
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

From Competitive to Cooperative Resource Management for Cyber-Physical Systems

Lindberg, Mikael

2014

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Lindberg, M. (2014). From Competitive to Cooperative Resource Management for Cyber-Physical Systems.
[Doctoral Thesis (monograph), Department of Automatic Control]. Department of Automatic Control, Lund
Institute of Technology, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 19. May. 2025

https://portal.research.lu.se/en/publications/cf850e8f-91f4-4ab5-83e2-abe00b942b4a

From Competitive to Cooperative Resource
Management for Cyber-Physical Systems

Mikael Lindberg

Department of Automatic Control

PhD Thesis
ISRN LUTFD2/TFRT--1102--SE
ISBN 978-91-7623-018-3 (print)
ISBN 978-91-7623-019-0 (web)
ISSN 0280–5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

c© 2014 by Mikael Lindberg. All rights reserved.
Printed in Sweden by MediaTryck.
Lund 2014

To Mirjam, Mattis and Rebecka

Abstract

This thesis presents models and methods for feedback-based resource management
for cyber-physical systems. Common for the scenarios considered are severe re-
source constraints, uncertain and time-varying conditions and the goal of enabling
flexibility in systems design rather than restricting it.

A brief survey on reservation-based scheduling, an important enabling technol-
ogy for this thesis, is provided and shows how modern day resource reservation
techniques are derived from their real-time system and telecommunications theory
roots.

Techniques for modeling components of cyber-physical systems, including both
computational and physical resources, are presented. The cyclic component model,
specifically designed to model common resource demanding components in smart
phones, is introduced together with techniques for model parameter estimation.

The topic of competitive resource management, where the different parts of the
system compete for resources, is discussed using a smart phone platform as motivat-
ing example. The cyclic component model is used to form a rate-based performance
metric that results in a convex optimization problem. A specialized optimization al-
gorithm for solving this problem efficiently online and with limited precision hard-
ware is introduced and evaluated through simulations.

A feedback control scheme for distributing resources in cases where compo-
nents collaborate, i.e., where the performance metric is dependent on more than
one component, is detailed and examined in a scenario where the available resource
is limited by the thermal dynamics of the CPU. The scheme is evaluated through
simulation of a conversational video pipeline. The thermal model is validated on a
mobile robot, where it is used as part of an adaptive resource manager.

The problem of energy conservative distribution of content to a population of
co-located mobile clients is used to motivate the chapter on cooperative resource
management, i.e., scenarios where the participants have individual but similar goals
and can benefit from sharing their partial results so that all collaborators save cost.
The model for content trading is presented in synchronous and asynchronous for-
mulations and performance is evaluated through both simulations and experimental
results using a prototype implementation in an emulated environment.

5

Acknowledgements

It is safe to say that this thesis would not have existed if not for some of the amazing
people I am privileged to be surrounded by. Combining my PhD studies with the
busy life of fatherhood, and with my penchant for maintaining far too many hob-
bies and interests, has been a challenging and instructive journey, the completion of
which I feel I must share some credits for.

Breaking off my career and returning to school for a PhD was not a decision
I made lightly, and I feel very fortunate for the opportunity to do so. My thanks
to Anders Robertsson for tricking me into this. I vividly remember the Thursday
evening you called me and suggested I apply for the position, and I can assure all
readers that there will be repercussions somewhere down the line.

Throughout my time at the department I have been able to rely on Eva Westin
for support, friendship, advice and candy. She is an amazing person whom I hope
will get all the recognition she deserves for what she does, both professionally and
socially. Eva, my door is always open for you.

I wish to express my gratitude to my supervisor, Professor Karl-Erik Årzén, who
has listened to my sometimes wild ideas and who has been a pillar of support during
stressful moments of my studies. You have always had time for me when I asked
for it and provided good directions, for research as well as for pubs.

To my co-supervisor, Johan Eker, I wish to extend my thanks for the discussions
we had and for the much needed coaching during periods of doubt and uncertainty.
Your levelheaded yet diligent approach to research has taught me many things I
hope to incorporate into my own methods as I continue this path. And yes, I will
probably buy that piano.

While I have been one of the older PhD students at the department, it has been
comforting to always be put in place by the research engineers. Anders Blomdell,
Leif Andersson and Rolf Braun, you have my thanks for your help, your dedication,
and for constantly reminding me just how little I still know.

During my PhD years I have had many colleagues, some of which has become
good friends. I would specifically like to mention Toivo Henningsson, my mentor
at the department, whose enthusiasm and insights have inspired my work. I would
also like to thank Anders Widd and Martin Hast for the conversations we had and

7

Karl Berntorp for paving the way during the thesis writing period. Coffee is on me
from now on.

Though perhaps not consciously aware of their contributions, I would like to
mention my children, Mattis and Rebecka, as some of the more important influ-
ences for my work. There is no finer way to study dynamic constrained resource
management than observing our hallway in the morning as we are trying to get
everybody off to school and work.

Last but not least, I would like to thank my wife Mirjam for her unwavering
support during these years. Despite everything, I have never heard you regret once
that we took this decision, even though my own resolve has sometimes wavered.
There is no person to whom I owe more, nor any person I would rather have by my
side for the next challenge.

Mikael

This research has partially been funded by the VINNOVA/Ericsson project
"Feedback Based Resource Management and Code Generation for Real-time Sys-
tem" , the EU ICT project CHAT (ICT-224428), the EU NoE ArtistDesign, the
Linneaus Center LCCC, the ELLIIT strategic research center, and the Ack’a VR
project 2011-3635 "Feedback-based resource management for embedded multicore
platforms".

8

Contents

1. Introduction 13
1.1 Background and motivation . 13
1.2 Contributions . 16
1.3 Outline of the thesis . 17

2. Problem formulation 18
2.1 Example 1 — Smartphones . 18
2.2 Example 2 — Mobile robotics 21
2.3 Example 3 – Mobile cloud computing 23
2.4 Problem features . 24
2.5 Problem structures . 24
2.6 Overall goals . 25

3. Reservation based scheduling 27
3.1 Important concepts . 27
3.2 Reservation Based Scheduling 29
3.3 Feedback allocation control . 36
3.4 Allocation . 38
3.5 Reservation frameworks . 39
3.6 The Xen hypervisor . 43
3.7 Xenomai . 43
3.8 Linux Control Groups . 44
3.9 Estimating software model parameters 44

4. Power and energy management 46
4.1 Energy and resources . 46
4.2 Spatial resource management, "E-logistics" 49

5. Modeling and Estimation 52
5.1 Smartphone model . 52
5.2 Allocation and utility . 53
5.3 Components with rate-based utility 55
5.4 Multi-resource dependencies 59
5.5 CPU thermal dynamics . 60

9

Contents

5.6 Parameter estimation . 60
5.7 Extension into mixed domain models 63

6. Competitive resource management 65
6.1 Allocation under resource constraints 65
6.2 Incremental optimization . 67
6.3 Experimental results . 71
6.4 Implementation . 73
6.5 Resource management architecture 75
6.6 Measuring time and resource consumption 77
6.7 Example runs . 79
6.8 Conclusions . 79

7. Collaborative resource management 83
7.1 Allocation vs feedback . 83
7.2 State related performance metrics 84
7.3 Hardware resources . 86
7.4 Case study — Encoding Pipeline 87
7.5 Simulation results . 91
7.6 Thermal control through resource management 96
7.7 Control design . 101
7.8 Implementation . 104
7.9 Experimental results . 105
7.10 Conclusions . 109

8. Cooperative resource management 111
8.1 Increasing focus on the local 111
8.2 Incentivizing cooperation . 112
8.3 System model . 114
8.4 The dynamics of fair exchanges 115
8.5 Baseline algorithm . 119
8.6 Heuristic solver . 121
8.7 Set sizes and problem decomposition 128
8.8 Random initial state . 133
8.9 Continuous operation . 134
8.10 Asynchronous formulation . 138
8.11 Software design . 139
8.12 Experimental results . 142
8.13 Conclusions . 148

9. Conclusions and future work 149
9.1 Conclusions . 149
9.2 Future work . 150

Bibliography 154
A. Listings 164

10

Contents

A.1 MIPC . 164

11

1
Introduction

1.1 Background and motivation

Resource management considerations are increasingly shaping the development of
new technology, be it embedded computers or large scale infrastructure systems,
and the limits of realizable functionality is often defined by factors such as energy or
available network bandwidth. The current global focus on designing energy efficient
systems and ecologically sustainable technological growth is likely to emphasize
these issues even further in the foreseeable future.

With that in mind, the central theme of this thesis is chosen to be resource man-
agement for computer systems. While resource management for embedded systems
has for a long time been modeled as real-time scheduling problems, such methods
are primarily used in monolithic systems with well known structure. This thesis
chooses instead to focus on the highly dynamic and uncertain cases introduced by
the increasingly advanced types of embedded systems developed today.

Systems controlled by software are inherently flexible and reconfigurable. En-
abling system designers to use this flexibility while retaining control over system
performance is an important goal of this work. Feedback, estimation and online
optimization take the place of current methods based on prior knowledge, and the
models employed are tailored towards a holistic point of view, where the inclusion
of both physical and computational resource dynamics is necessary to describe sys-
tem performance.

It is the intention of this work to propose new ways to view resource manage-
ment for computer- and cyber-physical systems, so that their potential can be fur-
ther explored. The resource management techniques provided by scheduling theory
therefore form a part of the schemes discussed rather than being the focal point of
them.

The methods presented draw upon several disciplines to provide a framework
for resource management, including

• control theory,

• system identification,

13

Chapter 1. Introduction

• convex optimization,

• reservation based scheduling, and

• peer-to-peer technology.

The target systems are embedded or cyber-physical systems that are such that re-
source constraints and uncertainty would make worst case methods infeasible.

The thesis is based on the following publications:

Lindberg, M. (2007). A Survey of Reservation-Based Scheduling. Technical Re-
port ISRN LUTFD2/TFRT--7618--SE. Department of Automatic Control, Lund
University, Sweden.

This technical report is a survey on the state of the art concerning reservation-
based scheduling. The survey covers the origins of the field as it appears both in
real-time computing and telecommunication and how the two fields have merged in
present day.

M. Lindberg was the author of the report and collected the information it was
based on.

Lindberg, M. (2009). “Constrained online resource control using convex program-
ming based allocation”. In: Proceedings of the 4th International Workshop on
Feedback Control Implementation and Design in Computing Systems and Net-
works (FeBID 2009).

This paper presents a model for resource reservations for smart phones, based
on convex optimization. Included is also an algorithm aimed at limited precision
hardware to solve the optimization problem in an efficient manner.

M. Lindberg formulated the model, designed and implemented the optimization
algorithm, and conducted experiments in order to examine the performance of the
algorithm. M. Lindberg was also the author of the paper.

Lindberg, M. (2010). “Convex programming-based resource management for un-
certain execution platforms”. In: Proceedings of First International Workshop
on Adaptive Resource Management. Stockholm, Sweden.

The contributions of this paper consists of the implementation of a resource
manager based on the allocation algorithm presented in the previous papers and the
results of experiments where the performance of the system is studied under time
varying conditions. The paper also presents a model for cyclic software components
that can be used to describe many types of resource demanding applications.

14

1.1 Background and motivation

M. Lindberg developed the component model, implemented the resource man-
ager and performed the experiments in the paper. He is also the author of the publi-
cation.

Lindberg, M. (2010). “A convex optimization-based approach to control of uncer-
tain execution platforms”. In: Proceedings of the 49th IEEE Conference on De-
cision and Control. Atlanta, Georgia, USA.

This paper is a rewritten version of the previous paper aimed at am automatic
control audience. The models are reworked to better fit within the control domain.

M. Lindberg is the author of this paper and did the textual revision as well as
the adaptation of the resource models.

Lindberg, M. and K.-E. Årzén (2010). “Feedback control of cyber-physical systems
with multi resource dependencies and model uncertainties”. In: Proc. 31st IEEE
Real-Time Systems Symposium. San Diego, CA.

This paper presents a model for collaborative resource management for inter-
connected components as well as a model for thermal control of an embedded
CPU through constrained resource allocation. The paper presents a case study of
a conversational video pipeline, with continuous thermal dynamics for the CPU.
A scheme for feedback control-based optimization of performance metrics is dis-
cussed together with simulation results.

M. Lindberg is the originator of the approach as well as the designer of the
feedback control mechanism. M. Lindberg also developed the software used for
simulations and is the author of this paper. K.E. Årzén contributed the problem
introduction and background.

Romero Segovia, V., M. Kralmark, M. Lindberg, and K.-E. Årzén (2011). “Proces-
sor thermal control using adaptive bandwidth resource management”. In: Pro-
ceedings of IFAC World Congress, Milan, Italy. Milano, Italy.

In this paper, thermal CPU control based on dynamic resource allocation is
demonstrated on a mobile robot. The contributions consists of experiments to vali-
date the thermal model used in the previous paper on the robot as well as test cases
with synthetic tasks running on the robot under time varying conditions.

M. Lindberg contributed the thermal control approach and the basic idea for the
experiment and authored the part of the paper concerning the thermal control. V.
Romero-Segovia designed the resource reservation part of the experimental set-up
and wrote the sections in the paper that covers this. M. Kralmark performed the
experiments on the robot. K.E. Årzén provided valuable input and reviewed the
publication.

15

Chapter 1. Introduction

Lindberg, M. (2013). “Feedback-based cooperative content distribution for mobile
networks”. In: The 16th ACM International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems. Barcelona, Spain.

The paper introduces a scheme for energy conservation for content distribution
in mobile networks. The contributions consists of a definition of the cooperative
mechanism through which co-located mobile devices can exchange data so that all
parties save energy and a feedback-based algorithm for optimizing the trades in
real-time. The approach is evaluated through simulations.

M. Lindberg formulated the cooperative mechanism, designed the heuristic
feedback mechanism and developed the simulation software used for the experi-
ments. M. Lindberg is also the author of the paper.

Lindberg, M. (2014). “Analysis of a feedback-based energy conserving content
distribution mechanism for mobile networks”. In: Proceedings of IFAC World
Congress 2014.

This paper expands on the cooperative scheme with time varying device pop-
ulations and studies the throughput of the system under changing conditions. The
resulting findings are discussed together with a design example.

M. Lindberg developed the software used to study the expanded cooperative
distribution problem. performed the experiments and created the design example.
M. Lindberg is also the author of the paper.

Lindberg, M. (2014). “A prototype implementation of an energy-conservative co-
operative content distribution system”. In: The 17th ACM International Confer-
ence on Modeling, Analysis and Simulation of Wireless and Mobile Systems. In
submission.

A prototype implementation of the cooperative distribution scheme is presented
together with a modified asynchronous formulation of the underlying system model.
The implementation is validated through experiments carried out in an emulated
environment using laboratory PCs.

M. Lindberg contributed the asynchronous model and developed the software
used for the experiments. M. Lindberg carried out the experiments and is the author
of the paper.

1.2 Contributions

This thesis contains the following contributions

• A model for resource allocation for rate-based software components is pro-
posed. The model is suitable for many types of applications that typically

16

1.3 Outline of the thesis

require the most resources in cyber-physical systems, such as media players,
controllers and games.

• An algorithm for solving convex allocation problems suitable for embedded
platforms has been developed. The algorithm is designed to be easily imple-
mented in fix-point arithmetics and with a varying problem structure.

• A control scheme for software components with multi resource dependen-
cies is proposed. The scheme is intended to facilitate the integration of the
physical and the computational aspects of a system.

• Experimental results from using CPU bandwidth reservation for thermal con-
trol are detailed. Experiments were conducted on a mobile robot using a
Linux-based operating system and standard Intel-based hardware.

• An energy and spectrum conserving cooperative content distribution mecha-
nism for wireless mobile devices using barter-like data trade is proposed. The
mechanism uses a feedback-based arbitration algorithm in order to be viable
in highly dynamic cases.

• A prototype implementation of the aforementioned mechanism is presented
together with experimental results.

1.3 Outline of the thesis

This thesis is organized into chapters as follows. In Chapter 2, the formal definition
of the problem is given. Chapter 3 presents relevant and related research, partic-
ularly covering the enabling technology of reservation based scheduling. Chapter
4 presents related results on the topic of power- and energy management. Models
and estimation techniques suitable for cyber-physical systems with uncertain pa-
rameters are introduced in Chapter 5. Chapter 6 discusses resource management in
systems where components compete for resources. The collaborative perspective,
where components contribute to a common performance metric, is then presented
in Chapter 7. Chapter 8 discusses techniques for cooperative resource management,
where system components tries to maximize individual performance through coop-
erating. Chapter 9 then concludes with discussion and future research.

17

2
Problem formulation

This chapter introduces the problems treated in the thesis. The domain of smart-
phones serves as a basis for deriving the formal definition. An example from the
control domain is added to provide an example of a resource management prob-
lem where components contribute to a common performance metric, and in order
to show that the resource management problem is not unique to multimedia appli-
cations. Finally, the smartphone example is expanded into the mobile cloud for-
mulation, with multiple independent units, to exemplify a case where units with
individual performance metrics can all benefit from sharing resources.

In the case of smartphones, special attention is given to the point of view of plat-
form providers, who would like to increase system robustness without posing overly
prohibitive requirements on applications. In this context, a platform is a hardware
and software design that supplies base functionality and resources. Complete prod-
ucts are then constructed by adding components built with a development kit which
is distributed together with the platform. The Google Android platform is a recent
example [Android, 2014].

For the mobile cloud scenario, the phone platform provider serves a more pe-
ripheral role as an enabler rather than the main stakeholder. Here it is rather assumed
that the primary parties are phone users, who would like to minimize data traffic
fees and maximize battery usage, and service providers that want to reduce network
congestion.

2.1 Example 1 — Smartphones

The first motivating example comes from the domain of smartphones or tablet de-
vices. These consumer products are fully customizable through downloadable ap-
plications - "apps" - and are often used for processing-intensive tasks, such as media
playback, video recording or games. The exact resource needs for such applications
is hard to predict as the software behavior in these domains is highly data and user
command dependent. Since video playback is one of the more demanding tasks,
this will be used as an illustrative example.

18

2.1 Example 1 — Smartphones

0 5 10 15 20 25 30 35 40
time (s)

8

9

10

11

12

13

14

15

16

C
P
U

 U
ti

liz
a
ti

o
n
 i
n
 p

e
rc

e
n
t

Utilization for 320 x 180 movie

0 5 10 15 20 25 30 35 40
time (s)

35

40

45

50

55

60

C
P
U

 U
ti

liz
a
ti

o
n
 i
n
 p

e
rc

e
n
t

Utilization for 1280 x 720 movie

Figure 2.1 Resource requirements for decoding two versions of a H.264 movie on
an Intel Core 2 Duo-based MacBook. The left plot represents a movie encoded in
low resolution (320 by 180 pixels) while the right represents one encoded in HDTV-
resolution (1280 by 720 pixels). The experiment was run three times with varying
results, as illustrated by the the three curves in each plot. The utilization measure
represents the percentage of time the decoding process had exclusive access to the
CPU measured with a sliding 1 second time window.

Figure 2.1 exemplifies the CPU utilization for decoding two versions of the same
video stream with perfect playback, i.e., no frame skipping or playback jitter. Note
how the resource demands are significantly larger for the high resolution stream and
how the levels change over time. There is also a visible trend, with a slight increase
in resource demand around 15 seconds and a dip at around 28 seconds. This is evi-
dent for both streams and is caused by the encoding standard, which uses different
levels of compression depending on the level of motion in the source video. The
experiment was run three times for each stream with different results each time, this
despite the fact that decoding a specific movie stream is a deterministic sequence
of operations. One major reason for this is that modern hardware relies heavily on
prediction and heuristics to minimize effects of memory latency and pipeline bub-
bles. Should these strategies fail, the system takes a performance hit. As the system
doing the decoding in the example is executing a large number of background tasks
in addition to the decoder, system state will vary from run to run.

The problem stated in traditional real-time terms would be to check the schedu-

19

Chapter 2. Problem formulation

lability of a set of periodic tasks τ0, ...,τN with the corresponding periods T0, ...,TN
and worst case execution times C0, ...,CN . Assume for simplicity that each task has
a relative deadline equal to its period. If the scheduling policy used is Earliest Dead-
line First (EDF) and the system is a single core machine, the task set is schedulable
if

N

∑
i=0

Ci

Ti
≤Ub (2.1)

where Ub is the utilization bound, which depends on parameters such as the cost
of context switches and is normally close to 1. For a media player task, the period
would be equal to the frame rate at which the movie is encoded, which is easily
accessible from the stream meta data.

If the test passes, deadlines will be met and the system performs as intended.
If the test fails, the system is overloaded and tasks will miss their deadlines. Tra-
ditionally, a system should not admit tasks that will cause overload, but given the
uncertainties mentioned above, it is not clear if enough information would be avail-
able to make such decisions. Specifically,

• the set of active tasks will change over time as the user enables different
applications,

• the resource requirements of a task can vary greatly depending on input, and

• the properties of 3rd party software might not be available during system
design.

A system designer could choose to restrict the use cases supported by the device in
order to counteract some of these points, but this could render the product unattrac-
tive to consumers. It is also probable that a user would rather have access to a
function running with degraded performance than being denied this functionality
completely. Therefore, the all-or-nothing property of hard real-time formulations is
not suitable for this problem domain.

This thesis chooses to focus on the following aspects of the problem:

• Uncertainty in hardware and software. The reliance on prior information in
traditional real-time systems is increasingly a bottleneck in designing feature-
rich embedded systems. Rather, the approach taken here will be to try to
model the resource consumption of a system and estimate model parameters
online.

This has the effect of reducing the work needed by both hardware designers
and software developers, thereby reducing time to market for both product
and 3rd party add-ons.

• Allocation under overload conditions. For portable devices it is desirable to
use low power components (CPUs, batteries, radio transmitters etc) and as a

20

2.2 Example 2 — Mobile robotics

Sensors

Trajectory
Planning

Servo
Control

Higher Level
Supervisory
Functions

Servos

On board
Computer

cpu
time

readings

targets refs

controls

Figure 2.2 A schematic over a simple mobile robot system. The square blocks rep-
resent hardware functions that require power, the round-corner shapes are software
functions that require cpu-time to run. The complex dependency situation makes it
non-trivial to determine how to prioritize in a situation with insufficient resources to
run the system at nominal performance.

result, efficient systems will often run near or in overload conditions in order
to save power and unit cost.

The thesis will strive to provide resource management strategies that effec-
tively manage systems under both nominal and overload conditions.

• Non-restrictive assumptions on software components. One way to sim-
plify the work of the system designer would be to shift some of the burden
to the 3rd party developers, e.g., requiring them to supply worst case execu-
tion time estimates and other detailed resource demand information. As such
figures require technical expertise with the target platform, this could impede
the supply of attractive 3rd party software.

The application framework should put clear but lenient requirements on de-
velopers in order to make the platform simple and attractive to develop for.

2.2 Example 2 — Mobile robotics

Mobile robotics is another field where resource management is key to performance.
Not only are computational resources scarce, there are usually many subsystems

21

Chapter 2. Problem formulation

besides the computer that compete for power. The drive to increase autonomy, and
include more and more functions while simultaneously pricing products competi-
tively, is making the resource constraints more and more pronounced.

As the constraints grow increasingly severe, it becomes interesting to see if a
holistic view on resource management can improve operational range or enable
units to be built with cheaper components. By combining hardware and software
models, a hybrid system description that is popularly referred to as a cyber-physical
system (CPS) emerges. The objective here is to study the interactions between hard-
ware and software and through this learn how global system performance is affected
by the dynamics of both.

Cyber-physical systems, particularly in the mobile robot case, share many prop-
erties with the smartphone device class discussed previously. In particular, this in-
cludes a tolerance for degraded performance in subsystems. This makes it an inter-
esting domain for studying resource allocation trade-offs.

Consider the schematic presented in Figure 2.2. The functions in a robot can be
realized in hardware or software, making the resulting dependency graph include
connections both from hardware to software and vice versa. In order to handle a
situation where some resource is scarce, a model that can express the total perfor-
mance dynamics of the system would be useful. It is the aim of this thesis to present
some initial thoughts on how this can be accomplished.

The thesis will focus on the following aspects of the problem:

• Cyber-physical dynamics. The coupling between computations and physics
becomes apparent in mobile robotics, especially in constrained resource
cases. The computational side will traditionally apply techniques similar to
those discussed in Section 2.1 to decouple the dynamics by interfacing a per-
fectly timed real-time system with a sampled continuous time system through
discrete time system descriptions with a predetermined sample period. Main-
taining that sample period is resource expensive as it requires worst case de-
sign.

As with most mobile devices, limited cooling capabilities can force CPUs
to reduce their performance to prevent overheating, introducing a variable
amount of computational capacity in the same way as for the smart phone
example. Dealing with - or even controlling - the heat generated by the system
and the effects on resource availability this entails is therefore imperative.

• Distributed component systems. Unlike the smartphone, the mobile robot
is more modular. Sensors, actuators and computer components are spread
out over a larger physical area, complicating things like synchronization and
data flow management. Where in a monolithic computer, synchronization be-
tween processes is done through programmatic methods, in a mixed setting
of physical and computational components such methods are not necessarily
possible.

22

2.3 Example 3 – Mobile cloud computing

Figure 2.3 The use of cloud computing services, such as remote data storage or
media streaming, by mobile devices is very natural and in some cases even necessary
in order to deal with limited built in storage and sandboxed applications. What has
yet to happen is the inclusion of the mobile devices as part of the cloud in the form
of service providers.

2.3 Example 3 – Mobile cloud computing

The intrinsic limitations of mobile devices in terms of storage or computational
capacity have made these devices heavily dependent on cloud computing services,
such as remote storage or media streaming. With the rapid growth of both devices
and services, it is perhaps not surprising that licensed spectrum is already scarce
[FCC, 2010].

In order to reduce network load, it is tempting to implement peer-to-peer or peer-
assisted mechanisms popular in fixed networks with stationary computers, such as
BitTorrent, but the mobile case presents additional challenges before these tech-
nologies can be deployed. The limited energy available to a mobile device makes
it inherently unattractive to help distribute data unless guarantees can be given that
such investments will pay off.

By creating cooperative mechanisms where mobile devices can share the task of
fetching data over expensive remote links, without risk of losing energy on the trans-
action, the mobile part of the network can be turned into willing service providers.

This thesis discusses how the coupling of resource constraints can lead to such
schemes, where clients cooperate to solve problems and save resources while simul-
taneously reducing load on the Wide Area Network (WAN). The specific situation
studied is cooperative file distribution to a population of co-located devices, under
assumptions of high mobility and that nobody is willing to act altruistically.

Specifically, the thesis focuses on the following elements of the problem:

• Cooperative sharing of resources Finding ways to create win-win coop-
erative scenarios is important for systems of independent units, as altruistic
behavior cannot be expected.

• Dynamic populations As in the case of the individual smart phones, where

23

Chapter 2. Problem formulation

the active software components will vary over time, the population of mobile
devices interested in cooperating will vary over time and space. As such it is
important that the mechanism uses feedback and estimation to make decisions
and not rely on offline calculated solutions.

2.4 Problem features

A number of structural similarities present themselves in the above examples.

Limited resources
System performance is clearly limited by the availability of resources. Reducing
size while adding functionality has been the trend in consumer electronics for a
long time, so though components become smaller and more efficient, resource con-
straints continue to be an important factor in product design.

Uncertainty and estimation
Demand and supply of resources are expected to change over time, either sponta-
neously or as a function of how they are used. An example of the former is when
components activate or switch modes, where the latter can be a result of the CPU
heating up or a battery being drained. It is important to note that not only are system
parameters expected to change over time, but the structure of the system (e.g., what
components are active) is subject to continuous change as well.

Feedback and optimization
Rather than relying on pre-calculated solutions, the thesis uses optimization- and
feedback-based techniques to continuously maximize the system utility, given the
current system state and resource availability.

Taking decisions on a budget
In order to make continuous resource allocation decisions viable, the results need
to be computed in a timely and resource-light fashion. Many powerful forms of
optimization are therefore infeasible for this problem domain, due to heavy compu-
tational requirements and/or computational complexity that is difficult to predict.

2.5 Problem structures

In this thesis, the problems of resource management will be divided into three cate-
gories.

24

2.6 Overall goals

Competitive
In a competitive scenario, the components of the system have their own private
performance metrics, which are functions of the component’s resource allocation.
In general, it is up to an outside party to determine the value of each component
in relation to the others, something that is traditionally done in software systems
through priority assignment by an outside party, often a system designer or user.

The thesis will generally consider under-provisioned cases, i.e., where there is
insufficient resources to saturate the needs of all components. As the competitive
case concerns systems with unrelated components, one problem is how a system
designer can describe the desired compromise and how component designers can
express the resource needs of their components in a way that is simple and yet
robust to platform changes.

Collaborative
In collaborative systems, components have no individual performance metrics, but
contribute to one or more system wide metrics. These metrics typically concern
things like synchronized operation, end-to-end latency over a number of compo-
nents, and buffer length control.

In over-provisioned cases, these types of problems are often formulated as syn-
chronization and mutual exclusion problems, but as locking is problematic in re-
source management situations, the thesis offers a different view that can be applied
to general CPS systems where functionality is implemented across both hardware
and software.

Cooperative
Cooperative systems consist of components with individual performance metrics,
but where they can benefit from exchanging data and services. The central theme
here is not to allocate resources, but rather to allocate the spending of it so that the
return on investment is as high as possible. This thesis will analyze an example of
such a scheme where mobile clients cooperate around fetching data from a remote
service and share it locally, thereby reducing both licensed spectrum and energy
usage.

2.6 Overall goals

The objective of this work is to investigate how resource management can be done
in situations where uncertainty in both demand and supply makes static methods
infeasible. An effort is made to consider systems where components have depen-
dencies, as this topic is less studied. While initially the work was focused on CPU
resources inside a computer, the robot example makes it evident that if the avail-
ability of the CPU resource depends on the dynamics of other resources, a model
encompassing both domains is desired.

25

Chapter 2. Problem formulation

The viewpoint is then shifted to encompass a population of devices that, while
having individual goals, can cooperate in such a way that all participants benefit.
The intent is to design methods for resource conservation where there is a tangi-
ble incentive to cooperate for everybody and not rely on assumptions of altruistic
behavior.

It is an explicit goal that the methods presented are realistically implementable
on power constrained systems and as such cannot be too resource consuming in
themselves.

26

3
Reservation based
scheduling

In order to state the design problems associated with embedded systems in resource
management terms, the access to hardware and software resources must be exposed
to the system designers as divisible resources. Resource access in computer systems
has traditionally been posed as scheduling problems, but through virtualization and
Reservation-Based Scheduling (RBS) techniques the access problem can be restated
in resource allocation terms.

This chapter introduces the prior research related to RBS that is necessary to un-
derstand the structures for the competitive, collaborative and cooperative resource
management strategies discussed in this thesis. Central concepts are introduced
along with a brief a historical survey of RBS. The theory is derived from both its
real-time scheduling roots and its queueing theory counterpart.

Using the RBS formulation, a resource management policy can be posed as the
solution to an optimization problem. Such methods are introduced in the section
on optimal resource management, which has its roots in operations management.
It is worth noting that these techniques are mostly feed-forward in style, i.e., the
allocations are calculated based on models rather than on-line measurements. Some
important works in the alternative branch, feedback and adaptation, are then dis-
cussed.

As this thesis will largely be about on-line strategies, finding ways to solve op-
timization problems reliably and efficiently is a central part. The domain of convex
optimization lends itself to this type of formulations and some examples of this are
introduced in Section 3.4.

The chapter is based on the technical report [Lindberg, 2007].

3.1 Important concepts

This section introduces important concepts that will be used in the presentation of
relevant research.

27

Chapter 3. Reservation based scheduling

Temporal Isolation
A highly desirable property of the RBS approach is that a task that has reserved a
specific amount of a resource should have access to this regardless of what other
tasks are running on the system. This is called temporal isolation and makes very
good sense for both continuous media and control type applications used as exam-
ples so far. Memory protection ensures that applications will behave functionally
correct even in the presence of other, potentially malfunctioning, software. Tempo-
ral isolation provides a similar guarantee for temporal correctness.

Components and composition
In order to handle the complexity of large systems, the ability to gather parts into
component structures that are closed under composition is vital. Threads with pri-
orities, the building blocks of traditional operating systems, do not compose [Lee,
2006]. By using hierarchical RBS techniques, it is possible to enforce temporal iso-
lation and thereby create groups of threads with essentially the same outside prop-
erties as the atomic thread. This enables component-wise testing and verification,
and also removes the need to explicitly know the structure of 3rd party software.

Timing sensitive applications
In real-time situations, the timely completion of tasks is important. Normally, if a
task has a real-time deadline, it is assumed to function nominally if the deadline is
met and fail if the deadline is missed.

