting should be a preceding P action in the same step as the simulation update.

Educational Aspects
For educational tools it is paramount that they are freely available and easy for any-
one to run. The interactive PID learning module presented only requires the freely
available and platform independent software JGrafchart which has been verified to
run on both Windows, Linux, and Mac. The PID Procedure and the interactive mod-
ule are both included in JGrafchart. The learning module can be started directly with
a separate shortcut or through the menu in JGrafchart.

So far, the learning module only consists of one exercise which contains a sim-
ulated tank process similar to the upper tank of the tank process used in the intro-
ductory automatic control course at the department. The process consists of a water
tank and the objective is to control the tank’s water level. The inflow to the tank
is controlled with a pump and there is an outflow through a hole in the bottom of
the tank. Figure 7.6 shows a screenshot of the exercise. There is a live animation
showing the current state of the (simulated) process and both set-point and basic
control parameters can be changed while executing. This is a suitable exercise for
beginners.

It is possible to create and use simulated processes for hands on or laboratory
exercises. With JGrafchart’s capability to connect to external environments it is also
possible to use the same implementation to control the actual process. One possibil-
ity is to control a physical process in a laboratory exercise and provide a simulation
of the physical process for preparatory or followup work. Another possible use is
live demonstrations in lectures.
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Figure 7.6 In the left part, the set-point and controller parameters can be changed
and an animation of the simulated tank process is shown. The upper plot shows the
measurement value (black) and the set-point (red). The lower plot shows the con-
trol signal. In this screenshot, the set-point and controller parameters were recently
changed several times.

Conclusions
The PID Procedure has been added to a control library that is included with
JGrafchart to make it easy to use Grafchart for PID control. It is a full-fledged PID
which supports most of the common PID features such as anti-windup, tracking,
feedforward, set-point weighting, automatic/manual mode, and bumpless parame-
ter and mode changes. Possible extensions to the current PID Procedure are, for
example, an optional process value filter or more advanced features, such as an
auto-tuner.

The PID controller is taught in most introductory automatic control courses. To
aid learning of new concepts, interactive learning tools play an important role. The
interactive PID module presented aims to aid obtaining both an understanding of the
PID controller concept and an intuitive feel for PID parameter tuning in an industrial
setting. Unlike many other learning tools, JGrafchart is free, based on an industrial
control language, and can be used in industrial environments. The learning module
is freely available and has been designed for users without any knowledge about
JGrafchart. Future work includes evaluating the learning module by including it
in the education as well as extending the learning module with more exercises to
include more of the features already implemented in the PID Procedure.
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7.3 A PID Algorithm Improvement

In this section, an issue analogous to integrator windup is presented. The issue
affects the derivative part when the process value saturates and has been named
derivative backoff. First, derivative backoff will be explained in detail, followed by
a discussion about various attempts to solve the issue. Finally, a solution is proposed
which only requires that the controller also has an integral part and that it knows the
process value limits.

Derivative Backoff
Knowledge about future process behavior can be used to get better control per-
formance. The derivative part of the PID controller predicts the process value Td
seconds in the future by considering the current process value derivative. For ex-
ample, if the process value is increasing the process value derivative is positive and
thus the derivative action will be negative, see (7.1). In essence the derivative part
counteracts fast process movements, which can be used to, for example, avoid over-
shoots.

The derivative part depends on accurate process value measurements. Noisy
measurements lead to noisy derivative action. To suppress the effect of measurement
noise the process value is usually filtered. A saturated process value means that there
is no information about the current process value derivative and thus the derivative
part breaks down. At saturation, the derivative of the measured process value is
0, which means that there is no derivative action. This makes sense as there is no
information about future process values. However, the behavior when the process
value saturates makes less sense as can be seen in Figure 7.7. Here the process
is controlled close to the process value limit (100) when a large load disturbance
occurs. Just before the process value saturates the process value derivative is positive
which means that the derivative action is negative. Shortly after the process value
has saturated the derivative part is 0, that is, there is no derivative action. In other
words, when the process value reaches its maximum the derivative part backs off
and thus the control signal is increased. This is not a desirable behavior.

The control signal change due to derivative backoff is as large as the derivative
part was just before the saturation. The change will be close to a step if the derivative
part filter has high bandwidth, while a low bandwidth filter gives a smoother change.

