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ABSTRACT 

The incidence of diabetes is increasing worldwide, with the most prevalent form 
being type 2 diabetes. Two fundamental processes contribute to the development of 
type 2 diabetes: insulin resistance in target organs and insufficient insulin secretion 
from the pancreatic beta-cells. The aim of this thesis was to explore the role of DNA 
methylation and common genetic variation on glucose metabolism and the 
pathogenesis of type 2 diabetes. 

Reduced oxidative capacity of the mitochondria in skeletal muscle has been suggested 
to play a role in insulin resistance and type 2 diabetes. In studies I and II, we 
investigated the regulation of COX7A1 and ATP5O, which encode two subunits of 
the mitochondrial respiratory chain. We found that genetic variation and age were 
associated with skeletal muscle mRNA expression in both studies. mRNA levels were 
also positively correlated with the expression of the transcriptional co-activator 
PPARGC1A and insulin-stimulated glucose uptake, i.e., elderly individuals had 
reduced mRNA expression levels and reduced in vivo glucose uptake. Additionally, 
DNA methylation of the COX7A1 promoter was increased in elderly individuals 
concordant with the decrease in COX7A1 mRNA expression, suggesting a role for 
genetic, epigenetic and non-genetic factors in gene regulation. 

In study III, we investigated a common genetic variant in MTNR1B that has 
previously been found to be associated with increased risk of type 2 diabetes, 
increased fasting plasma glucose and impaired insulin secretion in populations of 
European ancestry. We aimed to replicate these findings in a type 2 diabetes case-
control cohort of Han Chinese ancestry. We confirmed the association between 
rs10830963 and both the risk of type 2 diabetes and increased fasting plasma glucose 
levels, suggesting a relatively ancient origin for this variant. 

In study IV, common genetic variants that introduce or remove potential DNA 
methylation sites were selected based on their association with the risk of type 2 
diabetes and changes in gene expression in blood. These genetic variants were 
analysed together with the level of DNA methylation and gene expression in human 
skeletal muscle, adipose tissue, blood and pancreatic islets. We found that 18 of the 
19 sites that we analysed were associated with a difference in DNA methylation 
related to genotype, and for 11 of these sites this finding was consistent in all four 
tissues. Additionally, our data suggested a tissue-specific pattern of DNA methylation. 
Our results confirm an interaction between genetic and epigenetic mechanisms, 
which introduces a new level of complexity to our knowledge of gene regulation in 
type 2 diabetes. 
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POPULÄRVETENSKAPLIG SAMMANFATTNING 

Diabetes är en grupp sjukdomar som alla kännetecknas av en förhöjd nivå av 
sockerarten glukos i blodet. Antalet individer som drabbas av diabetes ökar hela tiden, 
en utveckling som ses över hela världen. Bara i Sverige har drygt 5% av befolkningen  
diagnosen diabetes, motsvarande 484.400 personer i åldern 20-79 år. 

Typ 2 diabetes är den vanligaste formen av diabetes, och kallades tidigare också 
åldersdiabetes. Denna form av diabetes är förknippad med övervikt och för lite 
motion. För att kroppen ska fungera optimalt måste halten av glukos i blodet hela 
tiden hållas på en jämn nivå, oavsett om man precis ätit en stor måltid eller om man 
sover. Stigande glukosnivåer i blodet regleras med hjälp av hormonet insulin, som får 
kroppens celler, framför allt i muskel och lever, att ta upp och lagra glukos. Insulin 
tillverkas och utsöndras från betaceller i bukspottskörteln. 

Orsaken till typ 2 diabetes är ännu inte helt känd, men man vet att både miljöfaktorer 
och flera olika ärftliga faktorer spelar roll. Sjukdomen föregås ofta av en längre tid 
med insulin-resistens, ett tillstånd där kroppens celler inte längre svarar normalt på 
insulinets verkan, vilket försämrar upptaget av glukos från blodet. Till en början kan 
kroppen kompensera genom att öka utsöndringen av insulin, men när betacellerna i 
bukspottskörteln inte längre klarar av att upprätthålla detta stiger glukoshalterna och 
resulterar i typ 2 diabetes. Kroniskt höga halter av glukos i blodet kan ge upphov till 
en rad komplikationer, tex hjärt- och kärlsjukdomar som också är en av de största 
dödorsakerna i typ 2 diabetes. 

Glukos som tas upp av kroppens celler kan lagras för senare bruk eller användas för 
att producera energi. Mitokondrien är den enhet i kroppens alla celler som står för 
produktionen av energi, i form av en molekyl som kallas ATP. Mitokondrien är 
uppbyggd av flera mindre enheter, och delar av dessa har visat sig vara mindre 
uttryckta i muskel hos patienter med typ 2 diabetes än i friska individer. Detta kan 
leda till att energiproduktion och omsättning av glukos i cellen inte fungerar optimalt, 
och därmed försämras också upptag av glukos från blodet till cellerna.  