In soft real-time problems, deadlines are allowed to be missed occasionally and
for applications in this domain it is interesting to discuss how the performance is
affected by this. Applications where the performance depends on how well the dead-
lines are met are called timing sensitive applications.

Graceful QoS degradation
While it is possible to create an admission policy that denies tasks that would make
the scheduler unable to sustain reservations, this might not be desirable from a user
perspective. For consumer applications, it can be preferable to have a slight (and
predictable) degradation in QoS as opposed to being denied starting applications
altogether. This becomes even more evident in embedded systems where resources
are scarce. Consider a mobile phone user engaged in a video conference call when
a SMS message comes in. Most would be content to have some slight degradation
in video quality while still being able to accept the SMS message. If the playback
application in question is designed to be aware of its resource allocation, it can be
assigned lower QoS in an as graceful way as possible.

28

3.2 Reservation Based Scheduling

3.2 Reservation Based Scheduling

This form of scheduling is used together with a class of real-time applications whose
quality of output depends on sufficient access to a resource over time. Such applica-
tions are difficult to handle in terms of traditional hard real-time theory. The typical
situation involves some type of continuous media task (playback or encoding), and
it was in fact the need for support for media software that ignited interest in the
field. This was in the early ’90s when computers started to make their way into
mainstream media production and consumption. While this remains the favored use
case also today, other forms of computing can also benefit from RBS. This includes
classes of systems that have traditionally been considered hard real-time. Before
discussing the different algorithms for RBS, the problem background will be pre-
sented in more detail.

Origins
The case for Reservation Based Scheduling (RBS) was perhaps most famously
made by Mercer et al in [Mercer et al., 1994]. The paper discusses processor re-
serves as a way to describe computational requirements for continuous media type
applications and some challenges when this is implemented on a microkernel archi-
tecture.

The basis of the analysis is periodic tasks, characterized by execution time C
and period T . Mercer observes that C is likely difficult to compute and suggests
that the programmer supplies an initial estimate and that the scheduler then mea-
sures and adjusts the estimate (a feedback scheduling technique). The paper also
introduces the concept of task CPU percentage requirement ρ = C/T and the ex-
pected execution time of a task running at rate ρ as D =C/ρ . It is worth noting that
these definitions are very close to what present day theory refer to as bandwidth and
virtual finish time respectively. Although [Mercer et al., 1994] is frequently cited,
many of the aspects of resource reservations and continuous media had already been
discussed in earlier works.

Herrtwich presents a number of insights around the problem in [Herrtwich,
1991]. Like in [Mercer et al., 1994], the use of conventional scheduling schemes
is deemed as inefficient and perhaps not serving the user needs. Herrtwich also
brings up the importance of preventing ill-behaved applications from disturbing oth-
ers (temporal isolation) and that the user might prefer graceful degradation of QoS
to being prevented from starting new applications when the system is overloaded.

Herrtwich paper quotes heavily from the even earlier work [Anderson et al.,
1990], which details how media type applications can be served by a resource reser-
vation scheme based on preemptive deadline scheduling. The concept of resources
is here extended to include not only CPU but also disk, networking and more. [An-
derson et al., 1990] presents more theory, but lacks some of the more general in-
sights in Herrtwich’s work.

29

Chapter 3. Reservation based scheduling

Taking a queue from telecommunication
In what seems like unrelated work, the telecommunications society was around this
time investigating queuing algorithms which, it would turn out, share properties
with process scheduling problems. [Demers et al., 1989] discusses the sharing of a
link gateway between clients using the Weighted Fair Queueing algorithm (WFQ)
citing "protection from ill-behaved sources", essentially temporal isolation, as one
of its main advantages.

The central idea of the algorithm is to schedule the jobs in the order they would
have been completed by a Weighted Round-Robin (WRR) scheduler, perhaps the
most well known form of Time Division Multiple Access (TDMA) used in channel
sharing. The job finishing times, though not named as such in this paper, are in
subsequent works called virtual finish times. In other words, the scheduler decisions
are based on how the task set would behave if each task was running on a private
platform with a fraction of the actual system speed.

In this manner, the fairness property of the WRR scheduler and the finishing
order of the jobs are preserved while the context switching overhead is reduced.
Apart from being one of the earliest examples of temporal isolation, it introduces
the notion of basing the scheduling decisions on virtual time metrics.

Virtual time
The WFQ scheme and how virtual time can be used is discussed in papers in the
decade following [Demers et al., 1989]. One of the more comprehensive is [Parekh
and Gallager, 2007], which further investigates how a Generalized Processor Shar-
ing scheme (GPS) can be approximated using virtual time techniques. Though ini-
tially a queue theoretical result, [Parekh and Gallager, 2007] is commonly cited in
real-time scheduling papers as well. For example, the virtual time concept is used
in the current Linux scheduler, which is described in detail below.

Hierarchical Scheduling Structures
One desirable property in consumer grade systems is to be able to mix real-time
applications with regular applications. Often this leads to a construction with a hi-
erarchy of schedulers, typically with some hard-real time scheduler on top and soft
real-time and regular best-effort schedulers underneath. [Xingang et al., 1996] sug-
gests using a tree structure where each node is either a scheduler node or a leaf
node. Parents schedule their children until leaf level, where the regular tasks sit,
is reached. An example is provided in Figure 3.1. The paper also describes a vari-
ant of WFQ called Start-time Fair Queuing (SFQ) that provides better guarantee of
fairness if the amount of available processing power fluctuates over time.

The hierarchical approach to scheduling is also proposed by other groups. The
RTAI/Xenomai extensions to Linux runs a RT-scheduler as root and the Linux op-
erating system as a thread (see Section 3.7). The structure is similar to the one
proposed in [Xingang et al., 1996]. The Bandwidth Server class of RBS algorithms,

30

3.2 Reservation Based Scheduling

root
(SFQ)

Hard RT
(EDF)

Soft RT
(SFQ)

Best
Effort

User 1 User 2

Figure 3.1 Hierarchical structure with schedulers. Note that SFQ is used on more
than one level.

detailed in Section 3.2, also uses a hierarchy of schedulers, typically with an Ear-
liest Deadline First (EDF) scheduler [Buttazzo, 1997] on top. Hard real-time tasks
are scheduled directly by the EDF algorithm, while soft real-time tasks have ded-
icated "servers" that dynamically set their deadlines to achieve CPU reservations.
Regular applications can be scheduled by a separate server. Lipari et al presented a
hierarchical Constant Bandwidth Server construct called the H-CBS in [Lipari and
Baruah, 2001] in 2001.

The choice of top level schedulers becomes more critical in the case of insuffi-
cient resources. Fixed priority schedulers favor high priority tasks while EDF sched-
ulers will spread out the effects [Cervin et al., 2002] [Buttazzo et al., 1995].

Bandwidth Servers
The concept of bandwidth servers was derived from Dynamic Priority Servers
(DPS) by Buttazzo [Buttazzo, 1997]. DPS is a method to accommodate aperiodic
or sporadic tasks in fixed priority systems, essentially through a hierarchy of sched-
ulers. The Priority Server is a periodic task with a specified execution time. Arriving
aperiodic tasks are placed in a queue and executed by the Priority Server when it is
scheduled to run. In the original formulation, unused capacity is just lost.

Buttazzo brought the concept of a server presiding over a predetermined amount
of CPU capacity to the dynamic scheduling algorithms. The Dynamic Priority Ex-

31

Chapter 3. Reservation based scheduling

change Server (DPE) and the Total Bandwidth Server (TBS) [Spuri and Buttazzo,
1996] were the first formulations using EDF as a root level scheduler. The objective
was still handling aperiodic tasks and a lot of theory concerned handling of unused
bandwidth. In 1998, Buttazzo and Abeni published [Abeni and Buttazzo, 1998b],
which introduces the Constant Bandwidth Server (CBS). By then, the Continu-
ous Media (CM) problem had already been addressed using the Bandwidth Server
metaphor by [Kaneko et al., 1996].

Constant Bandwidth Server
The CBS formulation is a popular construct for software reservations and is ex-
plained further in this section.

Consider a set of tasks τi where a task consists of a sequence of jobs Ji, j with
arrival time ri, j. Let Ci denote the the worst case execution time (WCET) in the
sequence and Ti the minimum arrival interval between jobs. For any job, a deadline
di, j = ri, j+Ti is assigned.

A CBS for the task τi can then be defined as:

• A budget, cs, and a pair (Qs,Ts) where Qs is the maximum budget and Ts
is the period. The ratio Us = Qs/Ts is called the server bandwidth. At each
instant, a fixed deadline, ds,k, is assigned to the server with ds,0 = 0.

• The deadline di, j of Ji, j is set to the current server deadline ds,k. If the server
deadline is recalculated, then so is the job deadline.

• When a job associated with the server executes, cs is decreased by the same
amount.

• When cs = 0 the budget is replenished to the value of Qs and the deadline is
recalculated as ds,k+1 = ds,k +Ts. This happens immediately when the budget
is depleted, the budget cannot be said to be 0 for any finite duration.

• Should Ji, j+1 arrive before Ji, j is finished, it will be put in a FIFO queue.

Variations on the CBS formulation
CBS-hd This reformulation of the replenishment rule makes it possible for very
overrun sensitive applications to get access to parts of its budget on a shorter dead-
line. This is investigated in [Caccamo et al., 2000].

The Control Server (CS) Cervin and Eker presented in [Cervin and Eker, 2003]
a modification to the CBS scheme that would make it easier to handle the timing
needs of a control application. The server budget cs is here spread out over a number
of smaller segments, reducing the uncertainty as to when an input will be read, an
output be set, or a code function executed.

32

3.2 Reservation Based Scheduling

Fair Queueing
Fairness was originally introduced by Nagle in [Nagle, 1987] using an informal
definition saying simply that a fair algorithm divides the resources between peers
equally. The paper also includes what is essentially a prototype of the WFQ al-
gorithm but with little formalism. [Demers et al., 1989] builds on [Nagle, 1987],
providing formal definitions and analysis. An algorithm for dividing a resource is
defined as fair if

• no user receives more than its request,

• no other allocation scheme satisfying the first condition has a higher mini-
mum allocation and

• the second condition remains recursively true as we remove the minimal user
and reduce the total resource accordingly

For applications, the conditions can be expressed in another way. Assume the exis-
tence of a finite resource D and n users of that resource. Each user "deserves" a fair
share equal to D/n of this resource, but is allowed to ask for less, in which case the
difference can be allocated to a user who would like more. Let di denote the share
a user requests and ai the share he is given. The maximally fair allocation is then
defined so that the share d f is computed subject to the following two constraints:

n

∑
i=1

ai = D (3.1)

ai = min(di,d f) (3.2)

To quantify the fairness of an measured allocation {a1,a2, ...} compared to the
maximally fair allocation {A∗1,A∗2, ...}[Jain et al., 1984] proposes to use a fairness
function

Fairness =
(∑n

i=1 xi)
2

n∑
n
i=1 x2

i
(3.3)

usually referred to as Jain’s Fairness Index, where xi = ai/A∗i . The fairness will be
between 0 and 1, where 1 represents a maximally fair allocation.

Using this metric, we can discuss how fair an algorithm is, how quickly it
achieves it, and how sensitive it is to fluctuating conditions. More notions of fair-
ness does, however, exist. The formulation above is limited to calculating the overall
fairness, but is difficult to apply to specified time intervals. For that, we need a more
advanced formulation. In [Golestani, 1994], Golestani introduces a notion of fair-
ness based on the concept of normalized service. Let ri be the service share allocated
to a task τi and Wi(t) the aggregate amount of service this task has received in the
interval [0, t). The normalized service is then wi(t) = 1

ri
Wi(t). An algorithm is then

considered fair in an interval [t1, t2] if

wi(t2)−wi(t1) = w j(t2)−w j(t1) (3.4)

33

Chapter 3. Reservation based scheduling

or, in a more compact notation,

∆wi(t1, t2)−∆w j(t1, t2) = 0 (3.5)

for any two tasks τi and τ j that have enough work to execute during the entire
interval and fair if this is true for any interval.

Unless work is infinitely divisible and all tasks can be serviced simultaneously,
all scheduling algorithms relying on resource multiplexing will be unfair if t2− t1 is
chosen sufficiently small. The theoretical case that allows t2− t1 to go towards 0 is
called fluid resource sharing and is discussed in [Parekh and Gallager, 2007], that
analyzes the Generalized Processor Sharing algorithm (GPS). Note that GPS would
be completely fair given both definitions of fairness.

Variations of WFQ
While simple in concept, WFQ suffers from being computationally expensive and
sensitive to fluctuating resource availability. Several alterations to the original al-
gorithm have been proposed to reduce these problems. For instance, the Start-time
Fair Queueing approach mentioned earlier was introduced in [Xingang et al., 1996]
as one way of increasing robustness to resource fluctuations, while the Self-clocked
Fair Queuing scheme [Golestani, 1994] removes the need to explicitly calculate the
ideal processor sharing solution.

The Completely Fair Scheduler The Completely Fair Scheduler (CFS) is a Linux
scheduler that was introduced by Ingo Molnar in the 2.6.23 release of the kernel.
The scheduler is called "The Completely Fair Scheduler", but the design document
recognizes that absolute fairness is impossible on actual hardware. The scheduling
principle is simple, each task is given a wait_runtime value which represents how
much time the task needs to run in order to catch up with its fair share of the CPU.
The scheduler then picks the task with the largest wait_runtime value. On an
system with Fairness Index 1, wait_runtime would always be 0.

The implementation of this is slightly less simple. Each CPU maintains a
fair_clock which tracks how much time a task would have fairly got had it been
running that time. This is used to timestamp the tasks and then to sort them, us-
ing a red-black binary tree, by the key fair_clock - wait_runtime. Multicore
scheduling is supported though a partitioned scheduling scheme, with penalties for
migrating to other CPUs. Weights are also used, but as is common in POSIX sys-
tems they are called nice levels and have the reverse meaning (a nice process would
have a low weight). wait_runtime is also constrained so that heavy sleepers will
not lag too far behind.

In subsequent patches, the group scheduling framework was introduced. In
short, it is a hierarchical scheduling scheme where the run queue can be made up of
both individual tasks and groups of tasks. The initial intent was to allow fair sharing
of the CPU between users rather than tasks. However, the introduction of control

34

3.2 Reservation Based Scheduling

groups (see below) made it possible to do arbitrary groupings, thereby making it a
simple but flexible tool for CPU reservations.

At the time the CFS was being merged into the kernel mainline, there were
several competing initiatives to bring reservations to the Linux scheduler. The win-
ning patch-set introduced control groups, a general system for grouping tasks and
annotating the groups with parameters. These parameters could then be used by
various kernel subsystems without the need to change the POSIX task model. It is
important to note that control groups in themselves do not alter the behavior of the
system, they are just an organizational tool. It is up to the respective subsystems to
then interpret the parameters. Some examples of control group-aware subsystems
are

• the CFS Group scheduler,

• the CPU affinity subsystem ("cpusets"),

• the group freezer (suspends all tasks in the group) and

• resource accounting.

Adding new control group-aware subsystems is at the time of writing the preferred
way to introduce new user controllable functionality in the kernel, instead of adding
new system calls.

Comparison between CBS and FQ
Having introduced both the bandwidth server and fair queuing approach to RBS,
we can now compare the two methods and see how they differ. Such a comparison
is presented in [Abeni et al., 1999], which is summarized here.

First we take a look at the interface they provide for reserving bandwidth. The
CBS dedicates an absolute share while FQ uses relative shares. FQ can emulate
CBS but with the need to dynamically recalculate the weights when a new task is
admitted. FQ algorithms also typically provide bounds on delay, which can be seen
as a bound on what deadline requirements a new task can pose. Both schemes have
been extended with feedback to adjust weights or bandwidth to achieve some QoS
set-point. On the other hand, FQ can more easily be used with mixed real-time and
non-real-time tasks.

The run-time properties of the algorithms are also different. CBS does not use
quantified time which makes its performance more consistent over varying hard-
ware platforms. FQ is on the other hand simpler to implement. FQ enforces fairness
at all times while CBS only guarantees bandwidth allocations between deadlines,
making it less conservative. The paper makes the case that FQ is not suitable for me-
dia applications as it lacks the notion of task period or deadline, but one can argue
that the maximum lag property of an FQ algorithm is a global deadline guarantee,
shared by all tasks currently in the system. It is, however, true that the maximum lag

35

Chapter 3. Reservation based scheduling

often depends on the number of tasks in the system and the distribution of weights,
making the temporal isolation property of FQ weaker. The paper also states that FQ
would generate many context switches in order to enforce fairness. While CBS will
have context switches as a function of the smallest period server, FQ uses a fixed
scheduler time quanta for all tasks. However, as seen with, e.g., the Completely Fair
Scheduler, scheduling allowances can be worked in to reduce the number of context
switches, at the cost of worse moment-by-moment fairness.

Latency-Rate Servers
In [Stiliadis and Varma, 1998], a generalization of different FQ algorithms are pro-
posed. The class of schedulers called Latency Rate servers (LR-servers) are defined
as any scheduling algorithm that guarantees that an average rate of service offered
to a busy task, over every interval starting at time Θ from the beginning of the busy
period, is at least equal to its reserved rate. Θ is called the latency of the server. A
large set of the FQ algorithms fit into this class, including WRR, WFQ and SCFQ.
Even non-fair algorithms can qualify (one such example presented in the paper is
the Virtual Clock algorithm [Zhang, 1990]).

[Stiliadis and Varma, 1998] goes on to derive a number of results for this rather
general class of schedulers, including delay guarantees and fairness bounds. One
interesting result is that a net of LR-servers can be analyzed using one equivalent
single LR-server. This can be useful when considering a hierarchy of schedulers.

Alpha-Delta abstraction
Similar to the LR-server formulation is the Alpha-Delta abstraction proposed in
[Mok et al., 2001b]. Bounds for minimum service α and delay ∆, corresponding to
rate and latency in the LR-server formulation respectively, are here derived from a
real-time scheduling point of view.

3.3 Feedback allocation control

Adaptive Reservations
One problem when doing RB scheduling is that the execution time for a periodic
task may vary over time. As it is undesirable to base our calculations on the worst
case, it is likely some deadlines will be missed. While the CBS scheme can handle
transient overruns, non transient changes will lead to eventually infinite deadlines
(instability). One way to remedy this would be to dynamically set the budget for a
server based on prior overrun statistics in a feedback control manner, though com-
monly referred to as adaptivity in computer science publications.

In [Abeni and Buttazzo, 1999], Abeni and Buttazzo introduce a metric called the
scheduling error. If we have a periodic task τi with period Ti, then the scheduling
error εs is defined as

εs = ds− (ri, j +Ti), (3.6)

36

3.3 Feedback allocation control

i.e., the difference between the server deadline and the soft deadline of the task.
Feedback using the server budget Qs as the control signal would then be used to
drive εs towards 0.

A few design techniques for such a controller are discussed in [Marzario et al.,
2004]. For the purpose of making the analysis simpler, a restriction is imposed so
that even if there is extra unused bandwidth available, a task τi scheduled by a CBS
will only receive the bandwidth Qs, a so called hard reservation. Assume that τi is a
periodic task being served with a CBS, divided into jobs Ji, j with the corresponding
release times ri, j. This gives ri, j+1 = ri, j +Ti, where Ti is the task period. Each job
is associated with a soft deadline di, j = ri, j +Ti, that is di, j = ri, j+1. Let fi, j be the
actual finish time for Ji, j and vi, j be the finish time had τi been running alone on a
CPU with the fraction bi = Qs/Ts of the actual CPU speed, i.e., the virtual finish
time. The article uses a modified definition of the scheduling error compared to 3.6

εi, j = (fi, j−1−di, j−1)/Ti (3.7)

which is the scheduling error experienced for Ji, j−1. Note that since hard reserva-
tions is being used, having both ε j > 0 and ε j < 0 is undesirable since the task
would either be missing deadlines or wasting bandwidth. The relation

vi, j−δ ≤ fi, j ≤ vi, j +δ (3.8)

where δ = (1− bi)Ts, tells us that we can make the CBS approximate the General
Processor Sharing (GPS) algorithm by letting Ts go towards 0. Even with normal
choices of Ts it is reasonable to use 3.7 and 3.8 to approximate the scheduling error
with

ei, j = (vi, j−1−di, j−1)/Ti (3.9)

A difference equation for the evolution of the scheduler error is then presented
in [Abeni et al., 2002]. The paper also proposes a predictor based control structure
and three examples of control design using invariant based design, stochastic dead
bead design and optimal cost design respectively.

Real-Rate Scheduling
One of the first examples of rate-based scheduling was proposed in [Goel et al.,
2004]. The novel approach is to use some task output to measure the rate of progress
and thereby eliminate the need for the software designer to assign deadlines or CPU
share directly. Experiments presented in the paper are performed using a slightly
modified Linux 2.0 series kernel augmented with an rate monotonic scheduling-
based RBS scheme. A task with no known period or CPU share requirements but a
measurable progress is in [Goel et al., 2004] called a real-rate task.

The example studied is a video pipeline with a producer and a consumer that
exchange data via a queue. Queue fill level is the metric used for progress. The
scheduler samples the queue and decides if either of the two is falling behind or

37

Chapter 3. Reservation based scheduling

getting too far ahead. They use a half-filled queue as the set-point and then design
a PID controller to decide the CPU share needed. The period is decided using an
heuristic based on the size of the share, lower share meaning longer period.

Heartbeat
Rate-based allocation is further supported by the Heartbeat framework [Hoffmann
et al., 2010], which proposes instrumentation of applications so that significant
events can be detected by the resource reservation framework. The framework pro-
vides an API for registering applications with the resource manager and specifying
rate and latency set points. Rates are estimated from events using sliding window
methods but individual time stamps of events are saved in order to facilitate more
in-depth analysis.

A Linux-based implementation is presented together with results from experi-
ments on a number of application types, including image analysis and video play-
back.

3.4 Allocation

With the establishment of a variety of RBS techniques, the next important ques-
tion to discuss is how to calculate the reservations. Given a set of timing sensitive
applications, individual application performance can be sacrificed to obtain better
global performance. The theory of splitting a resource between consumers is of-
ten called resource allocation, though considering its mathematical properties, con-
strained control would be just as accurate.

Within the field of operations research, using optimization to solve logistics
and resource allocation problems is common practice. Some of the iconic prob-
lems have been formulated here, including the knapsack and bin packing problems.
Solving knapsack- and bin packing problems exactly is of NP-complete complexity
[Kellerer et al., 2004; Coffman et al., 1997], making them unattractive for on-line
use in limited computational capacity settings.

Constrained control theory
A popular tool for managing constrained dynamics in control is the Model Pre-
dictive Control (MPC) formulation. The default setup is postulating a convex cost
function of the state trajectories, using an LTI-model as trajectory constraints [Ma-
ciejowski, 2002]. Though mathematically feasible to use for allocation problems,
solving convex optimization problems can be very resource demanding if special
care is not taken.

The Explicit MPC formulation uses pre-calculated solutions, thereby convert-
ing computational complexity to a need for storage space. As a result, optimiza-
tion problems typical for MPC can be solved in milliseconds [Zeilinger et al.,
2009; Geyer, 2005]. Calculations can be sped up even further using hardware-based

38

3.5 Reservation frameworks

solvers generated from the problem description, as shown in [Jerez et al., 2012].
The assumption that problem structure is known and fixed does, however, make
pre-computed solutions impractical for dynamic resource allocation.

Another way of obtaining very fast and efficient solvers is to generate special-
ized solvers based on the problem formulation. The CVXGEN package is specifi-
cally targeted at embedded platforms, but does not support fixed point arithmetics
and is limited to linear- and quadratic programming problems [Grant and Boyd,
2010; Mattingley and Boyd, 2012].

Parallelizing solvers and making it possible to obtain at least partial results be-
fore the optimization has terminated are other approaches that can be useful when
solving optimization problems in real time. [Giselsson et al., 2013] presents a dis-
tributed gradient-based algorithm that uses short iterations together with conver-
gence rate results.

Q-RAM
In 1997, R. Rajkumar presented his Quality-of-Service-based resource allocation
model, Q-RAM [Rajkumar et al., 1997]. In essence, this states the allocation as a
single objective constrained optimization problem. The model as it was introduced
allowed for multiple tasks using multiple resources. Tasks are given utility functions
based on the allocated resources, but no technique for how to model a specific task is
presented. Neither is the problem of solving constrained optimization problems on-
line discussed. In a later paper [Saewong and Rajkumar, 1999], Rajkumar suggests
one way of overcoming the NP-hard problem of general multi-resource allocation,
but neither this paper discusses the algorithmic properties of the problem in detail.

3.5 Reservation frameworks

OCERA
OCERA [OCERA 2010] stands for Open Components for Embedded Real-time Ap-
plications, and was a European project, based on Open Source, which provided an
integrated execution environment for embedded real-time applications. From a RBS
point of view, OCERA offers a number of interesting components. The OCERA
code is based on the RTLinux extension. The patches are applicable to Linux ker-
nels up to version 2.4.18.

Scheduler Patch OCERA modified the Linux kernel so that it provided "hooks"
for modules implementing generic scheduling policies. The patch used for this is
called the Generic Scheduler Patch (GSP), intended to modularize the scheduler part
of the kernel so that additional scheduler policies could be added without further
modification to the kernel source.

Integration Patch The Preemptive Kernel Patch is made to work with RTLinux
using OCERA’s Integration Patch. The Preemptive Kernel work was done by Robert

39

Chapter 3. Reservation based scheduling

Love with the aim of improving latency by making system calls possible to preempt
[Rostedt and Hart, 2007].

Resource Reservations Scheduling module A dynamically loadable kernel mod-
ule that provides a resource reservation scheduler for soft real-time tasks in user
space is distributed with the OCERA components. It uses a CBS-based algorithm,
modified to handle some practical issues. It includes optional slack reclamation
functionality using the GRUB algorithm. The module provides a new scheduling
policy, SCHED_CBS.

Quality of Service Manager OCERA also provides a QoS management services
module. This is more or less a controller which changes the bandwidths according
to the scheduling error. The approach is more or less that presented in Section 3.3.

AQuoSA
AQuoSA [AQuoSA 2010] stands for Adaptive Quality of Service Architecture and is
another initiative to bring QoS to the Linux kernel. It builds on the work provided by
OCERA and was partially sponsored by the European FRESCOR project. Structure-
wise AQuoSA retains the components used by OCERA. AQuoSA has adopted the
IRMOS scheduler, a hierarchical EDF-based scheduler described further in Section
3.5.

FRESCOR
FRESCOR [Harbour, 2008] (Framework for Real-time Embedded Systems based
on COntRacts) focuses on hard-realtime and contract based resource management.
The project background is similar to that of this thesis, dealing with the problem of
unknown execution times, mixed requirements and maximizing resource utilization.

The idea is to automate much of the real-time analysis by exposing an API in the
form of service contracts. Once the user has specified the requirements, the platform
negotiates all current contracts to see if there is a valid solution.

A contract is a set of attributes describing the resource needs of the application
as well as certain application properties. Some central concepts here are

• resource type (e.g., process, network or memory),

• minimum budget (WCET/T),

• maximum period, and

• deadline.

These parameters are then used for automated response time analysis to determine
if the resource requirements can be met.

40

3.5 Reservation frameworks

Spare capacity distribution In order to address the goal of maximum resource uti-
lization, FRESCOR suggests a form of slack reclamation here called Spare capacity
distribution (SCD). As the admission policy works under worst case assumptions,
it is likely the system will have spare capacity in most situations.

ACTORS
ACTORS (Adaptivity and Control of Resources in Embedded Systems) was a Eu-
ropean Union funded research project with the goal to address design of resource-
constrained software-intensive embedded systems. The strategies employed in-
cluded

• data flow-based programming and code generation,

• virtualization and

• feedback resource management.

One of the primary deliverables from the project was an implementation of an adap-
tive resource management framework [Bini et al., 2011].

ACTORS-model In [Segovia and Årzén, 2010] the authors present a model, us-
ing a set of discrete resource consumption and quality output levels. The problem
formulation concerns both assigning tasks to cores and dimensioning resource reser-
vations for each core. The domain mentioned as the target in the paper is data-flow
applications, but there is nothing explicitly in the model that ties it to this.

One drawback of this approach is the need to supply the resource levels. This is
non-trivial and increases the complexity of developing applications. The approach
taken in the paper requires only one defined level and utilizes a continuous quality
measure, thereby making the optimization easier to solve.

Figure 3.2 shows an architectural overview of the actors resource management
model, where a physical platform is virtualized and presented as a number of re-
source constrained virtual platforms to the applications layer. The architecture sup-
ports mapping one CPU core into many virtual cores, but while multicore systems
are supported the model does not allow for a virtual resource to stretch over many
physical.

The resource manager (RM) allocates virtual platforms to applications as they
request resources and monitor the application performance in runtime in order to
adapt resource levels for optimum system performance. Each RM aware application
is designed with a number of predetermined Service Levels (SL), each correspond-
ing to a nominal resource demand and performance.

The problem of assigning virtual platforms to actual hardware and selecting
service levels for all running applications is posed as a mixed integer programming
problem and solved using the GNU Linear Programming Kit [GLPK]. This was

41

Chapter 3. Reservation based scheduling

Figure 3.2 The ACTORS resource architecture.

later restated as a game theoretical mechanism design problem where the appli-
cations are allowed to select their own service levels, enabling a more distributed
approach [Maggio et al., 2013].

Reservations and online adaptation
The ACTORS RM utilizes CBS style reservations through the SCHED_EDF patch
set for the Linux kernel, as described in Section 3.5. Once the initial resource assign-
ments are done as part of the global optimization described above, actual resource
usage is monitored at runtime. Overrun statistics provided by the EDF-scheduler
as well as resource consumption information provided by the process accounting
system are the basis for increasing or decreasing allocated resources, as described
in [Romero Segovia et al., 2010].

SCHED_EDF / SCHED_DEADLINE
A significant deliverable from the ACTORS project is an EDF-scheduler imple-
mentation for Linux kernels 2.6.30 and later. It is specifically designed for resource
virtualization and introduces hard CBS type RBS as the top tier scheduler. Notably,
it has support for multicore platforms.

As of kernel version 3.14-rc1, the SCHED_DEADLINE patch set was merged
into the main line tree for official support. The patch adds

• a top tier EDF scheduler,

• bandwidth, deadline and period as new process parameters, and

• new system calls (sched_setattr/sched_getattr) through which these parame-
ters can be manipulated.

42

3.6 The Xen hypervisor

The implementation does have multicore support, but the official documentation
included with the initial release states that some issues around task migration still
remains to be resolved.

The inclusion of a true EDF scheduler and support for CBS style reservations in
the Linux kernel can mean a great deal to wide spread adoption of reservation based
scheduling in consumer products and general computer systems, as such function-
ality has historically only been available in research grade software or expensive
proprietary operating systems.

IRMOS Scheduler
The IRMOS scheduler [Cucinotta et al., 2011], developed by the EU funded project
Interactive Realtime Multimedia Applications on Service Oriented Infrastructures,
is a hierarchical scheduler patch for the Linux kernel with many similarities to
SCHED_DEADLINE, but with two notable features. First of all, it is a hierar-
chical scheduler that permits other schedulers to be run inside it. Secondly, while
SCHED_DEADLINE is a partitioned EDF scheduler, IRMOS has an experimental
global EDF implementation.

3.6 The Xen hypervisor

Virtualization technologies make it possible to partition a physical computer into
several logical instances, each one running a separate operating system that expe-
riences itself as running alone on the hardware. The layer beneath the OS layer is
sometimes called the hypervisor layer as it uses a special mode enabled in modern
CPUs called the hypervisor mode. Xen is an open source hypervisor created in 2003
at the University of Cambridge [Barham et al., 2003].

Architecture
A Xen system has multiple layers, the lowest and most privileged of which is Xen
itself. Xen can host multiple guest operating systems, each of which is executed
within a virtual instance of the physical machine, a domain. Domains are scheduled
by Xen and each guest OS manages its own applications. This makes up a hierarchy
of schedulers with the Xen scheduler on top.

Xen supports several top level schedulers, including EDF and WFQ. This makes
it possible to apply resource reservation to the virtual machines running on top of
Xen.

3.7 Xenomai

Xenomai [Xenomai 2010] is a real-time development framework cooperating with
the Linux kernel, in order to provide a pervasive, interface-agnostic, hard real-time

43

Chapter 3. Reservation based scheduling

support to user-space applications, seamlessly integrated into the GNU/Linux en-
vironment. It is an alternative to RTLinux and RTAI and is a possible platform for
developing RBS schemes. It was launched in 2001 and in 2003 merged with the
RTAI project. The projects split again in 2005, going after separate goals.

