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Abstract

This paper deals with capacity computations of faster-than-Nyquist (FTN) signaling. It shows

that the capacity of FTN is higher than the orthogonal pulse linear modulation capacity for all

pulse shapes except the sinc. FTN signals can in fact achieve the ultimate capacity for the signal

power spectral density (PSD). The paper lower and upper bounds the FTN capacity under the

constraint of finite input alphabet. It is often higher than the capacity for comparable orthogonal

pulse systems; sometimes it is superior to all forms of orthogonal signaling with the same PSD.

Key Words: Constrained Capacities, Faster than Nyquist, Intersymbol Interference, Coded Mod-

ulation, Bandwidth-Efficient Coding

1 Introduction

In this paper we consider the problem of transmitting data over a bandlimited additive white Gaus-

sian noise (AWGN) channel by means of a set of signals that are generated by linear modulation.

Linear modulation signals have the form
∑
a[n]h(t−nT ), where we take the {a[n]} to be independent

and identically distributed (i.i.d.). All such signals can be used, in which case the {a[n]} are data,

or a codeword set can be formed by using some but not all of the a[n] sequences. These signals have

many useful detection properties, especially when h(t) is an orthogonal pulse. Shannon’s classical

result states that the highest transmission rate over the AWGN channel, its capacity, is

W log2(1 + P/WN0) bits/s (1)
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when the signals have a rectangular average power spectral density (PSD); here W is the one-sided

width of the signal PSD, P is the average power, and N0/2 is the value of the white channel noise

PSD. By an application of calculus, the result extends to

C =
∫ W

0
log2

[
1 +

2P
N0

|H(f)|2
]
df bits/s, (2)

when the signals have PSD P |H(f)|2, where H(f) has unit square integral. The PSD of linear

modulation sets is proportional to |H(f)|2 = F{h(t)}. However, such signal sets do not necessarily

achieve (2).

On the contrary, it has been known for some time that linear modulation signal sets are usually

weaker. In particular, making h orthogonal exacts a penalty. Here are some of the facts. When h is a

sinc pulse (T/πt) sin(πt/T ), the PSD is rectangular, the pulses are orthogonal, and the codeword sets

can in principle achieve (1). But the sinc has serious disadvantages in practice. Therefore, smoother

orthogonal pulses are used and these introduce excess bandwidth. The detection performance remain

unchanged, and so the capacity remains (1), despite the extra bandwidth. That this is ordinarily

a loss compared to (2) can be seen as follows. Practical orthogonal pulses obey Nyquist’s 1924

symmetry condition, that |H(f)|2 is antisymmetric about the point (f, |H(f)|2) = (1/2T, |H(0)|2/2);
sinc satisfies this trivially. It is easy to show that the transition from sinc to a non-sinc H(f) with

this condition can only increase (2). But this higher capacity cannot be achieved by signals based

on the non-sinc orthogonal H(f).

The effect becomes worse as power grows—or equivalently, as bits carried per hertz grows. Let

T = 1/2, which yields a positive sinc bandwidth of 1 Hz. Comparing (1) and (2) for a root raised

cosine (root RC) orthogonal pulse with excess bandwidth factor α = .3, we get 1 and 1.001 bits/s,

respectively, when P/N0 = 1. But when P/N0 = 1000 the capacities are 9.97 and 11.81 bits/s, a

difference of 1.84 bits/s. The bit density in this example is roughly that of a good dialup telephone

line. To achieve the higher value 11.81 with orthogonal pulses would require 5.5 dB more power. As

power diverges, so also does the separation in the two capacities; the ratio of (2) to (1) in fact tends

to 1.3, the amount of the excess bandwidth.

The object of this paper is to regain this extra capacity. The method will be faster-than-Nyquist

signaling (FTN) and we will explore the information rates associated with it. Originally FTN was not

constructed with capacity considerations in mind; the first papers only considered it in conjunction

with its minimum Euclidean distance [1], [2], [3]. Recently there has been renewed interest in FTN;
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non sinc pulses and receivers are investigated in [4] and non binary FTN is investigated in [5]. All

of these papers relate to Euclidean distance. This paper and its precursors [6] and [7] consider FTN

capacity. In particular we compare the possible rates of FTN to its main competitor, orthogonal

signaling.

An alternate view is that this paper seeks the benefits of excess pulse bandwidth without the

capacity shortfall that occurs with orthogonal pulses. A related subject is oversampling. It has

been shown that oversampling of certain digital transmission signals can lead to higher information

rates [8], [9].

The paper is organized as follows. In Section 2 we give the system model. Capacity comparisons

and information rate bounds are found in sections 3 and 4 respectively. Section 5 gives numerical

results and comparisons to orthogonal signaling and to the ultimate AWGN capacity for the assumed

spectral density.

2 Faster-than-Nyquist Signaling and its Detection

Consider a baseband PAM system based on a real, continuous T -orthogonal pulse h(t). The trans-

mitted linear modulation signal is formed by

sa(t) =
∞∑

n=0

a[n]h(t− nτT ), τ ≤ 1 (3)

where a[n] is a sequence of zero-mean i.i.d. data symbols drawn from an alphabet A. The signaling

rate is 1/τT . We assume h(t) is unit energy, i.e.
∫ ∞
−∞ |h(t)|2dt = 1. Moreover, T is the smallest time

shift such that h(t) is orthogonal; i.e., if T ′ < T , there exists an integer m such that
∫
h(t)h(t −

mT ′)dt �= 0. Since the pulse is T -orthogonal the signals will not suffer from intersymbol interference

(ISI) when τ = 1. This we refer to throughout as Nyquist signaling. For τ < 1 we say that we have

FTN signaling, and ISI is unavoidable for i.i.d. input symbols.1

Signals of the form (3) with zero-mean i.i.d. data symbols have PSD [11]

Φ(f) =
σ2

a

τT
|H(f)|2 (4)

where σ2
a = E{|a[n]|2}. Note that the FTN with i.i.d. inputs does not change the PSD shape. We

consider it fair to compare different systems only if they have the same PSD.
1Some type of precoding, for example Tomlinson-Harashima [10], can eliminate the ISI in the receiver, but the i.i.d.

assumption on {a[n]} is then violated.
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a[n] h(t)
sa(t) r(t)

h∗(−t)
t=nτT

y[n]
Decoder

n(t)

Figure 1: Overall system of faster-than-Nyquist signaling. Consecutive data symbols a[n] are spaced
by τT seconds.