Vi har studerat två delar i mitokondriens mindre enheter, COX7A1 och ATP5O, för 
att ta reda på vad som reglerar deras uttryck och på så sätt kunna förstå varför 
nivåerna av dem är sänkta i muskelceller från typ 2 diabetiker. Vi fann att både 
COX7A1 och ATP5O påverkas negativt av ökad ålder och av ärftliga faktorer, och vi 
upptäckte också att en minskning av dem bidrog till sämre glukosupptag från blodet. 
COX7A1 visade sig också vara negativt påverkad av epigenetiska faktorer, i form av 
ökad DNA-metylering. 
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Epigenetik är ett dynamiskt fenomen som kan kontrollera när, var och hur ett 
arvsanlag ska komma till uttryck. Epigenetiska förändringar inträffar under livets gång 
och skiljer sig åt mellan olika celler och olika organ. Detta är i stor kontrast till 
genetiken, som omfattar vårt arvsanlag ordnat i en lång kedja av DNA som är 
konstant över tid och i alla kroppens celler. Ordningen på beståndsdelarna i DNA-
kedjan utgör den genetiska informationen, vårt arv. Epigenetiken påverkar inte 
arvsmassan direkt, men kan påverka hur arvsmassan tolkas och kommer till uttryck i 
kroppen, och fungerar som cellens minne. 

DNA-metylering är ett exempel på epigenetisk reglering, där en metylgrupp (-CH3) 
binder till DNA-kedjan och påverkar hur arvsanlaget kommer att tolkas. Detta är en 
reversibel process, dvs metylgrupperna kan tas bort igen, och beroende på i vilka celler 
och organ, samt när DNA-metyleringen sker, så kommer vårt arvsanlag att uttryckas 
på olika sätt. 

Vanligt förekommande genetisk variation kan användas för att identifiera regioner i 
vår arvsmassa som ökar risken för att drabbas av sjukdomar, som tex typ 2 diabetes. 
Vi har studerat genetisk variation i en region av arvsmassan som innehåller genen för 
MTNR1B. Uttryck av denna gen ger produktion av en enhet där melatonin kan binda 
in, ett hormon som påverkas av ljuset och hjälper kroppen att reglera dygnsrytmen. 
Genetisk variation i MTNR1B har tidigare visat sig ha ett samband med risk att 
drabbas av typ 2 diabetes. Arvsanlaget skiljer sig åt mellan olika individer och det är 
därför vi alla är olika och har olika risk för att drabbas av sjukdomar. Skillnaderna i 
arvsanlag skiljer sig dessutom åt mellan personer med olika etniskt och geografiskt 
ursprung. Vårt syfte var att ta reda på om den genetiska variationen i MTNR1B som 
ökar risken för typ 2 diabetes i européer, också har samma effekt hos personer från 
Shanghai i Kina. Resultaten visade att samma genetiska variation var förknippad med 
ökad risk för typ 2 diabetes och med högre blodsockernivåer också i de studerade 
individerna från Kina. Effekten var av samma storlek som visats i européer i de 
tidigare studierna, men riskvarianten är vanligare i individerna med kinesiskt 
ursprung och har därför påverkan på en större andel av befolkningen. 

Slutligen ville vi kombinera genetisk variation med DNA metylering för att få djupare 
förståelse av hur regleringen av vårt arvsanlag går till. Vi valde genetiska varianter som 
tidigare visat sig ha en koppling till typ 2 diabetes och som också påverkar hur 
arvsanlagen i närheten uttrycks i blod. Dessutom inkluderades bara genetiska 
varianter som kan påverka DNA-metylering, dvs som antingen ger upphov till eller 
tar bort en sekvens i DNAt där en metylgrupp kan binda in. Vi fann att majoriteten 
av de varianterna vi undersökt förändrade graden av DNA-metylering i det specifika 
området, och att detta också i vissa fall påverkade uttrycket av arvsanlaget. 

Identifiering av nya gener och nya mekanismer för hur dessa kan påverka kroppens 
funktion leder till ökad förståelse för sjukdomens utveckling. I slutändan kan detta 
användas för förbättrad behandling eller förebyggande av typ 2 diabetes. 
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INTRODUCTION 

Many diseases of concern today are multifactorial in nature, making them difficult to 
predict and cure. Type 2 diabetes is one example of this type of disease and has been 
subjected to intense study over a long period of time. There are well established 
factors involved in the pathogenesis of the disease, but none of these factors 
constitutes a single and inevitable cause. The many risk factors involved in type 2 
diabetes operate at different levels, the societal level, at the level of individual 
behaviour and at the biological level, resulting in a complex network of interactions. 