Xenomai achieves superior real-time performance compared to standard Linux
while still allowing regular applications. The real-time kernel is a small, efficient
run-time which executes the Linux kernel as a low priority task. Real-time tasks
will then be run by the RT kernel, next to the Linux kernel. The Xenomai kernel
also provides an API with extensive support for real-time primitives that the Linux
kernel lack, including support for periodic task models. Xenomai uses a hypervisor
similar to the Xen hypervisor, but focuses on real-time performance. For example,
it allows real-time tasks to receive interrupts even if a Linux process has requested
interrupts to be turned off.

3.8 Linux Control Groups

The introduction of Control Groups in the Linux kernel provided an extensible
framework for hierarchical organization of processes. The patch came as a response
to a series of patch sets aiming to add resource reservation functionality to the Linux
kernel. Rather than adding more subsystems, the control group patch implemented
the support by extending and generalizing the existing cpusets functionality. Control
groups extracts the process grouping code from the former cpusets implementation
into a generic container system, and then reimplements cpusets on top of that as one
of many possible modules. The intention is that the various resource management
and virtualization efforts can also become modules rather than separate patch sets,
with the result that

• the user space APIs are (somewhat) normalized

• the additional kernel footprint of any of the competing resource management
systems is substantially reduced, since it does not need to provide process
grouping/containment, hence improving their chances of getting into the ker-
nel

Together with the aforementioned group scheduling mechanism introduced in Linux
2.6.24 (see Section 3.2), control groups enables a primitive form of resource reser-
vations for processes and users.

3.9 Estimating software model parameters

Uncertainty and time varying dynamics can be handled through on-line estimation
techniques, as is common in feedback and adaptive control. For a system with vary-

44

3.9 Estimating software model parameters

ing time scales, both over time and between components, traditional periodic sam-
pling will not fit well.

Recently, event based control and estimation has gained attention. Such theory
is attractive because it can be more efficient than periodic sampling and also better
account for situations where information is delivered in an event based fashion. This
thesis has been inspired by such works as [Henningsson and Cervin, 2009; Sandee
et al., 2007].

45

4
Power and energy
management

This chapter introduces prior research related to power management and energy
management for cyber-physical systems (CPS). The chapter starts with an intro-
duction of the problems associated with power management in mobile systems and
how they relate to the resource allocation problems presented in the previous chap-
ter. After that follows research related to minimizing power consumption through
scheduling techniques, both for the single core system and computer clusters. Fi-
nally some results related to the explicit management of heat dissipation and power
consumption are presented.

4.1 Energy and resources

In previous chapters, the need for resource management techniques for situations
with time varying resource availability was discussed at length. In mobile systems,
the constant attention to energy concerns is perhaps the most important source of
resource variability. Tightly coupled with this is heat management, as all forms of
energy expenditure invariably leads to the development of heat, the dissipation of
which is a problem in all high performance computer environments, mobile or not.

Thermal RC-models
Given the limitations on how a mobile device can dissipate heat, having appropri-
ate models for describing temperature dynamics within the system is necessary for
proper power management. Such models must not only consider how heat is pro-
duced through the operation of the system components, but also how it propagates
between them. Controlling peak temperatures and temperature gradients thus be-
come part of the resource management problem.

A popular model structure used in many papers likens the flow of thermal energy
to that of electric currents in a circuit made up of resistances and capacitances. In

46

4.1 Energy and resources

Power
usage and

heat
dissipation

Resource
availability

and
consumption

Figure 4.1 In the cyber-physical world, physical and computational dynamics af-
fect each other, making it necessary to develop models that can encompass both
aspects.

these models, temperature fills the role of potential from the electric counterpart,
whereby thermal energy flows from high temperature nodes to low temperature
nodes, limited by the conductive properties of the connecting medium, modeled as
resistances.

The simplest possible model would connect one node with the surrounding
medium. If the temperature in the node is denoted T , the surrounding temperature
denoted To and the thermal resistance between them denoted R, the resulting heat
transfer from the node to the surrounding environment H can be calculated as

RH = To−T (4.1)

The effect of a flow H on a node with temperature T is described through the phys-
ical property of thermal capacitance, here denoted C, and obeys the equation

CṪ = H. (4.2)

Through the application of the thermal equivalents of Ohm’s Laws and Equations
4.1 and 4.2, larger structures of thermal RC-circuits can be analyzed, as exemplified
in [Skadron et al., 2002; Ferreira et al., 2007b]. Though the physical parameters are
not easily derived analytically from known system parameters, the linear structure
of thermal RC-models makes it easy to apply techniques of system identification to
find the parameter values.

Adding active elements that consume energy and produce heat consists primar-
ily of adding more heat flows. Commonly the CPU is considered to be described

47

Chapter 4. Power and energy management

by two power levels: an idle level and a max load level, with a linear interpolation
model for loads between 0% and 100%, or formally

PCPU = P0% +U(P100%−P0%) (4.3)

where U denotes the load.
[Skadron et al., 2002] marks one of the earliest applications of these models

for heat management in computer systems. Over time the thermal RC-models have
seen much refinement, resulting in advanced simulation packages, such as HotSpot
[Skadron et al., 2003].

Thermal control techniques
Controlling temperature in relevant nodes of the system can be done through ma-
nipulation of the entities in the above equations. The techniques for this fall into
mainly two categories, controlling the power used by the system through Dynamic
Voltage- and Frequency Scaling (DVFS) or by restricting the load through schedul-
ing policies or as part of resource management.

Clock gating Clock Gating, sometimes referred to as Global Clock Gating or
Stop-Go, is a technique for preventing overheating in circuits by stalling the clock
signal when the temperature in the chip rises over a threshold level. This will stop
all state changes in latches in the circuit, thereby immediately reducing the amount
of heat generated. However, as heat can also come from leak currents and exter-
nal sources, this is not always sufficient to prevent the circuit from overheating and
taking permanent damage.

Dynamic Voltage- and Frequency Scaling (DVFS) Intel Corporation introduced
its Geyserville (later trademarked as SpeedStep) technology in 1999, bringing vari-
able speed processors into the mainstream, enabling a significant gain in battery life
for laptop computers. Since then, the inclusion of DVFS features has been adopted
by most CPU manufacturers, although under different names and implementations.

In general, flipping latches in the CPU consumes power, so reducing the fre-
quency with which this happens reduces the power consumption. As the voltage
required to power a chip depends on the clock frequency it runs at, reducing fre-
quency also enables reduced voltage and as such the techniques are commonly used
together [Aydin et al., 2004].

Power aware scheduling The simultaneous treatment of selecting operating volt-
age and frequency for a CPU and a schedule for the real-time tasks executing on it,
in order to minimize the peak power or energy used by the system, has been treated
in a multitude of publications since the introduction of the technology. Starting with
methods relying on off line analysis [Aydin et al., 2001], the trend has since been
steadily towards making more and more decisions online [Aydin et al., 2004].

48

4.2 Spatial resource management, "E-logistics"

Extensions to multicore computing has since been developed [Bautista et al.,
2008] as well as for distributed systems, such as data centers [Laszewski et al.,
2009; Sharma et al., 2003].

Controlling the power/performance trade-off
As more dynamic techniques are being developed, it has become natural to consider
the trade-off between power consumption and system performance or Quality of
Service (QoS). In [Sharma et al., 2003], the objective is to minimize the energy
consumption while not violating performance constraints. The metric used here is
computational delay and the constraint is that all tasks admitted to the system should
meet their deadlines, i.e., a hard real-time formulation. In essence, the trade-off
decision here becomes if to admit tasks to the system or not.

Other works rely more on user oriented metrics, such as the transaction delay
experienced by the user of the system [Chen et al., 2008]. As these metrics are not
formulated in terms of hard deadlines, they are soft real-time systems, something
which has become a staple of power aware computing systems. The fact that the me-
dia applications, typically considered as being soft real-time, stand for a significant
portion of the resource demand, has eased this transition.

With this increased focus on measurable performance rather than the certifica-
tion of hard real-time schedulability has come a noticeable change in paradigm.
Using the techniques available through reservation based scheduling, managing the
limited resources and the side effects of their consumption becomes more like tra-
ditional process control problems, as discussed in for example [Fu et al., 2010a].

4.2 Spatial resource management, "E-logistics"

The theory of real-time systems traditionally concerns the temporal aspects of
resource management, answering question predominantly concerning "when" to
spend resources (and on what). With the introduction of multiprocessor and mul-
ticore computing, the notion of locality, "where", is introduced, i.e., the spatial as-
pects of the problem. As systems spread out even further, connecting components
through system buses or network protocols, spatial effects grow stronger.

Distributed systems can arise by two primary mechanisms, decomposition of
monolithic systems or composition of individual parts. What separates a part in a
distributed system from another does not have to be space, rather two parts can be
considered separate if giving a resource to one does not mean it is immediately
available to the other, given some relevant time scale.

Systems on static topologies
A static topology system is one where the structure is explicitly part of the system
design. The robot example in Section 2.2 is one such system, where the connections

49

Chapter 4. Power and energy management

between components are represented by physical connections. Other examples in-
clude task graphs, networked control systems, and queue systems.

Task graph scheduling For system of purely software components, a popular and
widely researched formulation is that of task graph scheduling. The objective is to
map a set of tasks with precedence constraints onto a set of identical processors, a
problem proven to be NP-complete [Robert, 2011]. This formulation has resulted
in numerous heuristic designs, most of them static in nature, which makes them in-
feasible for scenarios with high variability in resource availability. Recent work has
moved towards more dynamic formulations, acknowledging the need to consider
more uncertain situations [Choudhury et al., 2012].

Networked control systems A common type of static topology system is net-
worked control systems, i.e., where controllers, actuators and sensors are physically
separate nodes in a computer network. Since control system performance is strongly
dependent on timely measurements and actions, managing limited bandwidth is key
to a successful design. Applying control theory to the joint problem of managing
the resources and the plant is a natural step, studied by, e.g., [Branicky et al., 2002].
This would later give rise to the event based control structures discussed by, e.g.,
[Tabuada, 2007; Cervin and Henningsson, 2008].

Queue systems Given the similarities between scheduling of processor time and
queue theory as discussed in Chapter 3, it is not surprising to find static topology
resource management problems arising in network engineering and queue systems
theory, though usually referred to as "congestion control", see for example [Aky-
ildiz et al., 2001; Katabi et al., 2002]. With the ever increasing demands on cost
efficiency, it is also expected that more and more dynamic methods are applied in
order to refrain from over-provisioning, as exemplified in [Wang et al., 2010].

Systems on dynamic topologies
A dynamic topology system is one where the structures changes over time, either au-
tonomously or driven by decisions. Ad-hoc networks and overlay networks are typ-
ical examples of systems with dynamic topologies, but lately the drive for greener
computing has led to the studies of how to turn of network links in order to save
energy.

Overlay networks and content distribution Digital media and content distribution
are arguably the driving forces behind both technology and legislation relating to the
internet. It is becoming clear that the current infrastructure is not designed around
the sustained data rates associated with streaming music and video and as such
services become increasingly popular, there is a strong demand for technological
solutions to reduce congestion and energy consumption.

Peer-to-peer (P2P) and peer-assisted solutions have been used in wired networks
to reduce infrastructure load [Kreitz and Niemela, 2010], but as mobile devices are

50

4.2 Spatial resource management, "E-logistics"

increasingly the point of media consumption, there is a strong demand for extending
these solutions to the mobile networks.

The principal complication in the mobile case is the addition of energy con-
straints. While traditional P2P has proven effective for cooperative content distribu-
tion and offloading congested nodes or links in the network, it is not energy aware
and as such a phone risks running out of power by serving content to others before
it can benefit from accumulated goodwill.

The study of local cooperative techniques that account for the energy cost of
sharing data has recently been done by several independent groups. Common among
them is that they leverage the lower energy consumption of short range communi-
cation and point out the additional benefit of local schemes in that they offload the
long range infrastructure [McNamara et al., 2008].

[Jung et al., 2010] introduces a framework for cooperative sharing, starting with
an altruistic scheme and then introduce guard conditions to prevent participants
from spending too much energy on serving content. The approach is based on a
Markov Decision Process (MDP) formulation, which is studied in detailed in [Che-
ung et al., 2009], and is validated through an implementation on Android based
phones showing substantial energy savings. One issue with the experimental setup
is that the clients involved are assumed to be in contact with each other indefinitely.
Additionally, the approach does not guarantee that participants will actually benefit
from the scheme.

[Jin and Kwok, 2010] considers a streaming scenario using a game theoretical
approach. The theoretical framework includes both power and bandwidth consider-
ations, but simplifies the game dynamics by assuming that players without sufficient
energy will simply not participate. While the real time aspects introduced through
the streaming scenario are relevant, the formulation is very abstract and it is not
clear how it could be implemented in reality.

[Yaacoub et al., 2012] also approaches the problem using a game theoretical
basis, but explicitly addresses the energy issue and fairness. A large file object is
distributed to a set of clients by transmitting parts of it to some nodes over long dis-
tance link and then distributed to the rest using local communication. The proposed
scheme permits selecting utility in a variety of ways, including greedy but unfair
minimization of the total energy used by the system and minimizing the maximum
energy spent by any client. The proposed solution considers static populations and
uses an off-line calculated solution, making it unsuitable for the more dynamic sce-
narios studied in this thesis.

51

5
Modeling and Estimation

This chapter discusses what is a suitable base for allocating resources, ways to
model the resource consumption and the resulting utility of a software component,
and techniques for estimating these quantities and model parameters online. It also
presents a model for how resource availability is limited by CPU thermal dynam-
ics. The chapter is based on the publications [Lindberg, 2009], [Lindberg, 2010b],
[Lindberg, 2010a] and [Lindberg and Årzén, 2010a].

5.1 Smartphone model

Returning to the example in Chapter 2, Section 2.1, a typical use case would involve
core phone services, such as audio and video telephony, the network stack and some
3rd party applications, such as GPS-based navigation software. These applications
share a CPU through the OS scheduler, as per Figure 5.1. The system would also

Application
CPU

OS
Scheduler

3rd Party
Software

GSM
Stack

Video
Encoder

Audio
Encoder

Figure 5.1 A typical use case for a smart phone with support for 3rd party software.
The application CPU is commonly a low power chip with limited precision running
a fully featured OS such as the Linux-based Android platform.

52

5.2 Allocation and utility

be running a number of largely dormant system services that will account for a
comparatively small part of the total resource needs.

The arrival of Linux-based smart phones has enabled the use of RBS techniques
to manage performance, rather than by fixed priority scheduling that is the norm.
Managing the CPU resource so that software performance is satisfactory can there-
fore be seen as an allocation problem.

One complication is that the primary resource, the CPU, is limited in perfor-
mance by power and heat constraints. Running software on the CPU produces heat
and since most cell phone casings do not support active cooling, the CPU tempera-
ture must be regulated by limiting usage.

Given the unknown properties of 3rd party components, the number of combi-
nations of enabled software and the varying operational conditions, e.g., ambient
temperature, allocation decisions will have to be made based on information col-
lected at runtime.

This chapter will therefore introduce

• a resource consumption and performance model intended for the class of soft-
ware components expected to be dominant in terms of resource demands,

• a model describing how available CPU resources depend on chip temperature,
and

• techniques for estimating model parameters online.

5.2 Allocation and utility

When allocating a limited resource, it is necessary to consider the utility, some-
times called Return On Investment (ROI) or reward, gained. The field of Operations
Research (OR) is primarily about making such decisions, typically employing con-
strained optimization.

Assuming that the applications of interest are timing sensitive rather than hard
real-time, one approach would be to model the utility of an allocation as a function
of the resulting task performance. If hard realtime requirements are assumed, the
notion of individual task performance must be dropped; as a task either performs
nominally or fails. Deciding what tasks to admit and which to reject based on their
nominal performance is essentially the knapsack problem, which unsuitability for
use in these contexts has already been discussed in Section 3.4.

Deadline miss ratio
Using the number of task deadlines missed per time interval, Deadline Miss Ratio
(DMR), as a measure of utility has been suggested by several previous works, e.g.,
[He et al., 2007]. This has been primarily used for feedback resource management
purposes, but given a model of task execution times, a prediction of the DMR is

53

Chapter 5. Modeling and Estimation

feasible to use. The drawback of such a scheme is that it does not explicitly take
into account that tasks can adapt to resource availability. This is commonly practiced
in modern software, with examples in media processing [Isovic and Fohler, 2004],
computer games [Foundry, 2010] and control [Årzén, 1999]. An adaptive task could
therefore theoretically have the same utility regardless of resource allocation.

Rate-based utility
For media applications, the quality of the output is strongly connected to the pro-
cessing rate. This holds true for all parts of the media processing chain, from encod-
ing to decoding. It is therefore natural to consider how resource allocation decisions
impact the processing rate of the system and thereby indirectly the Quality of Ser-
vice. It is possible to view media stream processing as a special case of data flow or
stream processing. In these programming models, data is often contained in packets
or tokens which are then processed by a network of computational elements. The
rate at which data tokens are processed is a very tangible metric for the application
performance. Data flow formulations exist for a large group of software relevant to
embedded situations, ranging from automatic control to 3D-graphics. This supports
making rate an important basis for resource allocation in heterogenous systems.

Compared with DMR, rate-based utility sets an absolute value to the resulting
performance, though it cannot account for more subtle effects of adaptive tasks.
As an example, a video decoder could decide to drop frames as a mechanism for
rate adaptation. Deciding which frames to drop is important for playback quality,
as discussed in [Cha et al., 2003]. For now, it will be assumed that if a task has
such properties, it is able to make such decisions by itself. Explicitly including such
information in the system global model is in this work considered infeasible for a
general purpose allocation framework.

Rate is also an application-centric metric which makes it easy to use from a
developer’s point of view. In many cases the desired execution rate is explicitly
decided at design time, as with encoding frame rate for video, simplifying its use
even further. Given its central position in this work, the term rate deserves a clear
definition. Rate signifies the number of occurrences of a pre-specified event during
a counting time-period.

The choice of event and counting period is strongly situational. Consider for in-
stance the difference between digital audio and video. The ear is much more sensi-
tive to audio jitter than the eye is to frame jitter [Steinmetz, 1996]. The audio stream
is also sampled at a significantly higher rate than the typical video stream (16 kHz
vs 25 Hz). While loosing one or several movie frames during a second might not
even be noticeable for the viewer, loosing the same percentage of audio samples
will make the audio sound very distorted. When considering a system with mixed
time scales, selecting a suitable time period for allocation can be troublesome. This
will be discussed further in Chapters 6 and 7.

54

5.3 Components with rate-based utility

Timing-based utility
Another alternative is to use the exact time that a task completes a job as a metric, as
opposed to whether it always complete ahead of a deadline. This measure contains
more information than the DMR and can be especially useful when co-ordinating
dependent components. An example of this is synchronization between audio and
video data in a capture device, which is examined in more detail in Chapter 7.

5.3 Components with rate-based utility

This thesis will discuss mostly applications where utility is based on execution rates
and cycle timing. The following section discusses how to model single- and multi-
resource dependent components. From a resource consumption point of view, there
will be no difference made between a single- or a multi-threaded process, or even
something made up from a family of processes. The building blocks will be called
components, where a component i is an entity that

• consumes resources and outputs results opaquely,

• is responsible for distributing allocated resources to subcomponents,

• has a behavior determined by a dynamic mapping from a set of inputs ui to a
set of outputs yi, and

• where all significant dependencies affecting performance is modeled through
this mapping.

There are two main reasons for this:

• Composability. In order to simplify building large systems including 3rd
party components, a building block semantic where the set of parts is closed
under composition is useful. This thesis will disregard the functional aspects
of the component architecture, considering it a mostly solved problem, and
focus on the resource-driven temporal qualities.

• Extending into non-software components. It is the aim of this work to
model systems built from a mix of software and hardware. Therefore, rais-
ing the level of abstraction is necessary to hide properties unique to software
or hardware parts.

The cyclic component model
The most basic case is a component that depends on a single resource. In a com-
putational setting, this corresponds to the standard problem of a set of independent,
CPU-bound tasks. In this work the notions of periods and deadlines are dropped

55

Chapter 5. Modeling and Estimation

+ α(t)
∫

ui(t)

vi(t)
xi(t) ni(t)

Figure 5.2 A cyclic computation software component. ui(t) is the CPU resource
share assigned, vi(t) is the disturbance on the assigned share caused by the environ-
ment, α(t) is the execution speed of the CPU, xi(t) is the accumulated execution, the
last block is a staircase function mapping xi(t) onto ni(t), which signifies the number
of completed cycles.

and replaced by the notion of cycles. Furthermore, as the entities of interest can be
made up from nested sets of tasks, the term component will be used.

Figure 5.2 shows the logical setup for the cyclic component model, used as the
template further on. Generally speaking, the component accumulates the incom-
ing resource, in this case executed CPU instructions, until some quantity has been
achieved. At this point it outputs the result and commences a new cycle. The details
of the model are as follows:

• ui(t) is the CPU resource share assigned to component i and is a dimension-
less number.

• vi(t) is a zero-mean disturbance of this share caused by the scheduler as ex-
perienced by component i. The two major sources for this disturbance is the
error in the approximation that the CPU is really fluidly divisible and certain
system events that interrupt normal execution, such as hardware interrupts,
virtual memory handling or access of shared resources.

• α(t) denotes the speed at which the processor executes instructions and has
the unit of completed instructions per time unit.

• xi(t) is the accumulated number of executed instructions for component i.

• ni(t) signifies the number of cycles completed by component i at time t and
is calculated as

ni(x) = maxk (5.1)

s.t.
k

∑
j=1

Ci(j)≤ xi(t) (5.2)

for some sequence Ci(1),Ci(2)...Ci(k) that describes the amount of execution
it takes component i to complete computation cycle k.

56

5.3 Components with rate-based utility

A cyclic component will block if and only if it is starved of CPU-time. The cycle
execution time for cycle k is considered to be a weakly stationary stochastic process
Ci(k) and h denotes a time interval such that E{Ci(k)}< h. It is assumed that C(k)
has a strictly positive lower bound.

From this it follows that if a component is started at t and executes until t + h,
the expected number of completed cycles becomes

E{ h
Ci
} ≈ h

E{Ci}
(5.3)

Assuming the share ui(t) is constant over h, Equation (5.3) can then be used to
approximate the dynamics of ni(t) as

ni(t +h)−ni(t)≈
1

E{Ci}
hui(t) = hkiui(t) (5.4)

or in words, ni evolves approximately like a discrete time integrator with the un-
known gain ki and is driven by the input ui(t). (ni(t)−ni(t−h))/h is denoted yi(t)
and is referred to as the execution rate of component Ci. Figure 5.3 shows an exam-
ple of ni(t) and the corresponding yi(t) for one of the components used in the sim-
ulations. In the figure h = 1. As a result, yi(t) will lag behind by as much. Though
the plot does not show it, it is assumed that n(t) = 0, t < 0, which is the reason for
the initial behavior of y(t).

Rate-error utility
While the rate yi(t) itself can be used as a utility metric, often an algorithm or com-
ponent is designed with a specific rate in mind. Even if there are resources enough
to increase execution rate beyond that, performance would not increase or in some
cases even degrade. For this purpose, the component model is augmented by an-
other parameter, the rate set-point ri, denoting the optimal rate for this component.
It is common that software components will limit their execution rate once ri(t) is
achieved and the linear mapping between ui(t) and yi(t) in (5.4) must be altered to
reflect this, resulting in

yi(t) =

{
kiui(t−h) 0≤ ui(t−h)≤ ri

ki
,

ri ui(t−h)> ri
ki

(5.5)

Figure 5.4 shows two cases which were produced using MPEG-4 video streams and
the free MPlayer software. The videos are encoded at a fixed rate, in this case 30
frames per second (fps). When allocating a lower share of the CPU than required for
full rate playback, MPlayer starts to skip frames, thereby adapting to the reduced
playback rate.

57

Chapter 5. Modeling and Estimation

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

0

5

10

15

20

25

30

35

40

n
(t

)
n(t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

0

5

10

15

20

y
(t

)

y(t)

Figure 5.3 ni(t) and yi(t) for one of the components in Chapter 7. Note that these
are not sampled curves. Despite their jaggedness, both signals are defined for all t.
Rate estimation is here done by a one second time window, i.e., h = 1. Note that this
will make yi(t) lag behind by as much.

Cycle completion timing
The other aspect of the cyclic component model is the event dynamics, i.e., exactly
when the job cycles complete. In the cyclic component model, the completion time
for cycle k is denoted ti(k) and modeled as

ti(k+1) = ti(k)+
Ci(k)

ui(t(k))
(5.6)

if ui(t(k)) is assumed to be constant over the interval [ti(k), ti(k + 1)), making it
similar to the virtual finish time introduced in [Demers et al., 1989].

While this could be used for traditional deadline driven scheduling (e.g., keeping
ti(k+ 1) < ti(k)+D)) it is also possible to control other and sometimes more in-
teresting metrics, such as the synchronization between two non-uniform sequences,
see Chapter 7.

58

5.4 Multi-resource dependencies

0.0 0.2 0.4 0.6 0.8 1.0
u

0

5

10

15

20

25

30

35

40

y
 (

fp
s)

Mean fps for righ-res movie

Piecewise linear approx
Datapoints

0.0 0.2 0.4 0.6 0.8 1.0
u

0

5

10

15

20

25

30

35

40

y
 (

fp
s)

Mean fps for low-res movie

Piecewise linear approx
Datapoints

Figure 5.4 Experimental results of controlling CPU-share for the MPlayer decoder
using Linux 2.6.27 and Control Groups. The diagrams show how the frame rate per
second (fps) depends on the amount of CPU share allocated to the decoder. The rate
increases linearly with share until the movie can be played back at encoded rate.

5.4 Multi-resource dependencies

It is desirable to model components that require multiple resources to execute. This
thesis proposes to do this by extending the component blocking rule so that a com-
ponent will block if and only if it is starved of one or more resources. It is assumed
that a component has the capability of accumulating incoming flows, e.g., in FIFO
queues for data or execution time deficit accounting in the scheduler for CPU-time.
It follows that the component execution rate is limited by the rate at which resources
are made available to it. Formally, if τi is dependent on the resource flows u0, ...,uN

yi = min(ki,0u0, ...,ki,NuN) (5.7)

would describe its execution rate. From (5.7) it follows that an allocation strategy
should try to keep the incoming flows equal in order to minimize over-provisioning
and reduce the risk of buffer overflow. Furthermore, it points towards two important
objectives for maximizing performance of these systems:

1. Calculating a steady state flow that maximizes the relevant performance met-
ric.

2. Control transient effects that cause blocking .

How Objective 2 is connected to the cycle completion dynamics is further discussed
in Chapter 7.

59

Chapter 5. Modeling and Estimation

5.5 CPU thermal dynamics

In order to take the thermal dynamics of the CPU into account when deciding how
much load the system can sustain, this thesis proposes a model for the thermal
dynamics based on [Ferreira et al., 2007a]. By limiting the load, or utilization, the
temperature can be controlled even if the CPU is only passively cooled. The model
of the dynamics from CPU power P to CPU temperature T is on the form

Ṫ = a(Ta−T)+bP+d (5.8)

where a and b are constants depending on the thermal resistance and heat capacity
of the processor and Ta the ambient temperature. d is a disturbance term which will
be assumed to have slow dynamics, such as heat generated by direct sunlight or
by being placed on a heated surface. For off-the-shelfs CPUs, a and b are in the
order of 10−4 and 10−3 respectively (see for example [Fu et al., 2010b]), making
the dynamics relatively slow. It is therefore assumed that it is possible to filter out
measurement noise, which is therefore omitted from the model.

The relationship between CPU load U and P is then modeled as

P = P0% +U(P100%−P0%) (5.9)

Sampling the combination of Equations (5.8) and (5.9) can then be done under zero-
order-hold assumptions.

A step response experiment was carried out on a Pioneer mobile robot [Mo-
bileRobots, 2006] with an internal Intel Pentium III-based computer [Model VSBC-
8 Reference manual 2007] in order to validate the model structure, giving the results
shown in Figure 5.5. The on-chip temperature sensor has a sample period of 2 sec-
onds.

5.6 Parameter estimation

A key assumption in this work is that the model parameters are not available before-
hand and therefore have to be estimated online. This section discusses the aspects of
this and some possible techniques. First the problem of estimating the execution rate
from the sequence of observable cycle completion events is discussed. An estimator
for the k-parameters based on the rate estimate is then suggested.

The central problem with computational components is that information comes
in form of events instead of continuous signals. For example, there is only new
information about the execution rate when a calculation cycle completes or when an
expected event is missing. There are two main alternatives to estimate the execution
rate from this, sliding time window event counting and event based filtering. It is
assumed that

60

5.6 Parameter estimation

0 500 1000 1500 2000
time (s)

0

10

20

30

40

50

60

70

80

T
e
m

p
e
ra

tu
re

 (
d
e
g
 C

)

Temperature step response for a Pentium 3 CPU

0 500 1000 1500 2000
time (s)

0

20

40

60

80

100

Lo
a
d
 (

p
e
rc

e
n
ta

g
e
 o

f
m

a
x
)

Figure 5.5 Results from a step response experiment performed on a Pioneer mobile
robot. The experiments supports a simple first order model for the dynamics between
load and chip temperature.

(a) while the variable CPU-speed α(t) cannot be directly measured, it is possible
to measure the accumulated execution xi(t) and thereby

xi(t) =
∫ t1

t0
α(t)dt

(b) The completion of a cycle is observable through an event, defined as the tuple
(ti(k),xi(ti(k))), where ti(k) is the time when component i completed cycle k.

The following properties are considered important for the resulting algorithm

• Time complexity

• Space requirements

• Sensitivity to noise

• How fast it can detect a change in rate

61

Chapter 5. Modeling and Estimation

Sliding window event counting
Using the definition of rate (events/time period) it is natural to consider an approach
where the number of events occurring over a predetermined time period is mechan-
ically counted. Given a suitable window length, the method is straightforward in
implementation, but needs an unknown amount of memory to keep the events, also
the time complexity is proportional to the rate, i.e., unknown beforehand.

Event based filtering
An alternative approach is to view the estimation of yi as a prediction problem,
where the objective is to at any given time estimate the time between the last and
the yet not arrived event. If ∆(k) = t(k)− t(k− 1), using the assumed stationar-
ity stochastic properties of n, a predictor can be written on the discrete time shift
operator form

∆̂(k+1) =
B(q−1)

A(q−1)
∆(k) (5.10)

ŷi(k) =
1

∆(k+1)
(5.11)

The selection of the polynomials B and A makes it possible to filter out specific
noise components of the sequence and as long as the filter has unit stationary gain
(B(1)/A(1) = 1) the proper mean will be obtained. There is one caveat, however,
when dealing with a decreasing rate. If the prediction states that an event should
occur but there is none, the estimate must be updated to reflect this. This can be
done through noting that if t time has passed since the last event occurred and t >
∆̂(n+1), then the highest possible current rate would be sustained if an event would
arrive at the time t+ε . A way to check for this is to tentatively update the prediction
as if an event had occurred at the time t and check if the estimated rate would be
lower. If ∆e(k) denotes the extended sequence {...,∆(k− 1),∆(k),(t − t(k))}, the
resulting estimator for y(t) would then be

∆̂(k+1) =
B(q−1)

A(q−1)
∆(k)

∆̂e(k+1) =
B(q−1)

A(q−1)
∆e(k)

ŷi(t) =
1

max(∆̂(k+1), ∆̂e(k+1))

(5.12)

Advantages with this approach is that the filter is fixed in time and space complexity.
There is also the added degree of freedom in selecting the filter polynomials The
downside is that badly chosen polynomials can yield a noisy estimate. By choosing
deg(A) = 1 and deg(B)> 1, the filter gets a finite impulse response (FIR) structure.

62

5.7 Extension into mixed domain models

As this approach has finite memory, just like the time window filter, it is also called
an event window filter. If instead deg(B) = 1 and deg(A) = 1, the structure is called
autoregressive (AR) or infinite impulse response filter (IIR).

k-parameter estimation
The execution rate model given by Equation (5.5) depends on the unknown param-
eter k, intended to be to be estimated in runtime. Given an estimate of the current
execution rate ŷi(t), falling back on equation (5.5) results in the following estimate:

k̂i(t) =
ŷi(t)

ui(t−hi)
(5.13)

Unfortunately, this estimate does not take the disturbance vi (from Figure 5.2) into
account. As it is possible to measure xi(t) directly, a better estimator would be

k̂i(t) =
ŷi(t)

xi(t1)− xi(t0)
, (5.14)

if t and t0 and t1 are such that the events used to form ŷi(t) occur in the interval
(t0, t1).

5.7 Extension into mixed domain models

One important objective of this work is to model a system where there is noticeable
interaction between the software components and the hardware components. The
approach taken is to see it as a system which performance is governed by the flow of
resources. The concept of resource is here extended to mean a quantity, bounded and
non-negative, that through a system component is converted into another resource.
The system performance is then expressed in terms of this transformation.

