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Abstract. To improve the mechanical characteristics of actively controlled
continuous faceplate deformable mirrors in adaptive optics, a strategy for
reducing crosstalk between adjacent actuators and for suppressing low-
order eigenmodes is proposed. The strategy can be seen as extending
Saint-Venant’s principle beyond the static case, for small local families
of actuators. An analytic model is presented, from which we show the fea-
sibility of the local control. Also, we demonstrate how eigenmodes and
eigenfrequencies are affected by mirror parameters, such as thickness,
diameter, Young’s modulus, Poisson’s ratio, and density. This analysis
is used to evaluate the design strategy for a large deformable mirror,
and how many actuators are needed within a family. © 2012 Society of
Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.OE.51.2.026601]
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1 Introduction
Most adaptive optics systems include a small deformable
mirror, typically with a size of a few tens of millimeters,
because it is much easier to achieve a high temporal band-
width for a small mirror than for a large one. Integrating the
deformable mirror into the telescope design, thus going from
tens of millimeters to a few meters in diameter, will avoid
lossy relay optics and make the telescope more compact.1

Large deformable mirrors have successfully been integrated
into the Multi Mirror Telescope2 and the Large Binocular
Telescope.3

Large deformable mirrors are generally implemented as
thin shells of a glass ceramic with hundreds or thousands
of actuators on the back. Often, there are also local deflection
sensors on the back of the mirror for closed-loop control in
combination with a wavefront sensor monitoring overall
optical system quality.

Several types of actuators exist. Piezoelectric actuators are
simple to control, but the strokes are small and the overall
system cost becomes high due to tight manufacturing toler-
ances. Force actuators based upon the voice coil principle
have the potential of large stroke and low cost, but are
more difficult to control because the control system must
handle the structural dynamics of the deformable mirror.
We focus here on voice coil actuators.

Studies of multiple-input-multiple-output optimal con-
trollers for deformable mirrors have shown good closed-
loop performance.4,5 However, neither the computational
load nor the robustness of a global controller may be suitable
for large deformable mirrors. In earlier publications,6,7 we
have studied a deformable mirror concept with faceplate,
and low-cost force actuators and sensors, by numerical meth-
ods. This system has been demonstrated to work using a con-
trol system encompassing local control with position and
velocity feedback. The local control concept was developed
to suppress crosstalk between adjacent actuators as shown in
Fig. 1. A command to a single actuator induces a tip/tilt to the
whole mirror. If instead a local control scheme, encompass-
ing a set of actuators, is used, the influence function of the
controlled actuator can be made similar to a delta function.
Hence, the local controllers only weakly excite low-order
eigenmodes.

In this paper, we present an analytic model to study exci-
tation of the various normal modes. An analysis is made to
see how the control concept is affected by mirror dimensions.
Further, we show how the eigenmodes and eigenfrequencies
depend on mirror parameters. We validate our results by
comparing the result obtained by the analytic model and a
finite element model for a specific design.

2 Background
Design parameters of an actuator system for deformable mir-
rors involve optimal placement of the actuators and choice of
control scheme. In practice, the actuator topology cannot be0091-3286/2012/$25.00 © 2012 SPIE
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chosen arbitrarily due to space constraints. We have assumed
a Cartesian actuator topology, as shown in Fig. 2, and below
we concentrate on selection and evaluation of a control
strategy.

For the case in which the force actuators and the back
position sensors are collocated and have a high bandwidth
from DC to many kHz, it is possible to control each actuator
independently with feedback from the collocated sensor
only. By differentiating the position signal, a velocity signal
can be obtained and an “electronic damper” can be imple-
mented. Also, using the position signal, an “electronic
spring” can be established at the location of an actuator
and a sensor. Provided that the bandwidths of the actuator
and sensor are sufficiently high, it can be readily seen
that such a system can be made stable because no energy
is injected into the system.6 This solution has been used
for medium-sized deformable mirrors.8

However, it is cumbersome from a design point of view to
use collocated actuators and back sensors, and it is much less
expensive to use position sensors placed between the actua-
tors. These sensors can be implemented with electret micro-
phones and bellows much like stethoscopes.9 The challenge
is that they do not provide a DC response; that is, they roll off
with 20 dB/decade from about 20 Hz and downward to lower
frequencies. Also, they do not work well at high frequencies
due to resonances in the bellows.