Diabetes mellitus 

Diabetes mellitus describes a group of disorders with different aetiologies, with the 
common denominator being a chronic increase in blood glucose levels [1]. Glycaemia 
is normally maintained within a narrow range by the opposing actions of the key 
hormones insulin and glucagon, both of which are produced in the pancreatic islets of 
Langerhans. Insulin is an anabolic hormone that promotes glucose uptake into liver, 
muscle and adipose tissue after food intake, thereby storing energy for later use. 
During fasting, the catabolic action of glucagon promotes the mobilisation of stored 
energy, mainly through hepatic glucose production. In diabetes mellitus, the interplay 
between these two hormones is disturbed, causing deterioration of fundamental body 
functions. 

The definition of chronic hyperglycaemia that is characteristic of diabetes mellitus, 
according to the World Health Organization (WHO) is: a fasting plasma glucose 
concentration ≥ 7.0 mmol/l or plasma glucose ≥ 11.1 mmol/l two hours after a 75 g 
oral glucose load measured on two occasions in asymptomatic patients [1]. The most 
well-characterised sub-types of diabetes include type 1 diabetes, type 2 diabetes, latent 
autoimmune diabetes in adults (LADA), maturity onset diabetes of the young 
(MODY) and maternally inherited diabetes and deafness (MIDD), of which type 2 
diabetes is by far the most prevalent (> 90% of all diabetic patients). 

For 2010, the estimated global prevalence of diabetes is 6.4%, representing 285 
million individuals of the world’s adult population. In Sweden, 484,400 people are 
known to have diabetes, i.e., 5.2% of the Swedish population aged 20-79 [2]. While 
the prevalence of diabetes is increasing worldwide, the largest increase will occur in 
developing countries, particularly in Asia, including China and India, which already 
contain the largest number of individuals with diabetes [3]. 
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Type 2 diabetes 

Type 2 diabetes is a slowly progressing, chronic disease that is characterised by 
hyperglycaemia resulting from impaired pancreatic beta-cell function and insulin 
resistance in the liver and peripheral target tissues (Figure 1). Pancreatic insulin 
secretion is determined both by the total beta-cell mass and the function of each 
individual beta-cell. In the early stages of insulin resistance, prior to the development 
of type 2 diabetes, there appears to be an increase in islet mass [4]. However, in 
patients with overt type 2 diabetes, beta-cell mass is often reduced, partially due to 
increased apoptosis induced by high concentrations of glucose (glucotoxicity) and free 
fatty acids (lipotoxicity) [4]. 

The first choice for treatment of type 2 diabetes is life-style interventions followed by 
oral antidiabetic agents that act by increasing endogenous insulin secretion or 
improving insulin sensitivity in the liver and/or peripheral tissues. In later stages of 
the disease, insulin injections often become necessary to maintain metabolic control, 
due to the decrease in beta-cell mass and deterioration of beta-cell function. High 
glucose levels can have long-term damaging effects on various organs, including the 
cardiovascular system, eyes, nerves and kidneys [5, 6]. 

Though there is a high degree of ethnic and geographic variation in the prevalence of 
type 2 diabetes, its prevalence is rapidly increasing worldwide, mainly due to aging 
populations, urbanisation and the increasing prevalence of obesity and physical 
inactivity [2]. Our knowledge of how these factors increase susceptibility to the 
disease still remains limited, and molecular mechanisms linking environmental factors 
to type 2 diabetes currently require further attention. 

Insulin resistance 

Insulin resistance is a condition that occurs when cells in the body become unable to 
respond to normal amounts of insulin [7]. The major target organs for insulin are 
skeletal muscle and the liver because it is the sites where the majority of glucose 
uptake occurs after a meal [8]. Insulin is required to activate GLUT4, the transporter 
that is responsible for glucose uptake in both skeletal muscle and fat cells. Insulin also 
stimulates glycogen synthase, which catalyses the process of converting glucose post-
prandially to glycogen [8]. Insulin resistance leads to reduced glucose clearance from 
blood and, subsequently, a decrease in glucose oxidation and glycogen storage. 
Though adipose tissue only accounts for a small portion of glucose clearance, it is 
important in total glucose homeostasis, as a reduced effect of insulin in fat cells results 
in increased hydrolysis of triglycerides, which may further increase insulin resistance 
and hyperinsulinaemia by oxidative substrate competition [8, 9]. Insulin resistance in 
hepatocytes results in failure to suppress glucose production [8]. The decrease in 
glucose clearance from the blood and the increase in hepatic glucose production 
contribute to hyperglycaemia, forcing the pancreatic beta-cells to compensate by 
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producing more insulin. Enhanced insulin release from the pancreatic beta-cells 
maintains normoglycaemia in the early stages of insulin resistance, resulting in high 
plasma levels of insulin. When the beta-cells fail to adapt to the increasing demands 
for insulin production, maintenance of this balance is lost and hyperglycaemia and, 
eventually, type 2 diabetes occur (Figure 1). 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Insulin action and pathophysiology of hyperglycaemia in type 2 diabetes 