The AWGN channel presents to the decoder r(t) = sa(t)+n(t), with n(t) real white noise. Forney

showed [12] that a set of sufficient statistics to estimate a[n] from the linear modulation signal is the

sequence

y[n] =
∫ ∞

−∞
r(t)h∗(t− nτT )dt (5)

Inserting the expression for r(t) into (5) yields the discrete-time model

y[n] =
N∑

m=0

a[m]g[n −m] + η[n] (6)

where

g[n−m] =
∫ ∞

−∞
h(t− nτT )h(t−mτT )dt

η[n] =
∫ ∞

−∞
n(t)h(t− nτT )dt.

Equation (6) is the so called Ungerboeck observation model [13]. The correlation of the noise sequence

η[n] is

E{η[n]η∗[m]} =
N0

2
g[n −m]. (7)

This system model is illustrated in Figure 1. In this paper, n and h are real but they need not be in

principle.

In matrix notation (6) can be written as yN = GNaN +ηN . The matrix GN is a N×N Toeplitz

matrix formed from {g[0], g[1], . . . , g[N ]}, and aN is the column vector {a[0], . . . , a[N ]}tr ; later we

will use the notation an2
n1

to denote {a[n1], . . . , a[n2]}tr.

It can be shown that

g[k] =
∫ ∞

−∞
|H(f)|2ej2πkτTfdf. (8)

Since ej2πτTf is periodic with period 1/τT it follows that the same time-discrete model as in (6) is

obtained if |H(f)|2 is replaced by the folded pulse spectrum |Hfo(f)|2, where

|Hfo(f)|2 �
∞∑

k=−∞

∣∣∣H(
f +

k

τT

)∣∣∣2, −1/2τT ≤ f ≤ 1/2τT (9)
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and zero otherwise. This means that (8) can alternately be expressed as

g[k] =
∫ 1/2τT

−1/2τT
|Hfo(f)|2ej2πkτTfdf (10)

Since |Hfo(f)|2 implies the same time-discrete model as |H(f)|2 it follows that systems based on the

folded pulse shape have equivalent detection performance to systems based on h(t).

Since the noise variables are correlated it is convenient to work with the whitened matched filter

(WMF) model instead of the Ungerboeck model. By filtering y[n] with a whitening filter the sequence

encountered by the decoder becomes

x[n] =
n∑

l=0

b[n− l]a[l] + w[n] (11)

where b[n], the new model, is a causal ISI tap sequence such that b[n] � b∗[−n] = g[k] and w[n] is

independent Gaussian noise with variance σ2 = g[0]N0/2 = EhN0/2, where Eh is the energy in h(t).

Since the whitening filter is invertible, x[n] also forms a set of sufficient statistics. However, in the

case of infinite models b[n], the WMF model can be hard to compute. One example is when g does

not have a rational Z-transform. In our case the signals may be bandlimited below 1/2τT Hz, which

prohibits the WMF model. But we will nonetheless make use of it later.

The average power P of an FTN transmission, from (4), equals

P =
σ2

a

τT
(12)

Finally we note that instead of transmitting faster, an equivalent strategy is to transmit a wider

pulse in time. Let the pulse be hW (t) =
√
τh(τt). If the widening factor is 1/τ the pulse would be

T ′-orthogonal if T ′ = T/τ . Therefore the same time discrete model is obtained and the systems are

equivalent in detection and in bits per Hz.

3 FTN Constrained Capacity: Gaussian Alphabet

In this section the capacity of FTN is investigated. First we review the capacity of general ISI

signals, and then we apply the results to FTN. Throughout, we reserve the term capacity for AWGN

and signals with PSD P |H(f)|2, without further restrictions. Constrained capacity will mean the

maximum information rate under some added restriction, such as FTN or an alphabet assumption.

Transmitted symbols are always i.i.d. In this section there are no further alphabet restrictions.
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3.1 General ISI Signals

We first consider the capacity of discrete-time signals with ISI. Assume either the WMF model, in

which x = b ∗a + w, or the Ungerboeck model, in which y = g ∗a + η. Let pa(a) =
∏
pa(a) denote

the probability distribution of the data symbols. Then the constrained capacity is

CDT � sup
pa(a)

lim
N→∞

1
N
I(yN ;aN ) = sup

pa(a)
lim

N→∞
1
N
I(xN ;aN )

= sup
pa(a)

lim
N→∞

1
N

[H(xN ) −H(xN
∣∣aN )] bits/channel use (13)

From [14, Lemma 1], [15] CDT in (13) is obtained when a[n] has a Gaussian distribution and it is

CDT =
1
2π

∫ π

0
log2

[
1 +

σ2
a

σ2
G(λ)

]
dλ (14)

where

G(λ) =
∑

g[k]eiλk =
∣∣∣∑ b[k]eiλk

∣∣∣2 = |B(λ)|2 (15)

and B(λ) is the ISI transfer function. The validity of Eq. (14) for infinite ISI is crucial and is

addressed in Appendix C.2 Higher rates than CDT can be supported by allowing correlated {a[n]}
[14, 15]; water filling then gives the solution.

The special case of no ISI, i.e. g[n] = b[n] = δ[n], implies that G(λ) = 1, 0 ≤ λ ≤ π and

consequently CDT becomes
1
2

log2

[
1 +

σ2
a

σ2

]
(16)

3.2 Application to FTN

Now consider FTN signals. The constrained capacity is found by first computing the capacity of

the resulting discrete-time channel after the matched filter sampler, and then normalizing by the

signaling rate, that is

CFTN � 1
τT

CDT bits/s (17)

To find the FTN capacity we must find G(λ) for the ISI that it creates. G(λ) will be a scaled,

folded version of |H(f)|2 around f = 1/2τT ; that is,

G(λ) =
1
τT

∞∑
k=−∞

∣∣∣H( λ

2πτT
+

k

τT

)∣∣∣2 =
1
τT

∣∣∣Hfo

( λ

2πτT

)∣∣∣2 (18)

2The appendix makes use of results from forthcoming sections, but those do not assume that (14) is valid for infinite
ISI; hence the method of proof is not circular.
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The folded spectrum |Hfo(f)|2 becomes

|Hfo(f)|2 = τTG(f2πτT ) (19)

We can now compute CFTN. Take σ2
a = PτT ; as was the case in (14),

CFTN =
1

2πτT

∫ π

0
log2

[
1 +

PτT

σ2
G(λ)

]
dλ

=
1

2πτT

∫ π

0
log2

[
1 +

P

σ2
|Hfo(

λ

2πτT
)|2

]
dλ =

∫ 1/2τT

0
log2

[
1 +

2P
N0

|Hfo(f)|2
]
df (20)

since σ2 = No/2.

However, the capacity of a linear modulation signal of form (3) with τ = 1, i.e. orthogonal

signaling, does not depend on h(t); it stems only from the T -orthogonality. |Hfo(f)|2 is now T .

When the transmitter is constrained to power P watts, the capacity is thus

CN =
1

2T
log2

[
1 +

2TP
N0

]
bits/s (21)

where the subscript denotes Nyquist. The next theorem states that FTN has constrained capacity

superior to Nyquist signaling.