A resource flow is the exchange of a resource between two components of the
system. In a CPS, a flow can be physical (e.g., heat or power) or virtual (computa-
tions or data). In this work physical flows are considered to be L2 functions while
virtual flows are either L2 or a sequence of Dirac-spikes, with finite density. For-
mally, let U denote the set of generalized functions on R such that if u(t) ∈U and,
t1, t2 ∈ R then ∫ t2

t1
u(t)dt (5.15)

exists and has the sign of t2−t1. The rationale behind resource flows as Dirac-spikes
is the event-like manner in which many important virtual resources are generated.
As an example, let nCPU (t) denote the number of completed instructions in a CPU
and ntask(t) the number of times a sporadic task running on that CPU has executed.
Obviously, ntask(t) depends on nCPU (t). In order to analyze the performance of the
task, e.g., to check if it completes cycle n before a certain time, it is necessary to

63

Chapter 5. Modeling and Estimation

Physical
Systems

Software
Systems

Continuous
Dynamics

Discrete
Flow

Dynamics
Event

Dynamics

Figure 5.6 A diagram showing how the domains of physical and software systems
have their own unique dynamics, but share the discrete flow dynamics.

study how ntask(t) and nCPU (t) evolve over time, but due to their staircase nature, if
t0 denotes some specific time,

lim
h→0

ntask(t0)−ntask(t0−h)
h

(5.16)

is either 0 or undefined. Therefore the dynamics of a system involving virtual flows
must be expressed in discrete time, here called a discrete flow dynamic.

Forming such a model for physical systems can be done through sampling. Note
however that while the sampled system description says nothing about the system
behavior between sample points, signals like nCPU (t) and ntask(t) are defined for all
t. Because of this, it is possible to talk about exactly when the changes in n occur.

To summarize, the dynamics of a physical system is often modeled through
differential equations. These can be discretized or sampled to give a discrete time
model. Software system are usually modeled through event-based dynamics, but
these can be re-formulated as discrete flow dynamics, comparable with the dis-
cretized continuous model. This gives a common model domain with which to ex-
press the entire system dynamics. Figure 5.6 shows how the two domains and the
dynamic descriptions relate. How such a combined model can be used for resource
management is explored further in Chapter 7.

64

6
Competitive resource
management

Chapter 5 presented the performance of the system expressed in two primary met-
rics, execution rate and event timestamps, both dependent on allocated resources.
This chapter introduces allocation through convex optimization as a way to maxi-
mize system performance in the execution-rate sense. A specialized allocation al-
gorithm targeted at embedded real-time systems is presented together with a discus-
sion about its convergence properties and real-time behavior. This chapter is based
on the papers [Lindberg, 2009; Lindberg, 2010b; Lindberg, 2010a].

6.1 Allocation under resource constraints

The purpose of resource management is to maximize system performance, a non-
trivial task when there is not enough resources to run all components at nominal
execution rates. In the terminology introduced in Chapter 5, it is to be expected that
we cannot keep the rate error of all components at zero, but have to compromise. To
evaluate such a compromise, a global performance metric is needed. For the set of
independent components, a natural choice would be an aggregate of the individual
utility functions. The selection of such an aggregate is an important design parame-
ter, which can be used to achieve a compromise suitable to the primary system use
cases. For example, it can make sense to prioritize system services over 3rd party
components or minimizing the worst case rate error.

In this thesis, it will be assumed that the system performance objective is on the
form

J(u) =
N

∑
i=1

Ji(ui) (6.1)

where Ji is the contribution from component i. In the presence of a resource con-
straint, ∑ui ≤U , and under the assumption that resources are positive quantities,

65

Chapter 6. Competitive resource management

the allocation problem can be posed as an optimization problem

minimize
u

N

∑
i=1

Ji(ui)

subject to
N

∑
i=1

ui ≤U

ui ≥ 0,∀i

(6.2)

Convex allocation problems
In order to find efficient and reliable ways to solve the allocation problem online,
i.e., without human supervision, (6.2) needs to be restricted. By limiting the com-
ponent contributions Ji to differentiable convex functions, the resulting form will
qualify as a convex optimization problem [Boyd and Vandenberghe, 2004]. This
formulation has has several attractive properties:

• it will always be a feasible problem,

• it will have a unique solution,

• powerful theory exist for designing solvers, and

• it allows for general forms of system utility functions.

Recall the definition of the steady state rate error from Section 5.3:

ei(ui) = ri− yi = ri− kiui. (6.3)

Since Equation (6.3) constitutes an affine mapping, any Ji taken as a the composi-
tion of a convex function and ei(ui) will also be convex [Boyd and Vandenberghe,
2004, p. 79]. For example, ei(ui)

4 and |ei(ui)| would be viable choices for Ji. Con-
ceptually, this means that the problem becomes distributing the rate error rather than
the resources.

When designing the objective function, some attention should be given to its
sensitivity to parameter changes. Since parameters will be estimated online under
noisy circumstances, adopting an linear programming-style objective can lead to
sudden jumps in the solution. See [Maciejowski, 2002, p. 151] for a discussion on
the merits of linear and quadratic objectives.

Disabling components
For some components performance is only tolerable when yi is close to ri. For this
purpose a lower rate bound y′i can be introduced, which represents the lowest rele-
vant execution rate. It would then be desirable to allocate resources so that all com-
ponents (if possible) are within their respective regions of tolerable performance. If

66

6.2 Incremental optimization

this is not possible, low priority components must be disabled until

N

∑
i=1

y′i
ki
≤U. (6.4)

Solver design
Though parameters in this system might not change often, events such as the recon-
figuration of an application, the arrival or deactivation of a component or a change
in CPU resource availability in response to risk of overheating might require that
we quickly redistribute resources. Therefore, an algorithm suitable to solving (6.2)
online is needed. More specifically, it is desirable that it

1. takes minimal system resources,

2. accounts for changing parameters as quickly as possible,

3. produces results in deterministic time and memory,

4. can improve upon a previous allocation even if aborted before optimum was
computed, and

5. is suitable for implementation in fixed point arithmetics.

6.2 Incremental optimization

This section proposes an algorithm which can solve (6.2) efficiently and with de-
sirable time and memory characteristics. The central idea of the algorithm is to see
the solution as a sequence of resource transfers between two components, in effect
solving the problem as a series of one-dimensional problems. The benefit of this
approach is that each step is computationally inexpensive, predictable in execution
time and has numerical properties well suited for fixed point implementations.

The problem structure is very similar to the water filling approach to power
distribution seen in the communications literature, see for example [Boyd and Van-
denberghe, 2004], as illustrated in Figure 6.1. Essentially, the components are rep-
resented by a set of connected "tubes", with dimensions so that if the tube is filled
with a quantity of water ui, the resulting surface level will correspond to the value
of the marginal utility function Pi(ui) = ∂Ji/∂ui. For the example in Figure 6.1,
Ji(ui) = (ri− kiui)

2,∀i. In this case the tubes will be −2kiri high and 1/2k2
i wide.

Algorithms used to solve this type of problem are often based on the water
filling principle, i.e., the solution is calculated as if water in an amount equal to
the allocatable resource had been poured into the connected tube set and allowed
to settle. The resulting water surface will then define the optimal allocation. The
method presented in [Boyd and Vandenberghe, 2004] starts with empty tubes and
then fills them until the resource is depleted. Mathematically this is done by solving

67

Chapter 6. Competitive resource management

0 1 2 3 4 5
Component id

�3500

�3000

�2500

�2000

�1500

�1000

�500

0

P
(u

)
The water filling problem structure

Figure 6.1 The structure of the water filling problem. The geometry of the "tubes"
is defined by the cost function and the optimal solution is found as the water surface
if the tubes are filled to a common level.

a series of linear equations. Two drawbacks of this scheme when applied to the
embedded system resource problem is that

• the solver starts from scratch, thereby loosing information about the previous
solution, and that

• the linear equation method only works for a specific case of utility functions.

The algorithm presented below also relies on the water filling principle, but works
by equalizing water level between two components at a time. This accounts for
heterogenous sets of utility functions and is also easier to implement on limited
precision systems as the expressions to be evaluated are simpler.

Assume that two components Ci,C j are picked from the set during the k:th step
of the algorithm. Let Jk be the cost at the beginning of the step and Jk

i, j denote the
contribution by Ci,C j to Jk. Consider now what happens if an amount of resource δ

is transferred from Ci to C j so that their combined contribution to Jk+1 is minimized,

68

6.2 Incremental optimization

i.e., by solving

minimize
δ

Jk+1
i, j = minimize

δ

Ji(uk
i +δ)+ J j(uk

j−δ)

subject to −uk
i ≤ δ ≤ uk

j

(6.5)

This ensures that
Jk+1 ≤ Jk (6.6)

In other words, by in each step solving a subproblem, performance will improve
incrementally. Solving this minimization subproblem for general convex functions
Ji(ui) can be done by modifications to unconstrained methods such as Newton-
Rhapson or even bisection.

One notable choice of Ji(ui) is wiei(tu)2 in which case the allocation problem be-
comes a special case of quadratic programing (QP). The quadratic form is attractive
for several reasons, including that the subproblem can be solved in two simple steps
and being less sensitive to small parameter changes than, e.g., linear programming
(LP). Let

Ji(ui) = wi(ri− kiui)
2

J j(ui) = w j(r j− k ju j)
2

δ = argmin
δ

Ji(ui +δ)+ J j(u j−δ)

subject to −ui ≤ δ ≤ u j

(6.7)

As Ji, j is a convex function, if it has an unconstrained minimum that violates the
constraints on δ , the constrained minimum is found by picking δ on the constraint.
The solution to (6.7) is then calculated as

δnc =
wikiri−wik2

i ui +w jk2
j u j−w jk jr j

wik2
i +w jk2

j

δ = sat(δnc,−ui,u j)

(6.8)

Selecting the pair Ci,C j for each step is the other part of the algorithm. The
proposed strategy is derived from the Karush-Kuhn-Tucker (KKT) conditions (see
for example [Boyd and Vandenberghe, 2004]). Posing (6.2) on standard form, the
Lagrangian becomes

L(u,λ ,ν) =
N

∑
i=1

Ji(ui)+
N

∑
i=1
−λiui−ν(U−

N

∑
i=1

ui) (6.9)

The KKT-conditions state that ∇L(u,λ ,ν) = 0 in an optimal point. By studying the
expression

∂L(ui,λ ,ν)

∂ui
=

∂Ji(ui)

∂ui
−λi +ν = 0 (6.10)

69

Chapter 6. Competitive resource management

it can be seen that in an optimal point, either ui = 0 or −∂Ji(ui)/∂ui = ν . Recall
that Pi(ui) = ∂Ji(ui)/∂ui. If ui = 0 and therefore λi > 0, then Pi(ui) must be less
than ν . In other words, a point where Pi(ui)> Pj(u j) and u j > 0 does not minimize
(6.5).

• If the algorithm tries to select Ci,C j so that Pi(ui)>Pj(u j) and u j > 0, solving
(6.5) results in Jk+1 < Jk.

• If there is no such pair to select, then that point satisfies the KKT-conditions
of (6.2) and the allocation is optimal.

It follows that such a strategy will make the algorithm converge to the optimum.
The convergence speed will obviously depend on the specific transfer sequence.
As the intended domain is real-time allocations, an efficient strategy is needed. It is
desirable that each step reduces J(k) as much as possible and from (6.5) it is evident
that the size of the gain depends on

• the difference in P(u) between the two components and

• the amount of resource available to redistribute.

The two criteria can be in conflict, particularly if there are large variations in ki.
However, it is here assumed that if a component requires much less resources then
the others, it does not have to be part of the optimization. Rather, such a component
will be seen as part of the background noise, denoted vi in Section 5.3.

An intuitive strategy for picking the transfer pair is to sort the components ac-
cording to Pi(ui) and select the two furthest apart, skipping those with highest Pi(ui)
for which ui = 0. The intuition behind this can be seen if Pi(ui) is interpreted as
the water level, as the sought common surface must lie between the extremes. The
proposed implementation uses a red-black tree that makes finding the pair an O(1)
operation and inserting them back after the transfer an O(logn) operation (see for
example [Cormen, 2001] for complexity analysis of red-black trees). As the algo-
rithm uses an iterative loop and the persistent data allocated scales linearly with the
problem, memory need for a system with a known size can easily be calculated.

To illustrate the workings of the algorithm, consider a case with three compo-
nents C1,C2,C3, and Ji = ei(ui)

2, i = 1,2,3. The components have the properties

i ri ki ui
1 55 50 1
2 25 60 0
3 20 60 0

Figures 6.2 and 6.3 illustrates how the algorithm then operates during the first itera-
tions. Though this example uses the same form of cost function for all components,
it is worth noting that the algorithm allows for any mix of convex cost functions.

70

6.3 Experimental results

This could be useful for a system designer when distinguishing between how re-
sources are allocated to, e.g., system services and 3rd party add-ons.

In the initial state, C1 is best off, seen by the high P1 while P2 is worst off. The
first transfer then equalizes the potentials P1 and P2. As can be seen in Figure 6.3,
the system cost decreases rapidly in the beginning. The performance resulting from
a fair allocation, as defined by [Demers et al., 1989], is provided for comparison.
The fair allocation will in general terms allocate an equal amount of resource to all
components, which will be unfavorable for components with relatively low k and
high r, such as C1.

Figure 6.4 exemplifies a scenario where the problem parameters change over
time, assuming allocation is recomputed every second. At 33 seconds, r2 changes
to 40, exemplifying something that could be caused, e.g., by an internal mode switch
or a user command. The algorithm will here reduce the performance of C1 and C3
slightly. At 66 seconds, the total resource level drops by 25%, which could happen
for instance if the system was overheating and the CPU needed to be throttled to
reduce heat generation. In this case, C3 is shut down, which may or may not be
the intention of the system designer. Constrained allocation in this manner is not
starvation free and care must be taken when choosing the component cost functions.

6.3 Experimental results

A series of experiments were run, using the algorithm to find an allocations for ran-
dom component sets under overload conditions (i.e., ∑

N
i=1 ri/ki ≥U). The aim with

the simulations were to show the computational efficiency and get a feel for the con-
vergence rate. The simulations were run on an 2.40 Ghz Intel Pentium(R) 4 based
computer with 512Mb memory which was running Linux 2.6.27. The compiler used
was gcc 4.3.2 using the -O3 compiler flag. The experiments use the J = ||e(u)||2 cost
function.

Figure 6.5 shows the iteration time as function of the number of components
and in Figure 6.6 we see the termination time of the optimization. Each iteration
consists of picking the two components, calculating the transfer and resorting and
the algorithm terminates when the solution is within a set tolerance of the optimum.
The variance comes primarily from sorting artifacts and cache dynamics. Compo-
nent sets were generated randomly and ran 10 times in succession. As a comparison
number, a two variable QP problem with the structure of (6.2) took 500 ms to solve
with a general QP solver written in C++ [CGAL 2010] on the same computer as
used in the other experiments. This is most likely due to the larger overhead for
initializing the algorithm, something that will make it resource expensive to use for
a problem where parameters and problem structure change over time.

Studying Figure 6.5, iteration time appears to increase linearly with the problem
size. This seems counterintuitive as the red-black tree is performs with log(n)-like
complexity. However, as the number of components grow large, it becomes increas-

71

Chapter 6. Competitive resource management

0 1 2
Component id

�5000

�4000

�3000

�2000

�1000

0

1000

P
(u

)

Iteration 0

0 1 2
Component id

�5000

�4000

�3000

�2000

�1000

0

1000

Iteration 1

0 1 2
Component id

�5000

�4000

�3000

�2000

�1000

0

1000

Iteration 2

0 1 2
Component id

�5000

�4000

�3000

�2000

�1000

0

1000

P
(u

)

Iteration 3

0 1 2
Component id

�5000

�4000

�3000

�2000

�1000

0

1000

Iteration 4

0 1 2
Component id

�5000

�4000

�3000

�2000

�1000

0

1000

Iteration 5

Figure 6.2 A sequence of allocation iterations, showing how the marginal utility
level is equalized by pairwise transfers.

0 2 4 6 8 10
iteration number

400

500

600

700

800

900

1000

J(
u
)

Cost function J(u) as solution is computed

J
optimum
fair allocation

Figure 6.3 A plot of how the cost function decreases in value for each iteration in
the case illustrated in Figure 6.2, with the performance resulting from a fair alloca-
tion provided for comparison.

72

6.4 Implementation

0 20 40 60 80
time (s)

0

20

40

60

80

100

120

sh
a
re

s
(p

e
rc

e
n
ta

g
e
 o

f
to

ta
l
C

P
U

)

r2 =40 U=0.75

Allocation in a scenario with changing parameters

C1 C2 C3

Figure 6.4 A scenario where the problem parameters change over time, assuming
allocation is computed every second. At 33 seconds, r2 changes to 40 and at 66
seconds, the total available resource level drops by 25%.

ingly likely that some of them will be allocated zero resources. Finding a component
with high Pi(ui) will then involve a linear search, which would explain the trend in
iteration time. As the component set grows larger, the variance in iteration time
grows. This is because the sorting operations when re-inserting components into
the red-black tree become more and more expensive. It is also to be expected that
keeping the data structures in cache memory will be increasingly difficult for large
problems.

The trend in termination time is more according to intuition. As iteration time
grows linearly and the number of iterations must grow at least as fast as problem
size, the algorithm is at best quadratic in complexity.

With a solver that can determine an optimal allocation in milliseconds, periodic
use of optimization in embedded system resource management is feasible.

6.4 Implementation

In order to assess the feasibility of using the above described allocation method in a
more realistic case and to provide insight into platform design problems, a prototype
implementation was created using the Linux CFS scheduler as RBS mechanism.

73

Chapter 6. Competitive resource management

0 50 100 150 200 250 300

Nbr of components in problem

0

10

20

30

40

50

60

70

it
e
ra

ti
o
n
 t

im
e
 (

�

s)

Iteration time as a function of problem size

Figure 6.5 Measurements of iteration times. Optimization for each component set
was run 10 times. The variance comes from a combination of sorting artifacts and
cache dynamics.

0 50 100 150 200 250 300

Nbr of components in problem

0

5

10

15

20

te
rm

in
a
ti

o
n
 t

im
e
 (

m
s)

Termination time as a function of problem size

Figure 6.6 Measurements of optimization termination time. Optimization for each
component set was run 10 times. Variance is due to sorting artifacts and cache dy-
namics.

74

6.5 Resource management architecture

Linux Kernel

CFS Group Scheduler

Allocator

Estimator

Process

Process

Process

Managed
Processes

Unmanaged
Processes

?

events

model

parameters

scheduler

parameters

cpu

time

Figure 6.7 Resource management architecture.

The setup included software components in the form of processes with synthetic
workload and a resource manager implemented as a standalone application in C.
The framework was developed with special care not to make use of specialized
kernel patches or extensive external libraries, as such dependencies could result in
portability issues. It also serves as a demonstration that resource management can
be employed using an off the shelf OS, which is especially important for consumer
products where time-to-market is an important consideration.

6.5 Resource management architecture

Figure 6.7 shows a schematic of the system. The blue block signifies a standard
Linux kernel with CFS group scheduling capabilities (v2.6.24 or later up to at least
v2.6.35).

The green block represents the resource management framework, which in turn
consists of an allocator and estimator. These two are contained within the same
process for data sharing purposes but as two separate POSIX threads.

The red blocks represent processes that are managed by the framework, meaning
that they each execute in a reservation and supply the estimator with data. It is
assumed that these account for the majority of the resource consumption in the
system.

75

Chapter 6. Competitive resource management

MIPC - a minimalistic IPC protocol
Data is transmitted between components using a Minimalistic InterProcess Com-
munication (MIPC) protocol developed for use with the resource manager. Data is
sent as datagrams and MIPC supports both local UNIX sockets and IP sockets. As
the estimation techniques support missing measurements, the potential overhead of
using TCP-based connections can be eliminated.

MIPC itself only handles sending raw byte data so the client will need to specify
interfaces on top of that, typically by sharing C-struct definitions. The important
MIPC-operations are

• mipc_connect_server

• mipc_connect_client

• mipc_send

and the full API is found in Appendix A. The protocol supports the bare minimum
required for the framework and for comparison, the compiled binary is less than 10
kbytes in size and only have dependencies to the C standard library and libc, while,
e.g., D-Bus, a popular interprocess communications mechanism in desktop Linux
distributions [D-Bus 2010], is over 100 kbytes in size and has dependencies to over
1 Mbytes of additional libraries.

Unmanaged processes
It is here assumed that the majority of the resource requirements comes from a
subset of the running processes. The remaining is seen as noise. Should these com-
ponents require a noticeable amount of resources, this will affect the estimate of the
relation between the allocated share and the resulting execution rate, thus effectively
make the CPU seem slower.

Processes or threads
Keeping a component based abstraction level is an important goal, as this gives in-
creased flexibility to the software designers. By using processes to track resource
usage rather than threads, the anatomy of the components is hidden from the re-
source manager. Whether a process consists of one or several threads of execution
should not matter in this framework.

Experiment setup tools
A range of Python based tools were developed in order to facilitate the scripting of
test scenarios. A Python implementation of MIPC is used to signal processes. For
operations that require root level privileges and access to non-standard system calls,
a few C-based utilities were created and then wrapped in Python code.

76

6.6 Measuring time and resource consumption

6.6 Measuring time and resource consumption

The framework requires the managed components to push data to the estimation
algorithm in the form of cycle completion events. These events contain

• a time stamp and

• a reading of the accumulated CPU-time for the component.

The resource measurement is performed as the time stamp is taken, as sending and
processing introduce latencies. It also means that the resource cost of measuring is
factored into the overall component resource requirements, thereby distributing the
overhead rather than centralizing it on the estimator.

Measurements of resource consumption have been done using the system call
clock_gettime() rather than getrusage() as it provides better precision. An
alternative would to be use the cpuacct-subsystem available with control groups,
but the system call was chosen as it is both simpler to use and more efficient than
parsing text files.

Reservations with CFS Group Scheduling
The group scheduling functionality (see Section 3.2) that was introduced with Linux
v2.6.24 offers an easy to use way to do soft reservations. From an experimental point
of view, this requires some extra effort as the allocation theory developed assumes
hard reservations.

Shares are calculated by the algorithm as percentage of the total CPU capacity.
This must then be translated into an integer number, as used by CFS, in such a way
that the desired share equals the integer weight / the sum of all weights. To avoid
quantization problems, the total available shares have been selected to be 10000.
The CFS scheduler does not allow for an individual reservation period to be set on
a process basis so apart from share, no additional parameters must be set.

Effectuating the allocation requires writing the shares to the virtual files in a
control group type file system.

Synthetic components
In order to run experiments with relevant load profiles, a synthetic component was
implemented and instrumented with logging and a MIPC-based reconfiguration in-
terface. The components execute in accordance with the cyclic component model
(see Section 5.3) and with parametrized behavior. Cycle time is drawn randomly
from an interval specified at startup and changed periodically. The parameters that
govern the behavior are

• k_min, k_max - controls the distribution of the cycle times.

• change_interval - determines how often cycle times are randomized.

77

Chapter 6. Competitive resource management

• rate - the rate set-point.

The components also log all completed cycles together with a snapshot of the pa-
rameter set.

Estimator implementation
The estimation is a passive component in this framework and updates estimates only
when needed, in this case triggered by the allocation thread. A MIPC-server is set
up to collect all incoming data events from the managed components, which is then
stored in a record for each individual client. The client submits a unique identifier,
in this implementation the process id of the main component thread, which is then
used as a primary key in a table containing all the managed components.

The implementation supports individual estimator functions for each component
and supplies three default methods for rate estimation:

• time window (counting events over an interval)

• event window (FIR-structure, time for a fixed number of events)

• autoregressive filter of the event arrival intervals (IIR-structure)

As all events are stored, the estimation history can be replayed at the conclusion of
the experiments and compared with the component log files.

Allocator implementation
The allocator is implemented as a periodic thread running at 1 Hz. The work order
is

• pull parameters from the estimator

• iterate the incremental solver from Section 6.2 until the potentials are within
the tolerance level

• effectuate the allocation by writing to the cgroup file system

The allocation algorithm utilizes a red-black b-tree [Cormen, 2001] to sort the com-
ponents by potential, which allows for robust performance. It is straightforward to
both add and remove tasks from the tree, thereby allowing the structure to persist
between iterations. This circumvents the often heavy set-up portions of off-the-shelf
solvers.

A system parameter is the termination threshold. The algorithm checks the
difference in potential between the highest and lowest level and if they are close
enough, the solver terminates. In the simulations used for this thesis, the tolerance
is set to 0.001.

78

6.7 Example runs

6.7 Example runs

This section presents the results from a sequence of experiments run on a desktop
Linux computer. The hardware was a 2.4 Ghz Pentium 4 with 512 Mb of main mem-
ory running a Linux 2.6.27-based Debian system. The background noise consists
of the software that runs on a typical Debian desktop, including the X11/Gnome
graphical environment, as well as an Apache web server and a MySQL database
engine.

Estimation and control
The first experiment is to validate the estimation and control strategy. A single soft-
ware component with constant but unknown cycle execution time is here controlled
using feedforward based on an estimation of the k-parameter.

Figures 6.8 and 6.9 show the scenario using one second time window estima-
tion and a 15 long event window estimation respectively. The time window per-
forms well at higher rates, having more information to form the estimate, while the
event window estimator is more responsive to change. The AR-approach proved to
be difficult to tune, resulting in much noisier estimates, and was not used for the
experiments.

Constrained allocation
In this scenario, three components are running in a situation where the system is
overloaded. The components change their cycle execution rates randomly every 3
seconds, with k_max/k_min equal to 2. Figure 6.10 shows the estimated rates over
time and Figure 6.11 displays the cost for the dynamic convex allocation (DCA)
with a comparison with static worst case allocation (SWA), i.e., the performance
attained by only allocating resources based on the worst case execution time. To-
wards the end of the experiment, the component set is close to their worst case cycle
times, and this causes the system cost to approach that of the worst case allocation.

To study how the performance depends on the level of uncertainty, a series of
experiments were run with increasing k_max/k_min. In scenarios with low uncer-
tainty, the dynamic strategy performs worse than the static alternative, as the esti-
mated parameters will, due to the presence of noise, never be completely correct.
However, as uncertainty grows, the dynamic strategy shows significant performance
advantages, which is shown in Figure 6.12.

6.8 Conclusions

This chapter has introduced a method for dynamic resource allocation based on
convex programming and a rate based utility model for cyclic software components.
An algorithm designed to efficiently solve the resulting optimization problem on

79

Chapter 6. Competitive resource management

0 2 4 6 8 10 12 14
time (s)

10

20

30

40

50

60

70

ra
te

 (
e
v
e
n
ts

/s
)

Estimated rate using sliding time window (1s)

estimated rate
bw / set point

Figure 6.8 Estimation and control using time window

0 2 4 6 8 10 12 14
time (s)

10

20

30

40

50

60

70

ra
te

 (
e
v
e
n
ts

/s
)

Estimated rate using FIR-estimator (m=15)

estimated rate
bw / set point

Figure 6.9 Estimation and control using event window

80

6.8 Conclusions

0 2 4 6 8 10 12 14
time (s)

0

5

10

15

20

25

30

ra
te

 (
e
v
e
n
ts

 /
 s

)

11263
11267
11264

Figure 6.10 Allocation in an over-utilized system with rates estimated using a one
second time window.

0 2 4 6 8 10 12 14 16
time (s)

2000

3000

4000

5000

6000

7000

8000

C
o
st

 J

DCA
SWA

Figure 6.11 Cost for Dynamic Convex Allocation (DCA) vs Static Worst case Al-
location (SWA) over time.

81

Chapter 6. Competitive resource management

1 2 3 4 5 6 7 8 9
k_max / k_min

0

5000

10000

15000

20000

25000
n
o
rm

(J
)

SWA
DCA

Figure 6.12 Average Cost for Dynamic Convex Allocation (DCA) vs Static Worst
case Allocation (SWA) as uncertainty grows.

limited precision hardware has been presented together with analysis of its runtime
performance.

Results from experiments run on an implementation of the resource manage-
ment scheme on Linux has are presented with comparisons to the corresponding
worst case-based performance.

82

7
Collaborative resource
management

This chapter discusses the application of feedback control to a system where com-
ponent are dependent on each other. More specifically, the results presented here
pertains to systems where the performance metrics are functions of how the compo-
nents collaborate around tasks, hence the term collaborative resource management.
As a result, the theory presented does not build on Chapter 6, and instead presents an
alternative scenario where adding resources to a component may even reduce sys-
tem performance. The component model used is, however, still based on Chapter 5.
The thermal control approach is further validated by an implementation on a mobile
robot. The chapter is based on [Lindberg and Årzén, 2010b; Romero Segovia et al.,
2011].

7.1 Allocation vs feedback

One of the key simplifications made in the resource allocation algorithm proposed
in Chapter 6 was to optimize the performance in a stationary sense, as introducing
state dynamics into the optimization would require a more comprehensive solver. As
such, the allocation strategy used in this thesis is largely a feedforward solution and
therefore blind to performance metrics explicitly connected to state information.

Given perfect information about execution times and resource availability, these
metrics could be controlled through the allocation strategy. However, as a central
theme of this work is the presence of uncertainty and disturbances, it must be as-
sumed that this is not possible. Specifically, it can be expected that transient phe-
nomena will occur due to disturbances and structural changes in the system, such as
hardware interrupts and the activation or reconfiguration of components. Assuming
that these occurrences cannot be predicted, they must be addressed through feed-
back.

83

Chapter 7. Collaborative resource management

C1 C2

q(t)

Figure 7.1 Two components connected through a FIFO-queue. q(t) signifies the
number of elements in the queue.

7.2 State related performance metrics

The two aspects of performance that will be discussed here are

• integrator dynamics and

• state transition events.

Queues and integrators
Asynchronous communication between components in software systems is com-
monly done through FIFO-queues. This is practiced both in consumer grade mul-
timedia frameworks such as GStreamer [Taymans et al., 2010] and more academi-
cally oriented actor-based languages such as CAL [Bhattacharyya et al., 2009; Eker
and Janneck, 2003]. A common problem that arises in such designs is the regulation
of queue sizes, as this affects both end-to-end computational latency and storage re-
quirements.

If a queue constitutes the connection from component C1 to C2, as illustrated
in Figure 7.1, and q(t) denotes the number of queue entries at time t, its resource
dependent dynamics could be described by

y1(t) = k1u1(t)

y2(t) = k2u2(t)

q(t +h) = q(t)+h(y1(t)− y2(t))
(7.1)

i.e., a discrete time integrator. From an allocation point of view, an imbalance be-
tween y1 and y2 results in either starvation of C2 or unbounded queue length. There-
fore, the feedforward strategy should strive for y1 = y2. Transient effects can then
be attenuated through feedback.

State transitions
State models are commonly used for software systems, defining the behavior in
terms of states and state transitions. A state transition is caused by some internal or
external dynamic and the passing from one state to another represents an event that
is significant to the software. This could for instance be the completion of a com-
putation, e.g., the decoding of a video frame or the termination of an optimization.

84

7.2 State related performance metrics

t1(1) t1(2) t1(3)

t2(1) t2(2) t2(3)

Figure 7.2 Synchronization between two event sequences is one possible objective
that can be solved using feedback resource management. The synchronization error,
es(k) = t1(k)− t2(k), is difficult to address using the feedforward strategy as this
relies on collecting information over a number of events.

This thesis specifically considers changes in the number of completed component
cycles ni, which are signified by the cycle completion events.

Given a number of state transitions over the time period h, as controlled through
the allocation strategy, some applications will be sensitive to exactly when these oc-
cur. Keeping them periodic, i.e., equidistant in time, is a common goal, essentially
the objective of classic scheduling techniques applied to, e.g., controller implemen-
tations. Minimizing jitter, guaranteeing the periodicity of sensor measurements and
control actions fall under this class of problems.

Another possible scenario is to synchronize the state transitions between two
components. This situation could arise when synchronizing sensors readings, such
as audio and video capture, or as a strategy to reduce the complexity of a larger con-
trol problem. The synchronization problem could be seen as a generalization of the
deadline problem, as the latter would arise if one sequence is set deterministically.

Let t1(k) and t2(k) denote two event sequences, as illustrated in Figure 7.2, gen-
erated as cycle completion events by the components desired to be to synchronized.
Equation 5.6 describes the cycle dynamics

t(k+1) = t(k)+
C(k)

u(t(k))
, (7.2)

the synchronization error es(k) is defined as

es(k) = t1(k)− t2(k) (7.3)

As with q(t) in Equation (7.1), perfect allocation would result in no synchronization
error, but given transient disturbances, a feedback approach could be employed to
drive it to 0.