The same is true for the low-cost actuators referred to
above. They are attached to the back of the mirror through
suction cups having a certain compliance, leading to addi-
tional resonance effects. Although an internal loop in the
actuator largely suppresses suction cup influence, the band-
width of the actuators in practice is limited to some 2
to 3 kHz.

The task is therefore to develop a control system with a
bandwidth of about 100 Hz for a thin mirror plate with band-
width-limited actuators and sensors placed in a Cartesian
topology. Introduction of a local control concept with
“families” of actuators has proven advantageous because
low-order eigenmodes are then only weakly excited.7 An
actuator family consists of a central actuator with one or
more rings of actuators around it. Any actuator therefore
belongs to more than one family. The force distribution in
a given family is predetermined and scaled by an input signal
to that family. Hence all forces in a family are in phase. In a
previous paper,6 we presented an approach for selection of a
family force pattern, when a finite element model is avail-
able. Below, we give an analytical approach for determina-
tion of the pattern.

3 Mathematical Model
The deformable mirror plate is modeled as a solid, circular
plate, with constant thickness h and an outer radius of rout
(see Fig. 2). It is centered at the origin of the r − ϕ plane,
where r, ϕ are polar coordinates.

The time varying deflection of the mirror perpendicular to
its surface with respect to the undeformed reference plate is
called wðr;ϕ; tÞ, where t is the time. The partial differential
equation governing an undamped plate is given by10

D∇4
rwðr;ϕ; tÞ þ ρh

∂2wðr;ϕ; tÞ
∂t2

¼ qðr;ϕ; tÞ; (1)

where ρ is material density, D is the flexural rigidity, and
qðr;ϕ; tÞ is the lateral load per unit area. The biharmonic
operator ∇4

r is defined as

∇4
r ≡

�
∂2

∂r2
þ 1

r
∂
∂r

þ 1

r2
∂2

∂ϕ2

�
2

.

The deformable mirror plate is clamped at its inner rim with
a radius of ri (see Fig. 2), which gives the boundary
conditions

wðri;ϕ; tÞ ¼ 0; (2)

∂w
∂r

����
r¼ri

¼ 0; (3)

since the lateral displacement and slope are zero. The
outer edge is free, which gives the following boundary
conditions:

D

�
∂2w
∂r2

þ ν

r
∂w
∂r

þ ν

r2
∂2w
∂ϕ2

�����
r¼rout

¼ 0; (4)

Fig. 1 An overview of the local control concept of the deformable
mirror. (a) The influence function of a single actuator command.
(b) The influence function of 21 actuator commands optimized to
provide a local deflection.

Fig. 2 An overview of the deformable mirror, which is clamped at the
inner edge and free at the outer edge. The crosses illustrate the actua-
tor topology. The actuator pitch da, inner hole radius r i , and plate
radius r out are marked.
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D

�
∂
∂r

∇4wþ ð1 − vÞ ∂2

∂r2

�
1

r2
∂w
∂r

−
w
r3

������
r¼rout

¼ 0; (5)

where the radial moment and radial shear forces are zero.11

The term ν is Possion’s ratio.