a. In normoglycaemic individuals, insulin suppresses hepatic glucose production and stimulates glucose 
uptake into skeletal muscle and adipose tissue. 
b. Type 2 diabetic patients display defects of both pancreatic insulin secretion and insulin action in 
target tissues, leading to a decrease in glucose clearance from the blood and an increase in glucose output 
from the liver, resulting in hyperglycaemia. 
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Insulin resistance is common in people with visceral adiposity, hypertension, 
hyperglycaemia and dyslipidaemia. Adipose cells produce significant amounts of 
adipokines, including leptin, adiponectin, cytokines and proteins involved in 
coagulation and vascular control [10]. The primary role for leptin is to signal energy 
deficiency to the brain, but it also suppresses hepatic glucose production and 
stimulates lipid catabolism [10, 11]. Several studies have suggested that 
proinflammatory cytokines disrupt normal insulin action in fat and muscle cells and 
may, thus, be a major factor causing whole-body insulin resistance in obese patients 
[11]. Additionally, visceral adiposity is related to an accumulation of fat in the liver, 
leading to an excessive release of free fatty acids into the bloodstream and increased 
hepatic glucose production that, in turn, exacerbates peripheral insulin resistance and 
increases the likelihood of type 2 diabetes. Insulin resistance has also been found to be 
associated with infections, which are mediated primarily by cytokines, and in 
association with the use of glucocorticoids. 

Oxidative phosphorylation 

Oxidative phosphorylation takes place in the inner membrane of the mitochondria 
and is the main source of energy production in human cells. Mitochondrial oxidation 
of carbohydrates, proteins and fat requires proper cellular uptake of nutrients and 
results in the production of H2O, CO2 and ATP [12]. During oxidative 
phosphorylation, a set of redox reactions occurs in which electrons are transferred 
from electron donors to electron acceptors that release the energy that is used to form 
ATP. These redox reactions are carried out by sets of enzymes in the electron 
transport chain, which contains five protein complexes (Figure 2) [12]. In pancreatic 
beta-cells, the production of ATP is crucial for normal insulin secretion to occur. In 
other tissues, such as skeletal muscle and fat, the production of ATP is also essential 
for energy release and to maintain proper whole-body metabolism. In the muscle and 
liver of insulin-resistant individuals, there is an increase in lipid accumulation that is 
associated with impaired mitochondrial oxidative activity [13]. Oxidative 
phosphorylation is thought to be of great interest in understanding the pathogenesis 
of type 2 diabetes because impaired ATP production due to reduced oxidative 
phosphorylation is considered a common denominator in pancreatic islets and skeletal 
muscle, both of which are target tissues in type 2 diabetes [14]. However, whether 
mitochondrial dysfunction is a cause or a consequence of metabolic disorders is not 
clear [12]. 

Oxidative capacity and mitochondrial function in skeletal muscle decline with age, as 
well as in insulin-resistant and type 2 diabetic patients [13, 15]. Mitochondrial 
function and mitochondrial biogenesis require the expression of genes that are 
encoded by both nuclear and mitochondrial DNA. Both mitochondrial- and a 
number of nuclear-encoded genes that are involved in oxidative phosphorylation are 
down-regulated in skeletal muscle from patients with type 2 diabetes [16-19] and in 
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elderly individuals [20, 21], which is most likely a result of both inherited and 
environmental factors [20, 21]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The electron transport chain and oxidative phosphorylation 

The respiratory chain contains five multiprotein enzyme complexes and two electron carriers. Complex I, 
NADH dehydrogenase; Complex II, succinate dehydrogenase; Complex III, ubiquinol-cytochrome c; 
Complex IV, cytochrome c oxidase; Complex V, ATP synthase; Q, coenzyme Q ubiquinone; C, 
cytochrome c. 

