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(Dated: November 18, 2008)

The physics of extreme ultraviolet attosecond pulse trains generated during the interaction be-
tween an intense laser pulse and a gas medium is presented, including a simple modeling based
on the solution of classical equations of motion for an electron in an oscillating laser field. The
reconstruction of attosecond beating by interference of two-photon transition (RABITT) technique
is described and used to determine the pulse duration of the emitted attosecond pulses. This work
forms the basis of a laboratory practical of an Advanced Atomic Physics course taught at Lund
University for MSc students in Physics and Engineering Physics.

PACS numbers:

INTRODUCTION

Atoms in molecules move on the femtosecond (10−15 s)
timescale, whereas the much lighter electrons, responsi-
ble for interatomic forces, change distribution on the at-
tosecond (10−18 s) timescale. Using attosecond pulses as
probes enables one to capture the temporal evolution of
electronic processes such as relaxation in case of an inner-
shell vacancy [1]. A fundamental limit of the achievable
pulse duration for a light source is given by the period
of the carrier component of the radiation. Lasers operat-
ing in the visible and infrared spectral region are limited
to pulse durations of a few femtosecond. To reach the
attosecond regime, the coherent radiation has to be ex-
tended to shorter wavelengths.

Almost twenty years ago, high-order harmonic genera-
tion (HHG) in gases [2] , which provides a large spectral
bandwidth in the extreme ultraviolet (XUV) range, was
proposed as a possible candidate for the production of
attosecond pulse trains (APTs) [3, 4]. It took seventeen
years for scientists to be able to demonstrate these APTs
experimentally, and almost at the same time to produce
isolated attosecond pulses [5, 6]. Over the last couple
of years, the metrology and applications of attosecond
pulses have progressed rapidly [5–8], and attophysics has
become a “hot” field of research [9, 10].

Alternative methods to produce attosecond pulses in-
clude harmonics from plasma surfaces [11] and stimulated
Raman scattering [12]. Here we restrict the discussion to
the method of gas harmonic generation.

In this article we describe the process of HHG, using
a simple model, and the characterization of attosecond
pulse trains. This forms the basis of a laboratory practi-
cal that has been taught over the last four years at Lund
University (LU) for MSc students reading a course in
Advanced Atomic Physics. We believe that it is an ad-
vantage for students to be in contact with a hot topic -
producing numerous articles in high impact journals each

year. The laboratory practical performed at LU is based
on the experimental setup used for our research. We
hope that even those - who do not have access to ampli-
fied femtosecond laser pulses will find this article useful
- and appreciate the interesting physics. Our laboratory
practical includes

• modelling the HHG process, using classical calcu-
lations

• generating high-order harmonics by focusing the
femtosecond laser pulse to a gas target,

• recording a so-called RABITT-scan using an opti-
cal cross correlation setup and

• analyzing the scan, thus obtaining information on
the attosecond pulse’s temporal structure.

To prepare the laboratory practical, the students have
to solve a few exercises, some of them requiring (sim-
ple) numerical calculations. The intention of these exer-
cises is to provide a good understanding of the underlying
physics of HHG. It should be possible to solve them using
the information provided in this paper.

HIGH-ORDER HARMONICS

Non-linear process

During normal light propagation, the light’s electric
field introduces a polarization in the material, redis-
tributing the charges within the medium. In this way
the charges in the material are made to oscillate with the
same frequency as the electric field, re-emitting radiation
at the same wavelength as the incoming field. In this lin-
ear model it is assumed that the charges in the material
are free to follow the electric field, describing a perfect
sinusoidal oscillation. However, in a real system, there
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exists higher-order frequency terms in the induced polar-
ization. This means that when a light field propagates
through a material, the introduced polarization of the
medium also gives rise to radiation with frequencies that
are multiples of the incident frequency. Normally, the
efficiency of such process is small and rapidly decreases
with the order of the process. [13]

To achieve high laser intensities, where nonlinear ef-
fects play a noticeable role, ultrashort (femtosecond)
laser pulses are used. In this case, energy can be con-
centrated to a very short time interval, resulting in op-
tical pulses with modest energies but high peak powers.
As an example, a 50 fs laser pulse with an energy of
1 mJ exhibits a peak power of 20 GW. If this pulse is
focused to a (100 µm)2 spot, the peak intensity will be
0.2 PW/cm2, corresponding to an electric field strength
of around 0.4 GV/cm. For comparison, an intra-atomic
field strength is typically of the order of 1 GV/cm. The
electric fields associated with ultrashort pulses are thus
comparable to the fields binding the electron to the atom,
indicating that extreme non-linear processes are likely to
occur.