3.1 Modal Analysis

A parameterization by separation of variables as wðr;ϕ; tÞ ¼
Wðr;ϕÞe−iωt can be made,12 where ω is the vibration
frequency. Using the parameterization, the homogeneous
version of Eq. (1) reads

∇4
rWðr;ϕÞ ¼ β4Wðr;ϕÞ; (6)

where β4 ¼ ω2ρh
D . The general solution to Eq. (6) is given

in Ref. 12 by

Wðr;ϕÞ ¼ W1;kðr;ϕÞ þW2;kðr;ϕÞ; (7)

W1;kðr;ϕÞ ¼ ½A1;kJkðβrÞ þ A3;kYkðβrÞ� sinðkϕÞ
þ ½A2;kJkðβrÞ þ A4;kYkðβrÞ� cosðkϕÞ; (8)

W2;kðr;ϕÞ ¼ ½B1;kIkðβrÞ þ B3;kKkðβrÞ� sinðkϕÞ
þ ½B2;kIkðβrÞ þ B4;kKkðβrÞ� cosðkϕÞ; (9)

where Jk and Yk are Bessel functions of order k ∈ N and of
the first and second kind, respectively. The second term
of Eq. (7) involves the modified Bessel functions Ik and
Kk of the order k and of the first and second kind. Thereby,
the following equivalent relations hold13

IkðxÞ ¼ i−kJkðixÞ

YkðxÞ ¼
1

π

�
2

�
γ þ ln

x
2

�
JkðxÞ −

Xk−1
n¼0

ðk − n − 1Þ!x2n−k
22n−kn!

−
X∞
n¼0

ð−1Þnχ½k þ nþ χðnÞ�xkþ2nÞ
2kþ2nn!ðk þ nÞ!

�
;

with

χðnÞ ¼
�
0 if n ¼ 0P

n
l¼1

1
l if n > 0

KkðxÞ ¼
π

2
ikþ1½JkðixÞ þ iYkðixÞ�;

with i ¼ ffiffiffiffiffiffi
−1

p
and γ being the Euler constant.

3.2 Participation Factor

The modal participation factor measures the coupling
between an exciting point force and a given mode shape.
An analytic expression for the modal participation factor
will now be determined.

The deflection of the mirror can be written using a super-
position of the eigenmodes as

wðr;ϕ; tÞ ¼
X∞
k¼1

ckWkðr;ϕÞe−iωt; (10)

whereWkðr;ϕÞ is the kth eigenmode and ck the participation
factor, with the dimension of length, of that normal mode.
We define Wkðr;ϕÞ as the dimensionless eigenmode satisfy-
ing the orthonormality relations

1

A

Z
rout

ri

Z
2π

0

Wkðr;ϕÞWlðr;ϕÞrdrdϕ ¼ δk;l;

where δk;l is the Kronecker delta and A is the total area of the
plate. The external load reads

qðr;ϕ; tÞ ¼ u
1

r
δðr − RÞδðϕ −ΦÞe−iωt (11)

for a point force u at the position (R,Φ) where δðxÞ is Dirac’s
delta function, which then gives14Z

∞

0

Z
2π

0

1

r
δðr − r 0Þδðϕ − ϕ 0Þrdϕdr ¼ 1.

Using Eq. (10) to describe the deflection of the plate and
Eq. (11) to describe the external forces, use of the plate
dynamics Eq. (1) gives

D∇4
r

X∞
k¼1

ckWkðr;ϕÞ − ρhω2
X∞
k¼1

ckWkðr;ϕÞ

¼ u
1

r
δðr − RÞδðϕ −ΦÞ;

where e−iωt has been eliminated from the equation. Using the
identity of the eigenfunctions, given by Eq. (6), this equation
can be simplified to

ρh
X∞
k¼1

ðω2
k − ω2ÞckWkðr;ϕÞ ¼ u

1

r
δðr − RÞδðϕ −ΦÞ. (12)

Multiplying with one specific eigenmode Wlðr;ϕÞ and inte-
grating over the full plate gives

Z
rout

ri

Z
2π

0

Wlðr;ϕÞρh
X∞
k¼1

ðω2
k − ω2ÞckWkðr;ϕÞrdrdϕ

¼
Z

rout

ri

Z
2π

0

Wlðr;ϕÞu
1

r
δðr − RÞδðϕ −ΦÞrdrdϕ.