85

Chapter 7. Collaborative resource management

7.3 Hardware resources

Availability of the CPU resource is limited by hardware performance. Power and
heat are two types of constraints in this setting. In this thesis the problem of thermal
management is considered.

Normally a CPU can only operate properly if the temperature is kept below
a certain level but if there is no active cooling, as is the case in many embedded
platforms, this must be respected through control of CPU power. The options to
do this include voltage- and frequency scaling and idling (e.g., executing the HLT
instruction [Intel, 2010]), the last of which will be used here. The main reason for
this is that the speed of the CPU directly affects the component model parameters
and any on-line estimates would then change due to control action. Controlling the
temperature through the resource level U and then imposing the limit

N

∑
i=1

ui ≤U (7.4)

simplifies the estimation strategy. Control can be effectuated through limiting the
available CPU-time using an RBS framework. The resource level U is then de-
termined by the thermal control algorithm, which becomes a part of the resource
controller.

Thermal control
Given that the temperature is modeled with first order dynamics with slow distur-
bances, a PI-controller [Åström and Murray, 2008] is a simple and effective choice,
though anti-windup measures must be added to handle effects from control signal
saturation.

The pure PI-controller is defined as

u(t) = K(e(t)+
1
Ti

∫ t

0
e(τ)dτ) (7.5)

By discretization of the dynamics using a forward Euler approximation, constrain-
ing the control signal U to the interval [0,1] and adding an anti-windup tracking
term to the integral part, the resulting control algorithm, described as pseudo-code,
is

e := r - y_T;
V := K*e + I;
U := sat(V, 0, 1);
if (Ti > 0) then

I := I + K*h*e/Ti + K*h/Tr*(U - V);
else

I := 0;
endif

86

7.4 Case study — Encoding Pipeline

CPU
Resource
Controller

Audio
Encoder

Video
Encoder

QA

QV

Network
Stack

T

cpu
time

U

ua

un

uv

ya

yv

yn

Figure 7.3 An overview of the conversational video pipeline

where h is the sampling interval, K,Ti are the PI-controller parameters and Tr is the
anti-windup tracking gain.

7.4 Case study — Encoding Pipeline

The prototypical system to be considered is a conversational video pipeline as dis-
played in Figure 7.3. The software part consists of three tasks, an audio encoder, a
video encoder and a network stack. The encoders are assumed to have private access
to capturing hardware and it is also assumed that they are capable of variable rate
execution. The encoders are connected to the network through the FIFO-queues QA
and QV. In order to send a network packet, the stack requires one frame of audio
and video.

In order to evaluate the performance of this system, the following metrics are
defined

• Sync error. It is disturbing to the human eye when video and audio are out of
sync and therefore it is natural to consider the difference in encoding times-
tamp between the corresponding audio and video frames. If both tasks are
assumed to be cyclic and ta(k) and tv(k) denote the encoding timestamps for
audio and video frames respectively, then

ta(k+1) = ta(k)+
Ca(k)

ua(t(k))

tv(k+1) = tv(k)+
Cv(k)

uv(t(k))

(7.6)

would be the corresponding dynamics. The sync error es(k) is then defined as

es(k) = ta(k)− tv(k) (7.7)

• Latency. Delay in the conversation is also an important quality metric and
for this set up this will be the end to end latency, i.e., the delay from capture

87

Chapter 7. Collaborative resource management

to network. If qa(t) and qv(t) are the number of elements at time t in QA and
QV respectively, then let the average encoding latency el(t) be defined as the
sum of the encoding delay Da,v and the network delay Dn.

The encoding delay is modeled as

Da,v =

Ca(k)
ua(ta(k))

+
Cv(k)

uv(tv(k))
2

(7.8)

which is the the average of the audio encoding time and video decoding time
and the network delay as

Dn = (
qa(t)+qv(t)

2
+1)

Cn(k)
un(tn(k))

(7.9)

i.e., the time it takes to process the queue backlog plus one cycle time for the
packet itself. el(t) is then defined as

el(t) = Da,v +Dn (7.10)

or in words, the computational delay combined with the network backlog in
the queues.

• Queue dynamics. Using the cycle dynamics expressed in Equation (7.1), the
dynamics of qa and qv is modeled as

qa(t +h) = qa(t)+h(ya− yn)

qv(t +h) = qv(t)+h(yv− yn)
(7.11)

Control design
Latency It follows from (7.10) and (5.7) that latency can be controlled through
minimizing the queue lengths and then keeping a uniform steady state cycle time
across all components. The approach taken in this work is to combine feedforward
control based on the total amount of resource with feedback re-allocation to reduce
queue length.

The nominal feedforward controls are computed by combining the constraint
that ua +uv +un ≤U from Equation (7.4) with

ya = yv = yn = y, (7.12)

i.e., a steady state where the execution rates ya, yv and yn are the same. From this it
follows that

1
ka

+
1
kv

+
1
kn

=
U
y

(7.13)

88

7.4 Case study — Encoding Pipeline

giving that

y =
kakvkn

kakv + kakn + kvkn
U, (7.14)

which results in the control lawsuff
a

uff
v

uff
n

=

k−1
a

k−1
v

k−1
n

 kakvkn

kakv + kakn + kvkn
U. (7.15)

To control the queue lengths, the feedforward controls are then modified with a
feedback term uq. As the control system cannot violate (7.4), uq will be applied as

ua

uv

un

=

uff
a

uff
v

uff
n

+

kv

ka + kv

ka

ka + kv

−1

uq (7.16)

subject to the constraints that the resulting controls ui ≥ 0.
To calculate uq(t), the closed loop dynamics of the queues are evaluated. It is

assumed that the queues will be of equal length in steady state (see the section on
sync error) so the feedback can be designed with any one in mind. Recall that

qa(t +h) = qa(t)+h(ya− yn) (7.17)

Assume that the objective is to drive the queue length to some predetermined length
r (for example zero). To achieve proportional control, let

h(ya− yn) = Kq(r−qa(t)) (7.18)

This converges to r for all 0 < Kq < 2. Let uq denote a feedback term, by which
some of the resources allocated to the network stack is transferred to the audio- and
video decoders, thereby regulating the relative rates of queue item production and
consumption. Substitute

ya = ka(uff
a +uq

kv

ka + kv
)

yn = kn(uff
n −uq)

and solve for uq to obtain the actual controls.

Sync error If Ca/ua is approximated by (kaua)
−1, it follows from the definition

(7.7) that
es(k+1) = es(k)+(kaua)

−1− (kvuv)
−1 (7.19)

89

Chapter 7. Collaborative resource management

Thermal
Control

Estimator

Queue
Control

Flow
Control

Sync
Control

+ +yT

ni

qi

es

Resource
Controller

U

k̂i

uff

biuq

us

ui

Figure 7.4 The resulting control structure including estimation, feedforward flow
control based on the estimated model parameters and the available CPU resource and
feedback based on queue state and sync error. bi refers to the coefficients in Equation
(7.16).

As there is a finite combined flow of CPU resource to the audio and video encoder,
the approach taken here is to introduce us as a feedback term, modifying the feed-
forward allocation so that

es(k+1) = es(k)+(ka(ua +us))
−1− (kv(uv−us))

−1 (7.20)

is driven towards zero. While this seems to interfere with the queue control, the dif-
ference in time scale between the event-to-event dynamics makes its effects on the
slower queue controller negligible. In fact, it is seen in Section 7.5 that controlling
the sync error actually greatly simplifies the queue control. For proportional control,
let

(ka(ua +us))
−1− (kv(uv−us))

−1 = Kses(k) (7.21)

Under deterministic circumstances the sequence es(k) will converge to zero for any
Ks ∈ (0,−2). Given the variations in the cycle execution times, some care should be
taken when selecting Ks so that noise is not unnecessarily amplified. As this work
is done without a detailed noise model, Ks is chosen conservatively as -0.5. The
resulting equation is then solved under the constraint that ua+us≥ 0 and uv−us≥ 0
to obtain us.

The resulting control structure is presented in Figure 7.4.

90

7.5 Simulation results

0 20 40 60 80 100
k

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050
C
i(
k
)

AudioEncoder VideoEncoder NetworkStack

Figure 7.5 Generated cycle times used in the simulation examples below.

7.5 Simulation results

Simulation environment
In order to evaluate controls, a simulation environment has been developed in
Python. The system dynamics is approximated by discretization with a time step
of 1 ms, which incurs quantization on the cycle completion time stamps. This is,
however, assumed to be of little effect as the variation due to noise is orders of
magnitude greater for these simulations.

Cycle execution times have been generated as Di +Xi(k) where Di is an a-priori
unknown constant and Xi(k) ∈ exp(0.1Di). The realizations used for the presented
simulation results are shown in Figure 7.5. The randomness is meant to model both
software execution time uncertainty and the stochastic properties of a modern CPU,
including the effects of caches, the memory bandwidth gap and deep pipelines.
The Di values were chosen randomly so that the resulting k-parameters would lie
between 10 and 100. A real sequence of cycle times for a video decoder is provided
for comparison in Figure 7.6. h is globally defined as 1.

91

Chapter 7. Collaborative resource management

0 20 40 60 80 100 120
k

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045
C

(k
)

MPEG-2 decoder sequence

Figure 7.6 A sequence of execution times for an MPEG-2 decoder working on a
video stream. This encoding standard interleaves complete image descriptions with
delta descriptions. Decoding a complete image is significantly harder, causing the
high peaks.

Thermal control
The thermal model of the CPU is based on [Fu et al., 2010b], but to make the effects
of the thermal dynamics more visible in the simulations, the parameters have been
scaled so the dynamics are faster. This makes the effects of control and disturbances
more prominent. In the simulations, the parameters in Equation (5.8) are chosen as
a = 2 and b = 1.5. The main purposes of the thermal model are

• to provide a scenario for the varying availability of CPU resource and

• to show how physical models can be combined with the software models,

so switching for more realistic parameters would not change the design decisions
significantly though the thermal controller must then be re-tuned. However, as the
focus of this thesis is on the application performance as affected by both hardware
and software, more advanced temperature control strategies are left for future re-
search.

92

7.5 Simulation results

0 2 4 6 8
time(s)

55

60

65

70

75

80

85

T
 (

d
e
g
re

e
 C

)

T controlled
T Uncontrolled
T ref

0 2 4 6 8
time(s)

�0.5

0.0

0.5

1.0

1.5

2.0

U

U=sat(P+I,0,1)
P-part
I-part

Figure 7.7 PI control of temperature with a constant disturbance of 15 degrees C /
s entering at 5s. The uncontrolled dynamics are shown for comparison.

A scenario where a disturbance enters occurs at 5 seconds is shown in Figure
7.7. This could be a situation where the unit is left in direct sunlight that causes an
insolation effect of 15 degrees C / s. The controller keeps the temperature by throt-
tling the available CPU-time. As the temperature approaches the set point, the total
utilization is lowered to about 80%. At 5 seconds, the disturbance causes the tem-
perature to rise and the controller responds by lowering the utilization even further,
settling at about 55%. If there are no active cooling measures or direct measure-
ments of external disturbances, the set point must be sufficiently below the critical
level to keep the CPU from overheating.

Parameter estimation
Figure 7.8 shows the estimated execution rates and corresponding ki-parameter es-
timates over the same simulation. The discontinuous nature of the virtual flows is
evident in these plots. Note that it takes some time before the network stack starts
to execute and this is because of the queue-controller. It throttles the network stack
while the queues are filled and because of this, the k-parameter estimator needs
more time to form k̂n. This causes the large overshoot in the queue length before it
settles on the desired level.

93

Chapter 7. Collaborative resource management

0 2 4 6 8
time(s)

0

20

40

60

80

100

120

140

k̂

AudioEncoder VideoEncoder NetworkStack

0 2 4 6 8
time(s)

0

5

10

15

20

25

30

ŷ
AudioEncoder VideoEncoder NetworkStack

Figure 7.8 Rate and parameter estimation for all three tasks. Rates are estimated
by counting events with a sliding time window with length 1 second. The network
stack (red) lags behind in the beginning due to queue control.

Even though the actual execution rate changes over time, the estimate mean
remains stable while the variance increases as the execution rates drop in the later
part of the simulation, as seen in the upper plot. This is because a single event being
outside or inside the estimation window will affect the estimate more. The window-
based estimation scheme will break down when the rate drops below 1 cycle per
second.

Latency performance
As there is no information about future demands for the CPU resource, a reasonable
strategy is to minimize latency at all times. This is done by utilizing all available
CPU-time while respecting the temperature set-point, thereby reducing the execu-
tion time for all tasks, and by controlling the queues. The reason why the queue
controller is not trying to drive the queue lengths to zero is that this could cause
blocking in the network stack, which in turn would reduce the accuracy of k̂n. This
could be treated by designing a better estimator.

The latency control performance is displayed in Figure 7.9. A scenario without
queue control is provided for comparison and the problem with this is evident. Even

94

7.5 Simulation results

0 2 4 6 8
time(s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
la

te
n
cy

Control
No control

0 2 4 6 8 10
time(s)

0

2

4

6

8

10

12

q v

Avg Q w control
Avg Q no control
r

Figure 7.9 End-to-end latency and average queue length compared with and with-
out control. The uncontrolled case (green) is about 2-3 times worse than what it
obtained through control (blue).

though the system reaches steady state, where the queue lengths no longer change
significantly, effects of the initial transient remains and cause significantly higher
latency.

Sync performance
The simulations reveal the importance of the sync controller. Figure 7.10 shows that
the sync error while left uncontrolled will actually drive the system to a stall. The
reason for this is that the queue controller uses the average queue length to do the re-
allocation. Figure 7.11 shows that even before the k-parameter estimates converge,
the sync controller keeps the audio and video stream tightly together. This means
that the queue lengths are actually the same, an assumption which can then be safely
used by the queue controller.

Figure 7.12 shows how the queue lengths diverge quickly without sync control
and the resulting re-allocation by the queue controller actually starves both audio
end video encoder. It would theoretically be possible to form a MIMO-controller
to handle both sync and queues in the same control law, but recall that the queue
controller is a discrete time system that uses resource flow semantics and therefore

95

Chapter 7. Collaborative resource management

0 2 4 6 8
time (s)

�3.0

�2.5

�2.0

�1.5
�1.0
�0.5

0.0

0.5

1.0

1.5
e s

 (
s)

es w control es no control

0 2 4 6 8 10
time (s)

�0.06

�0.04

�0.02

0.00

0.02

0.04

0.06

e s
 (

s)

es

Figure 7.10 Sync error compared with (blue) and without (red) control. In the un-
controlled case, the encoding pipeline stalls which is why the encoding error seems
to remain constant after 2.5 seconds. The lower plot shows the sync error from the
upper plot in detail.

cannot in a simple way utilize information about individual events. The sync con-
troller on the other hand operates on the event sequence and thereby has access to
the cycle completion time stamps.

7.6 Thermal control through resource management

This section details experiments done on a mobile robot in order to validate the ther-
mal control strategy through utilization throttling used in the above simulations. The
experimental platform is a Pioneer 3, as seen in Figure 7.13 and further described in
[MobileRobots, 2006]. The experiments are carried out using the ACTORS frame-
work for resource management, but as the utilization bound has the same role as in
the collaborative scheme from this chapter, the thermal control strategy is the same.

96

7.6 Thermal control through resource management

0 1 2 3 4 5
time(s)

0

5

10

15

20

25

30

ŷ
AudioEncoder VideoEncoder NetworkStack

0 1 2 3 4 5
time(s)

�5

0

5

10

15

20

25

30

ŷ

AudioEncoder VideoEncoder NetworkStack

Figure 7.11 Execution rates compared with and without sync control. The curves
have been averaged over a window of 0.1 s to provide better visibility.

System model
In order to prevent CPU processor overheating, which could cause performance
degradation of all the applications executing on the system and even system fail-
ure, a system model that combines feedback and feedforward techniques to control
both the temperature and the utilization of the processor (CPU) through adaptive
bandwidth allocation is proposed. Figure 7.14 shows the proposed system model,
which combines the features of a thermal controller, that keeps the temperature of
the system bounded to a desirable temperature acceptable to the processor, and a
resource manager that dynamically allocates resources to each application on the
system. Here, T and TR are the current temperature of the system, and the refer-
ence temperature respectively, it is assumed that this last value can be specified by
the user. The values U , Umin, Umax and UL correspond to the utilization of the sys-
tem, the lower and upper utilization bounds and the utilization limit defined by the
thermal controller respectively.

97

Chapter 7. Collaborative resource management

0 2 4 6 8
time (s)

�5

0

5

10

15

20

25

q a
,
q v

qa

qv

0 2 4 6 8
time(s)

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
i

AudioEncoder VideoEncoder NetworkStack

Figure 7.12 Queue lengths for a scenario with no sync control. The resulting allo-
cation is based on the average queue length (qa +qv)/2.

Software components
Due to system limitations, as well as performance specifications, it is convenient
to keep the temperature of the system bounded to a desired value. From a software
point of view, this can be achieved using bandwidth reservation techniques [Abeni
and Buttazzo, 1998a], which in combination with control theory allow at runtime
adaptive allocation of CPU resources provided to the applications. Reservation tech-
niques such as the constant-bandwidth server (CBS), guarantee to each application
a certain execution budget every server period, this is also known as virtual pro-
cessors (VP). In order to achieve this adaptive allocation of resources, a modified
version of the architecture proposed originally by ACTORS (see e.g. [Segovia and
Årzén, 2010]) is used, which assumes a multicore physical platform. For this par-
ticular case, a single core physical platform was employed. Figure 7.15 shows the
modified architecture, which is composed mainly of three components: the applica-
tions, the resource manager (RM) and the reservation layer which includes the VPs
of each application.

The RM is a daemon application, composed of a centralized supervisor and
several bandwidth controllers, these elements will be explained in Section 7.7. The

98

7.6 Thermal control through resource management

Figure 7.13 The Pioneer 3 robot used for the experiments in Section 7.6, see [Mo-
bileRobots, 2006] for more information.

main tasks of the RM are to accept applications that want to execute on the system,
to provide CPU resources to these applications, to monitor their behavior over time,
and to dynamically change the resources provided according to the real needs of the
application, and the performance criteria of the system, e.g., to limit the maximum
temperature of the system.

The application can be composed of one or several tasks, which may have de-
pendencies between each other. It is assumed that an application has different ser-
vice levels. The quality-of-service (QoS) provided by the application is associated
to the service level at which it executes, the higher the service level the higher the
QoS, and the more resources it consumes over time, which implies a higher uti-
lization of the system. It is also assumed that the application can communicate its
service level information to the RM. Table 7.1 shows an example of this informa-
tion for an application named A1 that has three service levels and three VPs, and for
application A2 which has two service levels. In the table SL, QoS, α , ∆, and BWD
are a service level index, the quality of service, the total bandwidth, the tolerable
application delay, and the bandwidth distribution respectively. The delay ∆ repre-
sents a measure of the time granularity of the specific service level, typically high

99

Chapter 7. Collaborative resource management

Figure 7.14 System model

Figure 7.15 Modified ACTORS architecture

QoS levels have a low value of ∆. The bandwidth distribution is an optional value, it
is an indication from the application to the RM how this total bandwidth should be
distributed over the individual virtual processors. Additionally the RM is informed
about the total number of VPs that each application contains and the importance of
the application relative to others.

The information provided by the application (see Table 7.1) represents an ini-
tial estimate of the resources required at an specific service level. This information
constitutes an initial model of the application, which during run-time and through
the control mechanism implemented by the RM will be tuned appropriately.

100

7.7 Control design

Table 7.1 Service level table for application A1 and A2

Application SL QoS α ∆ BWD
name [%] [%] [µs] [%]
A1 0 100 100 28-24-24 40-30-30

1 80 70 42-48-48 30-20-20
2 60 40 80-90-90 20-10-10

A2 0 100 60 20
1 80 40 50

7.7 Control design

The proposed thermal control algorithm together with the resource manager are
designed to meet two fundamental requirements: to prevent processor overheating
by minimizing the maximum temperature of the system, and to provide desired
system performance by maximizing the QoS provided by the running applications
subject to the resource limitations.

Thermal control design
To fulfill the first objective of our control design, the use of a PI algorithm for
the thermal controller is proposed. As shown in Figure 7.16, the signal T from

Figure 7.16 Thermal controller structure

the temperature sensor is passed through a FIR filter, which reduces measurement
noise. The filtered temperature TF is then compared with the reference temperature
TR, producing the error input of the PI controller. Additionally to this input the
controller uses the utilization signal U provided by the resource manager, which
represents the current CPU load caused by the applications running at an specific
service level on the system. This signal is used by the anti-windup component of
the PI controller to prevent wind up of the integral part.

The additional inputs Umin and Umax, represent the minimum utilization required
by the applications to provide an specific QoS, and the maximal permissible utiliza-
tion defined by the employed scheduling policy respectively. These two inputs pro-
vide the lower and upper limits that bound the PI controller output u(k) such that,

101

Chapter 7. Collaborative resource management

Ub ∈ [Umin(k),Umax]. According to this the control output of the thermal controller,
or utilization bound Ub, can be defined as Ub(k) = sat(u(k),Umin(k),Umax), with

sat(u(k),Umin(k),Umax) =

Umin(k), u(k)<Umin(k)
Umax, u(k)>Umax

u(k), otherwise

The output of the thermal controller Ub, defines the input reference parameter
for the resource manager, which based on this value, the measurements provided by
the scheduler for each of the running applications, and the performance criteria of
the system, e.g., maximization of the QoS, dynamically allocates CPU resources to
the applications.

CPU resource allocation
The different elements that constitute the resource manager as shown in Figure 7.15,
implement a control mechanism that combines feedforward and feedback strategies,
which allow adaptive allocation of CPU resources at runtime.

The feedforward algorithm is carried out by the supervisor, which responsibili-
ties include acceptance or registration of applications, monitoring of the minimum
utilization Umin required by the applications to provide and specific QoS, and mon-
itoring and control of the system utilization U , which is subject to the constraints
defined by the thermal controller.

During registration, each application communicates its service level information
(see Table 7.1) to the RM, in particular to the supervisor. Based on this information
the supervisor assigns the service level at which each application must execute. This
assignment can be formulated as an integer linear programming (ILP) optimization
problem, which objective is to maximize the global QoS of the current applications
running on the system including the new application, under the constraint that the
total amount of resources is limited. The boolean variable yi j is 1 if application i
is assigned QoS level j, it is 0 otherwise. For each application i, qi j denotes the
quality at level j, and αi j the bandwidth requirement. The problem can now be
stated as follows

max∑
i

wi ∑
j

qi jyi j

∑
i

∑
j

αi jyi j ≤Ub (7.22)

∑
j

yi j ≤ 1 ∀i

where Ub is the total assignable bandwidth of the system, and wi is the weight
(importance) of application i relative to other applications. The importance values
are assumed to be decided by the system developer. The last constraint implies that,

102

7.7 Control design

if necessary, some low important applications might be turned off, in order to allow
the registration of more important applications.

After the service level assignment of each application, the supervisor calculates
the reservation parameters of each VP. Hence, it creates the VPs for the tasks of each
application by defining the budget Q, and the period P of each VP. The calculation
of the budget and the period of the server is based on the corresponding (α,∆) (see
[Mok et al., 2001a]) parameters described by the following equation

Q = αP P =
∆

2
+Q (7.23)

The service level assignment of the applications running on the system, is car-
ried out not only during registration, but also when the thermal controller redefines
the utilization limit Ub. This could be the result of abrupt temperature increments in
the system caused by internal factors, such as a high computational load of the run-
ning applications, or by external ones such as overheated adjacent equipment. Any
of these situations would trigger a new service level assignment for all applications.

The service level assigned to each application running on the system, sets an
initial upper limit for the assigned budget also known as ABL, this value can be
directly calculated from the information provided by the application (see Table 7.1).

The feedback mechanism is implemented by the bandwidth controllers of the
VPs of each application. They check, whether or not the tasks within the VPs make
optimal use of the bandwidth provided, or the assigned budget (AB), and take ac-
tions to ensure this without degrading the performance of the application. The band-
width controllers are executed periodically with a period that is a multiple of the
period of the VP that they are controlling.

The bandwidth controllers measure the actual resource consumption using two
measurements provided by the scheduler. The used budget (UB) is the average used
budget over the sampling period of the controller at the current assigned service
level. Considering that the linux scheduler SCHED_EDF, the name used by an early
version of SCHED_DEADLINE, supports hard reservations, the UB is always less
than or equal to the budget that has been assigned to the VP by the RM. The hard
reservation (HR) is a value that tells the percentage of server periods over the last
sampling period that the task in the VP consumed its full budget. This is an indicator
of the number of deadlines missed.

The bandwidth controllers have a cascade structure shown in Figure 7.17. The
HRSP corresponds to the maximum percentage of deadlines misses that can be al-
lowed in each sampling period. The controller C1 defines the new value of the UBSP,
which in this case corresponds to the upper and lower bounds within which the UB
should reside. In the case the bounds are violated, the controller C2 either increases
or decreases the assigned budget AB of the VP, this subject to the imitation de-
fined by the supervisor. The value of HRSP can be related to the performance of the
application.

103

Chapter 7. Collaborative resource management

Figure 7.17 Resource manager controller structure

7.8 Implementation

The thermal control algorithm has been implemented together with the modified
ACTORS framework. The implementation was done on a Pioneer mobile robot
[MobileRobots, 2006] with an internal Intel Pentium III based computer [Model
VSBC-8 Reference manual 2007]. The thermal sensor used is a National Semicon-
ductor LM83 chip with an accuracy of±3◦C [National Semiconductor Corporation,
1999], and sample period of 2 seconds. The D/A-conversion takes approximately
500 ms and the temperature measurement is updated by the sensor driver every two
seconds [Delvare, 2010]. In order to avoid aliasing effects, the sampling period of
the bandwidth controllers is set to a multiple of the application granularity that is
higher than the D/A conversion time.

A PI controller, designed as discussed in Section 7.7 is used to calculate the uti-
lization limit parameter, that keeps the temperature of the system around a reference
value provided by the user. To limit the measurement noise, the temperature signal
is passed through a FIR filter with a rectangular window of one minute. The thermal
controller is set to run as often as new data is available from the sensor, i.e., every
two seconds, this is done to get as much data as possible to improve the filtering.
The utilization bound Ub calculated by the controller defines one of the constraints
of the service level assignment problem defined by equation 7.22. In order to solve
the ILP optimization problem, the RM uses the GLPK linear programming toolkit
[Makhorin, 2000].

The reservation mechanism is provided by the Linux scheduling class
SCHED_EDF. The measured system utilization value only considers the applica-
tions that register with the resource manager, and not the RM itself which has a
fixed amount of resources allocated by the system. For this implementation the
maximum utilization Umax was set to 80%. Every time that the utilization limit

104

7.9 Experimental results

changes in any direction the system utilization will be temporarily higher, this oc-
curs while the RM is solving the ILP optimization problem. To reduce this effect
and to limit the influence of the noise that might still be present after filtering, the
new calculated utilization limit is passed to the RM only if it has changed by more
than five percentage points with respect to its previous value.

7.9 Experimental results

Thermal model validation and PI controller design
In order to validate the model structure presented by Equations (5.8) and (5.9), a
step response experiment was carried out on the experimental platform. According

0 5 10 15 20 25 30
20

40

60

80
Temperature step response for a Pentium 3 CPU

Time (min)

T
em

pe
ra

tu
re

 (
de

g
C

)

0 5 10 15 20 25 30
0

20

40

60

80

100

Utilization

Time (min)

Lo
ad

 (
pe

rc
en

ta
ge

 o
f m

ax
)

Figure 7.18 Step response experiment performed on a Pioneer mobile robot.

to the results shown in Figure 7.18, the dynamics between utilization U and chip
temperature T can be roughly modeled by the first order system with time delay

T (s)
U(s)

=
KP

T s+1
e−τs (7.24)

where the gain of the system corresponds to KP = 0.37, the time constant to
T = 32.54 s and the dead time to τ = 31.1 s.

According to this model, and the internal model control (IMC) approach,
[Daniel E. Rivera and Skogestad, 1986], the tuning constants of the PI controller
correspond to K = 4.1792 and Ti = 48.09.

105

Chapter 7. Collaborative resource management

Experimental setup
In order to see the performance of the proposed algorithm under normal and over-
loaded conditions, two different experiments were carried out. In the first experi-
ment the reference temperature was set to 55◦C for a period of 10 minutes, and then
changed to 45◦C for another 10 minutes. For the second experiment the reference
temperature was kept constant at 50◦C.

Since the objective of these experiments is to show the performance of the ther-
mal controller working together with the resource manager, the service level tables
of applications A1 and A2 are defined such that, the ILP optimization problem de-
fined by Equation 7.22 always finds a feasible solution. The infeasible solution case
which is handled by a bandwidth compression algorithm, and the tuning of the val-
ues on the service level tables are outside the scope of this thesis.

For the first experiment, a pipeline application A1 consisting of two tasks T 1
1

and T 1
2 with random execution times was used. As described in Section 7.7, during

registration the application provides its service level information (see Table 7.2) to
the RM. Since there are enough resources in the system, the RM assigns service
level 0 to A1.

The first plot in Figure 7.19 shows the behavior of the filtered system tempera-
ture (green) with respect to the reference temperature (red). The second plot displays
the measured utilization (green) and the utilization limit (red), which is the output of
the thermal controller. The third plot shows the service levels of the application A1.
The changes are done to compensate for the reference temperature change. The last
plot of Figure 7.19 depicts the process variables of the bandwidth controller (see
Figure 7.17), i.e., the used budget (green) and the hard reservation (blue) values,
and the assigned budget (red) which is the output of the bandwidth controller.

As can be seen in Figure 7.19, after registration the bandwidth controllers read
the HR and UB values of each of the application VPs and adjust them according to
their set points, the HRSP is defined as 0.1, that is, up to 10% deadline misses are
allowed within each sampling period. During the entire execution of the application,
the bandwidth controllers keep adapting the AB of the application. At time t =
200s the execution time of the application decreases around 10%, the bandwidth
controllers react reducing the assigned budget AB. A new execution variation can be
seen at time t = 300s, this causes the HR value to 0.9, which is quickly compensated
by the cascade controller.

Table 7.2 Service level table for applications A1

Application SL QoS α ∆ BWD
name [%] [%] [ms] [%]
A1 0 100 60 24-32 40-20

1 90 30 32-36 20-10
2 75 20 36-36 10-10

106

7.9 Experimental results

Table 7.3 Service level table for applications A1 and A2

Application SL QoS α ∆ BWD
name [%] [%] [ms] [%]
A1 0 100 40 28-36 30-10

1 90 30 32-36 20-10
2 75 20 36-36 10-10

A2 0 100 20 32 20
1 85 10 72 10
2 35 5 152 5

Since during the first 10 minutes the system temperature keeps below 55◦C, the
Ub value set by the thermal controller does not force a service level change in the ap-
plication A1. At time t = 600s the reference temperature changes to 45◦C, here the
thermal controller sets the Ub according to the algorithm described in Section 7.7.
The changes in Ub trigger the feedforward mechanism of the RM, which assigns a
new service level to A1. In order to compensate for the large temperature change,
3 service level changes are carried out, from 0 to 1, from 1 to 2 and finally from 2
to 1, where it remains. Notice that after time t = 600s the filtered temperature TF
does not drop as rapidly as one could expect, this is the effect of solving the opti-
mization problem that leads to a new service level assignment, and which increases
momentarily the load on the system.

For the second experiment, a new pipeline application A1 and a simple appli-
cation A2 consisting of one task T 2

1 was used, where application A1 has a higher
importance than application A2. Table 7.3 shows the service level information pro-
vided by applications A1 and A2. At the beginning the only running application is
A1, to which the RM assigns the service level 0. At time t = 300s application A2
registers with the RM, which assigns service level 0 for A2 and keeps A1 at service
level 0.

Figure 7.20 shows the behavior of both of the applications when it is required to
keep the system temperature bounded to 50◦C. This figure contains the same vari-
ables as described for the first experiment, together with the additional measure-
ments corresponding to the second application A2. This can be seen specifically in
the third plot, which shows the service levels for A1 (red) and A2 (green), and in
the fifth plot which represents the measurement variables and the controller output
of the bandwidth controller of the application A2.

When the application A2 registers with the RM, the utilization of the system
increases causing an increment on the system temperature. Around time t = 720s
the thermal controller sets the utilization limit u(k) to a value that requires a new
service level change from the RM. This is carried out for both of the applications,
but since application A1 has a higher importance than A2, the RM reduces the
service level of A2 from 0 to 2. Once the system temperature gets below 50◦C,
the thermal controller increases the value of Ub, this causes a new service level

107

Chapter 7. Collaborative resource management

0 200 400 600 800 1000
35

40

45

50

55

60
Reference temperature and CPU temperature

Time (s)

T
em

p
er

at
u

re
 (

d
eg

 C
)

Setpoint
Filtered temperature

0 200 400 600 800 1000
0

20

40

60

80

100
System utilization and utilization limit

Time (s)

L
o

ad
 (

p
er

ce
n

ta
g

e
o

f
m

ax
)

Utilization limit
Measured utilization

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3
Assigned service level for application A1

Time (s)

S
er

vi
ce

 le
ve

ls

Service level

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1
Assigned Budget, Used Budget and Hard Reservation values for application A1

Time (s)

A
B

, U
B

 a
n

d
 H

R
 m

ea
su

re
m

en
ts

Assigned budget
Used budget
Hard reservation

Figure 7.19 Performance results under normal conditions. One application running
on the system subject to changes in the execution time, and in the system reference
temperature.