Genetics of type 2 diabetes 

The human genome comprises approximately three billion base pairs, and the 
information that it stores is determined by the order of the four different nucleotides 
within DNA sequences. The total number of protein-coding genes, not including 
non-coding RNAs, is estimated to be from 20,000 – 25,000 [22]. Recently, it has 
been shown that most of the human genome is actually transcribed, though there are 
many transcripts to which a biological role cannot yet be assigned [23]. Nucleotide 
diversity between humans is approximately 0.1%, and the most abundant genetic 
variation is in the form of single nucleotide polymorphisms (SNPs). It is estimated 
that the genome contains approximately 10 million common SNPs, i.e., SNPs having 
a minor allele frequency (MAF) ≥ 5% [24]. 

Type 2 diabetes has long been attributed to a complex interaction between an 
individual’s genetic background and multiple environmental factors. The genetic 
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contribution has been confirmed by twin, family and population studies. For 
example, the type 2 diabetes concordance rate is higher in monozygotic twins 
compared with dizygotic twins [25, 26], and individuals who have one parent with 
type 2 diabetes have a 40% lifetime risk for developing the disease, and if both 
parents are affected the risk is higher [27]. This finding clearly demonstrates that the 
closer the genetic relationship between two individuals, the more likely they are to 
have the same glucose tolerance status. Many genetic variants have been convincingly 
and repeatedly found to associate with the disease, each of which confers only a small 
increase in risk, making causality difficult to prove and also limiting the prognostic 
and diagnostic potential of these individual variants [28]. 

Genome-wide association studies 

Although the genetics of type 2 diabetes have been subjected to intense study for a 
long period of time, until recently the progress of these investigations has been 
limited. The identification of genetic variation in TCF7L2 in 2006 followed by the 
completion of a number of genome-wide association studies (GWASs) was a 
breakthrough in the genetics of type 2 diabetes [29-33]. GWASs and subsequent large 
meta-analysis identified several novel type 2 diabetes risk variants. However, for many 
of these variants the function still remains to be elucidated [28, 34, 35]. GWAS are 
performed using large case-control cohorts without a prior hypothesis, making them 
ideal for finding new risk genes and pathophysiological pathways. Most of the 
established type 2 diabetes risk loci have been found to have a predominant effect on 
insulin secretion, including SNPs in or near KCNJ11, TCF7L2, CDKAL1, 
CDKN2A/B, IGF2BP2, HNF1B, HHEX/IDE, JAZF1 and SLC30A8, whereas a 
PPARG SNP influences insulin action. Other SNPs influence the risk of type 2 
diabetes through influencing related traits: for example FTO has a primary association 
with body mass index (BMI) [36], and MTNR1B was first identified to associate with 
fasting glucose levels [37-39]. 

Epigenetics in type 2 diabetes 

Epigenetics has been described as the study of the heritable changes in gene function 
that occur without a change in the DNA sequence. There are two distinct epigenetic 
processes that are known to occur: changes in chromatin-associated proteins, such as 
histone modifications, and DNA methylation. By regulating chromatin structure and 
DNA accessibility, these chemical modifications influence genome structure during 
different developmental stages and diseases. Whereas every cell in the human body 
has the same genome, the epigenome is different in different cells and tissue types and 
may also change over time. Epigenetic modifications can also be more easily 
manipulated than genomic mutations and, thus, present the potential for 
pharmacological interventions. 
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Epigenetic mechanisms such as DNA methylation and histone modifications are 
increasingly considered to be important in phenotype transmission and the 
development of different diseases. In 1992, the thrifty phenotype hypothesis was 
introduced by Hales and Barker [40], who proposed that the environment in early life 
might influence later risk of developing type 2 diabetes. In particular, low birth 
weight and poor nutrition in early life have been shown to have a connection to adult 
type 2 diabetes and, accordingly, to impaired insulin secretion and insulin resistance 
[41]. Inadequate nutrition may lead to chronic alterations in the body’s ability to 
maintain metabolism, hormone levels and the cell number of important organs [42]. 
One hypothesis to explain how events in early life can give rise to disease first decades 
later is that developmental plasticity allows the early human embryo to adapt to the 
intrauterine condition of malnutrition, and, when the environmental situation 
changes later in life, the benefit of the improved ability to make use of nutrients 
becomes a disadvantage. Because the genome itself cannot change, this developmental 
programming could potentially be explained by epigenetic regulation. However, there 
is currently limited knowledge about whether epigenetic factors influence the 
pathogenesis of type 2 diabetes. 

Some evidence for the involvement of epigenetics in the pathogenesis of type 2 
diabetes comes from a data-mining analysis of more than 12 million Medline records. 
Methylation and chromatin were both found among the top hits having a relation to 
type 2 diabetes [43]. There are also several examples of epigenetic involvement in the 
regulation of insulin gene expression, both at the levels of DNA methylation and 
chromatin structure [44]. Additionally, type 2 diabetic patients have been shown to 
have a decrease in S-adenosylmethionine, the main physiological donor of methyl 
groups. This decrease was also associated with the progression of the disease [45]. Our 
lifestyles and environment can, therefore, affect the way that our genes are expressed, 
leading even identical twins to become distinct as they age. 