FIG. 1: A simulated harmonic spectrum generated in argon
using a laser pulse of peak intensity 1.4 · 1014 W/cm2.

When a laser pulse is focused to a high intensity in a
gas, high-order harmonics of the driving field are gener-
ated, propagating collinearly with the laser field. Only
odd multiples of the driving frequency can be seen and
for a typical harmonic spectrum (see Fig. 1) the inten-
sity drops rapidly accross the first few harmonics. This
is what one would expect from a perturbative approach
where the efficiency of the process rapidly decreases with
order. What cannot be explained with this approach is
the far-reaching plateau, in which the harmonics have
almost constant intensity, ending in an abrupt cut-off.
High-order harmonics were first seen in 1988 [2] and the
harmonic plateau may extend up to very high orders
(above the 200th)[14].

Experimental setup & technique

A picture of the experimental setup can be seen in
Fig. 2. The laser used in this laboratory exercise is a
Ti:Sapphire-based laser system using Chirped Pulse Am-
plification (CPA), delivering pulses with 2 mJ energy and
40 fs duration at 800 nm central wavelength. After reflec-
tion losses, and the beam splitter, we use about 1 mJ to
generate harmonics, which corresponds to a peak power
of 25 GW. The 8 mm Gaussian laser beam is focused
using a 1 m spherical focusing mirror to provide a gener-
ating intensity of 2×1014W/cm2. We can also determine
the electric field amplitude (E) from

I =
1
2
ε0c |E|2 (1)

where ε0 is the permittivity of free space and c the speed
of light in vacuum. The amplitude of the electric field in
this case is E0 =0.4 GV/cm, which is indeed comparable
to the atomic field strength.

MBES

delay

harmonic
generation

beam
splitter

Al filter

FIG. 2: Experimental setup: the laser beam is divided to a
pump and a probe lines. The pump generates the high-order
harmonics, that are filtered by an aluminum filter, and then
recombined with the delayed probe using a holed diverging
mirror. The two beams are refocused to the sensitive region
of the MBES.

The three-step model

To explain the process of high-order harmonic gener-
ation one has to consider the fact that the strength of
the electric field of the laser is comparable to that of the
atomic potential - implying that consequently the elec-
tron cannot be assumed to be in a bound state during
its interaction with the laser field. A commonly-used de-
scription of HHG is the three-step semi-classical model
introduced in 1993 [15, 16]. This model assumes an
atomic potential - strongly distorted by the electric field
of the laser - as illustrated in Fig. 3. There is a finite
chance for the electron to tunnel through the potential
barrier, and to propagate in the laser field free from the
ionic potential. The laser field accelerates the electron
away - and a quarter of a period later - when the electric
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field changes sign, the electron is driven back towards the
ionic core, where it might recombine.

FIG. 3: The three-step model of harmonic generation. When
the external electric field is near its maximum, the total po-
tential of the atom (dotted line) and the laser field (dashed
line) forms a barrier (solid line) through which the electron
may ionize by tunneling (1). When in the continuum, the
electron is accelerated by the oscillating electric field, gaining
kinetic energy (2). Finally, when the field changes sign, the
electron may be accelerated back to the vicinity of the ion
core where it recombines, and a photon is emitted (3).