108

7.10 Conclusions

assignment for application A2, from 2 to 1. The bandwidth controllers for both of
the applications are also shown.

7.10 Conclusions

This chapter has presented a method for using feedback resource management to
achieve thermal control on platforms with only passive cooling. Also presented are
methods to control performance metrics for interconnected components under con-
ditions of changing resource availability. Finally an experimental validation of using
the thermal control approach on a mobile robot is presented, together with the per-
formance results from an adaptive resource manager used on the robot platform.

109

Chapter 7. Collaborative resource management

0 200 400 600 800 1000 1200
35

40

45

50

55

60
Reference temperature and CPU temperature

Time (s)

T
em

p
er

at
u

re
 (

d
eg

 C
)

Setpoint
Filtered temperature

0 200 400 600 800 1000 1200
0

20

40

60

80

100
System utilization and utiliyation limit

Time (s)

L
o

ad
 (

p
er

ce
n

ta
g

e
o

f
m

ax
)

Utilization limit
Measured utilization

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3
Assigned service levels for applications A1 and A2

Time (s)

S
er

vi
ce

 le
ve

ls

SL A1
SL A2

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1
Assigned Budget, Used Budget and Hard Reservation values for application A1

Time (s)

A
B

, U
B

 a
n

d
 H

R
 m

ea
su

re
m

en
ts

Used budget
hard reservation
Assigned budget

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5
Assigned Budget, Used Budget and Hard Reservation values for application A2

Time (s)

B
u

d
g

et
 (

p
er

ce
n

ta
g

e
o

f
m

ax
)

Used budget
hard reservation
Assigned budget

Figure 7.20 Performance results under overloaded conditions. Two applications
running on the system subject to system temperature constraints.

110

8
Cooperative resource
management

LTE/3G range
Bluetooth or
WiFi-range

This chapter studies resource management of co-located energy-constrained de-
vices performing individual but related tasks. Though ultimately seeking to improve
their own performance, the devices are given incentive to cooperate, in this case
sharing the energy cost of fetching data from a remote service, creating a win-win
scenario for the individual and the system as a whole. Mechanisms affecting the re-
sulting barter economy are investigated together with simulation results from both
static and dynamic population cases. An asynchronous formulation is presented as
a foundation for a prototype implementation. Experimental results from running the
implementation in an emulated environment are presented along with design rules
derived from the system performance. The chapter is based on the papers [Lindberg,
2013; Lindberg, 2014b; Lindberg, 2014a].

8.1 Increasing focus on the local

While the internet has enabled previously unprecedented connectivity between sys-
tems across the world, the rapid increase of data traffic is starting to be a problem for

111

Chapter 8. Cooperative resource management

the network infrastructure [FCC, 2010]. As a result, available wireless broadband
spectrum is quickly being depleted, forcing a renewed focus on finding solutions
that do not rely on limited infrastructure resources. This is also a relevant strategy
when deploying solutions in previously undeveloped areas, e.g. rural Africa.

While battery capacity is steadily increasing, the desire to create both smaller
and more powerful mobile systems continue to be a driver in mobile systems design.
Technologies for very energy efficient short range networking are active research
topics which receive significant attention from device manufacturers.

Mesh networking
IEEE 802.11s, a recent addition to the IEEE 802.11 family of standards, specifies
a way that nodes can form an ad-hoc network and communicate with each other
using a specialized routing protocol, the Hybrid Wireless Mesh Protocol (HWMP).
Private communications between peers, or Mesh Stations as they are called in the
standard, is conducted over encrypted links using a key exchange protocol called
Simultaneous Authentication of Equals (SAE), which is also specifically designed
to be used with IEEE 802.11s implementations.

Bluetooth Low Energy
Bluetooth Low Energy (BTLE, originally Nokia Wibree) is an addition to the Blue-
tooth Core Specification detailing enhanced features for short range communica-
tion, including device discovery and peer to peer connectivity. Support for BTLE is
already present in the major mobile operating systems, including Apple iOS, An-
droid and Windows Mobile, but the Bluetooth SIG is expecting the technology to
also be used for more specialized devices, e.g. health monitors.

8.2 Incentivizing cooperation

It can be shown through game theory that two rational decision makers will choose
not to cooperate if there is the possibility of one of them taking advantage of the
other. This case is often referred to as the “Prisoner’s Dilemma” [Axelrod, 2006]
and illustrates the importance of trust between parties in a voluntary cooperation
scenario.

Translated into the terms of a cooperative file retrieval scenario, if two geo-
graphically co-located mobile clients, A and B, seek to retrieve two data objects
both clients want from a remote service (typically a file server), they could poten-
tially cooperate by sharing the cost, in terms of energy or traffic fees, for the long
distance traffic.

Let wl denote the cost of accessing the data from a remote source and ws the
cost of communicating with a co-located source. Accessing data requires energy
expenditure by both sender and receiver, meaning that one local access incurs a cost

112

8.2 Incentivizing cooperation

Table 8.1 Action/reward table for the Prisoner’s Dilemma description of the shar-
ing scenario.

Cost for (A,B) B cooperative B uncooperative
A cooperative (wl +2ws, (2wl +ws,

wl +2ws) wl +ws)
A uncooperative (wl +ws, (2wl ,2wl)

2wl +ws)

of ws for both parties. The energy expended by the remote server is not accounted
for in this example. Assume also that wl � ws.

A and B can now independently choose to either be cooperative, that is, allowing
the other party to copy a data object, or uncooperative, that is, not giving the other
client access. The outcome of the possible scenarios in terms of cost to retrieve both
objects are listen in Table 8.1.

If both choose to cooperate, the costs will consist of one repository access to
fetch one object and then two short range accesses, one to deliver the object to the
peer and one to fetch the other object from the same. In case only one chooses to
cooperate, both will start out fetching one object from the repository, but only one
will be able to fetch from its peer. The other will then have to perform another
repository access to complete the set.

The Nash equilibrium [Axelrod, 2006] of this game is that both A and B choose
to be uncooperative. Two principle strategies can be seen that would resolve this
problem, either

• ws must be reduced to 0, thereby making it “free” to risk cooperation, or

• the off-diagonal choices must be eliminated, making it impossible for one
party to exploit the other.

The first strategy models the behavior of traditional peer-to-peer networks,
where sharing is considered to be without cost [Androutsellis-Theotokis et al.,
2004]. Even if a participant is taken advantage of the majority of the time, the
occasional win is achieved at no cost. In the mobile setting, the risk of running
out of energy or loosing contact with surrounding parties makes such assumptions
unrealistic.

It is therefore necessary that the exchange system provides potential participants
with guarantees that the benefits outweigh the costs. In the general case, this would
require appropriate models for user behavior, which is outside the scope of this
thesis. A simpler scenario can be achieved by requiring that all transactions are
bilaterally either cooperative or uncooperative, thereby effectively resorting to the
second strategy above.

The question of whether or not to allow multicast transfers is problematic. While
publications have shown that this improves the efficiency of cooperation [Wolfson

113

Chapter 8. Cooperative resource management

et al., 2007; Yaacoub et al., 2012], there is the risk that clients will opt out of the
exchange system and just listen to multicasts, essentially re-introducing a Prisoner’s
Dilemma like situation. This work therefore assumes that all communication is uni-
cast between two parties.

Furthermore, it is assumed that an exchange system can enforce the adherence
to agreements between clients, which will in the case of data object exchanges be
referred to as fair exchanges. Exactly how this is done is of less importance to
the results presented, but for the sake of feasibility a prototype method is outlined
below.

Prototype contract mechanism
Assume a set of parties C have agreed to exchange a set of objects D according to
some scheme. The agreement, or contract, in the form of a list of tuples denoting
(supplier, receiver, object) ∈ C×C×D, is handed over to an exchange system E,
a physical 3rd party in the form of a remote service. E creates a set of encryption
keys, one for each unique object in the agreement. The suppliers of each object are
then given the corresponding keys, which they then use to encrypt the objects, after
which they transmit them. When all receivers have signaled to E that they have
indeed received the complete transmissions, E sends out the appropriate decryption
keys to the participants.

8.3 System model

Consider a population of mobile terminals capable of multi-mode communication,
that is, able to use several wireless communication standards. Specifically, they sup-
port both an expensive form of long range communication (e.g. 3G or LTE) and a
less expensive short range alternative (e.g. WLAN or Bluetooth). Building on the
notation introduced in Section 8.2, let C = {ci, i = 1 . . .Nc} denote a subset of the
population, such that all are within short range communication distance of each
other. Furthermore, let D = {d j, j = 1 . . .Nd} denote a set of data objects of uniform
size that all clients desire to retrieve. These objects could be individual files or parts
of one larger file, split into parts to facilitate distribution. While constraining the di-
vision to equally sized parts can seem like a simplification, it does help to make the
market more efficient. If all parts require equal effort to exchange, finding suitable
trade partners becomes easier.

All parts of D are available from a central repository accessible only over long
range communication. The nominal cost for a client to download all parts of D is
thus Ndwl but clients can cooperate by trading objects via short range communica-
tion and thereby reduce their total transfer cost. Because of the cost associated with
sharing a data object with another client, it is assumed that a client will only provide
a requested object if it is guaranteed to get an object in return, referred to as a fair
exchange. This rule is referred to as the exchange policy.

114

8.4 The dynamics of fair exchanges

The client population C, the target data set D, and the policy P under which
trades take place constitute an Exchange System E = (C,D,P), with the objective
of allowing clients to minimize their data retrieval costs. The state of the system
is the contents of the client side caches that contain the data objects once a client
has retrieved it. When an object is exchanged between two clients it is copied, the
original remains with the source.

In this formulation E implements a centralized decision mechanism with com-
plete knowledge of the system state. The system dynamics evolve in discrete time
steps of indeterminate length, but with the following logical sub-steps: discovery,
arbitration and effectuation, that are repeated in a loop.

• Discovery. During discovery, clients join the exchange system and submit
their current state. Let κ(c) be a function that returns the data objects cur-
rently possessed by client c and cardinal(κ(c)) a function that returns the
number of elements in κ(c).

• Arbitration. Once the system state is established, the exchange system de-
cides which trades that will occur. Clients not part of a trade will perform a
default action, that can be either fetching an object from the central repository
or passing (i.e., doing nothing).

• Effectuation. Finally all decisions are carried out. The completion of these
actions marks the end of the time step, after which the next immediately starts
with a new discovery phase.

Clients can be expected to join or leave the exchange system from one time step to
the next, either voluntarily (e.g. having completed the data set or user command) or
involuntarily (e.g. through loss of connection), making repeated discovery neces-
sary. By choosing to pass in the arbitration phase, a client can bide its time, hoping
for a more beneficial situation to arise in a future time step.

8.4 The dynamics of fair exchanges

The data object exchange scenario differs from many types of bartering economics
primarily in that a client is typically interested in several trades rather than just one.
It will withdraw from the exchange system once it completes its set of data objects.
This removes an attractive cooperation partner, one who possesses all the objects
desired by the other clients. This is a key complication that an effective exchange
policy must take into account.

To keep the pool of cooperation partners as large as possible, it is important to
prevent some from completing their sets far ahead of the rest. Making client state
(i.e., the contents of the client side object caches) as diverse as possible will further
increase the probability that any one client will find a peer that can provide desired
objects, while needing those already in possession.

115

Chapter 8. Cooperative resource management

A

C

B

1

3

2

3 1 2

Figure 8.1 A swap graph for the system A[1,2],B[1],C[3]

The swap graph
To further discuss the properties of these systems, the concept of the swap graph will
be used. This is a directed graph representation of currently possible trades, where
each vertex represents a client and each edge represents a potential object transfer.
If client A has an object desired by client B, then the swap graph will contain an
edge from B to A, labeled with the object in question, to indicate the dependency.
As there can be multiple dependencies between two clients, there can be multiple
edges but with different labels.

As an example, consider a case with the client set {A,B,C} and the data object
set {1,2,3}. In the example, let client A possess objects 1 and 2, represented by the
short hand notation A[1,2]. Assume now that the total system state is A[1,2], B[1],
C[3]. The corresponding swap graph is seen in Figure 8.1. Possible fair exchanges
are seen as cycles in the graph, with in total four in the example, as detailed in Fig-
ure 8.2. In this case they are mutually exclusive, which leads to the central question

A

C

B

3

2

1

A

C

3 1

(i) (ii)

A

C

3 2

(iii)
C

B

(iv)

3

1

Figure 8.2 The cycles given by the swap graph in Figure 8.1. Each of the cycles
is mutually exclusive, meaning only one of them can take place. Arbitrating this
conflict is a responsibility of the exchange system.

116

8.4 The dynamics of fair exchanges

Nc

3.0
3.5

4.0
4.5

5.0
5.5

6.0

Nd

3.0
3.5

4.0
4.5

5.0
5.5

6.0

a
v
g
 c

y
cl

e
s

50

100

150

200

250

300

Figure 8.3 The number of cycles grows very fast with the dimensions of the sys-
tem. This plot shows the average number of cycles over 50 simulations when all
clients are assigned randomly chosen states.

of arbitration, that is, determining which exchanges should take place in order to
optimize the objectives?

In its entirety, the problem is a multistep decision problem, where in each step
determining the set of exchanges to perform involves finding the best set of non-
overlapping cycles in the graph, a version of the classic NP-complete maximum set
packing problem [Karp, 1972]. It has been shown how such problems can be solved
through relaxation techniques after conversion to the maximum clique formulation
[Ausiello et al., 1980; Balas et al., 1996], and this could theoretically provide a
method to solve the complete problem, though the effects of the relaxation on this
problem is currently unknown, as the goal is not the same as in maximum set-
packing.

The computational complexity in each step grows as 2Ncycles and since the num-
ber of cycles grows very fast with the set size, as shown in Figure 8.3, finding the
globally optimal solution is intractable for realistic scenarios involving hundreds of
clients. However, a possible key to alternative heuristic strategies presents itself by
studying the special case of Nc = Nd .

117

Chapter 8. Cooperative resource management

A

C

B

3

1

2

(i)

A

C

B

2

3

1

(ii)

Figure 8.4 Swap graphs for the special case discussed in Section 8.4. The system
is initialized with the state A[1],B[2],C[3], as shown in Graph (i), which allows for a
3-way exchange involving all clients, leading to the situation depicted in Graph (ii).

The case of Nd = Nc

Consider a case with Nc = Nd = 3, with the system state A[1], B[2], C[3] and the
corresponding swap graph shown in Figure 8.4-i. After trivially selecting the ex-
changes, the state becomes A[1,3], B[1,2], C[2,3], with the swap graph in Figure
8.4-ii. This gives another trivial decision that ends the scenario (as all clients are
done) with an optimal cost of exactly one remote access for all clients.

The two following observations can now be made:

1. The trivial optimal strategy above is always possible when all clients have the
same number of objects and every object occurs the same number of times in
the system.

2. The solution is not unique in general, there might be many other ways to
achieve the same optimal global cost.

Let
nc = cardinal(κ(c))

and
fd = ∑

c∈C
Id(c)

where Id(c) is an indicator function defined as

Id(c) =

{
0 if d 6∈ κ(c)
1 if d ∈ κ(c)

nc is thus the number of objects possessed by c and fd the number of clients
possessing object d. Furthermore, let

n̄ =
1

Nc
∑
c∈C

nc and f̄ =
1

Nd
∑

d∈D
fd

118

8.5 Baseline algorithm

Using this notation, the condition from Observation 1 can be formalized into

ni = n j,∀i, j ∈C and fk = fl ,∀k, l ∈ D (8.1)

from here on referred to as Condition A.
Consider now the function

J = ∑
c∈C

(nc− n̄)2 + ∑
d∈D

(fd− f̄)2 (8.2)

The quantity J can be seen to denote the distance to Condition A, or if it is assumed
that the optimal trajectory will be followed once A is fulfilled, the distance to the
optimal trajectory.

The quantities ∑c∈C(nc− n̄)2 and ∑d∈D(fd− f̄)2, essentially the sample variance
of the client cache sizes and object frequencies respectively, can be interpreted to
model two aspects of how well the exchange system will work.

If the cache size variance is high, then some clients will finish way ahead of
others, thereby removing many objects from the system. It therefore makes sense to
prioritize clients with few objects when arbitrating exchanges.

If the frequency variance is high, some objects are rare, meaning few clients can
offer them, while some are frequent, meaning few clients want them. Both cases
will lead to fewer possible exchanges involving these objects. It therefore makes
sense to try to keep object frequencies uniform.

Analysis of J’s impact on trading
To further demonstrate the correlation between the quantity J and number of trading
opportunities, Figure 8.5 shows the result of a Monte-Carlo type simulation where
a system state was generated 5000 times by randomly placing Nd/2 objects among
Nc clients, for Nd = Nc = 8. For each random state, the swap graph was constructed
and the number of cycles, i.e., the number of possible trades, were plotted against
the corresponding value of J.

The negative impact on possible trades for high values of J is clear but for
smaller values of J, the correlation grows weaker. It can therefore be expected that
the algorithm presented in 8.5, which is based on this metric, will primarily work
to prevent particularly bad trades, but that it will perform more or less on par with
picking trades at random when the system is close to optimum.

8.5 Baseline algorithm

Using Equation (8.2), it is possible to formulate a one-step decision algorithm based
on minimizing J. Basing decisions on only the currently measurable state of the
system, in this case the contents of the client side caches, is a feedback control ap-
proach. This has the advantage of being robust to disturbances, such as failed trans-
fers or clients arriving to or departing from the exchange system. A pre-calculated

119

Chapter 8. Cooperative resource management

0 10 20 30 40 50 60 70
J

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N
b
r

cy
cl

e
s

in
 G

Nbr cycles in the swap graph (G) as a function of J

Figure 8.5 The correlation between J and the number of cycles in the swap graph
G. Note how high values of J drastically limits the number of cycles, while the
correlation grows weaker as J approaches 0.

multistep decision strategy would, on the contrary, have to be recalculated if, for
instance, the state of the system suffers an unforeseen perturbation, such as a failed
object transfer or clients leaving E.

Let X denote the system state, u denote a set of exchange agreements to carry
out and J(X |u) denote the cost function evaluated for the state after X has been
subjected to u. Furthermore, let ρ(X) be a function that maps the system state to a
set of possible exchange agreements. The feedback arbitration policy can now be
written as

u = arg min
u∈ρ(X)

J(X |u) (8.3)

Because of the combinatorial nature of the optimization problem used to calcu-
late (8.3), designing the function ρ() is non-trivial. The formulation is very close
to the maximum set packing problem and as discussed in Section 8.4, the number
of possible decisions grow unmanageably large even for modestly sized problems.
However, it can still useful to compare other solvers with the result given if ρ() is
assumed to generate all possible agreements.

120

8.6 Heuristic solver

8.6 Heuristic solver

In order to further study this type of exchange system, a simple heuristic solver has
been developed. Its main characteristics are that

• it is deterministic, that is, a given state always yields the same decision,

• it will always terminate (i.e., it is dead- and live-lock free),

• it is guaranteed to find at least one exchange unless there are none, which is
trivial to test for, and

• it is computationally inexpensive.

Heuristic cycle finding
The heuristic solver uses a steepest decent style graph walking method for finding
cycles. Let

Jc(X) =
∂J(X)

∂nc
(8.4)

Jd(X) =
∂J(X)

∂ fd
(8.5)

and let G′ be the pruned swap graph, obtained by repeatedly searching G for nodes
with either zero in-degree or zero out-degree, i.e., nodes with either no inbound or
no outbound edges, [Godsil et al., 2001], which obviously cannot be part of a cycle.
As removing nodes from the graph can cause other nodes to qualify for pruning, the
procedure is repeated until no more nodes can be removed.

As an example, consider the unpruned swap graph shown in Figure 8.6, defined
on the data set D = {1,2,3,4} and client set C = {A,B,C,D}. In the first step of
pruning, client C would be removed as it has no inbound edges. Removing C in turn
removes all inbound edges to A, meaning this node would be removed in the next
pruning iteration. As the remaining nodes B and D have both inbound and outbound
edges, no further reductions can be made and resulting graph is the pruned swap
graph G′.

It can easily be seen that the all connected subgraphs in G′ contain at least one
cycle. As all nodes have outgoing edges with no edges to itself, there are no "dead
ends" in the graph and since the graph is finite a walk must eventually end up in a
node that has been visited before.

Because there can be multiple edges between nodes, the algorithm must keep
track of both visited nodes and edges. This is done with a data structure called trace,
a list of alternating node and edge elements.

A pseudocode representation of the algorithm used for finding cycles is given as
Algorithm 1. Sort() orders elements in a list according to their unique text labels,
which is done in order to make the algorithm deterministic. FirstElement() and

121

Chapter 8. Cooperative resource management

C

A B D

3
3 1

1

2

1

3

2

2

Figure 8.6 An unpruned swap graph on the data set D = {1,2,3,4} and client set
C = {A,B,C,D}. No edges are labeled 4 as all clients already possess this object.

LastElement() return the first and last elements of a list respectively and List()
creates a list from the arguments. The function gradJ calculates Jc(X) + Jd(X),
using for c the end node of the edge and for d the data object associated with the
edge. The last operation removes the preamble of the trace, as the initial parts might
not be part of the cycle.

A heuristic ρ()

Building on the heuristic cycle finder, a heuristic ρ(), denoted ρH(), can then be
defined. Let HeuristicFind be the heuristic cycle finder algorithm defined as Al-
gorithm 1. A pseudocode representation of ρH() is shown as Algorithm 2.

The exchange agreements to be carried out are generated by repeatedly search-
ing for cycles in G and removing the nodes and associated edges in found cycles
until the remaining graph is empty.

Computational complexity While the exact computational complexity of the al-
gorithm is difficult to derive, there are ways to find approximate expressions.

The algorithm most often finds cycles of size 2. This comes from that the trades
with the initial node have a high impact on the cost function, and the second node
in the cycle will therefore often select it as a trade partner. Hence, it will take in
the order of Nc/2 arbitration steps before the swap graph is empty. Each arbitration
involves calculating the gradient of the cost function for all edges going out from
the current node, move to the most beneficial one, and repeat until arriving at a
previously visited node. Assuming cycles of size 2, this will happen twice for each

122

8.6 Heuristic solver

Input: pruned swap graph G′

Output: a cycle in G′

begin
current ← FirstElement(Sort(GetNodes(G′)))
trace← List(current)
done← false
while not done do

Es← Sort(GetOutEdges(current))
Gs← List()
mingrad ← MaxFloat()
foreach e in Es do

v← SourceNode(e)
d ← DataObject(e)
u← ReceiverNode(e)
if GradJ(v, d, u) < mingrad then

next ← v
mingrad ← GradJ(v, d, u)

end
end
append d to trace
if next in trace then

done← true
else

current ← next
end
append next to trace

end
while FirstElement(trace) 6= LastElement(trace) do

remove first element from trace
end
return trace

end

Algorithm 1: Pseudocode representation of the heuristic cycle finder.

arbitration.
Figuring the number of edges from each node is more difficult, as this varies

greatly depending on system state (see Figure 8.5). A theoretical upper bound for
outbound edges for one node is (Nc− 1)(Nd − 1), i.e., the client needs all objects
but one and all other client have those objects. This has to be done once for each
node in the cycle, which for the worst case is 2 nodes.

It can thus be concluded that the complexity of finding all trades in one arbitra-
tion phase is bounded by Nc(Nc−1)(Nd−1).

123

Chapter 8. Cooperative resource management

Input: A swap graph G
Output: A list of traces representing exchange agreements
begin

u← List()
done← false
while not done do

G′← Prune(G)
upart← List()
if not G′ empty then

upart← HeuristicFind(G′)
else

done← true
end
remove nodes in upart from G
append upart to u

end
return u

end

Algorithm 2: Pseudocode representation of the heuristic decision function ρH()
where HeuristicFind() is a call to Algorithm 1.

Default actions
The clients not part of any exchange are still able to act, though their actions are
limited to either

• fetching an object from the remote repository, or

• passing (i.e., doing nothing).

The decision comes down to if the client is willing to wait and see if a better situation
arises or if it should instead pay for immediate access to a data object. In this work,
this is modeled by a client parameter named trade timeout that decides how long a
client that is not part of any exchange agreement after arbitration is willing to wait,
essentially a form of time out. An important special case arises when a client enters
the exchange system with an empty cache. It will then have to download at least one
object from the remote repository in order to have something to trade with.

As the other parts of the algorithm aim to minimize J, it would seem appropriate
that the default actions do the same. This can be most easily done by simply fetching
the least frequent object currently not already possessed by the client. In order to
preserve determinism, the candidates are sorted by frequency first and label second.

Example: Empty initial state To further illustrate how the proposed mechanism
works, here follows a step by step execution of the algorithm for a simple case. The

124

8.6 Heuristic solver

State (a) State (b)

State (c) State (d)

1
2

3

4

1
2

1
2

4
3

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1
23

1
23

14
3

14
3

A

C

B

D

A

C

B

D

A

C

B

D

A

C

B

D

Figure 8.7 A graphical representation of the state changes used in the Empty initial
state example. The example uses 4 clients ({A, B, C, D}) and 4 data objects ({1, 2,
3, 4}). The arrows represent the trades that resulted in the current state.

system state past the initial step is depicted in Figure 8.7. Consider a 4 x 4 system
(4 clients {A, B, C, D} and 4 data objects {1, 2, 3, 4}) where all clients start out
with empty caches.

1. Given the initial empty state, no trades can take place and all clients default
to fetching an object from the repository. As they all pick the least common
object, each will pick a different one. This results in State (a), as shown in the
figure.

2. The cycle finder initiates by starting at the client with the least objects. Since
in this case they all have the same number, it will simply pick A, which is the
first according to sort order. This implementation sorts alphabetically after
label. Since the gradient is equal in all directions, the cycle finder will go on
to trade the first object A lacks with the first client that has it, in this case
B. Continuing on in the same manner will lead back to A. As this forms a
cycle, the cycle finder terminates and adds the trade between A and B to the
list of decided on trades. A and B are then removed from the set of clients,

125

Chapter 8. Cooperative resource management

A 1
2 23

14 14
3

B

C D

A 1
2 23

14 14
3

B

C D

3

2

4

State (a) State (b)

Figure 8.8 A graphical representation of the state changes used in the Non-empty
initial state example. The example uses 4 clients ({A, B, C, D}) and 4 data objects
({1, 2, 3, 4}).

a new swap graph is generated and the procedure is repeated, finding a trade
between the two remaining clients, C and D. After carrying out the trades, the
system ends up in State (b).

3. Because the gradient is still the same in all directions, the system will con-
tinue to pick trades in sort order. This results in A trading with C and B trading
with D, resulting in State (c).

4. The previous cycles will repeat themselves, resulting trades between the same
clients and the scenario terminates in State (d), as all clients have all data
objects.

The scenario illustrates how the system can work in an ideal case, where each client
only needs to fetch one object from the remote server and then trade for the remain-
ing.

Example: Non-empty initial state In order to show how the arbitration algorithm
promotes certain trades over others, consider a 4 x 4 system configured in State (a)
as shown in Figure 8.8, with client- and data sets as per the previous example.

1. The cycle finder starts with the first client with two objects, which is A. From
there it picks the first edge with the lowest object frequency, which is 3, going
to the first node with the lowest object count, which is B. The alternative
would be to trade with D, but because D has more than the average amount
of objects, the gradient is positive along this edge.

2. From B, the first edge with the lowest object frequency is 4 and the target
with the lowest object count is C. Trades with object 1 are not preferred,
since object 1 is more common than the average, and client D still has more
than the average number of objects.

126

8.6 Heuristic solver

3. Finally, from C it picks the edge with object 2 leading to A, which completes
the cycle. It could also go back to B, but will in this implementation pick A
since it comes before B in the sort order.

As the trades are completed, D will, depending on the trade timeout, either de-
fault and download an object from the remote service, or wait until the next iteration.
If D waits, the system reaches State (b) and the cost function J becomes 0. As such,
the system will be able to find a solution where all clients can trade for their missing
objects. This is exactly what the algorithm is supposed to do, i.e., promote trades
that benefit the economy over time, which sometimes means some clients will be
denied trades so that a better situation can develop.

A 10 x 10 example
The performance and behavior of the algorithm have been studied through simula-
tions in an environment built in Python [Python, 2014] using off-the-shelf modules
for graph algorithms [NetworkX, 2013] and plotting [Matplotlib, 2014].

Consider a scenario with 10 clients and 10 data objects, where all clients start
out empty. Assume that wl = 1 and that ws is sufficiently small that it can be ap-
proximated to 0 under a policy of fair exchanges. Figure 8.9 shows how J, the
total communication cost for the entire system and the worst case individual client
communication cost evolve over time, stopping when all clients have all objects.
Communication costs are normalized so that the nominal case where all objects are
fetched from the remote repository corresponds to a cost of one. A plot showing
how many clients are involved in trading in each step is also provided. The heuristic
solver is used and clients use a trade timeout of 0.

As the initial state satisfies Condition A, the optimal trajectory is known and
would give a worst case individual cost of one remote access, resulting in a normal-
ized individual cost of 1/Nd = 0.1, and a normalized total cost also of 1/Nd = 0.1.
The heuristic solver is not able to achieve these costs, but manages to reduce the to-
tal cost to 20 and the worst individual cost to 5, compared to 100 and 10 respectively
for the non-cooperative case.

Influence of trade timeout
By varying the trade timeout parameter, it is possible to make a tradeoff between
cost and latency. As expected, increasing the trade timeout generally decreases the
resulting total cost, but finding the point after which increasing it further provides
no benefit has so far only been done experimentally. Figure 8.10 shows a repetition
of the setup from Section 8.6, but with a trade timeout of 2. In this case the optimal
cost is nearly achieved, but the scenario takes more time steps, as can be seen in the
last time step where the individual cost increases by one remote access. The total
cost also increases but negligibly so.

127

Chapter 8. Cooperative resource management

0 2 4 6 8 10
time step

0

5

10

15

20
J

Heuristic, trade timeout=0, Nd =10,Nc =10

0 2 4 6 8 10
time step

0.0

0.2

0.4

0.6

0.8

1.0

a
cc

u
m

u
la

te
d
 c

o
st

normalized total cost
normalized worst individual cost

0 2 4 6 8 10
time step

0

2

4

6

8

10

p
a
rt

ic
ip

a
ti

n
g
 c

lie
n
ts

Figure 8.9 System trajectories for the example in Section 8.6. The costs have been
normalized so that a cost of 1 corresponds to the worst case cost, that is the case
where all objects are fetched from the remote repository. For the individual cost the
normalization factor is 1/(Ndwl) and for the total cost the factor is 1/(NcNdwl).
Without normalization, the accumulated total cost is 20, the average cost is 2 and the
worst case cost is 5.

8.7 Set sizes and problem decomposition

The problem lends itself to decomposition into parts, as is evident when studying
the results in Figure 8.11. This shows the worst case individual cost for different
combinations of Nd and Nc (using the heuristic solver and a trade timeout of 10 in
all cases) and it can be seen that the level jumps approximately each time Nd crosses
a multiple of Nc.

This can be explained by treating the scenario as a combination of sub-scenarios.

Case 1: Nd < Nc

If there are more clients than data objects, the clients can divide themselves into
groups, ideally of size Nd , and apply the nominal strategy in parallel. Each client
should only need to pay for one repository access.

128

8.7 Set sizes and problem decomposition

0 2 4 6 8 10 12 14
time step

0

5

10

15

20

J

Heuristic, trade timeout=2, Nd =10,Nc =10

0 2 4 6 8 10 12 14
time step

0.0

0.2

0.4

0.6

0.8

1.0

a
cc

u
m

u
la

te
d
 c

o
st

normalized total cost
normalized worst individual cost

0 2 4 6 8 10 12 14
time step

0

2

4

6

8

10

p
a
rt

ic
ip

a
ti

n
g
 c

lie
n
ts

Figure 8.10 System trajectories for the example in Section 8.6, with the trade time-
out parameter set to 2, resulting in lower individual and total costs at the expense of
more time steps. Only a single client is forced to do two repository accesses, which
is seen in the slight increase of worst case cost in the final time step. Without normal-
ization, the accumulated total cost is 12, the average cost is 1.2 and the worst case
cost is 2.