Theorem 1 Unless h(t) is a sinc pulse there exist τ such that

CFTN > CN (22)

For h(t) a sinc, CN = CFTN for all τ .

Proof First assume that h(t) is a sinc pulse. Then Liveris [16] shows that FTN signaling based

on the sinc pulse has CFTN = CN for all τ .

Now assume that h(t) is not sinc. Since h(t) is T -orthogonal it follows from the Gibby-Smith ISI

condition [17] that
∞∑

k=−∞

∣∣∣H(
f +

k

T

)∣∣∣2 = T, ∀f (23)

By taking τ = 1/2, (18) equals

G(λ) =
2
T

∞∑
k=−∞

∣∣∣H( λ

πT
+

2k
T

)∣∣∣2 (24)

It follows that for λ ≤ π/2

G(π−λ) =
2
T

∞∑
k=−∞

∣∣∣H( 1
T
− λ

πT
+

2k
T

)∣∣∣2 =
2
T

∞∑
k=−∞

∣∣∣H( λ

πT
−2k + 1

T

)∣∣∣2 =
2
T

∞∑
k=−∞

∣∣∣H( λ

πT
+

2k + 1
T

)∣∣∣2

(25)
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Combining (23), (24) and (25) gives

G(λ) +G(π − λ) =
1
τ

= 2 (26)

To compute CFTN we compute CDT in (14); σ2
a is PτT , which gives

CFTN =
1
πT

∫ π/2

0
log2

[
1 +

PτT

σ2
G(λ)

]
dλ+

1
πT

∫ π

π/2
log2

[
+
PτT

σ2
G(λ)

]
dλ

=
1
πT

∫ π/2

0
log2

[
1 +

PτT

σ2
G(λ)

]
dλ+

1
πT

∫ π/2

0
log2

[
1 +

PτT

σ2
G(π − λ)

]
dλ

Using log2(1 + x) + log2(1 + y) > log2(1 + x+ y), x, y > 0 gives

CFTN >
1
πT

∫ π/2

0
log2

[
1 +

PτT

σ2
[G(λ) +G(π − λ)]

]
dλ =

1
πT

∫ π/2

0
log2

[
1 +

PT

σ2

]
dλ

=
1

2T
log2

[
1 +

2PT
N0

]
= CN �

Remark In the proof we took τ = 1/2. This can be relaxed to τ = 1/q, q an integer, in which

case (26) becomes
� q

2
�−1∑

k=0

G

(
λ+

2πk
q

)
+

� q
2
	−1∑

k=0

G

(
2π
q

− λ+
2πk
q

)
= q (27)

with 0 ≤ λ ≤ π/q.

Interesting pulses from a bandwidth efficiency point of view are the bandlimited pulses. For this

class we can prove that values other than τ = 1/q can be selected while still guaranteeing superior

capacity.

Theorem 2 Assume that the pulse h(t) is bandlimited to W Hz and is not the sinc. Then for
τ = 1/2WT

CFTN > CN (28)

Moreover this choice of τ is optimal in the sense that CFTN equals the highest possible capacity, C
in Eq. (2).

Proof Since h(t) is T -orthogonal it follows that W > 1/2T and τ < 1. Since τ = 1/2WT there

is no aliasing effect and consequently

|Hfo(f)|2 = |H(f)|2, −1/2τT ≤ f ≤ 1/2τT

The FTN constrained capacity is computed by (20) and equals

CFTN =
∫ W

0
log2

[
1 +

2P
N0

|H(f)|2
]
df

Because h(t) is T -orthogonal, (23) holds. This implies that for all f ∈ [0, 1/2T ] some power has

been removed and distributed to frequencies f + k/T, ∀k. The computation is illustrated in Figure
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Figure 2: Illustration of Theorem 2. The pulse h(t) is orthogonal under T shifts. When H(f) is
folded around τ = 1/2WT , |Hfo(f)|2 remains |H(f)|2 in [−1/2τT, 1/2τT ]. When H(f) is folded
around 1/2T , |Hfo(f)|2 becomes the rectangular block; the three circles sum up to the black dot.

2; orthogonal signaling can only make use of |Hfo(f)|2, while FTN makes use of |H(f)|2. The three

circles sum to the black dot.

We now use the fact
∑

k log2(1 + xk) > log2(1 +
∑

k xk), xk > 0, ∀k. This gives

CFTN =
∫ W

0
log2

[
1 +

2P
N0

|H(f)|2
]
df >

∫ 1/2T

0
log2

[
1 +

2PT
N0

]
df = CN

But the left side is Eq. (2), implying that τ = 1/2WT raises the constrained capacity CFTN to the

highest possible value for the signal PSD. τ is thus optimal. �

A reasonable question at this point is whether FTN signals have higher capacity than Nyquist

signaling for all τ and all pulses. Write the FTN capacity for a given SNR as a function of τ , CFTN(τ).

For all practical pulses and for many others that we have tested, we find that dCFTN(τ)/dτ <

0, 1/2WT < τ < 1 for all practical SNRs. But this is not true for every pulse; consider the pulse

with

|Z(f)|2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − a |f | ≤W/2

a W/2 < |f | ≤W

0 |f | > W

(29)

where 0 < a < 1. This pulse is T -orthogonal if T satisfies T = 1/W and there is no T ′ < T such that

the pulse is T ′-orthogonal. Take transmission power as P watts. The Nyquist orthogonal capacity

equals

CN =
W

2
log2

(
1 +

2P
WN0

)
=
W

2
log2

(
1 + ξ

)
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with ξ = 2P/WN0. Take τ = 2/3; the FTN constrained capacity becomes

CFTN =
W

2
log2

(
1 + (1 − a)ξ

)
+
W

4
log2

(
1 + 2aξ

)

We are interested whether there exist a and ξ such that CFTN < CN. By some manipulation it can

be shown that if a satisfies

a > 1 +
3
4ξ

−
√

1
2ξ

+
9

16ξ2
(30)

for any ξ > 0 it follows that CFTN < CN. Thus FTN is not better than Nyquist signaling for all

τ < 1 and all pulses. Observe that the spectrum |Z(f)|2 is rather weird when a satisfies (30); most

of the energy lies outside of W/2.

From a theoretical point of view it is interesting to characterize pulses whose constrained capacity

grows with decreasing τ regardless of the power, but this is a topic for future research. It is not very

important from a practical point of view, since in almost all cases the capacity does increase with

decreasing τ . For pulses that are not bandlimited, |Hfo(f)|2 → |H(f)|2 (with respect to the ‖ · ‖1

norm) when τ → 0. Therefore the constrained capacity CFTN → ∫ ∞
0 log2

(
1 + 2P

N0
|H(f)|2

)
df > CN.