If the electron recombines, its kinetic energy gained
from the acceleration in the field, depends on the time of
tunneling and the time of recombination, and determines
the energy of the emitted high energy photon. The max-
imum kinetic energy the electron can gain from the laser
field is approximatelly 3.2UP , where UP is the pondero-
motive energy, that depends on the field intensity and
frequency. This result can be verified by the classical
model, as described in the next section. The pondero-
motive energy corresponds to the average kinetic energy
of a free electron in an electric field, and is given by

UP =
e2E2

0

4mω2
(2)

where e is the electron charge, E0 is the amplitude of the
electric field, ω is the laser angular frequency and m is
the electron mass. The total maximum photon energy,
or cut-off energy, is then IP + 3.2UP , where IP is the
ionization potential of the atom. In our experimental
conditions, we obtain a ponderomotive energy UP =11.9
eV. The harmonics are generated in a gas cell (HHG),
filled with Argon to a static pressure of around 15 mbar.
Ar has an ionization potential of 15.8 eV, which leads to
a harmonic cutoff order equal to 33. This is verified in
the experiment.

All possible photon energies up to the maximum en-
ergy are obtained with approximately equal probability,
leading to the long plateau of peaks of almost equal am-
plitude. The reason we get discrete peaks at the har-
monic frequencies and not a continuous spectrum is be-
cause the process is periodic in time: the electron may
tunnel out each time when the electric field is close to
maximum. Since the gas is isotropic there is no differ-
ence in the case the electron tunnels out when the electric

field is −E0 or +E0. The period of the process is there-
fore T/2 where T is the laser period. This leads to the
periodicity of 2ω in the frequency domain - and we only
observe odd harmonics [17].

Classical model

When the electron recombines with its parent ion, a
short burst of light is emitted. The properties of the
emitted pulse are directly linked to those of the recom-
bining electron, making the temporal profile of the emit-
ted light crucially dependent on the electron dynamics in
the continuum.

Performing classical calculations provide an intuitive
picture of the process. We consider what happens to a
single electron accelerated along a certain trajectory by
the electric field of the laser, and illustrate it in Fig. 4,
as explained in Exercise I. This simple picture allows us

• to determine the position of the cut-off correspond-
ing to the electron returning with the maximum
energy,

• to identify several trajectories contributing to HHG
(called the short and the long, as illustrated in the
figure) and

• to predict the temporal characteristics of the emit-
ted light, and in particular its chirp, i.e. its fre-
quency modulation in time.

Exercises I

Electron motion in a laser field

The atom is exposed to a laser field E(t) = E0 sin (ωt)
where E0 is the field amplitude and ω the laser frequency.
An electron tunnels through the Coulomb barrier and is
released into the continuum with zero velocity at time t =
ti. We neglect the influence of the atomic potential and
assume that the only force experienced by the electron is
that from the electric field : F (t) = −eE(t), where e is
the elementary charge. The position of the electron as a
function of time t ≥ ti is given by

x(t) =
eE0

mω2
[sin (ωt)− sin (ωti)− ω (t− ti) cos (ωti)] (3)

Return of the electron

With the help of the above equation it is possible to
find the tunneling times (ti) for which the electron may
return to the ion core. The easiest way to do this is to
numerically look for zero-crossings of the function for a
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FIG. 4: Illustration of the physics of high-order harmonic gen-
eration. The top figure shows classical electron trajectories
for different initial phases relative to the IR laser field (black
lines). The electron returns to the atom when it crosses again
the horizontal dotted line. The color illustrates the varia-
tion of the kinetic energy for the different trajectories (blue
means the highest energy). The bottom figure shows the en-
ergy gained by the electron in the continuum, as a function of
the time when the electron returns to the core. This simple
calculation shows the existence of short and long trajectories
separated by the cut-off (maximum energy), as well as the
frequency variation in time of the attosecond burst.

range of tunneling times. Note that it is only necessary
to examine tunneling times in the range 0 ≤ ωti < π
since the process is periodic with the frequency 2ω. We
also observe that certain trajectories have multiple re-
turn times. In reality, the probability for harmonic emis-
sion from electrons that have spent more than one period
in the laser field rapidly decreases due to the quantum
spreading of the wave packet.