DNA methylation 

In differentiated mammalian cells, the addition of methyl groups to DNA occurs on 
cytosine residues, and these modifications are mostly established in the context of 
cytosine guanine dinucleotides (CpGs). The enzymes that are responsible for the 
process of DNA methylation in humans are DNA methyl transferases (DNMTs), 
which act in concert with different regulatory factors. DNMT1 is the most abundant 
of these and is considered the key maintenance methyl transferase, acting primarily on 
hemimethylated DNA, i.e., DNA where only one of the two strands is methylated. 
DNMT3A and 3B are required for de novo methylation, i.e., to establish DNA 
methylation patterns early in development, but they also have a role in maintaining 
the global pattern of DNA methylation. DNMT3L has no catalytic activity but is 
nevertheless essential for methylation imprinting and appropriate gene expression, as 
suggested by its ability to stimulate and direct the other de novo DNMTs [46]. 
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DNA methylation is essential for normal development to occur and is responsible for 
X-chromosome inactivation in females. It also remains an important process for the 
survival of differentiated cells. Methylation of CpGs can regulate gene expression in 
different ways (Figure 3) and is generally associated with gene repression [47]: the 
methyl group attached to the DNA could directly prevent transcription factors or 
other proteins from binding to the target DNA sequence (Figure 3b), or 
transcriptional repressors with a methyl-CpG binding domain may bind and inhibit 
transcription by either preventing interactions with activators or by recruiting histone 
deacetylases and additional co-repressors and thereby modifying the surrounding 
chromatin structure (Figure 3c) [47]. Recently, it was shown that the nucleosomal 
confirmation can be transformed directly by methylation into a more compact, rigid 
and more tightly wrapped nucleosome structure [48]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. CpG DNA methylation and regulation of gene expression 

A simplified picture of how DNA methylation interferes with the binding of activator or repressor 
molecules, thereby having the potential to influence gene expression. The black lines represent the gene 
promoter region; the blue ovals represent transcription factors; and the black balls with protruding blue 
dots represent methyl groups. a. No methyl group is attached and a transcription factor has access to and 
binds the DNA and activates gene expression. b. The transcription factor cannot recognise and access its 
binding site when it contains a methylated CpG and no activation of gene expression occurs. c. Methyl-
CpG binding proteins (MeCP) are attracted to methylated CpGs and act to repress gene expression by 
additional recruitment of histone deacetylases (HDACs) and different co-repressors (CoRepr). 
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AIMS OF THIS THESIS 

The overall aim of this thesis was to explore the role of DNA methylation and 
common genetic variation in the pathogenesis of type 2 diabetes. Environmental 
factors were also considered and the studies that were carried out include both 
candidate gene and genome-wide approaches. 

In studies I and II, genetic and epigenetic factors were analysed in candidate genes 
that are involved in oxidative phosphorylation and then related to their expression 
and to glucose metabolism and risk of type 2 diabetes. 

Study III aimed to replicate in a Chinese cohort an association that was previously 
reported in Europeans of a genetic variant in MTNR1B with fasting plasma glucose 
and type 2 diabetes. 

The aim of study IV was to select common genetic variants (SNPs) that introduce or 
delete possible DNA methylation sites (CG-dinucleotides) and that are associated 
with type 2 diabetes and gene expression and to determine whether these SNPs are 
associated with DNA methylation status and gene expression in human skeletal 
muscle, adipose tissue, blood cells and pancreatic islets. 
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STUDY PARTICIPANTS 

All studies were approved by the regional ethics committees and conducted according 
to the Declaration of Helsinki. 

Twin studies 

Subjects included in the twin cohort in studies I and II were selected from the Danish 
Twin Register. A total number of 98 non-diabetic monozygotic (MZ) and dizygotic 
(DZ) same sex twin pairs were selected; 55 were young (22-31 years), and 43 were 
elderly (57-66 years). Blood samples and biopsies from the vastus lateralis muscle were 
obtained before and after a two-hour hyperinsulinaemic euglycaemic clamp. To 
estimate rates of glucose and lipid oxidation, indirect calorimetry was performed in 
the basal state and at the end of the clamp. Body composition was determined by 
DEXA scanning [49]. 