The left-hand side can be reduced by using the orthonorm-
ality condition of the eigenmodes, and the right-hand side is
reduced, since the Dirac delta function is zero outside (R,Φ).
Thus, the participation factor can be expressed as

Aρhðω2
l − ω2Þcl ¼ uWlðR;ΦÞ cl ¼

uWlðR;ΦÞ
Mðω2

l − ω2Þ ;

where M is the total mass of the plate. The unrealistic beha-
vior of cl → ∞ when ω → �ωl occurs because the damping
of the system has yet not been considered.
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4 Results
In Sec. 4.1, a dimensionless mode analysis is made for the
mirror layout in Fig. 2. The example case used to derive the
results presented in Secs. 4.2 to 4.4 is a mirror made of bor-
osilicate. The parameters are given in Table 1.

4.1 Dimensionless Mode Analysis

We perform a dimensionless modal analysis to establish the
relationship between the normal modes and design
parameters, such as thickness, Poisson’s ratio, bending stiff-
ness, and mirror dimensions. The analysis is valid for any
given plate with the same rout∕ri ratio as shown in Fig. 2.
The dimensionless quantity ξ is defined as

ξ ¼ r
rout

.

The biharmonic operator, ∇4
ξ , for the coordinate plane ξ − ϕ

is related to ∇4
r as

∇4
r ¼

�
1

rout

�
4

∇4
ξ .

Thus, the homogenous equation given in Eq. (6) is changed
to

rcl∇4
ξWðξ;ϕÞ ¼ α4Wðξ;ϕÞ;

where α4 ¼ r4outω
2ρh

D . To determine the eight coefficients of
Eq. (7), the boundary conditions of the plate are used.
The coefficients can be computed considering the sine
and cosine parts of Eq. (7) independently.15 Thus, two
sets of four equations can be used to determine the corre-
sponding coefficients ðA1;k;A3;k;B1;k;B3;kÞ and ðA2;k;A4;k;
B2;k;B4;kÞ. The resulting equations can be written in matrix
form as

ΛðαkÞsin

8>><
>>:

A1;k

A3;k

B1;k

B3;k

9>>=
>>; ¼ 0 ΛðαkÞcos

8>><
>>:

A2;k

A4;k

B2;k

B4;k

9>>=
>>; ¼ 0; (13)

where ΛðαkÞsin and ΛðαkÞcos are 4-by-4 matrices with ele-
ments determined by the boundary conditions. The equiva-
lent boundary conditions in Eqs. (2) and (4) for wðξ;ϕ; tÞ
depend only on the physical parameter ν. Thus, the normal
modes depend on Poisson’s ratio, the rout∕ri ratio, and the
αk’s. The eigenfrequencies for the eigenmodes are found by

det½ΛðαkÞ� ¼ 0;

which must hold for all nontrivial solutions of Eq. (13). The
values of αk are dimensionless and they are the same for any
given mirror with the same rout∕ri ratio and the same Pois-
son’s ratio. The eigenfrequencies, ωk , are given by

ωk

ω0

¼ α2k for ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

1

rout

�
4 Eh2

12ρð1 − ν2Þ

s
; (14)

where ω0 is unique for the mirror. Note that as rout → ∞, all
eigenfrequencies go to zero. Thus, only a plate of finite size
will have eigenmodes, formed by reflection of bending
waves by the boundaries. Also the ratio between two specific
eigenfrequencies will remain the same regardless of the spe-
cific value of ω0. The first hundred αk values for a mirror
with a a ratio of 20 between the outer and inner radius
are shown in Fig. 3. When ω0 and the αk’s are given, the
number of normal modes that must be controlled within a
given bandwidth will also be given. The example case in
Table 1 gives a value of ω0 equal to 12.53 rad∕s. Thus,
there are eighteen normal modes within the bandwidth of
the adaptive optics system (i.e., below 100 Hz) and five
normal modes below the cutoff frequency (20 Hz) for the
back sensors.