Return times and energies

For tunneling times such that the electron may recom-
bine with the ion core, i.e. tunneling times found in the
previous section, one can calculate the corresponding re-
turn times and return energies. The return times are
simply the times t = tr for which Eq.3 has a zero-crossing
and the return energies are the kinetic energies at times
tr:

Ekin = 2UP (cos(ωtr)− cos(ωti))2 (4)

A plot of the return energy as a function of return time
should look like to the lower part of Fig. 4. (Knowing
the value of E0 allows one to rescale the vertical axis to
show harmonic order.) It is possible to verify from the
plot that the cut-off energy for harmonic generation is
IP + 3.2UP .

In the plot we also see that the return energy curve
has two branches: each harmonic energy can appear as

a result of two different trajectories. There is always a
short trajectory, for which the return time is less than
the return time corresponding to the cutoff - and there is
a long trajectory, for later return times. The short and
long trajectories are named after the excursion time of
the electron in the continuum (tr − ti < 0.65, /T for the
short trajectories and tr − ti > 0.65, /T for the long).
From the figure, we observe that the return times for
both trajectory classes changes with return energy, im-
plying a streaking in time of the frequency components
of the harmonic emission. For the short trajectory class,
the frequency of the light burst increases with time, in
other words the pulse is positively chirped, and for the
long trajectory class the frequency decreases with time,
i.e. the light burst is negatively chirped. The two tra-
jectories differ in excursion time, i.e. they have different
continuum dynamics, leading to a significant difference
in the properties of the emitted light. For example, their
divergence is different. This allows us to attenuate the
contribution for one trajectory class by simply apertur-
ing the radiation, without affecting the other, more col-
limated trajectory class.

Hint: It is convenient to express time variables in ωt,
and energy in Up; this way one does not need to explicitly
state the intensity and frequency of the field.

From this simple, qualitative investigation we can con-
clude that for each half-cycle of the driving frequency, a
broad spectral continuum of light is emitted, correspond-
ing in the temporal domain to a short pulse. As discussed
above, in the spectrum we observe discrete peaks at odd
harmonic frequencies because the generation process is
periodic with a period of T/2. In the temporal domain
this means that instead of generating a single attosecond
pulse, we obtain a train of attosecond pulses.

This classical model can be simplified even further, to
allow discussions at a high-school level: in order to avoid
calculus, the laser electric field can be approximated by a
square function. The students should be explained that
in a linearly-polarized light field, atoms may become ion-
ized, and the freed electron (appearing at a time ti right
next to the ionic core with zero initial velocity), driven
by the electric field might return to the ionic core. They
can find the time interval for ti during which the return
of the electron may occur, and obtain the maximum of
the kinetic energy of the returning electron.

A recent experimental study of plateau harmonics,
generated in argon and neon, showed that the frequency
components of the XUV radiation are not exactly syn-
chronized, and that the XUV pulses consequently exhibit
a significant chirp (frequency variation in time) [7, 18].
This intrinsic chirp comes from the fundamental electron
dynamics responsible for HHG.

Under most experimental conditions, the short tra-
jectories are favored by phase-matching conditions [19],
making it dominate over the long trajectory. With only
the short trajectory present, the XUV bursts will have
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an almost linear chirp that can be compensated for [7].
The classical approach we have used here is not strictly

correct. In a quantum mechanical description [20], the
single electron does not follow a single trajectory and in-
stead we have to use a picture where the electron wave
packet is distributed over the different trajectories. In
order to complete the picture, we also have to include ef-
fects of the actual tunneling process. Qualitatively how-
ever, the classical results are in good agreement with both
more extensive calculations and with experiments.

The spectral range of the harmonic emission as well
as the conversion efficiency depends strongly on the gas
medium, as well as on the excitation wavelength. The
efficiency is highest in the heavy atoms Ar, Xe, Kr, but
the highest photon energies are obtained in He and Ne.
Similarly, using a longer fundamental wavelength leads
to an extended spectral range to the detriment of the
conversion efficiency in the plateau region. This can be
qualitatively understood with arguments derived from
the three-step model: atoms with high ionization po-
tential can be exposed to a high laser intensity before
being ionized. The maximum kinetic energy acquired by
the electron increases while the probability for recombi-
nation and emission of radiation at a particular energy
decreases.