As in Theorem 2, the full AWGN capacity of signals with PSD shape |H(f)|2 is obtained and the

system is optimal.

We close with a statement that as power grows, FTN with nonzero excess bandwidth approaches

the sinc bandwidth efficiency. Thus excess bandwidth does not lead to loss.

Theorem 3 Assume a T -orthogonal pulse h(t) bandlimited to W Hz, with |H(f)|2 > 0, |f | < W .
W > 1/2T , so that there is excess bandwidth. As P → ∞, the bandwidth efficiency of FTN, CFTN/W ,
nonetheless approaches the sinc bandwidth efficiency, i.e.

CFTN/W

2TCN
→ 1, P → ∞ (31)

Proof Take τ ≤ 1/2WT , as in Theorem 2, so there is no aliasing and |Hfo(f)|2 = |H(f)|2, −1/2τT ≤
f ≤ 1/2τT . Lower bound CFTN in (20) by

CFTN ≥
∫ W−ε

0
log2

[
1 +

2P
N0

|H(f)|2
]
df >

∫ W−ε

0
log2

[2P
N0

|H(f)|2
]
df

=
∫ W−ε

0
log2 P df +

∫ W−ε

0
log2

[ 2
N0

|H(f)|2
]
df = (W − ε) log2 P +Q (32)

for arbitrarily small ε > 0. The term Q is finite. Consequently

CFTN/W

2TCN
>

Q+(W−ε) log2 P
W

2TCN
=

Q+(W−ε) log2 P
W

log2(1 + 2TP/N0)
→ W − ε

W
, as P → ∞

But ε can be arbitrarily small which implies

CFTN/W

2TCN
→ 1, as P → ∞ �
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3.3 Signal Space Representation

Let us investigate why FTN can have rates superior to Nyquist signaling. An orthonormal set of

basis functions for orthogonal linear modulation is BN = {h(t − nT ), −∞ ≤ n ≤ ∞}. Denote the

orthonormal basis for FTN by BFTN. Clearly, BFTN �= {h(t − nτT ), −∞ ≤ n ≤ ∞} because these

are not orthogonal. From Theorem 1 we get the following Corollary.

Corollary 1 Assume a pulse h(t), and let T be the smallest time such that h(t) is T -orthogonal.
Let BN = {h(t − nT ), −∞ ≤ n ≤ ∞} and let BFTN be the set of orthonormal basis functions for
FTN signals with τ = 1/q, i.e. signals of the form s(t) =

∑∞
n=−∞ a[n]h(t− nT/q). Then

BN ⊆ BFTN (33)

with equality in (33) if and only if h(t) is a sinc pulse.

Proof Assume that h(t) is not a sinc pulse; then the Remark to Theorem 1 shows that

CFTN > CN. Although the FTN and Nyquist signals are constrained to the same transmission

power, and Nyquist signaling is free to place power in any way such that the average constrained

power requirement is fulfilled, Nyquist signaling can evidently not create the same signals that FTN

can and it follows that BN ⊂ BFTN. Now assume that h(t) is a sinc pulse. Since the spectrum of

s(t) is still limited to [−1/2T, 1/2T ] Hz, it follows from the Sampling Theorem that BN = BFTN.

�

The Corollary states that for other pulse shapes than sinc, some of the energy in an FTN signal is

put outside of BN. In other words, the FTN signal cannot be generated by Nyquist signaling with h(t).

One set of orthonormal basis functions called offset QAM that can be used for FTN with certain

pulses (including root RC) is given in [18]. Another can be found via a standard Gram-Schmidt

orthogonalization. Because each G-S basis function produced is a weighted superposition of previous

ones, each has spectrum band limited to W , if the original H(f) is so limited. Asymptotically, then,

the size of the basis must be less than 2WT, where T is the length of the transmission in seconds.

For a root RC h with excess bandwidth α for example, the number of dimensions lies asymptotically

in the range [2WT, 2(1 + α)WT], where W is 1/2T and the FTN symbol time is τT . This can be

expressed as [τN, (1 + α)τN ], where N is the number of symbols. Since non-sinc FTN spans more

dimensions than than Nyquist signaling, it is natural that is should have a higher capacity.

4 FTN Constrained Capacity: Restricted Alphabets

Until now we have studied the capacity of linear modulation and FTN, without restriction on the

alphabet A that drives the codewords. Primarily, comparison has been made to classic capacity
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expressions. We now consider a finite A and a fixed a[n] distribution pa(a) = 1/|A|, ∀a ∈ A.

The analytical tools will change. There is no maximization over pa(a) and we will call this type of

constrained capacity an information rate. Ih will denote such a rate, in bits/s; the notation thus

implies the uniform alphabet (unlike Section 3), a certain FTN τ , and the pulse h. Ih is defined to

be IDT/τT , where

IDT � lim
N→∞

1
N
I(yN ;aN ) = lim

N→∞
1
N
I(xN ;aN ) bits/channel use (34)

Here DT again denotes a time-discrete channel. Currently there exists no closed-form expression for

IDT. Instead, lower and upper bounds or accurate Monter Carlo based methods must be used. This

paper does not improve much on these methods; instead they are applied to FTN. One improvement

does appear in Appendix B.

The fact that the FTN system has a time discrete model of infinite length is a problem. If one

wishes to base the constrained capacity computations on the WMF model, it can be difficult to find

the model for an arbitrary g. So the first step is to find a signal system with simple WMF model

that has information rate related to the FTN system, and this is done in section 4.1. One must then

estimate the information rate of the new system. This is done in two ways; in section 4.2 we lower

bound the rate and in 4.3 we describe a simulation-based method to find the bound.

4.1 Finite Systems Related to FTN

Here we find two different pulses hL(t) and hU (t) that have finite, preferably short, WMF models,

and that have information rates IhL
≤ Ih ≤ IhU

. The latter is accomplished if |HL(f)|2 ≤ |H(f)|2 ≤
|HU (f)|2, ∀f . To show that, we write |H(f)|2 = |HL(f)|2 + |H1(f)|2. The optimal decoder works

with the autocorrelation gh, where the subscript means that g is obtained from the sampled auto-

correlation of h(t). But this can be expressed as gh = ghL
+ gh1

due to (8). Now, construct a pulse

h2(t) such that

|H2(f)|2 =
1
2
|H1(f − δ)|2 +

1
2
|H1(f + δ)|2 (35)

where δ = s/τT and s is an integer chosen large enough so that |H2(f)|2 and |H(f)|2 are non

overlapping. If |H(f)|2 is not bandlimited, then replace |H(f)|2 with |Hfo(f)|2, which is bandlimited

to 1/2τT Hz and gives the same performance. The construction of |H2(f)|2 in (35) implies that

gh2
= gh1

. This means that systems based on pulse hL(t)+h2(t) have detection performance identical

to systems based on h(t). But a suboptimal strategy for the decoder is to match the receiver filter to

12



hL(t) instead of hL(t) + h2(t). Since hL(t) and h2(t) are non overlapping in frequency, the resulting

time-discrete model of this suboptimal receiver strategy is the same as for an optimal strategy for

systems based on hL(t). This proves that IhL
≤ Ih; the same argument on the pair Ih,IhU

gives

Ih ≤ IhU
.