In the example in Figure 7.7 the process P= 1
(s+1)4 and its corresponding MIGO

design method PID parameters with M = 1.4 from [103] have been used. The pro-
cess has been discretized with zero-order hold with a sample time of h= 0.04 s. The
controller parameters are K = 1.19, Ti = 2.22, and Td = 1.21. A first order filter for
the derivative part has been used ( sTd

1+sTd/N ) with maximum derivative gain N = 10.
Derivative backoff occurs whenever the process value saturates, for example,

due to a load disturbance as seen in the previous example or due to a set-point
change. It is easy to find examples where the effects of derivative backoff are much

122



7.3 A PID Algorithm Improvement

0 5 10 15 20 25

90

95

100

105

110
Process Value

t

0 5 10 15 20 25

20

40

60

80

Control Signal

t

0 5 10 15 20 25
−20

0

20

40

60

80

100
Control Signal Parts

t

Real process value
Measured process value
Set-point

Control signal

P part
I part
D part

Figure 7.7 An example where a load disturbance causes derivative backoff to oc-
cur. When the process value saturates, the derivative part backs off and thus the
control signal is increased. The process value is thus pushed further away from the
measurement range.
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more severe by selecting a favorable process and hand tuning the controllers. How-
ever, this example is meant to demonstrate what the issue looks like and when it
occurs, as well as show that it is an issue, not only for a hand constructed example,
but for relevant processes with well tuned PID controllers as well. Note that the
controller parameters from the MIGO design method are optimized to handle the
kind of disturbance that was applied.

Process Value Saturation Handling
Theoretically, the best way to avoid derivative backoff is to base the derivative action
on an accurate process model which does not saturate, see Figure 7.8. However,
in the typical industrial setting, very limited or no models are available and this
approach must thus be discarded. Also note that it is time consuming to build an
accurate model.

To avoid derivative backoff without a model, the derivative part should be kept
when the process value saturates. A naive approach would be to simply not update
the derivative part during the saturation. This has the disadvantage that when the
process value is no longer saturated, there is initially derivative action in the wrong
direction. As the sign of the process value derivative has then changed, the old
derivative action will vanish quickly. This is similar to derivative backoff, but occurs
when the process value stops being saturated instead of when it becomes saturated,
see Figure 7.9.

It is desirable to keep the derivative part while still starting over from no deriva-
tive action when the process value is no longer saturated. To simply reset the deriva-
tive part when the process value is no longer saturated would cause derivative back-
off then instead. As the whole backoff will be applied as a step this is even worse
than keeping the derivative part constant.

Anti-backoff The proposed solution to derivative backoff is to disable and imme-
diately re-enable the derivative part bumplessly, see Figure 7.10. Practically this
means that the derivative part is moved to the integral part, pseudocode is shown
in Figure 7.11. Note that the derivative part then starts over from 0 and that it will
remain 0 as long as the process value is saturated. An advantage with this approach
is that no new controller parameters are needed. Note also that this solution only
works for controllers with an integral part and that the controller must know the
physical process value limits. This holds for most PID controllers with a derivative
part.

Controllers Without Integral Action For controllers without an integral part the
proposed solution cannot be used as it is not possible to disable the derivative part
bumplessly. The closest thing to the integral part for a PD controller is the bias
term, basically a manually selected constant term, ub, that replaces the integral term
in (7.1), see (7.8). However, to automatically modify the bias term would mean that
the bias is wrong when stationarity is reached again.
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Figure 7.8 The same experiment as in Figure 7.7 using a perfect process model
with an unbounded range, that is, the PID controller uses the real process value
(dotted) instead of the measured process value (solid).
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Figure 7.9 The same experiment as in Figure 7.7 but keeping the derivative part
constant during the saturation. Now the derivative part backs off when the process
value is no longer saturated instead.
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Figure 7.10 The same experiment as in Figure 7.7 where the derivative part is
bumplessly disabled and immediately re-enabled when the process value saturates.
Practically, the derivative part is moved to the integral part.
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// Anti-backoff 
if PV = PVMax or PV = PVMin: 
    I := I + D 
    D := 0 
 
// Ordinary PID implementation 
ad := Td/(Td + Nd·h) 
bd := K·N·ad 
e  := SP - PV 
P  := K·e 
I  := I + K·h/Ti·e 
D  := ad·D + bd·(PV - PVOld) 
u  := P + I + D 
PVOld := PV 

Figure 7.11 Pseudocode for implementing anti-backoff. The first lines are
prepended to an ordinary PID controller implementation. SP is the set-point, PV is
the process value, PVMax and PVMin are the process value limits, and PVOld is PV
from the previous sample. The ordinary PID controller here is simple and does not
even contain anti-windup. However, the modification is the same for a complete PID
implementation.