MEASUREMENT TECHNIQUES

The fastest electronic detectors today have a resolu-
tion limit of about 1 ps, making them inappropriate to
trace processes on the time scale discussed here. The
most direct method to characterize the temporal struc-
ture of the pulses is to use a non-linear autocorrelation
technique exploiting two-XUV-photon ionization. It re-
quires, however, a high XUV intensity, achieved so far
only for low-order processes [8]. Cross-correlation tech-
niques where the XUV pulse is probed by the infrared
laser field scale linearly with the XUV intensity and can
therefore be used over a broader spectral range. The
characterization of attosecond pulses in a train is per-
formed using the method called RABITT (reconstruc-
tion of attosecond beating by interference of two-photon
transitions), based on mixed-color ionization involving
one XUV photon and one driver laser photon [6, 7, 21].
It is a simple and versatile spectrally-based method, ide-
ally suited for the characterization of trains of attosec-
ond pulses. Isolated attosecond pulses are characterized
by an alternative technique called the attosecond streak
camera, which exploits the dependence of the kinetic en-
ergy of the XUV-pulse-generated photoelectron on the
phase of the laser field at the instant of photoionization
[5, 22, 23].

The principle of the RABITT method can be presented
using a simple model based on monochromatic harmonic
fields. In this model the total temporal intensity is ob-

tained from the coherent sum of monochromatic spectral
components, each characterized by an amplitude Aq, a
frequency qω and a phase ϕq:

I(t) =

∣∣∣∣∣∣
∑

q odd

Aqe
i(qωt+ϕq)

∣∣∣∣∣∣

2

, (5)

where q is the harmonic order and ω the fundamental
frequency. A constant spectral phase, such that ϕq is
independent of q, does not affect the pulse shape and
thus a useful and commonly used quantity is the phase
difference between two consecutive harmonics, which is
defined as

∆ϕq+1 = ϕq+2 − ϕq. (6)

With this definition, ∆ϕq+1 represents the average
(group) delay between the qth and (q + 2)th harmon-
ics. ∆ϕq+1/2ω is the return time used in the classical
model for an electron returning with the kinetic energy
(q+1)~ω−Ip [18]. The shortest possible attosecond pulse
duration is obtained when ∆ϕq+1 is constant, indepen-
dent of q. In this case, all the frequency components of
the pulse “arrive” at the same instant in time. Such a
pulse is called transform limited. If ∆ϕq+1 varies with
q, the different frequency components of the pulse will
arrive at different times, leading to a pulse duration ex-
ceeding the transform limit. Furthermore, the instanta-
neous frequency of the electric field of the pulse will vary
in time during the attosecond pulse. This variation of
the frequency in time is called chirp. If ∆ϕq+1 increases
monotonically with q, the instantaneous frequency will
increase linearly with time: the pulse exhibits a positive
chirp. If instead the phase difference decreases monoton-
ically, the pulse exhibits a negative chirp.

The harmonic amplitudes Aq are easily accessible ex-
perimentally from measurements of the harmonic spec-
trum. The phase differences ∆ϕq+1 can be obtained us-
ing the RABITT technique, described below. When both
the amplitudes and phase differences are known, the tem-
poral profile of an average pulse in the pulse train can be
calculated using Eq.5.

RABITT

To measure the phase difference between two consecu-
tive harmonics (∆ϕ) a cross-correlation technique based
on two-photon transition is used (see Fig. 2). Before
the laser pulse is focused into the harmonic generator,
a small fraction of the beam is split off using a beam
splitter (see the section on the experimental setup). This
beam, called the probe beam, is propagated through a
variable delay stage and recombined with the harmonic



6

beam immediately after the aluminum filter using a mir-
ror with a drilled hole in the center. It is crucial to have a
good spatial and temporal overlap between the harmonic
and probe pulses to produce a cross-correlation signal of
IR and high-harmonics (sidebands). The aluminum fil-
ter cleans the harmonic beam from the fundamental (ω0)
component of the radiation. The recombination mirror
also serves as an aperture to filter out harmonics emerg-
ing from the long trajectory, showing a larger divergence
than harmonics from the short trajectory [24].