To control the tightness of the bound we solve an optimization problem. We express hL(t) as

hL(t) =
K−1∑
n=0

bL[n]ψ(t− nτT ) (36)

and similarly for hU (t), where the pulse ψ(t) is a τT -orthogonal sinc pulse. Let h̃(t; b) be a pulse

constructed from b by
∑
b[n]ψ(t− nτT ). The optimization is

bL = arg min
b

∫ 1/2τT

0
|Hfo(f)|2 − |H̃(f ; b)|2df (37)

s.t. |Hfo(f)|2 ≥ |H̃(f ; b)|2, ∀f

Thus hL(t) has less information rate than h(t) has, but it has finite WMF model (with K taps).

Clearly hL(t) has energy EhL
lower than the unit-energy h(t); the resulting noise in model (11) has

lower variance than the noise for pulse h(t). The optimization (37) is linear in the autocorrelation of

b and can thus easily be solved by a linear program (LP); the formulation is given in Appendix A.

The tightness of the bounds can be controlled by optimizing over enough taps so that EhL
is close

to unity.

Slightly poorer bounds can be designed by much simpler methods than the LP; a bU can be

obtained as follows. Define the sequence

e[n] =

⎧⎨
⎩

g[n], |n| < K

0, otherwise.
(38)

Unfortunately, the sequence e is not a valid autocorrelation sequence and in fact its transfer function

E(λ) is not always larger than G(λ). To fix this, define

θ � min
(

min
0≤λ≤1

[E(λ) −G(λ)], 0
)

and also

bU [n] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e[n] + |θ|, |n| = 0

e[n], 1 ≤ |n| < K

0, otherwise.

(39)

The bU so constructed is a valid autocorrelation sequence (a necessary and sufficient condition for a

sequence to be a valid autocorrelation is Eq. (58) in Appendix A) and it holds that |HU (f)| ≥ |H(f)|.
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The above LP method (37) to obtain finite pulses that give tight lower and upper bounds works

well in general but the lower bound unfortunately fails for some important cases. Assume a pulse h(t)

is bandlimited to W Hz and let τ < 1/2WT . Then Hfo(f) = 0, 1/2T ≤ f ≤ 1/2τT . Consequently

there must be equality in the constraint in (37) and bL has to synthesize an ideal low pass filter. But

this is not possible for K taps and the method fails.

This we solve by using an hU (t) that always exists. First express |HU (f)|2 as |HU (f)|2 =

|H(f)|2 + |He(f)|2. As above, use a frequency shifted |He(f)|2 such that |He(f)|2 and |H(f)|2

are non overlapping. If a signaling scheme is based on pulse hU (t), then this generates, after sam-

pling, the vector yN
U . However, yN

U could be obtained by having two matched filters h(t) and he(t);

after sampling, the decoder then sees yN and yN
e . Since h(t) and he(t) are mutually orthogonal it

is clear that yN
U = yN + yN

e and thus yN
e and yN also form a set of sufficient statistics for detection

of aN . Furthermore, since optimal decoding can be done either with yN
U or with the pair (yN ,yN

e )

we have

I(yN
U ;aN ) = I((yN ,yN

e );aN ) (40)

IhU
and Ih can be related by the following inequality:

I((yN ,yN
e );aN ) = H(yN ,yN

e ) −H(yN ,yN
e

∣∣aN )

≤ H(yN ) +H(yN
e ) −H(ηN ) −H(ηN

e )

= I(yN ;aN ) + I(yN
e ;aN ). (41)

Inserting (40) in (41) and rearranging we obtain the following information rate inequality

Ih ≥ IhU
− Ihe . (42)

In total we have obtained the following inequalies for the information rates:

IhU
− Ihe ≤ Ih ≤ IhU

, τ < 1/2WT (43)

and

IhL
≤ Ih ≤ IhU

, τ ≥ 1/2WT. (44)

We will next show how to use these bounds.

4.2 Bounding Techniques

In this section we try to lower bound the lower bounds of (43) and (44). In order to do that we

need a lower bound for IhU
and IhL

in (43) and (44), and an upper bound for Ihe in (43). The
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upper bounds of (43) and (44) will not be calculated by bounding techniques; they will be simulated

according to the next section. Lower and upper bounding the information rate of an ISI channel has

a long history. Bounds appear in for example [14]. In [19] a lower bound that is remarkably tight

is proposed, but there is no proof of it. Bounds on the cutoff rate, which is a lower bound to the

information rate, appear in [20].

We start with the two lower bounds and assume the Forney model x = b � a + w. We use an

extended version of a lower bound from [14].3 We need to compute IDT, which is

lim
N→∞

1
N

[H(xN ) −H(xN
∣∣aN )]. (45)

The second term of can be directly computed as H(xN
∣∣aN ) = H(wN ) = (N/2) log2(2πeσ2). By the

chain rule,

H(xN ) =
N∑

n=0

H(x[n]
∣∣xn−1), (46)

where x−1 � ∅. Since conditioning does not increase entropy we get

H(x[n]
∣∣xn−1) ≥ H(x[n]

∣∣xn−1,an−κ) (47)

where 1 ≥ κ ≥ n is an integer. This implies that

IDT ≥ lim
N→∞

1
N

N∑
n=0

H(x[n]
∣∣xn−1,an−κ) − N

2
log2(2πeσ

2). (48)

In [14] with κ = 1, it was proved that IDT ≥ I(ρa + w;x), where a is distributed as a[n], w is

zero mean Gaussian with variance σ2 and

ρ = exp
1
2π

∫ π

0
log |B(λ)|2dλ

with B(λ) defined in (15). Now we take κ > 1 to strengthen the bound. Calculate (48) by direct

computation. By the chain rule

H(x[n]
∣∣xn−1,an−κ) = H(xn

n−κ+1

∣∣xn−κ,an−κ) −H(xn−1
n−κ+1

∣∣xn−κ,an−κ) (49)

and this is the entropy sought in (47). Since wN are independent and the ISI response is causal, the

conditioning on xn−κ in (49) can be removed, i.e.

H(xn
n−κ+1

∣∣xn−κ,an−κ) = H(xn
n−κ+1

∣∣an−κ).