Another alternative is to increase the time constant for the derivative part filter
and thus have a slower backoff when the process value saturates. The derivative part
will then still back off, but more smoothly. A disadvantage with this is that it must
be decided how much slower it should back off, possibly with a new controller pa-
rameter. The parameter would in essence be a trade-off between normal derivative
backoff, Figure 7.7, and keeping the derivative action constant, Figure 7.9. The new
parameter is unlikely to be tuned and must therefore have a good default value. Note
that for this approach the backoff is still exponential. Yet another alternative is to
have a linear backoff instead and to either configure the backoff rate or the backoff
time. This is more similar to how the integral part works in the PID case. The draw-
back is again that a new controller parameter is needed. However, this parameter has
a more intuitive meaning and is thus easier to tune than a filter slowdown parameter.

Conclusions
For PID controllers with integral action, the control signal range must be considered
to avoid anti-windup. In this section, it has been shown that for PID controllers with
derivative action, the process value range must be considered to avoid derivative
backoff. The proposed solution is to disable and immediately re-enable the deriva-
tive part bumplessly when the process value saturates. This requires that the PID
controller has an integral part and that it knows the process value limits. This holds
for most PID controllers with a derivative part. Controllers without integral action
were discussed and several approaches were discarded. It remains to be investigated
what a good solution is for controllers without integral action.
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8
Summary

The starting point for this thesis was current market trends for industrial automa-
tion. Applications from both process automation, manufacturing, and robotics were
considered. The trends are:

1. Customizable products.

2. Shorter time to market.

3. Powerful global competitive pressure.

For these trends the following challenges were identified:

1. Flexible production systems

2. Integration and utilization of devices and software

The challenge flexible production systems was addressed in Chapter 5 by con-
sidering flexible languages and tools, in particular Grafchart and JGrafchart.

The flexibility of the language was improved by adding transition priorities and
macro step resume mode. Transition priorities make it easier to ensure that alterna-
tive transitions do not conflict. They can also be used to make the transition guard
conditions more concise. The macro step resume mode makes it possible to choose
how and when to resume an aborted macro steps. It can be used to get a shallow
or deep resume or something in between. It is also possible to choose if activation
through an abortive Step Fusion Set should trigger a resume.

The compilers for JGrafchart were rewritten using modern compiler techniques
and tools, namely ReRAGs and JastAdd, to make the language semantics extensible.
First the compilers for the textual action and condition languages were considered.
They were previously implemented with traditional compiler techniques and tools.
The compiler implementations were first moved to the JastAdd tool and then the
semantics were simplified with ReRAGs to make it extensible. Extensibility was
confirmed by adding a small extension. The new implementation was evaluated
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with regards to code size and compilation time. The new implementation was 86%
smaller and its compilation time was 130% longer.

To make it possible to use Grafchart for hard real-time control, real-time execu-
tion with JGrafchart was considered. As a first step the editor, compiler, and execu-
tion engine were separated. To make the compiler stand-alone, the compiler for the
function chart language which was previously implemented with handwritten code
was moved to JastAdd and simplified with ReRAGs. The execution engine is still
an interpreter but it is now completely separated from the graphics. Also, concur-
rency for Grafchart application execution was investigated and several fundamental
concurrency issues were identified. A conservative approach to avoid concurrency
issues and thus achieve deterministic execution was presented.

With the JGrafchart compiler implemented with ReRAGs it is possible to create
various extensions. Extensions of particular interest are High-Level Version and
code generation for hard real-time control. Generation of SFC code which can be
executed by industrial PLCs is also of interest.

Access to more data from industrial devices and software can be used to opti-
mize production. The challenge integration and utilization of devices and software
was addressed in Chapter 6 by considering architectures for factory integration as
they are the foundation to connect all devices. The flexible software architecture
SOA which is widely used for IT systems and business processes was considered.
The two SOA service technologies DPWS and OPC UA are recognized to be re-
quired to cope with the industrial requirements on device level [65]. These are the
service technologies that have been considered.