FIG. 5: Sketch of the detected photoelectron spectrum, cor-
responding to ionization by harmonics 9, 11 and 13, without
(a) and with (b) the probe pulse. Ip: ionization potential of
the target gas.

To record the photoelectron spectrum, the harmonic
beam is re-focused by a platinum toroidal mirror into the
sensitive region of a time-of-flight Magnetic Bottle Elec-
tron Spectrometer (MBES). The spectrometer is filled
to a static pressure of the order of 10−5 mbar with a
detection gas, normally Argon or Neon. Using an ar-
rangement of magnetic fields, the MBES collects ionized
photoelectrons emitted within a solid angle of 2π stera-
dian, directing their trajectories into a flight tube of ap-
proximate length 87 cm. At the end of the flight tube,
a micro channel plate (MCP) is used for detecting the
photoelectrons. Looking temporally at the signal from
the MCP, faster photoelectrons resulting from ionization
by the higher-order harmonics will arrive first, followed
by slower, low-energy photoelectrons resulting from ion-
ization by the low-order harmonics. The actual energy-
to-flight-time relationship is determined by the length of
the flight tube, as well as by the ionization potential of
the detection gas.

tTOF =
√

me

2(~qω)− Ip
LTOF (7)

Note that the ionization potential of the detection gas
sets a limit for the lowest, detectable harmonic order.

In the abscence of the probe beam, the photoelec-
tron spectrum shows peaks at the harmonic frequencies
shifted by the ionization potential of the target gas (see
Fig. 5a). When the probe pulse overlaps in time and

space with the harmonic pulses in the detection gas, two-
photon transitions may occur and sidebands appear in
the photoelectron spectrum at intermediate energies, due
to the absorption of a harmonic photon together with the
absorption or emission of an IR photon (see Fig. 5b).

Since the frequency of the IR is exactly half the fre-
quency spacing between consecutive harmonics, there
are actually two quantum paths to each sideband (see
Fig. 5b). The sideband with energy (q + 1) ω has contri-
butions from the absorption of harmonic q plus one IR
photon, and from the absorption of harmonic q+2 minus
one IR photon.

The RABITT technique uses the fact that the two
quantum paths to a given sideband interfere, making the
sideband intensity dependent not only on the intensity of
the harmonic and IR fields, but also on the relative phase
between them. When the delay between the harmonics
and the probe field is changed, the sideband intensity os-
cillates. Using a simple perturbative model, it is possible
to show that the intensity of sideband q +1 is modulated
according to:

I
(SB)
q+1 ∝ 1 + cos (2ω∆τ + ϕq+2 − ϕq) = (8)

= 1 + cos (2ω∆τ + ∆ϕq+1)

where ∆τ is the delay between harmonic and probe pulses
[25, 26]. We neglect here for simplicity the small influence
of the atomic potential on the measured phases [6, 25].
Fig. 6 shows an experimental RABITT-scan. The pho-
toelectron spectrum is plotted as a function of delay be-
tween harmonic and probe pulses, for harmonics 17 to 27
and sidebands 18 to 26. In the practical students carry
out an analysis of such a scan to show that the differ-
ent sidebands does not oscillate in phase, i.e. the peaks
of the oscillations do not occur at the same time delay
for different sidebands. According to Eq. 8, this means
that the phase difference between consecutive harmonics
varies with q, indicating that the attosecond pulses in the
experiment are not transform limited.

FIG. 6: Experimental recording of a RABITT trace.
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Reconstruction

Using the RABITT-technique, we are able to experi-
mentally determine the phase difference ∆ϕq+1. As dis-
cussed above, together with the measured harmonic am-
plitudes (Aq), this makes it possible to reconstruct the
temporal profile of the pulses in the pulse train using
Eq.5.