3The possibility of the extension is obvious and was mentioned in [14].
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Now, since the data sequence a is i.i.d.,

H(xn
n−κ+1

∣∣an−κ) = H(zn
n−κ+1) (50)

where

z[l] =
l−n+κ−1∑

m=0

a[l −m]b[m] + w[l], n− κ+ 1 ≤ l ≤ n. (51)

That is, z[l] is formed by subtracting the interference from an−κ on xn
n−κ+1. To summarize, the

entropy in (50) is equal to the entropy of a variable zκ−1, where

zκ−1 = Bκ−1aκ−1 + wκ−1, (52)

and Bκ−1 is the κ× κ matrix

Bκ−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b[0] 0 0 · · · 0

b[1] b[0] 0 · · · 0
...

. . . . . . . . .

b[κ− 2] · · · b[1] b[0] 0

b[κ− 1] · · · · · · b[1] b[0]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For l larger than the ISI length K the terms to be summed up in (48) are all identical, thus the

limit can be removed and IDT can be computed by computation of a single term in (48) with any

n > K. In bits per channel use, we have shown that

IDT ≥ Iκ
LB � I(zκ−1;aκ−1) − I(zκ−2;aκ−2). (53)

An upper bound for Ihe in (43) is also needed. If Ehe is small it suffices with a rather loose

bound. We make use of the following bound from [14]:

IDT ≤ IUB � I(‖b‖a+w; a) (54)

where a is distributed as a[n], w is zero-mean Gaussian with σ2 and ‖b‖2 is

‖b‖2 =
1
π

∫ π

0
|B(λ)|2dλ.

Let Iκ
LB,hU

denote the bound Iκ
LB in (53) computed from the time-discrete models stemming from

hU (t), and similarily for IUB,he . Insert (53) and (54) into (43) and (44); we then obtain the lower

bounds

Ih ≥
⎧⎨
⎩

(Iκ
LB,hU

− IUB,he)/τT, τ < 1/2WT

Iκ
LB,hL

/τT τ ≥ 1/2WT
(55)

where W is the bandwidth of bandlimited pulses. We evaluate (55) by numerically establishing the

distribution of zκ−1 and then numerically computing the entropy H(zκ−1).
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4.3 Monte Carlo Based Methods

Recently, methods to find information rates have been proposed [21], [22]. A brief review of the

technique is given here.

We need to compute 1
NH(xN ) in (45), and this can be accomplished as follows. First generate a

long sequence xN and run a forward pass of the BCJR algorithm. The output of this algorithm is

p(xN ). Due to the Shannon-Breiman-McMillan Theorem, − 1
N log2 p(xN ) converges with probability

1 to a well-defined entropy rate which is the limN→∞ 1
NH(xN ) in (45). When actually performing

the pass, one computes − 1
N log2 p(xN ) as 1

N

∑
log2 γk, where γk are the scale factors that bring the

sum of state metrics to 1 at each trellis stage. Applying the method, we find the information rates

IhU
and IhL

in (43) and (44). The upper bound in (54) is still used for Ihe in (43).

The complexity of this method is clearly |A|K−1, which can be very large. In [21] reduced

complexity methods were given that bound the information rates; a non optimal decoding algorithm,

such as the M-BCJR, was used. Here we propose a new type of bound. It is based on the inequality

(43) followed by an application of the full-complexity approach. An example and comparison to

earlier simulation methods are found in Appendix B.

We conclude by mentioning that the WMF model is not required. In [23] a MAP equalizer was

derived for the Ungerboeck model, which can be used in place of the BCJR computation.

5 Numerical Results and Comparisons

Throughout we take h(t) as root RC with excess bandwidth α (0≤α≤1).

The first case is α = .3 and binary signaling. We used the simulation method from Section 4.3

to find the bounds (43) and (44) and the result is shown in Figure 3. Symbol sequences a of length

2 × 106 are used and τ ∈ {.5, .6, .7, .8, .9}. For τ = .5 the number of ISI taps K is K = 9 (i.e. 256

states); for τ = .6, K = 8 (128 states); for τ ∈ {.7, .8, .9}, K = 6 (32 states). The upper bounds

coincide (to the accuracy of the picture) with the lower bounds for τ = .8 and .9. For the other cases

the upper bounds are dotted and the lower bounds are solid. The bounds are rather tight even for

small τ . Also included is the ultimate capacity C of the PSD (this capacity coincides with the FTN

capacity CFTN if τ = 1/2WT ) as well as the capacity of Nyquist signaling with the same h(t), CN

in (21). Capacity CN is the ultimate capacity for signals with τ = 1. It is seen that both τ = .5 and

τ = .6 have lower bounds that are larger than CN, which implies that these systems are superior to

any form of Nyquist signaling, and that they are not very far from C at low Eb/N0; thus not much
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Figure 3: Information rates for binary signaling with with α = .3 root RC pulse and various τ . Solid
heavy line marked by C is the ultimate capacity for the PSD and the one marked by CN is capacity
of Nyquist signaling. Lighter solid lines are lower bounds to the information rate; dotted lines are
upper bounds. The line with markers is the lower bound for the case τ = .3 but computed with the
bounding method with κ = 2.

further can be gained even though the alphabet is binary. The line with markers is a lower bound

for the case τ = .7 but computed with the bounding method from Section 4.2 with κ = 2. This is

the only place where the bounding method is used for τ < 1/2WT . In general the bounding method

is not very tight for these τ and in the sequel we use the Monte Carlo based method for τ < 1/2WT ;

for τ > 1/2WT the bounding method will sometimes be used. For verification purposes we list some

of the bU used. For τ = .5, bU = .4374, .7493, .4387,−.1030,−.2011, .0483, .0973,−.0518,−.0023 and

for τ = .7, bU = .7281, .6584,−.1975,−.0352, .0737,−.0331.

Information rates for binary signaling with α = .2 are shown in Figure 4. We set τ ∈ {.7, .8, .9}
and K is 11 (1024 states) for all τ . The system with τ = .5 has an information rate superior to CN.

The bounds are found with the Monte Carlo based method and they are rather tight.

Next we consider is α = .5. This choice of α is not very bandwidth efficient, but is worthwhile

to discuss because FTN will significantly benefit from the excess bandwidth. We investigate binary

signaling with τ = 1/3 (system 1) and quaternary with τ = .8 (system 2). These choices result in

maximum information rates 3 and 2.5 bits per T seconds respectively. We compare these systems

with Nyquist systems that can achieve the same bits/Hz; this is a fair comparison in our opinion.