The mandatory web service extensions of DPWS are sufficient to create a
generic client for service orchestration that can use any DPWS device. Prior to this
work no such known tool existed for industrial automation. JGrafchart was consid-
ered a suitable candidate for this and has thus been extended with generic DPWS
support. This makes it possible to use any DPWS capable device from JGrafchart
and service orchestration can be implemented entirely in a JGrafchart application.
The DPWS support is well integrated. DPWS operations are called in the same way
as other JGrafchart element methods. The integrated DPWS support was evaluated
on a demonstrator with real industrial field devices and has since been used for
implementation of more smart factory demonstrators.

OPC UA is a recent interoperability standard for industrial automation. It in-
corporates the three classic OPC standards and adds SOA features. Generic support
for OPC UA has been added to JGrafchart and thus a new way to implement ser-
vice orchestration for OPC UA services has been created. OPC UA data access and
methods are supported. The OPC UA support is well integrated in JGrafchart and
feels like a natural part of the language. The new OPC UA support was used to
successfully control an embedded device that had been retrofitted to become ser-
vice capable. JGrafchart can be used to control any device that is accessible through
an OPC UA server. With an adapter for classic OPC this includes the field devices
used by industrial control systems that support classic OPC. JGrafchart now sup-
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ports both integrated DPWS and OPC UA and can thus be used regardless of which
is more suitable in a specific scenario.

SOA 2.0 which is event driven and features extremely loose coupling between
applications has also been considered. The Line Information System Architecture,
LISA, is based on SOA 2.0 and has been developed with focus on industrial man-
ufacturing. The goals of LISA has been to make it easy to integrate any device
or software, especially legacy devices which are common in factories. The core
components of LISA are the message bus, communication endpoints, and the LISA
message format. There are no direct connections between devices in the LISA archi-
tecture, all communication goes through the message bus. A devices is integrated
through a communication endpoint, which is an adapter between the LISA mes-
sage format and message bus and the device’s message format and communication
protocol. The LISA message format is designed to be simple and flexible. It also en-
forces as little structure as possible to ensure that it is usable for any device. LISA
was evaluated on a system with various devices and with applications on different
IEC 62264 levels. It was concluded that an event-based service oriented architecture
such as LISA is useful for industrial automation. With access to raw event data, it
is possible to implement data processing wherever it is most convenient. With the
history of raw events it is also possible to add new calculations retroactively.

Another step toward real-time execution of Grafchart applications was to inte-
grate support for the high performance communication protocol LabComm. Both
versions of LabComm are supported as well as special connection through an Orca
server. Less knowledge about LabComm is needed to use LabComm in JGrafchart
than in for example Java as much is taken care of automatically. Most LabComm
types are supported and LabComm sample data is accessed like other hierarchical
structures in JGrafchart.

It has been investigated how JGrafchart can be connected to FMI for co-
simulation to further address the shorter time to market trend by introducing simu-
lation support. For a well integrated support, changes to JGrafchart are required to
make it possible to redo communication steps, to support externally triggered exe-
cution, and to inspect simulation results. The DPWS, OPC UA, and LabComm I/O
will also need some special treatment to fit into the FMI framework.

Work related to PID control was presented in Chapter 7. An implementation
of the most common controller for industrial automation, the PID controller, has
been added to a built-in Grafchart library. Also, a new PID algorithm issue for
PID controllers with a derivative part, derivative backoff, was explained in detail.
It occurs when the process value saturates and the cause is that the process value
derivative then suddenly becomes 0. This means that the derivative part backs off
which causes undesired changes to the control signal. It was shown that this is an
issue for an industrially relevant process controlled by a well tuned PID controller.
Different approaches to solve the issue were discussed. The proposed solution is to
bumplessly disable and immediately re-enable the derivative part when the process
value saturates. The solution requires that the controller has an integral part and that
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it knows the process value limits. It remains to be investigated what a good solution
is for controllers without integral action.
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A
JGrafchart Releases

Table A.1 JGrafchart version history related to the work presented in this thesis.

Version Description

1.5.2 The previous public version.

1.5.3.4 (Not public) The initial version for this work.

2.0.0 Textual compilers implemented with ReRAGs. Additional compila-
tion checks.

2.0.1 Bug fixes.

2.1.0 DPWS support added.

2.1.1 Bug fixes.

2.1.2 DPWS support improved.

2.2.0 DPWS support improved.

2.3.0 DPWS support improved.

2.4.0 LabComm support added.

2.4.1 Bug fixes.

2.5.0 Added debugging support, control library, and PID learning module.

2.6.0 LabComm support improved.

2.6.1 Bug fixes.

3.0.0 (Future) Separate editor, compiler, and execution engine.
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