Case 2: Nd > Nc

If there are more data objects than clients, then the data objects can be divided into
groups, ideally of size Nc and handled in serial manner. Each client must pay for
one repository access per serial group.

From this it can be concluded that

dNd/Nce (8.6)

is a reasonable predictor for the worst case individual number of remote accesses
using this solver or with words, a group of Nc clients can often cooperate around a
set of Nd objects allowing each client to only pay for once remote repository access.
If the remainder is non zero, some clients are likely to be prohibited from trading
for one object, thereby raising the worst case number of accesses by one. Because
of the above listed decomposition properties of the problem, (8.6) is also the lower
bound on the worst case communication cost.

129

Chapter 8. Cooperative resource management

Nc

5 10 15 20 25 30 35

Nd

5
10

15
20

25
30

35

M
a
x
 c

o
st

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35
Nc

0

5

10

15

20

25

30

35

N
d

Figure 8.11 The worst case individual costs (non-normalized) for scenarios of var-
ious sizes, all using trade timeout of 10 which has experimentally been proven suffi-
cient for all the cases in this simulation to reach their lowest costs. wl is set to 1 (i.e.,
the cost is the same as the number of repository accesses), with the plot shown both
from the side and from above to make the cost breakpoints more visible.

Variations on the cost function
It is natural to consider a more general structure on the cost function. Extending
Equation (8.2) with the weights p and q gives the form

J = p ∑
c∈C

(nc− n̄)2 +q ∑
d∈D

(fd− f̄)2 (8.7)

which can then be used to investigate the influence of the different parts. In order to
show the effects clearly, a system with a skew object distribution state, both in terms
of objects possessed by the clients and the frequency of the objects, will be used.
For example, let the client set be C = {A, . . . ,J} and the data set be D = {1, . . . ,10}.
Table 8.2 describes the initial state, where ’x’ in position (i, j) signifies that client i
has a copy of object j, that is, ∀i, j; j≤ i≤max(i)−2. A set-up of this type will be
referred to as a skew 10x10 system. The reason the state matrix is not diagonal in the
traditional way is that some clients would start with all objects already in possession
and others so close to being finished that the influence of the cost function would
be diminished.

Figures 8.12 and 8.13 shows the resulting costs for all clients to complete their
data sets in skew 10x10 and 20x20 scenarios respectively, with the trade timeout set
to 5. The balanced cost function with (p,q) = (1,1) out-performs the alternatives
except for the case where (p,q) = (10,1) for the 10x10 example. The influence of
the cost function is reduced for smaller problems, where the combinatorial nature
of the problem is more dominant, and for cases where the trade timeout is very low.

130

8.7 Set sizes and problem decomposition

A x x x x x x x x . .
B x x x x x x x . . .
C x x x x x x
D x x x x x
E x x x x
F x x x
G x x
H x
I
J

1 2 3 4 5 6 7 8 9 10

Table 8.2 A representation of the skew state used to examine the effect of the p
and q parameters in the generalized cost function. An ’x’ on position (i, j) signifies
that client i has a copy of object j.

(1,1) (10,1) (1,10) (0,1) (1,0)
(p,q)

0

2

4

6

8

10

12

co
st

 (
lo

n
g
 r

a
n
g
e
 a

cc
e
ss

e
s)

Cost functions variants for 10x10 problem

Total cost
Worst cost
Average cost

Figure 8.12 Resulting costs for different choices of (p,q) for skew 10x10 systems.

131

Chapter 8. Cooperative resource management

(1,1) (10,1) (1,10) (0,1) (1,0)
(p,q)

0

5

10

15

20

25

30

co
st

 (
lo

n
g
 r

a
n
g
e
 a

cc
e
ss

e
s)

Cost functions variants for 20x20 problem

Total cost
Worst cost
Average cost

Figure 8.13 Resulting costs for different choices of (p,q) for skew 20x20 systems.

Comparison with a feed forward approach
The method presented in [Yaacoub et al., 2012] shows results with energy savings
from approximately 60% (unicast case) to 95% (multicast case), when sufficiently
many clients are involved. The results are not immediately comparable with those
presented in this thesis, as the energy consumption of the IEEE 802.11b WiFi traffic
is not sufficiently low to justify the assumption that wl � ws. However, the newer
IEEE 802.11n standard has been shown to be in the order of a factor 10 times as
efficient in J / bit as 802.11b [Halperin et al., 2012], making the assumption more
realistic.

Using (8.6) as a predictor for the number of repository accesses, the cost to
download Nd objects can be written as

dNd/Ncewl +2(Nd−dNd/Nce)ws (8.8)

Assuming ws is low enough to be negligible and normalizing with the nominal cost
of Ndwl , the predicted normalized cost under the mechanism proposed in this thesis
is dNd/Nce/Nd , meaning that given Nc ≥ Nd , the cost scales with 1/Nd . As such the
predicted energy savings are on par with those presented in [Yaacoub et al., 2012],
but note that those results would also be better if IEEE 802.11n had been used.

132

8.8 Random initial state

Nc

4 6 8 10 12 14 16

Nd

4
6

8
10

12
14

16

a
v
g
 m

a
x
 c

o
st

2

3

4

5

6

Figure 8.14 Average worst case individual cost over 20 simulations using a trade
timeout of 10.

The main advantage of the feedback method in this thesis is that it does not
require off-line optimization and therefore is able to handle uncertainties better, as
show in Section 8.8.

8.8 Random initial state

Relaxing the assumption on the initial system state will give further insight into how
the feedback based solver will handle a more realistic scenario. Clients might enter
the system with some data objects already collected, others might join with empty
caches at a later stage. Since the algorithm assumes all relevant information is part
of the current system state, the exact events leading up to this point are irrelevant.

The result of a sequence of simulations, 20 for each (Nd ,Nc) pair, Figure 8.14
shows the average max cost in a system with a random initial state, where each
client possesses a random number of objects (uniformly distributed in [0,Nd]). The
objects are in each case also picked at random, with uniform probability.

On average, a client in these simulations enters the system with half of the ob-

133

Chapter 8. Cooperative resource management

jects already in possession. It would therefore be reasonable to expect that the ex-
pected max cost would be lower than what the dNd/Nce rule would predict, but the
simulations suggest otherwise. The explanation for this is that some clients finish
their sets early, thereby forcing others to pay for many repository accesses, which
in turn increases the max costs.

8.9 Continuous operation

The approach presented in this thesis is primarily targeted at scenarios where the
population will change over time, thereby making pre-calculated solutions unviable.
A performance evaluation was therefore carried out using simulated scenarios for a
case where Nd = 16 and with new clients arriving to the system through a Poisson
process. The birth intensity was then made to increase over time to see how the
system behaves under varying load. All clients in the simulation are modeled to
have a trade timeout of 10, meaning they are willing to accept some latency in order
to save energy.

Once a client has completed its data set, it will leave the system. The exchange
system has a hard limit for the maximum number of clients it will accept and clients
arriving when the system is full will simply be denied access and removed from
the simulation. The limit could come from system resource constraints, such as
memory, concerns about computational complexity and local network congestion
or physical limitations, such as the maximum number of people that can reach each
other with bluetooth or that can fit inside a vehicle with a local wireless network.

System capacity and congestion
Figure 8.15 shows how a system with a max capacity of 50 behaves under increas-
ing arrival rate. The congestion point is very clear, the completion rate will not go
above 3. The reason for this can be understood through the problem decomposition
properties discussed in Section 8.7. As the average cost in this scenario is close to
1, the system performs nearly optimally. Therefore, the clients can be considered to
group up in clusters of size Nd , where each cluster will complete its data set within
Nd time steps. Each such cluster will therefore result in an average completion rate
of 1 and with a maximum system capacity of 50, there can be b50/16c = 3 such
clusters.

By increasing the maximum capacity of the system, more clusters can be formed
and this will improve the throughput. Figure 8.16 shows how the completion rate
will continue to match the birth intensity if the max capacity is increased to support
at least 6 complete groups.

Throughput behavior for max capacity levels in between multiples of Nd re-
mains difficult to predict. If bNc/NdcNd clients form complete groups, the remain-
der should be able to form fractional groups, as described in Section 8.7, thereby
contributing with additional throughput. It seems, however, that the inability of the

134

8.9 Continuous operation

0 200 400 600 800 1000
time (steps)

0

10

20

30

40

50

C
lie

n
ts

 i
n
 t

h
e
 s

y
st

e
m

Continuous operation with max capacity 50

0 200 400 600 800 1000
time (steps)

0

1

2

3

4

5

cl
ie

n
ts

 /
 t

im
e

completion rate
birth rate

Figure 8.15 Simulation of an exchange system with Nd = 16 in continuous op-
eration with new clients arriving through a Poisson process with increasing birth
intensity. The system becomes congested when the intensity goes above 3. The com-
pletion rate is calculated over a 20 time steps long sliding time window.

arbitration algorithm to solve the optimization perfectly causes fluctuations in the
throughput, and attempts to deduce this effect from the system parameters have so
far been unsuccessful.

Returning to a max capacity of 50, Figure 8.17 shows what happens around the
congestion point in more detail. In order to improve visibility, the birth process is
in this case deterministic, i.e., a specific number of new clients arrive each time
step. As before, the system becomes congested at a birth rate of 3 clients per time
step. The oscillations in completion rate once the system becomes congested can
be explained by considering the effect of the default client actions. Because newly
arrived clients will fetch the least common object from the remote service in order
to have something to trade with, a steady inflow of clients will keep the variance
in object frequencies low. When clients are denied, the inflow of rare objects is re-
duced which forces clients to wait more often for beneficial trades, thereby reducing
system throughput.

135

Chapter 8. Cooperative resource management

0 200 400 600 800 1000
time (steps)

0

20

40

60

80

100

C
lie

n
ts

 i
n
 t

h
e
 s

y
st

e
m

Continuous operation with max capacity 100

0 200 400 600 800 1000
time (steps)

0

1

2

3

4

5

cl
ie

n
ts

 /
 t

im
e

completion rate
birth rate

Figure 8.16 Simulation of an exchange system with Nd = 16 in continuous op-
eration with new clients arriving through a Poisson process with increasing birth
intensity. The system remains uncongested as intensity goes well above 3. The com-
pletion rate is calculated over a 20 time steps long sliding time window.

System design
Given this knowledge about when the system becomes congested, it is possible to
relate some of the system design parameters to each other

tstep ≥
S(D)

rNd

tc ≤ tstepNd

bmax ≤ b
Nmax

Nd
c

ctot = wl +2(Nd−1)ws

where tstep is the length of a time step in seconds, S(D) the size of the complete
file in bits, r the lowest bit-rate used to transfer data either locally or remotely, tc
the time to collect the complete file, bmax the maximum arrival rate to be serviced,
Nmax the maximum number of clients in the system and ctot the complete cost of
collecting the file for each participating client.

136

8.9 Continuous operation

0 200 400 600 800 1000 1200
time (steps)

10
15
20
25
30
35
40
45
50

C
lie

n
ts

 i
n
 t

h
e
 s

y
st

e
m Continuous operation with max capacity 50

0 200 400 600 800 1000 1200
time (steps)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

cl
ie

n
ts

 /
 t

im
e

completion rate
birth rate

0 200 400 600 800 1000 1200
time (steps)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

d
e
n
ie

d
 c

lie
n
ts

Figure 8.17 Simulation of an exchange system with Nd = 16 in continuous oper-
ation with new clients arriving at a deterministic rate that increases over time. The
system becomes congested as intensity reaches 3, resulting in some clients being
denied. As birth rates go even higher, the number of clients being denied increases,
which reduces the inflow of rate objects to the economy causing fluctuations in com-
pletion rate. time window. Note that the max limit of clients is 50, the same as in
Figure 8.15.

To illustrate how to utilize these design rules, consider a case where the objective
is to dimension a system to be used in a commuter bus. Assume for this case that
the iteration time is set to 1 minute and the bus has maximum capacity of 50 people
of which 40 are assumed to be participating in the exchange system. Selecting how
to divide a file, e.g. an operating system update, depends on minimum data rate,
desired energy savings and how quickly the bus population changes. For maximum
cost savings, the Nd should be as high as possible. However, this reduces system
throughput. For maximum throughput, Nd should be as low as possible, but this
reduces cost savings. If the passenger turnover in the bus is about 4 persons / minute,
then Nd ≤ 10.

137

Chapter 8. Cooperative resource management

8.10 Asynchronous formulation

The synchronous form used in Section 8.6 is not realistic to implement in an actual
distributed system consisting of devices potentially very different from each other,
as it relies on a system wide clock and full information available to the central de-
cision mechanism. Therefore, this section introduces an asynchronous formulation
that is used as basis for the implementation presented in Section 8.11.

A key difference is the introduction of epochs, here referring to a period in time
where the decision server accepts connections from clients seeking to participate
in the barter, further detailed below. Another significant change is the need to esti-
mate the system state, i.e., how many clients are in the system and the contents of
their caches, something that can potentially affect the effectiveness of the arbitration
algorithm and the ability of clients to make decisions.

As there is no longer any global period, the trade timeout parameter used to
model how latency tolerant a client is in the synchronous model is replaced by a
query timeout, specifying how long a client is willing to wait for a trade opportunity
before taking a default action.

Decision epochs
As one important assumption in this work is the dynamic nature of the client popula-
tion, the central decision mechanism can no longer know exactly how many clients
are present and what their intentions are. While the experiments carried out in this
work uses a fixed client population, the specific clients that connect during each
epoch varies.

As client connections are made, the server collects the incoming queries but
will need to make decisions at some point in time to provide value. This point can
be defined by a number of criteria, such as when a certain number of clients have
connected, when the estimated system state is within some defined region, or when
a predetermined time has passed.

This formulation uses the latter criteria, defining a decision epoch as a period in
time of predetermined length, defined by the parameter epoch timeout. Connections
occurring after the epoch timeout has occurred are sorted into the next epoch and
so on. Once an epoch has been closed, the decision mechanism forms an estimate
of the system state based on the client requests made during the epoch time span,
as described below, decides which trades should occur, and then communicates out
the results to the clients that are part of that epoch.

System state estimation
Because there is no way to learn the state of clients that have not connected to
the decision server, the system must form an estimate as a basis for decisions. The
two main strategies for doing this is to either assume that the clients that connected
during the current epoch form the entire current population, or model the behavior of
clients and use this to predict how the system state changes. The latter would need to

138

8.11 Software design

include a mobility model, describing how clients move in the physical world, which
is beyond the scope of this thesis. It is also possible to formulate the state estimation
as a consensus problem and piggyback state information on trades, something that
will be necessary for a decentralized formulation.

The estimation technique used in this formulation is to use state information
submitted by clients as they connect to the decision server and to also assume that
they will act optimally, i.e., they will perform the trades decided for them and if they
take a default action, they will choose to fetch the least frequent object, based on
current system state estimates. The reason the system is designed in this way, rather
than having the server explicitly tell the clients what default actions to take, is to
make it possible for clients to make more strategic decisions in a future extension
of this implementation. A client could for instance decide to continue to pass or
change its query timeout based on the information given.

In the current implementation, the state is represented by a list of the labels of
the data objects that the client currently has cached, e.g. [1,2,5,6,10]. The fact that
the file is divided into a limited number of predefined parts simplifies the represen-
tation of the client state and calculations involving it. If arbitrary parts of the file
would be tradable, not only would the server need to keep a much more detailed de-
scription of the contents in each client cache, but finding trades that would benefit
all involved parties fairly would also be a much more complex procedure.

8.11 Software design

Using the asynchronous formulation from Section 8.10, a prototype implementation
has been created and tested in a lab environment, as a proof of concept. The deci-
sion logic is implemented in Python, a practical high level language for describing
complex algorithms, while the actual file transfer uses the standard SSH software
distributed with most Linux-based operating systems, as this provides the encryp-
tion and access control necessary for securing the uni-cast only design while being
a mature and efficient implementation.

Logically, the software consists of a threaded server application implemented
using the Python 3 TCPSocketServer API [Python, 2014], and a client application
also written in Python. The server uses the graph software package NetworkX [Net-
workX, 2013] for part of the calculations. Figure 8.18 shows an overview of the
hardware nodes and how the software components in the system are deployed.

Decision Server
The decision server implements the central decision mechanism and is the driving
component in the content distribution system. It contains the original copies of the
data objects that the clients seek to retrieve and handles the arbitration of conflicting
trades. It also provides clients with estimates of object frequencies, which the clients
then can use to make their decisions.

139

Chapter 8. Cooperative resource management

Client

scp

sshd

Server

sshd

query

fetch

fetch

Server Node Client Nodes

Figure 8.18 Component diagram showing the two node types and their software
components. The Server and Client components are written in Python, while the
sshd and scp components are part of the OpenSSH software distribution[OpenSSH,
2014].

The server operates in a primary loop where it listens to connections from clients
and sorts them into epochs. When an epoch is closed, arbitration starts while new
connections are accepted in parallel, as seen in Figure 8.19. An important design pa-
rameter is the epoch timeout, the choice of which depends on the use case. A large
timeout can allow for many client connections, giving more complete information
about system state and enabling more trade opportunities, while also incurring more
latency and risking that clients disconnect and perform default actions. A short time-
out can reduce latency, but increases the risk that not enough clients will sign into
the system in order to facilitate trades, see Section 8.12.

Client implementation
The clients are relatively primitive, as the primary functionality is implemented
using the SSH-server. The clients work in a single loop:

• First it queries the server, submitting information about the current contents
of its cache in the process.

140

8.11 Software design

Accept
Connections

Close Epoch

Create new
Epoch

Arbitrate

Reply to
clients

Figure 8.19 A diagram of how the main decision server loop operates. The system
starts by creating a new epoch, which then accepts new client queries until it the
timeout is reached and the epoch is closed. Immediately afterwards, a new epoch is
created which accepts subsequent client connections, while the arbitration is carried
out in parallel.

• The client then waits for the response until such is received or the client time-
out occurs.

• If a trade offer is made, the client enables the trade partner to connect and
then makes its own connection to fetch the suggested data.

• If no answer is given, or if the answer is empty, the client queries the server
again for information about the object frequencies and then fetches least fre-
quent one from the central repository.

Selecting the client query timeout parameter must be done with consideration
of epoch timeout, but as is shown in Section 8.12, the effects of different choices
can be non-intuitive as system behavior depends on the activity of all clients, see
Section 8.12.

Energy model
Studies show that mobile phones use significantly different amounts of energy while
transmitting over different network standards. For instance, using the models pre-

141

Chapter 8. Cooperative resource management

Figure 8.20 A depiction of the network topology used in the lab experimental
setup, where the decision server is isolated on its own network segment while the
clients share a segment.

sented in [Balasubramanian et al., 2009], the expressions for the transmission size
to cost mapping for the energy case would be

T3G(s) = 0.025s+3.5
TWiFi(s) = 0.007s+5.9

for data objects s bits in size, indicating that given large enough data objects, clients
could trade over WiFi and save energy compared to using 3G. For the purpose of this
thesis, the costs will be simplified and ws and wl will be set to 0 and 1 respectively,
meaning that the costs will be measured in the number of expensive accesses used.

8.12 Experimental results

The software has been deployed in a lab environment and run though different sce-
narios to see how the implementation of the asynchronous formulations performs.
The decision server was populated with 10 data objects, considered to be wanted by
all clients in the simulation.

Hardware setup and network topology
The hardware set-up used, consists of 13 Linux-based computers divided into two
network segments connected through a switch, with the decision server located by
itself to simulate it being accessed through a different network standard, e.g. LTE
or 3G, as per Figure 8.20.

142

8.12 Experimental results

Example run, 5x10
To demonstrate how the system works, an example run with five clients,
{A,B,C,D,E} and 10 data objects is presented here. The clients start out with
empty caches all activate at the same time. Figure 8.21 shows client actions from
epoch to epoch, with ’+’ denoting a trade and ’o’ denoting a default action. The
server epoch timeout is 3 seconds and the client query timeout is 10 seconds.

As the experiment starts, all clients take a default action as they have nothing to
trade with. They then reconnect and clients A-D trade objects with each other during
the next epoch, while E is not offered a trade as the solver fails to find a cycle in
the graph including it. At about 15 seconds into the experiment, all clients have
the 5 objects fetched during the initial default actions, so no more trades can take
place. However, as the client does not know that no more clients will connect, they
wait, remaining passive until around the 24 second-mark when their query timeouts
occur. This leads to another round of default actions that opens up for more trades.

The corresponding estimate of J is shown in Figure 8.22, together with an a-
posteriori evaluation based on the client side logs. The latter is done by collecting
the individual client logs after the experiment is done and parse the state evaluation.
Note how the estimate is consistently higher than the calculated value, a phenomena
that comes from that estimates are formed with no information from one or more
clients, or old information in case queries have timed out and the clients had taken
a default action. A spike in estimate error occurs around 25 seconds, at a moment
when many of the clients have timed out and taken default actions. The server is
then forced to form the state estimate without recent information from many of the
clients.

Example run, 12x10, long query timeout
The scenario is similar when scaling up to 12 clients, though because there are now
at least as many clients as there are objects, the mid-scenario pause seen in the
previous example is not present, as can be seen in Figure 8.23. For this experiment,
all computers in the lab setup were used, making Nc = 12. The pause is eliminated
because all objects are actually possessed by at least one of the clients once the
initial fetch is completed. The long timeout gives the system ample time to find
trades, which in this case results in no extra default actions taken. As the client
decisions are in this case completely timed by the server, the system essentially
behaves as synchronized. Since no client reach the query timeout, there is no point
in investigating even higher values.

Example run, 12x10, medium timeout
Reducing the time out is one way to avoid long breaks in case objects are missing
in the population. However, as shown in Figure 8.24, this can result in fewer client
being present for arbitration as they are taking default actions, reducing the overall
performance of the trade economy. The query timeout used here is 5 seconds.

143

Chapter 8. Cooperative resource management

0 5 10 15 20 25 30 35 40
time (s)

A

B

C

D

E

C
lie

n
t

la
b
le

s

Client decisions, o = default, + = trade, vertical lines denote epochs

Figure 8.21 A graphical representation of what actions the clients are taking over
the course of the experiment. ’+’ denotes a trade while ’o’ denotes a default action.
The vertical lines show the epoch timeouts.

Example run, 12x10, short query timeout
Using even shorter timeouts intuitively results in more default actions, as shown
in Figure 8.25. In this case, the query timeout is 3 seconds, the same as the server
epoch timeout. In this example, the short timeouts lead to a significant increase in
default actions being taken for some clients (e.g. K and L). Using an even shorter
query timeout is questionable, as this may not give the server time to perform the
arbitration.

Effects of client timeouts
For a client seeking to optimize either latency or energy savings, picking an ap-
propriate query timeout is important. The shorter the timeout, the shorter time the
client will be waiting for a trade opportunity. However, because trade opportunities
are most easily found when many clients with diverse cache contents are available,
signing in to the trade system at the same time as the rest of the population turns out
to often be more significant than the timeout.

Looking at the cost saving part of the experiment, Figure 8.26 shows the worst
and best number of expensive long range accesses used by clients for a some dif-
ferent choices of query timeouts in scenarios with 10 clients and 12 data objects.
As expected, using long timeouts will likely enable clients to trade for most objects
after the initial default action has been taken, while at lower timeouts, the variance
in savings increases.

Table 8.3 shows the time it takes for clients to complete their entire data set
given different values on their query timeouts. In all cases, the epoch timeout is

144

8.12 Experimental results

0 5 10 15 20 25 30 35 40
time (s)

0

20

40

60

80

100

120

140

160

180

J

Estimated J vs a-posteriori calculated

Estimated J
a-posteriori calculated J

Figure 8.22 J as a function of the server side system state estimate, sampled at the
end of each epoch, compared to an a-posteriori calculated value based on the client
side logs. Note how the estimate is always higher than the actual value, but the trend
is generally the same.

3 seconds. Non-intuitively, shorter timeouts does not seems to be correlated with
shorter completion times. This can be explained by considering that a system with
very long query timeouts will be almost entirely driven by server decisions, pro-
vided the system is not close to being empty. This causes the clients to behave
almost in a synchronized manner (see Figure 8.21), which is beneficial to the trade
arbitration.

When the client timeouts are shorter, they will more often act out of synch with
the rest of the population, causing something similar to a traffic congestion on free-
ways [Treiber et al., 2000]. Interestingly, the worst choice seems to be a timeout
larger than the epoch timeout, but not significantly larger. Using a long timeout is,
however, not without risks, as a client could arrive to a system with few other con-
nected clients or clients with few desirable data objects. In those situations, it is
less likely that the decision server will find trading opportunities for all connecting
clients each epoch, leading to long wait times but yielding no savings.

145

Chapter 8. Cooperative resource management

0 5 10 15 20 25 30 35
time (s)

A

B

C

D

E

F

G

H

I

J

K

L
C

lie
n
t

la
b
le

s

Client decisions, o = default, + = trade, vertical lines denote epochs

Figure 8.23 A graphical representation of what actions the clients are taking over
the course of the experiment for a case where the query timeout is 10 seconds. ’+’
denotes a trade while ’o’ denotes a default action. The vertical lines show the epoch
timeouts.

0 5 10 15 20 25 30 35
time (s)

A

B

C

D

E

F

G

H

I

J

K

L

C
lie

n
t

la
b
le

s

Client decisions, o = default, + = trade, vertical lines denote epochs

Figure 8.24 A graphical representation of what actions the clients are taking over
the course of the experiment for a case where the query timeout is 5 seconds. ’+’
denotes a trade while ’o’ denotes a default action. The vertical lines show the epoch
timeouts.

146

8.12 Experimental results

0 5 10 15 20 25 30 35
time (s)

A

B

C

D

E

F

G

H

I

J

K

L
C

lie
n
t

la
b
le

s

Client decisions, o = default, + = trade, vertical lines denote epochs

Figure 8.25 A graphical representation of what actions the clients are taking over
the course of the experiment for a case where the query timeout is 3 seconds. ’+’
denotes a trade while ’o’ denotes a default action. The vertical lines show the epoch
timeouts.

Table 8.3 Completion times, i.e., time from client activation to data set completion,
for experiments run with different query timeouts. The variance is largest for the 5
second timeout and interestingly enough the 10 second timeout performs better than
the 3 second timeout does.

Client 10 s 5 s 3 s
A 26.86 40.72 28.27
B 26.88 31.97 28.27
C 26.86 28.90 28.25
D 26.92 31.98 28.30
E 26.90 31.99 28.25
F 26.91 28.91 28.26
G 29.93 28.99 28.29
H 29.91 34.94 28.25
I 29.93 28.94 29.05
J 29.94 31.93 29.03
K 29.91 31.99 31.28
L 29.87 31.99 31.31

147

Chapter 8. Cooperative resource management

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
timeout (server periods)

0

2

4

6

8

10
co

st
s

(n
b
r

o
f

e
x
p
e
n
si

v
e
 a

cc
e
ss

e
s)

Completion costs as a function of client query timeout

minimum completion cost
maximum completion cost

Figure 8.26 The maximum and minimum costs for a client to complete its data set
as a function of the query timeout setting. For high timeout values the performance
is consistent while for lower values it starts to fluctuate. A timeout of 0 means that
the client always performs a default action.

8.13 Conclusions

This chapter has presented an approach for cooperative content distribution for mo-
bile networks with the intent of conserving energy and long range spectrum re-
sources. The approach is based on a mechanism where mobile clients trade data
in a barter economy-like manner. Trades are arbitrated using a feedback control
approach, using a cost function shown to correlate to the efficiency of the economy.

The approach is presented in closed population as well as dynamic population
scenarios and an experimental validation through an implementation in a lab envi-
ronment is supplied.

148

9
Conclusions and future
work

9.1 Conclusions

This thesis presents three different perspectives on feedback-based resource man-
agement for cyber-physical systems. The initial viewpoint is the competitive sce-
nario, when unrelated components share the same limited resource. The second
viewpoint is the collaborative scenario, where components contribute to the same
performance metric while sharing a limited and time varying resource. The third
and final viewpoint is the cooperative scenario, where unrelated clients choose to
cooperate around a task to better utilize limited resources.

All scenarios are characterized by limited knowledge of component dynamics
and resource availability, making feedback-based methods an attractive alternative
to overly pessimistic worst case designs. Online event-based estimation techniques
are used to reduce uncertainty and the need for software designers to provide de-
tailed information about resource needs.

Convex optimization is used as a mechanism for online decision making in the
competitive case, while taking care not to expend too much resources on solving the
optimization problem. The feedback-based approach performs worse under condi-
tions with perfect knowledge, as some amount of resources are unavoidably used
up by the decision making system and the error when estimating system parameters
will further reduce performance.

Designing for feedback
The software models used in this thesis have been specifically chosen to enable
feedback resource management. Software components are assumed to have a cyclic,
primarily resource dependent, behavior, i.e., the component output is driven by the
resources provided as input. This also means restricting software so that it cannot
take resource decisions by itself, as this would make estimating the parameters in
the input/output model difficult.

149

Chapter 9. Conclusions and future work

A recurring pattern has also been that resource management decisions are made
small and assumed to be part of an infinite sequence of actions. This is typical
for a feedback control approach, especially when including estimation, and this
thesis demonstrates three approaches of how to break down resource management
decisions in this manner.

Cross domain models
The thesis has demonstrated techniques for creating system models that encompass
both physical and computational aspects of a system and how such models can
be used in feedback-based resource management to control performance metrics
that depend on multiple system components. Particular emphasis has been given to
including energy and thermal properties, as these properties are a common concern,
especially in mobile systems. The thermal model is validated through experiments
on a mobile robot using adaptive resource management.

The discrete flow model used for resource control in Chapter 7 is applicable to
both computational and physical resource flows. The event like nature of how com-
putational resources are generated and consumed is handled through integration,
meaning that their effect is well defined over a period of time.

Alternatives to hard real-time
The absolute guarantees required for hard real-time theory is not suited for the sys-
tems studied in this thesis. Neither are the systems mentioned of the type that are
safety critical nor do they require perfect timeliness in order to function. As such,
the focus is rather on describing how the performance varies with the allocated re-
sources.

This thesis shows how to use rate-based performance metrics for both competi-
tive and collaborative resource management and how event-based estimation tech-
niques can be used to derive component model parameters online. The synchro-
nization example in particular does not fit with the traditional hard/soft real-time
formulations, as there are no deadlines involved in the metric at all.

Resource conservation and green computing
Reducing energy consumption in devices serves both to enable more advanced mo-
bile systems and to build a more sustainable society. This thesis shows both how
to explicitly relate power consumption to system metrics for a software system and
how cooperative techniques can be employed to reduce the overall energy consump-
tion in a population of co-located devices.

9.2 Future work

The field of cyber-physical systems is still new and much remains to be done in
regards to the topics presented in this thesis.

150

9.2 Future work

Modeling of cyber-physical systems
The cyclic component model used in this thesis lacks the ability to describe more
stateful components. Each cycle is assumed to take on average the same amount of
resources, but as shown in the plot regarding rendering time for video frames, there
are patterns that could be exploited for more exact prediction and control.

One possibility is to tie the cycle resource demand to a markov chain model,
where each state represents a tighter estimate of the resource need. This would en-
able better prediction that would result in better performance for, e.g., synchroniza-
tion control.

Competitive resource management
The components used in this chapter are simplistic and one natural extension is to
used composite collaborative components, e.g., the conversational video pipeline
from Chapter 7. The only constraint is that the utility function is concave, which is
true, e.g., for pipeline throughput.

The potential uses for non-homogeneous utility functions is never explored in
detail, though the algorithm does support it. Potential uses for this could be to treat
critical components different than non-critical or to have different utility functions
depending on the level of system overload.

The algorithm currently does not support multicore resource allocation, as this
would introduce bin packing-like properties which would not be solvable by a gra-
dient descent style algorithm. However, it would be interesting to see how a convex
relaxation of a bin-packing problem could be used to efficiently do approximately
optimal resource management on multicore platforms.

Collaborative resource management
In the example discussed in this thesis, the flows only go from physical (power)
to computational (events) but never the other way, thereby never fully realizing the
potential to model the end-to-end performance of an entire physical system. Such
a system would be the result of having computational resources feed into physical
components, e.g., the computational output from a software controller component to
the analog input of a physical device it controls, and studying resource management
from energy to controller performance would be an important extension.

Furthermore, the control strategies used in this thesis never uses knowledge
about the stochastic parts of the model, e.g., the cycle resource requirements, even
though they are known. Control performance could potentially be enhanced by
stochastic control theory, though with special care to handle exponentially dis-
tributed disturbances rather than gaussian.