We consider only lower bounds to the information rates; these are shown in Figure 5. For the binary

system we found Monte Carlo bounds; for the quaternary we used the lower bounding technique,

18



1 1.5 2 2.5 3 3.5 4 4.5 5
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Eb/N0

bi
ts

/T
se

co
nd

s

τ = .5

τ = .6

τ = .7

CN

C

Figure 4: Information rates for binary signaling with an α = .2 root RC pulse and various τ . Solid
heavy line marked by C is the ultimate capacity for the PSD and the one marked by CN is capacity
of Nyquist signaling. Lighter solid lines are lower bounds to the information rates; dotted lines are
upper bounds.

with κ = 2, from Section 4.2. To obtain a maximum throughput of 2.5 bits/T with Nyquist signaling,

we use a 32-cross (32CR) constellation [11] (and measure the information rate per dimension). To

obtain 3 bits/T we use 64QAM.

It is clear from Figure 5 that both FTN systems outperform their Nyquist counterparts. Moreover,

they significantly outperform CN. If a Nyquist system is to be equal to an FTN system in both power

and bandwidth efficiency, a smaller, more difficult to realize value for α is required. Consider system

1; for Eb/N0 � 7 dB it has an information rate Ih which is ≈ 1.17CN or ≈ 1.27I64. Thus a Nyquist

system achieving CN needs α ≈ 1.5/1.17−1 = .28, and 64QAM needs α ≈ 1.5/1.27−1 = .18. So the

binary FTN system with α = .5 is in terms of power and bandwidth efficiency equivalent to a Nyquist

system with much more constrained excess bandwidth. System 2 has information rate Ih ≈ 1.15I32

in the range Eb/N0 � 5.5 dB. Thus the Nyquist 32CR system needs α ≈ 1.5/1.15 − 1 = .3. Also

seen in Figure 5 is that system 1 has information rate very close to C, so not much more rate can

be gained.

In Figure 6 a lower bound with κ = 2 is given for octal FTN with α = .2 and τ = .8517; this is

system 3. The τ value is chosen to give an FTN system with 3.5 bits/T maximum information rate,

which is the maximum rate of a 128CR Nyquist system. Even for α as low as .2 the 128CR system

has lower information rate than the FTN system. In fact the FTN beats even the Nyquist system

with Gaussian symbol distribution. This we find remarkable for such a small α. Equalizing both the

19



2 3 4 5 6 7 8 9 10
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Eb/N0

bi
ts

/T
se

co
nd

s

I32

I64

C

CN

System 1

System 2

Figure 5: Information rates for signaling with an α = .5 root RC pulse. System 1 is binary with
τ = 1/3. System 2 is quaternary with τ = .8. The heavy line marked CN is capacity of Nyquist
signaling; the heavy line marked C is the ultimate capacity for the PSD. The dotted line is an upper
bound. I32 and I64 mark the information rates of Nyquist 32CR and 64QAM.

bandwidth and power efficiencies of the systems, we find that the 128CR Nyquist requires α ≈ .11

for Eb/N0 � 12 dB. Also shown is a lower bound with κ = 2 for quaternary FTN with α = .2 and

τ = .9; this is system 4. The bound lies above the information rates for both 16QAM and 32CR

Nyquist systems at low SNR.

6 Conclusion

We have investigated constrained capacities that apply to faster-than Nyquist signaling. In particular

we have compared them with the capacities for signals based on orthogonal linear modulation. FTN

has an infinite-state structure, and in order to analyze it we develop short finite models and bound

FTN with these; we also derive a linear program formulation that leads to bounds. These can also

be used for standard ISI channels and they are tighter than other, comparable, bounds for the cases

considered here.

Our conclusion is that when signals have excess bandwidth it is, in general, beneficial to signal

faster-than-Nyquist, that is, to give up orthogonality between the data pulses. For suitable signaling

rates the ultimate capacity for signals with a given power spectral density can be achieved by FTN,

despite the linear modulation in its design. More specifically, the capacity of FTN signals exceeds that

of Nyquist signals for some FTN symbol time τT and for all τT < 1/2W for signals bandlimited to W

Hz. It often comes close to or equals the ultimate C for the PSD. As well, the capacity of binary and
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Figure 6: Lower bounds on information rates for FTN. System 3 is octal signaling, τ = .8517 and
α = .2. System 4 is quaternary signaling, τ = .9 and α = .2. The dashed line is Nyquist signaling
with an unconstrained alphabet; heavy solid line is ultimate capacity C for the α = .2 root RC PSD.

quaternary FTN at many SNRs exceeds that of signals based on such higher-alphabet constellations

as 32CR and 64QAM. The capacity gains can also be converted into more generous excess bandwidth:

FTN can have more than Nyquist can, at the same power and bandwidth efficiency. As power grows,

the bandwidth efficiency of FTN signals in fact approaches that of sinc pulse signaling.

Overall we can conclude that using orthogonality in the synthesis of codewords has a significant

cost, but the linear modulation formulation of itself is much less costly.
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Appendix A: Linear Programming Formulation

An LP formulation for optimal ISI signals is well described in [24], or more compactly in [25]; it has

appeared earlier in [26]. Since Eh = 1 by assumption, we can express the objective function in (37)

simply as
bL = arg max

b
EhL

= arg max
b
g[0] (56)
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where g is the autocorrelation of b. Moreover, |H̃(f ; b)|2 can be expressed as

|H̃(f ; b)|2 =

⎧⎨
⎩

∑
|k|<K g[k]e−j2πkfτT , −1/2τT ≤ f ≤ 1/2τT

0, |f | > 1/2τT
(57)

Since the optimization is performed over g we must guarantee that g is a valid autocorrelation, i.e.

that there exists a tap sequence b such that g[k] = b[n] � b[−n]. This is true if and only if g satisfies

∑
|k|<K

g[k]e−j2πkf ≥ 0, −1/2 ≤ f ≤ 1/2 (58)

In practice the frequency axis must be sampled. Let the sample points be the set Ω. We use 1000

points throughout, but after the optimization we use 105 to verify that the constraints are fullfilled

even for frequencies outside Ω. The optimization for hL(t) can now be formulated as

bL = arg max
b
g[0]

s.t. 0 ≤
∑
|k|<K

g[k]e−j2πkfτT ≤ |Hfo(f)|2, f ∈ Ω

For hU (t) the optimization becomes

bU = arg min
b
g[0]

s.t.
∑
|k|<K

g[k]e−j2πkfτT ≥ |Hfo(f)|2, f ∈ Ω

Appendix B: New Types of Bounds

This appendix compares applies our bounding technique to the one presented in [21]; the outcome is

that our method is superior in the low SNR regime. We only consider the upper bound. Applying

a reduced state decoder in Section 4.3 yields an upper bound to the information rate [21]. But we

have already lowered the complexity with the use of the hL(t) and hU (t) that gave inequality (44). A

natural question arises: Is reduced complexity computation of strong ISI better than full complexity

computation of weak ISI. In the latter case the true information rate IhU
will be found, and this is

known to be larger than Ih.