4.2 Force Patterns Analysis

The influence function for one actuator resembles a tip/tilt
mode, because this mode is most compliant (see Fig. 1).
Thus, the actuator families should be designed to suppress

Table 1 Parameter values for a 1-m deformable mirror used for per-
formance studies.

Parameter Definition Value

E Young’s modulus 63 × 109 Pa

ρ density 2.23 × 103 kg∕m3

ν Poisson ratio 0.2

h thickness 2 mm

D bending stiffness Eh3∕12ð1 − v2Þ

r out radius of the mirror 0.5 m

r i radius of the inner hole 0.025 m

da actuator pitch 0.045 m

ζ damping ratio 1%

Fig. 3 The first hundred α2k values for a mirror with the layout of Fig. 2,
where r out∕r i ¼ 20.
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the low-order eigenmodes to reduce crosstalk between adja-
cent actuators. We now derive an analytic expression to
determine the optimal force patterns for a given actuator
family. A cost function is formed for the deviation between
the static deflection of the mirror and the desired deflection.
The force patterns are found by minimizing the cost function,
using a least-squares approach.

An actuator family has a “master” actuator (most often
located in the center of the family) at which the desired
deflection is one. Elsewhere on the mirror, the deflection
should be close to zero. The desired deflection for the mirror
then is

1

r
δðr − RjÞδðϕ −ΦjÞ; (15)

when the j’th actuator is controlled (i.e. the desired influence
function for a family is a Dirac function). The deflection of
the mirror is given through superposition of the individual
normal modes as defined by Eq. (10), and the participation
factors are given by Eq. (13). For the static case, ω is equal to
zero; thus, for a single force u at (R,Φ), the deflection invok-
ing m normal modes is

wðr;ϕÞ ¼ 1

M

Xm
k¼1

Wkðr;ϕÞ
ω2
k

uWkðR;ΦÞ.

When multiple forces ui are applied to the plate at different
locations (Ri,Φi), the equation becomes

wðr;ϕÞ ¼ 1

M

Xm
k¼1

�
Wkðr;ϕÞ

ω2
k

Xn
i¼1

uiWkðRi;ΦiÞ
�
. (16)

The squared error over the whole mirror, i.e. the cost func-
tion, is

J ¼
Z

2π

0

Z
rout

ri

f ðr;ϕ; uiÞ2rdrdϕ;

where

f ðr;ϕ; uiÞ ¼
1

M

Xm
k¼1

�
Wkðr;ϕÞ

ω2
k

Xn
i¼1

uiWkðRi;ΦiÞ
�

−
1

r
δðr − RjÞδðϕ −ΦjÞ.

Minimizing J with respect to ul gives

∂J
∂ul

¼
Z

2π

0

Z
rout

ri

2f ðr;ϕ; uiÞ
∂f ðr;ϕ; uiÞ

∂ul
rdrdϕ ¼ 0.

The above equation results inXm
k¼1

�
WkðRl;ΦlÞ

ω4
k

Xn
i¼1

uiWkðRi;ΦiÞ
�

¼ M
Xm
k¼1

WkðRl;ΦlÞ
ω2
k

WkðRj;ΦjÞ.

The equation system to determine the force ui can be written
in matrix form as

Au ¼ b; (17)

where the elements in the matrix A and the vector b are given
by

ail ¼
Xm
k¼1

WkðRl;ΦlÞ
ω4
k

WkðRi;ΦiÞ

bl ¼ M
Xm
k¼1

WkðRl;ΦlÞ
ω2
k

WkðRj;ΦjÞ.

To summarize the notations, we note that k is the number of
the normal mode, m the number of normal modes consid-
ered, i the column number of the matrix A, l the row number
of the matrix A and the vector b, and j the actuator being
controlled.A is a square matrix, since both i and l are running
from 1 to the number n of actuators in the family. The solu-
tion for u includes the modal stiffnessMω2

k and describes the
relative distribution of forces within a family with a given
location. The corresponding deflection is found from
Eq. (16).