Table 1. Clinical characteristics of participants in the twin study 

Characteristics Twins 
Young Elderly 

n (male/female) 110 (60/50) 86 (38/48) 
n (monozygotic/dizygotic) 110 (66/44) 86 (42/44) 
Age (years) 28.0 ± 1.9 62.4 ± 2.0 
BMI (kg/m2) 24.1 ± 3.1 26.1 ± 4.4 
VO2max (maximal aerobic capacity, ml/kg LBM/min) 39.6 ± 7.8 26.3 ± 6.9 
Insulin-stimulated glucose uptake (mg/kg LBM/min) 11.7 ± 3.2 9.9 ± 3.3 

Data are expressed as the means ± SD. LBM, lean body mass. 

Type 2 diabetes case-control cohorts 

In all studies, type 2 diabetes was diagnosed according to 1999 WHO criteria [1].  

Botnia 

The Botnia Study cohort, which was used in papers I and II, is a family-based study 
that was established in 1990 with the aim of identifying type 2 diabetes susceptibility 
genes [50]. 1466 individuals from the Botnia Study were included in our studies: 751 
type 2 diabetic patients, diagnosed after the age of 35, and 715 non-diabetic controls, 
without any first-degree relatives with type 2 diabetes. 
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Malmö 

A second type 2 diabetes case-control cohort from Malmö that included 2830 
Scandinavian type 2 diabetes cases from a local diabetes register with the age of onset 
above 35 years was used in study I [51]. 3550 unrelated, ethnically matched control 
individuals were selected from the population-based Malmö Diet and Cancer Study 
[52]. The controls had fasting plasma glucose levels below 5.6 mmol/l and no family 
history of type 2 diabetes. 

Han Chinese 

In study III, a Han Chinese cohort from Shanghai was used, including 1165 patients 
diagnosed with type 2 diabetes after the age of 27 and 1105 normoglycaemic controls. 
All individuals were unrelated and those with known subtypes of diabetes were 
excluded based on antibody measurements and pattern of inheritance. Controls were 
older than 50 years, had no family history of diabetes, and normoglycaemia was 
verified by an oral glucose tolerance test (OGTT). 

Table 2. Clinical characteristics of study participants in case-control cohorts 

Characteristics Botnia cohort Malmö cohort Chinese cohort 
Cases Controls Cases Controls Cases Controls 

N 751 715 2830 3550 1165 1105 
male/female 399/352 345/370 1667/1163 1340/2210 455/710 349/756 
Age (years) 54.5 ± 9.4 53.7 ± 11.4 57.9 ± 11.5 57.5 ± 6.0 60.3 ± 10.9 59.4 ± 7.7 
BMI (kg/m2) 28.9 ± 4.8 25.8 ± 3.7 29.6 ± 5.5 25.1 ± 3.6 25.2 ± 3.4 24.1 ± 3.0 
FPG (mmol/l) 9.1 ± 3.2 5.3 ± 0.5 11.9 ± 4.3 5.4 ± 0.4 8.4 ± 3.0 5.2 ± 0.4 
2 h PG (mmol/l) 13.8 ± 5.8 5.2 ± 1.2   15.1 ± 5.3 6.0 ± 1.0 

Data are expressed as the means ± SD. FPG, fasting plasma glucose; PG, plasma glucose. 

Intervention studies 

In study IV, two cohorts from two different exercise intervention studies were 
included for a total of 114 individuals. All subjects underwent a physical examination, 
an oral glucose tolerance test and a test for aerobic capacity: either a submaximal 
exercise test (Malmö) or a 10-min walking test (Botnia). Muscle biopsies from the 
vastus lateralis were obtained during the fasting state simultaneously with 
subcutaneous fat biopsies from the thigh and venous blood samples. Both DNA and 
RNA were extracted from all tissues including the blood samples.  

Malmö intervention study 

The Malmö cohort included 50 sedentary but healthy young men, with a mean age of 
37.6 years. They were selected to have a first-degree family history of type 2 diabetes 
(n=24) or not (n=26), and the two groups were matched for age, BMI and VO2max. 
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Botnia PPP intervention study 

The Botnia PPP (prevalence, prediction and prevention of diabetes) study is a 
population-based study from the Botnia region in Finland that was initiated in 2004 
[53]. From the Botnia PPP, 64 normoglycaemic men and women of different ages 
were included in the study: 32 of them with and 32 without a family history of type 2 
diabetes. 