In this reconstruction there are two aspects that have
to be addressed. First of all, the reconstruction is based
on the assumption, that the harmonics are monochro-
matic, i.e. infinite in time. Therefore such a reconstruc-
tion, only gives access to the average pulse shape of an
attosecond pulse in the train. Second, from an ordinary
RABITT scan we do not have an absolute reference for
∆ϕq+1, i.e. we can only measure how the phase differ-
ence varies between different sidebands in the scan. Since
∆ϕq+1 should be interpreted as the group delay between
harmonics q and q+2, this simply means that we do not
get access to the absolute timing of the attosecond pulses
with respect to the generating field [27]. Thus if we only
want to determine the average temporal shape of the at-
tosecond pulses, we can simply choose to set the phase
difference to zero for one of the sidebands. We do not
know either how to choose the absolute value of ϕq for
the first term in the summation in Eq.5. However, as
discussed above, a constant spectral phase does not af-
fect the pulse shape in any way and we may set this to
zero as well, without loosing any information necessary
for the reconstruction.

Exercises II

Pulse reconstruction

Experimentally one has access to the spectrum, i.e.
the amplitudes of the generated harmonics. In the exer-
cise, students can choose a range of harmonics with con-
stant amplitudes, and experiment the influence of differ-
ent phase behaviors. An average pulse in the pulse train
emerging from the superposition of harmonics 13 to 21
or to 29 is reconstructed in Fig. 7.

The effect of the phase behaviour on the pulses is illus-
trated in Figure 7. When the phase is constant, we talk
about a transform limited pulse, which has the shortest
duration allowed by the spectral width. A linear phase,
corresponding to a constant phase difference (α) in ∆ϕ(q)
(i.e. constant delay) contributes to a simple temporal
shift of the pulses, but does not change the pulse shape,
compared to the transform limited pulse. Whereas a
quadratic phase, or a constant increase (β) in ∆ϕ(q) cor-
responds to a chirp and is responsible for the broadening
of the pulses. We add here, that the phase difference in
HHG varies approximately linearly with harmonic order.
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FIG. 7: Intensity vs. time plot of the average pulse in the
pulse train, emerging from the superposition of harmonics 13
to 29 (a) and 13 to 21 (b). We show the corresponding phase
variation with order (c). Solid line: ∆ϕq+1 = 0 - constant
phase. Dotted line: ∆ϕq+1 = α - linear phase. Dashed line:
∆ϕq+1 = α + β × q - quadratic phase.

These simple calculations also show that the existence
of a chirp reduces the optimum bandwidth over which
the shortest pulses can be obtained [18]. Figure 7 (a) and
(b) shows the effect of bandwidth on the pulse shapes,
we add up nine and five harmonics, respectively. When
no chirp is present (solid lines), the attosecond pulses are
shorter since the more harmonics are summed up. In the
presence of a chirp (dashed lines), adding more harmonics
leads to temporal broadening despite of increasing the
overall bandwidth.

Reconstruction of on-target attosecond pulses

After obtaining the temporal overlap between the har-
monic and probe pulses in the experimental implemen-
tation, we record a RABITT scan similar to that in Fig-
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ure 6. The signal produced by the MBES is recorded
through an acquisition card of the computer, synchro-
nised to the delay stage motion. The phase difference is
measured by looking at the relative positions of the oscil-
lating sideband peaks, and the amplitudes are estimated
by integrating the area under each harmonic peak. The
harmonic intensities are then corrected for the ionization
cross-section of the detection gas. The average attosec-
ond pulse can then be reconstructed based on Equation
5 and connections between the relative phases and the
pulse shape can be drawn as explained in Figure 7.

CONCLUSIONS

In this paper we have described the process of HHG
and attosecond pulse production - using an intuitive clas-
sical model. At Lund University we have designed a prac-
tical for students, containing both an experimental and a
theoretical part. This provides the students with a good
example of applying concepts from classical physics (and
optics) in a newly developing field.

We hope to have explained in a simple, understand-
able way the basic physics underlying attosecond pulse
generation in gases. It is our belief, that by applying
their basic knowledge of physical laws to a real-life com-
pound problem, students appreciate more what they have
learnt.
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