For our example, we have studied a family with a center
actuator and two rings of actuators around it. Finding the
force pattern as described above, we have determined the
mirror deflection shown in Fig. 4 for a unity command to
each of three families located at different places on the mir-
ror. The influence functions of the families are almost iden-
tical over the mirror. At the outer edge, a waffle pattern exists
around the family. However, the total root mean square value
of the differences between the mirror deflection and the com-
manded shape over the mirror remains small.

In order to compute the force commands within a given
family with sufficient accuracy, it is important to consider a
large number of normal modes. This is illustrated in Fig. 5,
showing the deflection of the mirror for three cases using the
same force excitation. A different number of normal modes,
m, have been included, when computing the deflection. The
correct force pattern can only be found if the eigenmodes can
reproduce the desired influence function within sufficient
accuracy. This also implies that the number of normal
modes needed depends on the relative actuator pitch, i.e.
the total number of actuators. For a given actuator pitch,
there is a maximum number of normal modes that can be
controlled, and this will also roughly be the number of nor-
mal modes needed to determine the correct force pattern.

Fig. 4 The plate deflection of the mirror is shown for three different
actuator family commands, when using 21 actuators in a family.
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4.3 Frequency Response Analysis

We now derive expressions for frequency responses from
forces to mirror deflection. Referring to Eq. (13), the parti-
cipation factor is

cl ¼
uWlðR;ΦÞ
Mðω2

l − ω2Þ . (18)

The transfer function from a force to displacement at the
same location is determined by inserting Eq. (18) into
Eq. (10), which gives

wðR;ΦÞ
u

¼
Xm
k¼1

Wkðr;ϕÞWkðR;ΦÞ 1

Mðω2
k − ω2Þ . (19)

Due to lack of damping in our model, the term ðω2
k − ω2Þ

converges toward zero for ω → ωk. To include the effect
of damping, we take analogy in the frequency response of
a conventional second-order system

xðωÞ
f ðωÞ ¼

1

Moðω2
k − ω2 þ 2iζkωkωÞ

;

whereMo is the generalized mass, ζk the damping ratio, x the
displacement, and f the force. By analogy, we can therefore
as an approximation introduce damping in Eq. (19) by repla-
cing ðω2

k − ω2Þ with ðω2
k − ω2 þ 2iζkωkωÞ, whereby we get

cl ¼
uWlðR;ΦÞ

Mðω2
l − ω2 þ 2iζlωωlÞ

; (20)

which now encompasses an imaginary term. Inserting
Eq. (20) into Eq. (10) and considering that multiple force
are applied, the transfer function from force to position reads

wðR;ΦÞ
u

¼
Xm
k¼1

�
WkðR;ΦÞ

Mðω2
k − ω2 þ 2iζkωωkÞ

Xn
i¼1

uiWkðRi;ΦiÞ
�
.

(21)

The transfer function is evaluated at the point (R,Φ) where
the force u is applied, and ui is the relative magnitude
between the force applied at the location (Ri,Φi) and u.
For our example, four frequency responses for a representa-
tive actuator location are shown in Fig. 6. The curves are the
transfer functions determined from Eq. (21) (for m ¼ 35),
where the output is the plate deflection at the center of

Fig. 5 Mirror deflection for the plate example. The same family force input was applied in all three cases but a different number of modes, m, was
used in computing the responses.

Fig. 6 The frequency response for a representative actuator located 0.25 m from the center, from force to position for: (a) the plate, (b) the plate with
families of 9 actuators, (c) the plate with families of 21 actuators, and (d) the plate with families of 59 actuators. The frequency responses are
determined with 35 eigenmodes.
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the family and the input is the force command for the single
actuator case and for three different family patterns. Using a
family, the resonance and antiresonance peaks are attenuated
up to a frequency dependent on the number of actuators in
the family. If a control system needs a flat frequency
response up to a certain frequency, the number of actuators
in the family should be chosen accordingly.