In [21] the following 11-tap impulse response was considered: b[n] = 1/[1+ (n−5)2 ], 0 ≤ n ≤ 11.

An equivalent unit-energy minimum phase filter was found and a reduced state decoder with 100

states was applied, which results in the upper bound.

Here we construct a pulse hU (t) first with 7 taps, i.e. K = 7, and then 4; this results in 64 and

8 states respectively. Full complexity forward BCJR recursions are then performed. The results are
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Figure 7: Comparisons between the Monte Carlo based upper bound from [21] and the bounds
proposed here. The solid line is the true information rate of an 11-tap filter. Triangles mark the
upper bound from [21] computed with 100 states; asterixes and circles mark our upper bounds
computed with 8 and 64 states.

given in Figure 7. The solid curve is the true information rate, i.e. the one found by full complexity

(1024 states). The curve UB marked by triangles is the upper bound from [21]. The curves IhU

marked by asterixes and squares are the information rates of the filters IhU
with K = 4 and 7; these

are known to be upper bounds. The filter taps we used were bU = 0.8044, 0.7586, 0.4453, 0.2888 and

bU = 0.6223, 0.6281, 0.4008, 0.2369, 0.1442, 0.1097, 0.0608.

It is clear from Figure 7 that the new bounds are better than the bound from [21] for low SNR;

this is true even for a state complexity as low as 8 (K = 4). The curve computed with K = 7 is

tight for all SNR; however, the upper bound from [21] is still tighter for SNR above 3–4 dB. Why

the new bound works so well for low SNR can be explained as follows. The power spectrum of hU (t),

|HU (f)|2, has roughly the same shape as |H(f)|2, but it has more energy. Since the shapes are

similar hU (t) will simply act as h(t) but at a higher SNR. Since the energy EhU
is rather close to Eh

for large K and the slope of the information rate curve is small at low SNR, this increase will not

be very significant, and the bound becomes tight.

Appendix C: Capacity of Infinite Duration ISI

The validity of the constrained capacity formula (14) under infinite ISI is crucial. Shamai et. al. [14]

use a result of [15], but [15] only considers finite ISI. Here it will be shown that (14) holds for infinite

ISI as well. The idea in what follows is to construct a finite ISI response that has capacity arbitrarily

close to that of the infinite one.

23



If the spectrum G(λ) in Eq. (15) stems from finite ISI, then there is no problem, (14) is the

capacity as proved in [15]. Now assume that G(λ) stems from infinite ISI and has a finite number

d of discontinuities. Denote by λ� the �th discontinuity point with corresponding function values

c−� � limλ→λ−
�
G(λ) and c+� � limλ→λ+

�
G(λ). Define c� � |c+� − c−� |. Now create a continuous

spectrum, if c−� < c+� then connect the point G(λ� − ε) and G(λ�) with a smooth arc; if c−� > c+� ,

connect G(λ�) and G(λ� + ε). Let G(λ) + Z(λ) denote the continuous spectra and construct it such

that 0 ≤ Z(λ) ≤ max(c1, . . . , cd), 0 ≤ λ ≤ π.

We have the Fourier transform pair

G(λ) + Z(λ) =
∞∑

n=−∞
(g[n] + z[n])ej2πnλ

g[n] + z[n] =
∫ 1/2

−1/2
[G(λ) + Z(λ)] e−j2πnλdλ

Now apply Fejer summation:

SN (λ) �
N∑

n=−N

(g[n] + z[n])
(

1 − |n|
N

)
ej2πnλ.

A well known result is that if G(λ) +Z(λ) is continuous, then SN (λ) converges uniformly to G(λ) +

Z(λ) as N → ∞. That is, there exists N such that maxλ |SN (λ)−G(λ)−Z(λ)| < ς, with arbitrarily

small ς. The finite sequence sN [n] � (g[n] + z[n])
(
1 − |n|

N

)
, −N ≤ n ≤ N is, from (58), an

autocorrelation sequence only if SN (λ) > 0, 0 ≤ λ ≤ π. If we define s̃N [n] = sN [n] + ςδ[n]

then it follows by the uniform convergence that s̃N [n] is a valid autocorrelation and that S̃N (λ) ≥
G(λ) +Z(λ), 0 ≤ λ ≤ π. This we write as S̃N (λ) = G(λ) +Z(λ) +E(λ), with E(λ) ≥ 0, 0 ≤ λ ≤ π.

The implication of s̃N [n] is that there exists a finite ISI sequence, with s̃N [n] as its autocorrelation,

that has capacity given by (14) and that can be related to the capacity of the infinite ISI spectrum

G(λ).

Denote the capacity of an arbitrary spectrum X(λ) as CDT(X). If X(λ) stems from finite ISI,

then we have CDT(X) = C(X) �
∫

log2 (1 + ξX(λ)) dλ, where ξ is the SNR. For infinite ISI, CDT(X)

is unknown; it will next be shown that CDT(X) is the form C(X) also in this case. Because C(X)

is the ultimate capacity for X(λ) it is clear that we must have

CDT(X) ≤ C(X).

From Section 4.1 we have that

CDT(G) ≥ CDT(G+ Z + E) − CDT(Z + E) = C(G+ Z + E) − CDT(Z + E). (59)
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where the last equality holds because G(λ) + Z(λ) + E(λ) represents finite ISI. Moreover, because

Z(λ) ≥ 0 all λ and E(λ) ≥ 0 all λ we have from the form of C(X) that C(G) ≤ C(G + Z + E).

Using the inequality chains CDT(G) ≤ C(G) ≤ C(G+E + Z) and CDT(Z +E) ≤ C(Z +E) in (59)

gives

CDT(G) ≥ C(G) − CDT(Z + E) ≥ C(G) − C(Z + E). (60)

We now proceed by upper bounding the term C(Z + E). Split the integral into two parts

C(Z + E) =
∫

W (ε)
log2 (1 + ξE(λ)) dλ+

∫
W̄ (ε)

log2 (1 + ξ [Z(λ) + E(λ)]) dλ, (61)

where W (ε) is the interval where Z(λ) = 0 and W̄ (ε) is the interval where Z(λ) > 0. The two right

hand terms of (61) can be bounded as

C(Z + E) <
(

1
2
− dε

)
log2 (1 + ξς) + dε log2 (1 + ξ [ς + max(c1, . . . , cd)]) . (62)

The right hand side can be made arbitrarily small by taking small enough ε and a large enough N

such that ς is sufficiently small. This implies that CDT(G) is bounded by

C(G) − ε′ ≤ CDT(G) ≤ C(G)

for all ε′ > 0 and it thus follows that CDT(G) = C(G). This proves that (14) holds also for infinite

duration ISI signals, so long as G(λ) has finitely many disconinuities.
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