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Industrial Robot Skills

Maj STENMARK 1

Department of Computer Science, Lund University, Lund, Sweden

Abstract. When robots are working in dynamic environments, close to humans
lacking extensive knowledge of robotics, there is a strong need to simplify the user
interaction and make the system execute as autonomously as possible. For indus-
trial robots working side-by-side with humans in manufacturing industry, AI sys-
tems are necessary to lower the demand on programming time and expertise. One
central concept in knowledge modeling for robots is action representation. In this
paper, we describe our representation of robot skills. The skills have resource re-
quirements, logical and procedural information from which executable code can be
generated.
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1. Introduction

In manufacturing industry, robots can still not compete with human labour in low-cost
countries. The dynamic environments, the fast changing product lines and the interaction
with human coworkers pose problems when trying to replace humans with robots in the
factories. One way to overcome these challenges is to add more AI into the systems to
make the robots understand the humans better and act more autonomously when carrying
out the tasks. Our approach is to add knowledge to the robot system. One central con-
cept in the knowledge modeling is action representation. We refer to actions and robot
capabilities as skills. A skill is a semantically described state machine consisting of robot
motions and end-effector and sensor actions, e.g., gripper movements or locating an ob-
ject. The skills can be hierarchically composed into more complex state machines and
sequenced into a task.

The purpose of the skills is to abstract away from the details of the robot control,
allowing non-skilled users to instruct the robots using preprogrammed skills from online
libraries, or by extracting the skill representations from user demonstrations. Thus the
skills have to be platform independent and generate code that executes robustly. We
work primarily with assembly tasks for industrial robots. A typical task is a two-armed
assembly of an emergency-stop box or a cell phone. The skills involved require force and
torque control for screwing and fitting pieces together.

The objective of my thesis is to create a platform independent skill representation
that can be used to create robust programs in dynamic environments. We have identified
five requirements on the skill representation: 1) the representations must be possible to
extract automatically from other specifications, such as domain specific languages or
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demonstrations, 2) it must be easy to program the robot using the skills, 3) it should be
possible to reason and plan using the skills, 4) it must be possible to generate executable
code from the specifications for several different platforms and 5) the execution should
be robust, thus it should be possible to generate non-nominal behavior such as error
handling procedures.

In this paper, we discuss a skill representation fulfilling requirement 1 - 4 and how
to extend the representation to also facilitate error handling procedures.

2. System Overview

The system [1] consists of three main components. The central component in the system
is a knowledge base, which is an online server containing data repositories and ontolo-
gies. It also provides computing and reasoning services for programming support, task
validation and scheduling [2]. The Engineering System is a graphical programming IDE
and simulation environment that uses the ontologies provided by the knowledge base to
model the workspace objects and downloads skills and tasks from the online libraries.
The objects are visualized using CAD models, and the user can attach local coordinate
frames to the objects. Constraints between these coordinate frames are used to express
the low level control which is evaluated in the Execution Environment. The execution
environment generates code for the native robot controller and the sensor-based control.

3. Robot Skills

The skill representation incorporates logical and procedural knowledge. The current skill
description contains the following:

Resource requirements The skill lists the required robot type, sensors and end-effectors
as well as objects in the scene e.g., two-armed robot, force sensor, fixture, suction
gripper and two finger gripper.

Pre- and postconditions The pre- and postconditions are used in action planning and
validity checks. Preconditions can express required positions of the objects, such
as Object2 attached to gripper and Object2 located above Oject1, where Object1
and Object2 are instances of work piece types in the ontology. Postconditions ex-
press the purpose of the skill: Frame2 is aligned to Frame1 and Object1 is assem-
bled to Object2 where Frame1 and Frame2 are instances of frames belonging to
Object1 and Object2 respectively.

Input and output parameters The parameters to the skill are described as objects and
frames for relative positions or physical properties such as velocity.

Procedural information There are several types of motions and actions in a skill: sim-
ple blind motions, gripper or sensor actions and sensor-controlled motions. The
blind motions have velocity and positions (relations to frames on objects) as in-
put parameters. The gripper and sensor actions are expressed using the ontology
description of the resource, e.g., a gripper can open and close, a camera can out-
put a position of an object etcetera. The sensor-controlled motions are expressed
using a set of constraints. Given a frame, they have one search axis, translational



or rotational, a stop condition and additional parameters such as speed and what
impedance controller to use. The stop condition is typically a force or torque
threshold and/or a timeout. The other axes can have constraints as well, those must
be fulfilled during the execution. E.g., Move along the x-axis in 50 mm/s until a
force of 5 N is measured along the axis. At the same time, press down along the
y-axis with 2 N.

Optional information The skills can have optional labels such as human readable de-
scriptions, English names for natural language programming, cycle times for
scheduling purposes, log data etcetera.

Logical disjunction and conjunction can be used to express the resource require-
ments, the pre- and postconditions and the procedural constraints.

These skill representations are enough to program the robot using high-level natu-
ral language programming, make action planning and scheduling services and generate
executable code.

4. Ongoing Work

To verify that the skill representation can fulfill the first requirement, we want to extract
the conditions from natural language. We already have a general purpose natural lan-
guage interface [4,5], however, we only use it for sequence creation using skills from
the library and not to create new skills from scratch. To limit the modeling effort when
creating skills, it is valuable to be able to parse English specifications directly.

The final step is to generate error handling policies for the task. The error handling
policies can be both on skill and task level. Good error handling policies require knowl-
edge and reasoning such as geometrical reasoning and the saving and classifying of nom-
inal sensor data and cycle times. On a logical level, the challenge is to automatically iden-
tify error states and create a plan to go from these states to the goal. In some cases these
error handling policies can be generated offline. In other situations, the error handling
must be handled online. One approach we are investigating is to let the robot simulate
different action sequences online to autonomously find solutions.

5. Related work

Task representation in robotics have a long history [6], starting out using logical ap-
proaches but now going towards architectures with a high-level reasoning layer, a low-
level control layer and a synchronization layer in the middle. The problem of interfacing
between high-level declarative task specifications and primitive motions is still an open
question, addressed by several different languages and grammars [7,8,9].

Depending on the application domain and abstraction level, the task description
varies greatly. A popular top-bottom approach is the composition of semantically de-
scribed skills into tasks [10,11]. On the execution level, the program can be expressed
as sequential function charts (SFCs) [12], iTaSC constraint specifications [3] or vendor
specific code. For error handling, there are approaches for extending the executable state
machine with error cases [13] or use online reasoning systems [14].
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