4.4 Local Control Analysis

Three patterns of the local family, including 9, 21, and 59
actuators, are evaluated against the single-input-single-
output case, as shown in Fig. 7. A modified version of
Eq. (13) is used to compute the participation factor, which
then is, neglecting damping,

cl;n ¼
1

Mðω2
l − ω2Þ

Xn
i¼1

uiWlðRi;ΦiÞ;

where n is the number of actuators in the family, and ui the
force computed from Eq. (17). The evaluation of the family
concept is done by computing the modal quality factors

Q9 ¼
cl;9
cl;1

Q21 ¼
cl;21
cl;1

Q59 ¼
cl;51
cl;1

.

These quality factors are independent of ω, ωl, and M, and
are valid for any plate with the same number of actuators and
the same topology. They define the mode-suppression a
given family can provide.

For the first twenty normal modes, we present in Fig. 8 the
quality factor averages Q̄ for all families on a logarithmic
scale. The families encompassing more actuators have

more degrees of freedom, which means they should be
able to attenuate more eigenmodes. This effect is seen in
Fig. 8, where the performance differences between the
families increase with the order of the normal mode. The
improvement of the quality factor for the eighth, 15th,
and 20th eigenmodes has the same origin. These three eigen-
modes have rotational symmetry, which gives low curvature
and low modal stiffness in the radial direction within the
families. Because it is sufficient to block excitation in either
radial or azimuthal direction, these eigenmodes stand out
in Fig. 8.

The number of eigenmodes attenuated are close to half the
number of degrees of freedoms in the families. This state-
ment is only partially true for 59 actuators, because the
area that the family occupies also increases. This effect is

Fig. 7 The four family patterns used to evaluate the participation
factor.

Fig. 8 The plot shows the average quality factors Q̄59, Q̄21, and Q̄9 for
the first 20 eigenmodes. The squares are for Q̄9, the circles are for
Q̄21, and the stars are for Q̄59.

Fig. 9 The plot shows the average quality factor Q̄21 for the 20 first
eigenmodes. The circles correspond to a relative actuator pitch of
0.09 and the triangles are correspond to relative actuator pitch of
0.045.

Table 2 A comparison of the twelve first eigenfrequencies as deter-
mined by the analytical and the finite element model. Note that ω0
here is equal to 12.53 Hz.

Analytic model Finite element model Deviation

ω1 32.7 rad∕s 35.2 rad∕s 2.5 rad∕s

ω2 32.7 rad∕s 35.2 rad∕s 2.5 rad∕s

ω3 48.4 rad∕s 48.4 rad∕s 0 rad∕s

ω4 69.7 rad∕s 70.2 rad∕s 0.5 rad∕s

ω5 69.7 rad∕s 70.2 rad∕s 0.5 rad∕s

ω6 164.6 rad∕s 163.3 rad∕s 1.3 rad∕s

ω7 164.6 rad∕s 163.3 rad∕s 1.3 rad∕s

ω8 280.4 rad∕s 280.1 rad∕s 0.3 rad∕s

ω9 286.1 rad∕s 284.7 rad∕s 1.4 rad∕s

ω10 287.1 rad∕s 284.7 rad∕s 2.4 rad∕s

ω11 312.1 rad∕s 310.1 rad∕s 2.0 rad∕s

ω12 312.1 rad∕s 310.1 rad∕s 2.0 rad∕s
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shown in Fig. 9, where the average quality factor is evaluated
against the mode number with the relative actuator pitch
da∕rout as parameter. Thus, doubling the mirror diameter
or halving the actuator pitch has the same effect on the qual-
ity factors. Conclusively, more actuators on a given plate
suppress more eigenmodes for a given number of actuators
in the family, or a family with the same actuator pitch and the
same number of actuators will suppress more eigenmodes on
a 3-m mirror than on a 1-m mirror.