Cooperative resource management
The current cost function used in the heuristic algorithm could be generalized to
prohibit specifically undesirable situations by introducing cross terms. The current

151

Chapter 9. Conclusions and future work

form
J = ∑

i
(ni− n̄)2 +∑

j
(f j− f̄)2 (9.1)

is rewritable as a quadratic form

J = ñT Qñ+ ñT R f̃ + f̃ T S f̃ (9.2)

for some square matrixes Q,R,S, where ñ = n− n̄ and f̃ = f − f̄ . Particularly the
cross terms, (ni− n̄)Ri, j(f j− f̄) are interesting since these would include the cost
for giving rare objects to clients who are almost done and therefore can leave the
economy and conversely giving common objects to clients with few in possession.

The lack of a qualitative analytical model for throughput performance limits
further analysis of the system behavior close to congestion. Such models could,
for instance, be developed using Colored Petri Nets or similar types of transition
systems, but one obstacle is the rapidly growing state space. The alternative route
would be to describe the deficiencies of the arbitration algorithm as a throughput
disturbance, trying to quantify this effect.

While the objects are divided in uniform pieces in this thesis, studying the mar-
ket behavior in cases where objects are of different size is an interesting extension.
Some care would have to be taken so to not give owners of small but rare objects
unfair advantage when trading, specifically reducing the risk that the system would
break down around who is forced to fetch larger objects from the remote repository.

E-logistics
The underlying economy of energy could be more explicitly used to form a
currency-based economy. This would enable the trade of heterogeneous goods, e.g.,
trading a file object for a computation or a GPS measurement. This could poten-
tially reduce long range communications even further, as clients without objects
could make initial trades by offering computational services rather than fetching ini-
tial objects from the remote repository. One problem here would be to keep traders
honest about costs and prevent monopoly situations, but given large enough popu-
lations this should be solvable.

Removing the need for a centralized decision mechanism is another important
step for creating more flexible and resilient market places. One way to do this in an
energy based economy is letting nodes solve the arbitration problem, allowing them
to take part of the trades involved in the solutions they compute. Investigating how a
client can benefit by creating energy savings for others seems like a very interesting
research direction, one with many parallels to regular economics.

By extending the system with such an economy would make the entire scheme
appear like a traditional logistics problem. Goods have production costs, from fetch-
ing them remotely, performing a calculations or using sensors, and transportation
costs, i.e., the energy associated with communication. Clients could profit by acting

152

9.2 Future work

A

B

C

D

E

FG

Figure 9.1 A more general problem structure where clients are divided into co-
located subgroups, within each of which short range communication is possible,
while only some clients would be close enough to communicate with neighboring
groups.

as distributors, fetching goods from clients out of short range reach of the others
(see Figure 9.1). This would require a more explicit model of the spatial relations
between clients and the cost function to minimize would need reflect the varying
total cost of services. There is likely traditional logistics theory that could apply to
a system like that.

153

Bibliography

Abeni, L. and G. Buttazzo (1998a). “Integrating multimedia applications in hard
real-time systems”. In: Proceedings of the 19th IEEE Real-Time Systems Sym-
posium (RTSS). Madrid, Spain, pp. 3–13.

Abeni, L. and G. C. Buttazzo (1998b). “Integrating multimedia applications in hard
real-time systems”. In: Proceedings of the 19th IEEE Real-Time Systems Sym-
posium (RTSS ’98). Madrid, Spain, pp. 4 –13.

Abeni, L. and G. C. Buttazzo (1999). “Adaptive bandwidth reservation for multime-
dia computing”. In: Proceedings of the Sixth International Conference on Real-
Time Computing Systems and Applications. IEEE Computer Society, Washing-
ton, DC, USA.

Abeni, L., G. Lipari, and G. C. Buttazzo (1999). “Constant bandwidth vs propor-
tional share resource allocation”. In: Proceedings of IEEE International Con-
ference on Multimedia Computing and Systems (ICMCS ’99). Vol. 2. Florence,
Italy, pp. 107 –111.

Abeni, L., L. Palopoli, S. Superiore, and J. Walpole (2002). “Analysis of a
reservation-based feedback scheduler”. In: Proceedings of the 23rd IEEE Real-
Time Systems Symposium (RTSS 2002). Austin, Texas, USA, pp. 71–80.

Akyildiz, I. F., G. Morabito, and S. Palazzo (2001). “Tcp-peach: a new congestion
control scheme for satellite ip networks”. IEEE/ACM Trans. Netw. 9:3, pp. 307–
321. ISSN: 1063-6692.

Anderson, D. P., S. Tzou, R. Wahbe, R. Govindan, and M. Andrews (1990). “Sup-
port for continuous media in the DASH system”. In: Proceedings of the 10 Inter-
national Conference on Distributed Computing Systems (ICDC ’90). Berkeley,
CA, USA, pp. 54 –61.

Android (2014). Android.com. URL: http://www.android.com.
Androutsellis-Theotokis, Stephanos, and D. Spinellis (2004). “A survey of peer-to-

peer content distribution technologies”. ACM Computing Survey 36:4, pp. 335–
371. ISSN: 0360-0300.

AQuoSA (2010). URL: http://aquosa.sourceforge.net.

154

http://www.android.com
http://aquosa.sourceforge.net

Bibliography

Årzén, K.-E. (1999). “A simple event-based PID controller”. In: Proceedings of the
14th IFAC World Congress.

Åström, K. J. and R. M. Murray (2008). Feedback systems: an introduction for sci-
entists and engineers. Princeton University Press, 41 William Street, Princeton,
New Jersey, p. 396.

Ausiello, G., A. D’Atri, and M. Protasi (1980). “Structure preserving reductions
among convex optimization problems”. Journal of Computer and System Sci-
ences 21:1, pp. 136–153.

Axelrod, R. (2006). Evolution of cooperation. Basic Books.
Aydin, H., R. Melhem, D. Mosse, and P. Mejia-Alvarez (2001). “Dynamic and ag-

gressive scheduling techniques for power-aware real-time systems”. In: Real-
Time Systems Symposium, 2001. (RTSS 2001). Proceedings. 22nd IEEE, pp. 95–
105.

Aydin, H., R. Melhem, D. Mosse, and P. Mejia-Alvarez (2004). “Power-aware
scheduling for periodic real-time tasks”. Computers, IEEE Transactions on
53:5, pp. 584–600. ISSN: 0018-9340.

Balas, E., S. Ceria, G. Cornuéjols, and G. Pataki (1996). “Polyhedral methods for
the maximum clique problem”. Clique, Coloring and Satisfiability: The Sec-
ond DIMACS Challenge. The American Mathematical Society, Providence, RI,
pp. 11–27.

Balasubramanian, N., A. Balasubramanian, and A. Venkataramani (2009). “Energy
consumption in mobile phones: a measurement study and implications for net-
work applications”. In: Proceedings of the 9th ACM SIGCOMM conference
on Internet measurement conference. IMC ’09. ACM, New York, NY, USA,
pp. 280–293. ISBN: 978-1-60558-771-4.

Barham, P., B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I.
Pratt, and A. Warfield (2003). “Xen and the art of virtualization”. SIGOPS Oper.
Syst. Rev. 37:5, pp. 164–177. ISSN: 0163-5980.

Bautista, D., J. Sahuquillo, H. Hassan, S. Petit, and J. Duato (2008). “A simple
power-aware scheduling for multicore systems when running real-time applica-
tions”. In: Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE Inter-
national Symposium on, pp. 1–7.

Bhattacharyya, S. S., G. Brebner, J. W. Janneck, J. Eker, C. von Platen, M. Mat-
tavelli, and M. Raulet (2009). “OpenDF: a dataflow toolset for reconfigurable
hardware and multicore systems”. ACM SIGARCH Computer Architecture News
36:5, pp. 29–35.

Bini, E., G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler, K.-E. Årzén, V.
Romero Segovia, and C. Scordino (2011). “Resource management on multicore
systems: the actors approach”. IEEE Micro 31:3, pp. 72–81.

Boyd, S. P. and L. Vandenberghe (2004). Convex optimization. Cambridge Univer-
sity Press, Cambridge, p. 716.

155

Bibliography

Branicky, M., S. Phillips, and W. Zhang (2002). “Scheduling and feedback co-
design for networked control systems”. In: Decision and Control, 2002, Pro-
ceedings of the 41st IEEE Conference on. Vol. 2, 1211–1217 vol.2.

Buttazzo, G. C. (1997). Hard real-time computing systems: predictable scheduling
algorithms and applications. Kluwer Academic Publishers, Dordrecht, Nether-
lands.

Buttazzo, G. C., M. Spuri, and F. Sensini (1995). “Value vs. deadline scheduling
in overload conditions”. In: Proceedings of the 16th IEEE Real-Time Systems
Symposium (RTSS ’95). Pisa, Italy.

Caccamo, M., G. C. Buttazzo, and L. Sha (2000). “Elastic feedback control”. In:
12th Euromicro Conference on Real-Time Systems (ECRTS 2000). Stockholm,
Sweden, pp. 121–128.

Cervin, A. and T. Henningsson (2008). “Scheduling of event-triggered controllers
on a shared network”. In: Decision and Control, 2008. CDC 2008. 47th IEEE
Conference on, pp. 3601–3606.

Cervin, A. and J. Eker (2003). “The control server: a computational model for real-
time control tasks”. In: Proceedings of the 15th Euromicro Conference on Real-
Time Systems (ECRTS 2003). Porto, Portugal, pp. 113 –120.

Cervin, A., J. Eker, B. Bernhardsson, and K. Årzén (2002). “Feedback–feedforward
scheduling of control tasks”. Real-Time Systems 23, pp. 23–53.

Cha, H., J. Oh, and R. Ha (2003). “Dynamic frame dropping for bandwidth control
in MPEG streaming system”. Multimedia Tools and Applications 19:2, pp. 155–
178.

Chen, G., W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao (2008). “Energy-
aware server provisioning and load dispatching for connection-intensive internet
services.” In: NSDI. Vol. 8, pp. 337–350.

Cheung, T. L., K. Okamoto, F. Maker, X. Liu, and V. Akella (2009). “Markov de-
cision process (MDP) framework for optimizing software on mobile phones”.
In: Proceedings of the Seventh ACM International Conference on Embedded
Software. ACM, New York, NY, USA, pp. 11–20.

Choudhury, P., P. Chakrabarti, and R. Kumar (2012). “Online scheduling of dy-
namic task graphs with communication and contention for multiprocessors”.
Parallel and Distributed Systems, IEEE Transactions on 23:1, pp. 126–133.
ISSN: 1045-9219.

Coffman Jr., E. G., M. R. Garey, and D. S. Johnson (1997). “Approximation algo-
rithms for bin packing: a survey”. In: Approximation algorithms for NP-hard
problems. PWS Publishing Co, Boston, MA, USA, pp. 46 –93.

CGAL (2010). Computational geometry algorithms library. URL: http://www.
cgal.org.

156

http://www.cgal.org
http://www.cgal.org

Bibliography

Cormen, T. H. (2001). Introduction to algorithms. MIT Press, Cambridge, MA,
USA, p. 1180.

Cucinotta, T., D. Giani, D. Faggioli, and F. Checconi (2011). “Providing perfor-
mance guarantees to virtual machines using real-time scheduling”. In: Euro-Par
2010 Parallel Processing Workshops. Springer, pp. 657–664.

D-Bus (2010). URL: http://www.freedesktop.org/wiki/Software/dbus.
Daniel E. Rivera, M. M. and S. Skogestad (1986). “Internal model control 4:

pid controller design”. In: Industrial and Engineering Chemestry Research,
pp. 252–265.

Delvare, J. (2010). Kernel driver lm83. http://www.mjmwired.net/kernel/
Documentation/hwmon/lm83.

Demers, A., S. Keshav, and S. Shenker (1989). “Analysis and simulation of a fair
queueing algorithm”. In: SIGCOMM ’89: Symposium proceedings on Commu-
nications architectures & protocols. ACM, New York, NY, USA, pp. 1–12.

Eker, J. and J. W. Janneck (2003). CAL language report. Tech. rep. UCB/ERL
M03/48. University of California at Berkeley.

Federal Communications Commission (2010). MOBILE BROADBAND: THE BEN-
EFITS OF ADDITIONAL SPECTRUM. Tech. rep. Federal Communications
Commission.

Ferreira, A. P., D. Mosse, and J. C. Oh (2007a). “Thermal faults modeling using a rc
model with an application to web farms”. In: Proceedings of the 19th Euromicro
Conference on Real-Time Systems (ECRTS 2007). Pisa, Italy, pp. 113–124.

Ferreira, A., D. Mosse, and J. Oh (2007b). “Thermal faults modeling using a rc
model with an application to web farms”. In: Real-Time Systems, 2007. ECRTS
’07. 19th Euromicro Conference on, pp. 113–124.

Foundry, D. (2010). Tech analysis: crackdown 2 demo. URL: http : / / www .
eurogamer.net/articles/digitalfoundry-crackdown2-demo-blog-
entry.

Fu, Y., N. Kottenstette, Y. Chen, C. Lu, X. D. Koutsoukos, and H. Wang (2010a).
“Feedback thermal control for real-time systems”. In: Real-Time and Embed-
ded Technology and Applications Symposium (RTAS), 2010 16th IEEE. IEEE,
pp. 111–120.

Fu, Y., N. Kottenstette, Y. Chen, C. Lu, X. D. Koutsoukos, and H. Wang (2010b).
“Feedback thermal control for real-time systems”. In: Proceedings of the 16th
Real-Time and Embedded Technology and Applications Symposium (RTAS
2010). Stockholm, Sweden, pp. 111–120.

Geyer, T. (2005). Low Complexity Model Predictive Control in Power Electronics
and Power Systems. English. Cuvillier Verlag, Göttingen, p. 291.

157

http://www.freedesktop.org/wiki/Software/dbus
http://www.mjmwired.net/kernel/Documentation/hwmon/lm83
http://www.mjmwired.net/kernel/Documentation/hwmon/lm83
http://www.eurogamer.net/articles/digitalfoundry-crackdown2-demo-blog-entry
http://www.eurogamer.net/articles/digitalfoundry-crackdown2-demo-blog-entry
http://www.eurogamer.net/articles/digitalfoundry-crackdown2-demo-blog-entry

Bibliography

Giselsson, P., M. D. Doan, T. Keviczky, B. D. Schutter, and A. Rantzer (2013). “Ac-
celerated gradient methods and dual decomposition in distributed model predic-
tive control”. Automatica 49:3, pp. 829 –833. ISSN: 0005-1098.

GLPK. Gnu linear programming kit. URL: http://www.gnu.org/software/
glpk.

Godsil, C. D., G. Royle, and C. Godsil (2001). Algebraic graph theory. Vol. 8.
Springer New York.

Goel, A., J. Walpole, and M. Shor (2004). “Real-rate scheduling”. In: Proceedings
of the 10 IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS 2004). Toronto, Canada, pp. 434 –441.

Golestani, S. J. (1994). “A self-clocked fair queueing scheme for broadband ap-
plications”. In: Proceedings of the 13th IEEE Conference on Networking for
Global Communications (INFOCOM ’94).

Grant, M. and S. P. Boyd (2010). CVX: matlab software for disciplined convex pro-
gramming, version 1.21. http://cvxr.com/cvx.

Halperin, D., B. Greensteiny, A. Shethy, and D. Wetherally (2012). “Demystifying
802.11n power consumption”. In: Proceedings of the 2010 Workshop on Power
Aware Computing and Systems.

Harbour, M. G. (2008). FRESCOR: framework for real-time embedded systems
based on contracts. URL: http://www.frescor.org.

He, T., J. A. Stankovic, M. Marley, C. Lu, Y. Lu, and T. Abdelzaher (2007). “Feed-
back control-based dynamic resource management in distributed real-time sys-
tems”. Journal of Systems and Software 80:7, pp. 997–1004.

Henningsson, T. and A. Cervin (2009). “Comparison of LTI and event-based control
for a moving cart with quantized position measurements”. In: Proceedings of the
European Control Conference.

Herrtwich, R. G. (1991). “The role of performance, scheduling and resource reser-
vation in multimedia systems”. In: Proceedings of the International Workshop
on Operating Systems of the 90s and Beyond. Springer-Verlag, London, UK,
pp. 279–284. ISBN: 3-540-54987-0.

Hoffmann, H., J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agarwal (2010).
“Application heartbeats: a generic interface for specifying program performance
and goals in autonomous computing environments”. In: Proceedings of the 7th
international conference on Autonomic computing. ACM, pp. 79–88.

Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2A: Instruc-
tion Set Reference, A-M (2010). Intel Corporation. Santa Clara, CA, USA.

Isovic, D. and G. Fohler (2004). “Quality aware MPEG-2 stream adaptation in re-
source constrained systems”. In: Proceedings of the 16th Euromicro Conference
on Real-Time Systems (ECRTS 2004). Catania, Italy, pp. 23–32.

158

http://www.gnu.org/software/glpk
http://www.gnu.org/software/glpk
http://cvxr.com/cvx
http://www.frescor.org

Bibliography

Jain, R., D.-M. Chiu, and W. R. Hawe (1984). A quantitative measure of fairness
and discrimination for resource allocation in shared computer system. Eastern
Research Laboratory, Digital Equipment Corporation.

Jerez, J. L., K.-V. Ling, G. A. Constantinides, and E. C. Kerrigan (2012). “Model
predictive control for deeply pipelined field-programmable gate array imple-
mentation: algorithms and circuitry”. Control Theory & Applications, IET 6:8,
pp. 1029–1041.

Jin, X. and Y.-K. Kwok (2010). “Cloud assisted p2p media streaming for band-
width constrained mobile subscribers”. In: Parallel and Distributed Systems
(ICPADS), 2010 IEEE 16th International Conference on, pp. 800–805.

Jung, E., Y. Wang, I. Prilepov, F. Maker, X. Liu, and V. Akella (2010). “User-profile-
driven collaborative bandwidth sharing on mobile phones”. In: Proceedings of
the 1st ACM Workshop on Mobile Cloud Computing & Services: Social
Networks and Beyond. MCS ’10. ACM, New York, NY, USA, 2:1–2:9. ISBN:
978-1-4503-0155-8.

Kaneko, H., J. A. Stankovic, S. Sen, and K. Ramamritham (1996). “Integrated
scheduling of multimedia and hard real-time tasks”. In: Proceedings of the 17th
IEEE Real-Time Systems Symposium (RTSS ’96). Washington, DC, USA.

Karp, R. (1972). “Reducibility among combinatorial problems”. English. In: Miller,
R. et al. (Eds.). Complexity of Computer Computations. The IBM Research
Symposia Series. Springer US, pp. 85–103. ISBN: 978-1-4684-2003-6.

Katabi, D., M. Handley, and C. Rohrs (2002). “Congestion control for high
bandwidth-delay product networks”. In: Proceedings of the 2002 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Com-
munications. SIGCOMM ’02. ACM, New York, NY, USA, pp. 89–102. ISBN:
1-58113-570-X.

Kellerer, H., U. Pferschy, and D. Pisinger (2004). Knapsack problems. Springer-
Verlag Berlin, Heidelberg, Germany, p. 546.

Kreitz, G. and F. Niemela (2010). “Spotify – large scale, low latency, p2p music-on-
demand streaming”. In: Proceedings of the 10th IEEE International Conference
on Peer-to-Peer Computing (P2P), pp. 1–10.

Laszewski, G. von, L. Wang, A. Younge, and X. He (2009). “Power-aware schedul-
ing of virtual machines in dvfs-enabled clusters”. In: Cluster Computing and
Workshops, 2009. CLUSTER ’09. IEEE International Conference on, pp. 1–10.

Lee, E. A. (2006). “The problem with threads”. IEEE Computer 39:5, pp. 33 –42.
Lindberg, M. (2007). A Survey of Reservation-Based Scheduling. Tech. rep. ISRN

LUTFD2/TFRT--7618--SE. Department of Automatic Control, Lund Univer-
sity, Sweden.

159

Bibliography

Lindberg, M. (2009). “Constrained online resource control using convex program-
ming based allocation”. In: Proceedings of the 4th International Workshop on
Feedback Control Implementation and Design in Computing Systems and Net-
works (FeBID 2009).

Lindberg, M. (2010a). “A convex optimization-based approach to control of un-
certain execution platforms”. In: Proceedings of the 49th IEEE Conference on
Decision and Control. Atlanta, Georgia, USA.

Lindberg, M. (2010b). “Convex programming-based resource management for un-
certain execution platforms”. In: Proceedings of First International Workshop
on Adaptive Resource Management. Stockholm, Sweden.

Lindberg, M. (2013). “Feedback-based cooperative content distribution for mobile
networks”. In: The 16th ACM International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems. Barcelona, Spain.

Lindberg, M. (2014a). “A prototype implementation of an energy-conservative co-
operative content distribution system”. In: The 17th ACM International Confer-
ence on Modeling, Analysis and Simulation of Wireless and Mobile Systems. In
submission.

Lindberg, M. (2014b). “Analysis of a feedback-based energy conserving content
distribution mechanism for mobile networks”. In: Proceedings of IFAC World
Congress 2014.

Lindberg, M. and K.-E. Årzén (2010a). “Feedback control of cyber-physical sys-
tems with multi resource dependencies and model uncertainties”. In: Proc. 31st
IEEE Real-Time Systems Symposium. San Diego, CA.

Lindberg, M. and K. Årzén (2010b). “Feedback control of cyber-physical systems
with multi resource dependencies and model uncertainties”. In: Proceedings of
the 31st IEEE Real-Time Systems Symposium (RTSS 2010). San Diego, CA,
USA.

Lipari, G. and S. K. Baruah (2001). “A hierarchical extension to the constant band-
width server framework”. In: Proceedings of the Seventh Real-Time Technology
and Applications Symposium (RTAS ’01). Taipei, Taiwan.

Maciejowski, J. M. (2002). Predictive control: with constraints. Pearson Education
Limited, Edinburgh Gate, Harlow, p. 331.

Maggio, M., E. Bini, G. Chasparis, and K.-E. Årzén (2013). “A game-theoretic
resource manager for rt applications”. eng. In: Paris.

Makhorin, A. (2000). Gnu linear programming kit. http : / / www . gnu . org /
software/glpk.

Marzario, C. P., T. Cucinotta, L. Palopoli, L. Marzario, and G. Lipari (2004). “Adap-
tive reservations in a Linux environment”. In: Proceedings of the IEEE Real-
Time and Embedded Technology and Applications Symposium, pp. 238 –245.

160

http://www.gnu.org/software/glpk
http://www.gnu.org/software/glpk

Bibliography

Matplotlib (2014). Matplotlib. URL: http : / / matplotlib . org (visited on
05/30/2013).

Mattingley, J. and S. Boyd (2012). “Cvxgen: a code generator for embedded con-
vex optimization”. English. Optimization and Engineering 13:1, pp. 1–27. ISSN:
1389-4420.

McNamara, L., C. Mascolo, and L. Capra (2008). “Media sharing based on colo-
cation prediction in urban transport”. In: Proceedings of the 14th ACM Interna-
tional Conference on Mobile Computing and Networking. MobiCom ’08. ACM,
New York, NY, USA, pp. 58–69. ISBN: 978-1-60558-096-8.

Mercer, C. W., S. Savage, and H. Tokuda (1994). “Processor capacity reserves: op-
erating system support for multimedia applications”. In: Proceedings of the In-
ternational Conference on Multimedia Computing and Systems, pp. 90 –99.

MobileRobots (2006). Pioneer 3 Operations Manual. MobileRobots Inc. Amherst,
NH, US.

Model VSBC-8 Reference manual (2007). Versalogic Corporation. Eugene, OR, US.
Mok, A. K., X. Feng, and D. Chen (2001a). “Resource partition for real-time sys-

tems”. In: Proceedings of the 7th IEEE Real-Time Technology and Applications
Symposium. Taipei, Taiwan, pp. 75–84.

Mok, A, X Feng, and D Chen (2001b). “Resource partition for real-time systems”.
In: Proceedings of the 7th IEEE Real-Time Technology and Applications Sym-
posium (RTAS 2001). Taipei, Taiwan, pp. 75 –84.

Nagle, J. B. (1987). “On packet switches with infinite storage”. IEEE/ACM Trans-
actions on Networking (ToN) 35:4, pp. 435 –438.

National Semiconductor Corporation (1999). LM83 Triple-Diod Input and Logical
Digital Temperature Sensor with Two-Wire Interface, DS101058.

NetworkX (2013). NetworkX. URL: http://networkx.github.io.
OCERA (2010). URL: http://www.ocera.org.
OpenSSH (2014). Openssh. URL: http://www.openssh.com.
Parekh, A. K. and R. G. Gallager (2007). “A generalized processor sharing approach

to flow control in integrated services networks: the single node case”. In: The
Best of the Best : Fifty Years of Communications and Networking Research.
1st ed. IEEE, pp. 533 –546.

Python (2014). Python programming language. URL: http://python.org.
Rajkumar, R., C. Lee, and D. Siewiorek (1997). “A resource allocation model for

QoS management”. In: Proceedings of the 18th IEEE Real-Time Systems Sym-
posium (RTSS ’97). San Francisco, CA, USA, pp. 298 –307.

Robert, Y. (2011). “Task graph scheduling”. Encyclopedia of Parallel Computing,
pp. 2013–2025.

161

http://matplotlib.org
http://networkx.github.io
http://www.ocera.org
http://www.openssh.com
http://python.org

Bibliography

Romero Segovia, V., K.-E. Årzén, S. Schorr, R. Guerra, G. Fohler, J. Eker, and
H. Gustafsson (2010). “Adaptive resource management framework for mobile
terminals-the actors approach”. In: Proceedings of the First International Work-
shop on Adaptive Resource Management (WARM), Stockholm, Sweden.

Romero Segovia, V., M. Kralmark, M. Lindberg, and K.-E. Årzén (2011). “Proces-
sor thermal control using adaptive bandwidth resource management”. In: Pro-
ceedings of IFAC World Congress, Milan, Italy. Milano, Italy.

Rostedt, S. and D. V. Hart (2007). “Internals of the rt patch”. In: Proceedings of the
Linux symposium. Vol. 2007. Citeseer.

Saewong, S. and R. Rajkumar (1999). “Cooperative scheduling of multiple re-
sources”. In: Proceedings of the 20th IEEE Real-Time Systems Symposium
(RTSS ’99). Phoenix, AZ, USA, p. 90.

Sandee, J., W. Heemels, and P. van den Bosch (2007). “Case studies in event-driven
control”. In: Hybrid Systems: Computation and Control. Vol. 4416. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, pp. 762–765.

Segovia, V. R. and K.-E. Årzén (2010). “Towards adaptive resource management
of dataflow applications on multi-core platforms”. In: Proceedings Work-in-
Progress Session of the 22nd Euromicro Conference on Real-Time Systems,
ECRTS 2010. Brussels, Belgium, pp. 13–16.

Sharma, V., A. Thomas, T. Abdelzaher, K. Skadron, and Z. Lu (2003). “Power-
aware qos management in web servers”. In: Real-Time Systems Symposium,
2003. RTSS 2003. 24th IEEE, pp. 63–72.

Skadron, K., T. Abdelzaher, and M. Stan (2002). “Control-theoretic techniques and
thermal-rc modeling for accurate and localized dynamic thermal management”.
In: High-Performance Computer Architecture, 2002. Proceedings. Eighth Inter-
national Symposium on, pp. 17–28.

Skadron, K., M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tar-
jan (2003). “Temperature-aware microarchitecture”. In: ACM SIGARCH Com-
puter Architecture News. Vol. 31. 2. ACM, pp. 2–13.

Spuri, M. and G. Buttazzo (1996). “Scheduling aperiodic tasks in dynamic priority
systems”. Real-Time Systems 10:2, pp. 179–210.

Steinmetz, R. (1996). “Human perception of jitter and media synchronization”. Se-
lected Areas in Communications 14:1, pp. 61 –72.

Stiliadis, D. and A. Varma (1998). “Latency-rate servers: a general model for anal-
ysis of traffic scheduling algorithms”. IEEE/ACM Transactions on Networking
(ToN) 6:5, pp. 611–624.

Tabuada, P. (2007). “Event-triggered real-time scheduling of stabilizing control
tasks”. Automatic Control, IEEE Transactions on 52:9, pp. 1680–1685. ISSN:
0018-9286.

162

Bibliography

Taymans, W., S. Baker, A. Wingo, R. S. Bultje, and S. Kost (2010). Gstreamer
application development manual. URL: http://gstreamer.freedesktop.
org/data/doc/gstreamer/0.10.30/manual/manual.ps.

Treiber, M., A. Hennecke, and D. Helbing (2000). “Congested traffic states in
empirical observations and microscopic simulations”. Phys. Rev. E 62 (2),
pp. 1805–1824.

Wang, H., Z. Tian, and Q. Zhang (2010). “Self-tuning price-based congestion con-
trol supporting tcp networks”. In: Computer Communications and Networks
(ICCCN), 2010 Proceedings of 19th International Conference on, pp. 1–6.

Wolfson, O., B. Xu, and R. M. Tanner (2007). “Mobile peer-to-peer data dissemina-
tion with resource constraints”. In: Proceedings of the International Conference
on Mobile Data Management (2007).

Xenomai (2010). URL: http://www.xenomai.org.
Xingang, P, P Goyal, X Guo, and H Vin (1996). “A hierarchical CPU scheduler for

multimedia operating systems”. In: Proceedings of the USENIX 2nd Symposium
on OS Design and Implementation (OSDI ’96), pp. 107–122.

Yaacoub, E., L. Al-Kanj, Z. Dawy, S. Sharafeddine, F. Filali, and A. Abu-Dayya
(2012). “A utility minimization approach for energy-aware cooperative content
distribution with fairness constraints”. Transactions on Emerging Telecommu-
nications Technologies 23:4, pp. 378–392. ISSN: 2161-3915.

Zeilinger, M. N., C. N. Jones, D. M. Raimondo, and M. Morari (2009). “Real-time
MPC–stability through robust MPC design”. In: Proceedings of the Joint 48th
IEEE Conference on Decision and Control and 28th Chinese Control Confer-
enc.

Zhang, L. (1990). “Virtual clock: a new traffic control algorithm for packet switch-
ing networks”. In: ACM SIGCOMM Computer Communication Review. Vol. 20.
4. ACM, pp. 19–29.

163

http://gstreamer.freedesktop.org/data/doc/gstreamer/0.10.30/manual/manual.ps
http://gstreamer.freedesktop.org/data/doc/gstreamer/0.10.30/manual/manual.ps
http://www.xenomai.org

A
Listings

A.1 MIPC

#define MIPC_FAILED -1
#define MIPC_SUCCESS 1

#define MIPC_MODE_LOCAL 1
#define MIPC_MODE_INET 2

#define MIPC_MAX_MSG_SIZE 1024
#define MIPC_PORT_BASE 40000

#define MIPC_PATH "/tmp/mipc/"

struct mipc_msg {
int size;
void *data;

};

typedef struct mipc_msg mipc_message;
typedef int mipc_connection;

int mipc_create_socket(char *path);
int mipc_exists(char *path);
void* mipc_loop(void *arg);
int mipc_connect_server(int addr,

int (*recieve)(mipc_message *msg),
int mode);

mipc_connection mipc_connect_client(int addr);
mipc_connection mipc_connect_inet_client(char *hostname,

int port);
int mipc_send(mipc_connection conn, mipc_message *msg);

164

A.1 MIPC

mipc_message* mipc_new_message(void);
void mipc_free_message(mipc_message *msg);

165

	Introduction
	Background and motivation
	Contributions
	Outline of the thesis

	Problem formulation
	Example 1 — Smartphones
	Example 2 — Mobile robotics
	Example 3 – Mobile cloud computing
	Problem features
	Problem structures
	Overall goals

	Reservation based scheduling
	Important concepts
	Reservation Based Scheduling
	Feedback allocation control
	Allocation
	Reservation frameworks
	The Xen hypervisor
	Xenomai
	Linux Control Groups
	Estimating software model parameters

	Power and energy management
	Energy and resources
	Spatial resource management, "E-logistics"

	Modeling and Estimation
	Smartphone model
	Allocation and utility
	Components with rate-based utility
	Multi-resource dependencies
	CPU thermal dynamics
	Parameter estimation
	Extension into mixed domain models

	Competitive resource management
	Allocation under resource constraints
	Incremental optimization
	Experimental results
	Implementation
	Resource management architecture
	Measuring time and resource consumption
	Example runs
	Conclusions

	Collaborative resource management
	Allocation vs feedback
	State related performance metrics
	Hardware resources
	Case study — Encoding Pipeline
	Simulation results
	Thermal control through resource management
	Control design
	Implementation
	Experimental results
	Conclusions

	Cooperative resource management
	Increasing focus on the local
	Incentivizing cooperation
	System model
	The dynamics of fair exchanges
	Baseline algorithm
	Heuristic solver
	Set sizes and problem decomposition
	Random initial state
	Continuous operation
	Asynchronous formulation
	Software design
	Experimental results
	Conclusions

	Conclusions and future work
	Conclusions
	Future work

	Bibliography
	Listings
	MIPC