4.5 Comparison Between the Analytical and the
Finite Element Model

We have performed a comparison between the results of
the analytical model presented above and a finite element
model.6 The forms of the eigenmodes agree well with
those of the finite element model. The differences in the
corresponding eigenfrequencies are shown in Table 2. The
deviation between the values from the two models is rather
small, about 5%.

For the same example, the frequency responses from force
to position of the two models for the same representative
actuator location are seen in Fig. 10. The full lines represent
the single actuator case, where the input is the force of a sin-
gle actuator and the output is the mirror deflection at the
same location. The dashed line is a frequency response
for which the input is the command to an actuator family
of 21 actuators and the output is the mirror deflection at
the location of the center actuator of the family. There is
good agreement between the plots of the analytical and finite
element models. The minor shifts in the location of the
resonance and anti-resonance peaks are due to the eigen-
frequency deviation.

For our example, the family force patterns found using the
expressions of Sec. 4.2 match well with those derived using
the finite element model.6 The two force patterns agree
within 5%, and the deviation decreases with an increased
number of modes considered in Eq. (17).

5 Conclusion
We have set up an analytical model of a deformable mirror
and derived expressions for local control using families of
actuators. Eq. (17), based on the least-squares method,
can be used to optimize the influence function of a master
actuator. The influence function will be similar for any
size and type of mirror; that is, the size of the peak only
depends on the relative actuator pitch and the number of

actuators in the family. The concept ensures that the actuators
only excite low-order modes of the plate weakly, which is
particulary important, when using back sensors based upon
low-cost electret microphones. The sum of the forces and
moments for one family is close to zero, so the concept
can be seen as an extension of Saint-Venant’s principle to
the dynamical case.

The analytical model can be applied for system design
without use of a finite element model. In particular, the
model is useful for studies of the influence of parameter var-
iations and for determination of usable parameter space. We
have shown how the parameters of mirrors with the same
ratio between the outer and inner edge affect the eigenmodes
and eigenfrequencies. Mirrors with the same Poisson’s ratio
will have the same relative eigenmodes for the same bound-
ary conditions. We have introduced a parameter αk, which is
the same for all such mirrors. The use of αk makes it possible
to predict how eigenfrequencies are influenced by changes of
physical parameters. For instance, the effects of doubling the
diameter of a deformable mirror are:

1. Equation (14) shows that ω0 scales with 1∕r2out and
Fig. 3 shows that the αk’s are close to linearly distrib-
uted for the first hundred normal modes. Thus, dou-
bling rout will roughly quadruple the number of of
normal modes within a given bandwidth.

2. The relative actuator pitch da∕rout will be halved if the
actuator pitch is kept the same. For a given family pat-
tern, this will improve the quality factors (see Fig. 9).

The first effect is the dominant one, thus resulting in a more
difficult system to control when increasing the diameter of
the deformable mirror. The remedy, if needed, is either to
increase the number of actuators within the families or to
change the other physical parameters to counteract the effect
from doubling rout, according to Eq. (14).

For specific types of actuator families and using an exam-
ple, we have compared results from the analytical model with
those from a finite element model and found good agree-
ment, both for eigenfrequencies, eigenmodes, frequency
responses, and family force patterns. The combined modal
participation factor for an actuator family can be up to 60
times lower than the modal participation factor for a single
actuator in our example. The effect is also seen in the fre-
quency response from force to position for our example,
where resonance peaks below 40 Hz have been attenuated
even with a conservative 1% modal damping used in our

Fig. 10 Frequency responses from force to position for an actuator placed 0.25 m from the center. The full curve is the response for which the input
is the force at one actuator and the output is the mirror deflection at the same location. The dashed line is the frequency response, where the input is
the force command to a family of 21 actuators and the output is mirror deflection at the center actuator. The curves of (a) are determined with the
finite element model (b) with the analytical model including 35 normal modes.
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model. This is well above the cutoff frequency for the back
sensors.
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