Table 3. Clinical characteristics of participants in exercise intervention studies 

Characteristics Malmö intervention Botnia intervention 
FH+ FH- FH+ FH- 

n (male/female) 24 (24/0) 26 (26/0) 32 (17/15) 32 (18/14) 
Age (years) 38.0 ± 3.5 37.4 ± 4.9 49.5 ± 11.4 51.0 ± 12.5 
BMI (kg/m2) 28.2 ± 3.0 27.8 ± 3.3 28.4 ± 4.8 27.1 ± 3.1 
FPG (mmol/l) 4.2 ± 0.4 4.3 ± 0.6 5.4 ± 0.6 5.3 ± 0.5 
VO2max (ml/kg LBM/min) 41.8 ± 4.6 40.0 ± 5.4 39.1 ± 6.8 38.9 ± 6.5 

Data are expressed as the means ± SD. FH+, first degree family history of type 2 diabetes; FH-, no family 
history of type 2 diabetes; FPG, fasting plasma glucose; VO2max, maximal aerobic capacity. 

Human islets 

24 DNA and RNA samples of human pancreatic islets from the human tissue 
laboratory at the Lund University Diabetes Centre (LUDC) were used for these 
studies. Human islets and clinical information about the donors were provided by 
Professor Olle Korsgren at the Nordic network for clinical islet transplantation, 
Uppsala University, Sweden. Both men and women with a mean age of 55.4 (range 
26 to 73 years) and a mean BMI of 25.2 kg/m2 (range 17.6 to 29.4 kg/m2) were 
included. 

Table 4. Clinical characteristics of donors of human pancreatic islets 

Characteristics Human pancreatic islets 

n (male/female) 24 (14/10) 
Age (years) 55.4 ± 13.1 
BMI (kg/m2) 25.2 ± 3.0 

Data are expressed as the means ± SD. 
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METHODOLOGY 

Phenotype characterisation 

An oral glucose tolerance test (OGTT) can be used to diagnose diabetes mellitus [54]. 
A dose of 75 g of glucose is given to a fasting patient, and blood glucose levels are 
then measured over the following two hours. After two hours, a glucose level < 7.8 
mmol/l is considered normal; between 7.8 and 11.0 mmol/l is classified as impaired 
glucose tolerance; and a glucose levels ≥ 11.1 mmol/l confirms a diagnosis of diabetes 
[1]. 

The hyperinsulinaemic euglycaemic clamp is a method for investigating and 
quantifying insulin resistance [55]. A primed-constant infusion of insulin (40 
mU/m2/min) is given for two hours, and the amount of glucose that must be infused 
to maintain normoglycaemia is used as a measure of insulin-stimulated glucose 
metabolism. Data from the last 30 minutes of the test are used because the glucose 
infusion rate is assumed to have achieved steady state during this period. A glucose 
infusion rate of > 7.5 mg/min indicates that the patient is insulin-sensitive, and rates 
< 4.0 mg/min suggest insulin resistance. Adding tritiated-labelled glucose to the study 
enables the calculation of endogenous glucose production and whole-body insulin-
stimulated glucose metabolism as the rate of appearance (Ra) and the rate of 
disappearance (Rd) of glucose. 

Selection of single nucleotide polymorphisms (SNPs) 

The HapMap project is an international collaboration with the aim to catalogue 
common genetic variants in the human genome in populations of different ethnicities 
[24, 56]. Genetic markers or SNPs that are located close to each other are inherited 
together more frequently than would occur by chance. This phenomenon is described 
as linkage disequilibrium (LD), where a high LD indicates that no or low 
recombination has occurred between the markers. This inheritance pattern of SNPs 
can be used to create haplotypes, a combination of alleles at multiple loci that are 
transmitted together on the same chromosome. Tag SNPs are a reduced number of 
SNPs that are used to describe a particular haplotype [57]. In studies I and II, tag 
SNPs in two candidate gene regions were selected for genotyping based on HapMap 
data (Release #23 phase II, on NCBI B36 assembly and dbSNP 126). In study IV we 
also used HapMap data for SNP selection and design of the study. 
 



 28 

Genotyping 

Two different methods were used for SNP genotyping: TaqMan genotyping to obtain 
data on individual genotypes, and iPLEX genotyping to analyse several SNPs 
simultaneously. For the design of studies III and IV, we used already existing 
genotype data from GWAS [30, 31, 33, 35]. 

iPLEX 

iPLEX genotyping by matrix-assisted laser desorption ionisation-time of flight mass 
spectrometry (MALDI-TOF MS) on the MassARRAY platform (Sequenom, San 
Diego, CA, USA) was used in all four studies. The iPLEX assay is based on single 
base extension and uses a DNA polymerase to incorporate a single labelled 
dideoxynucleoside triphosphate (ddNTP) next to the SNP. Primer extension 
products, representing the SNP alleles, are then separated based on mass. The assay 
can be multiplexed by adding non-template nucleotides to the 5’ end of the extension 
primer, thereby increasing the mass difference between alleles [58, 59]. 

TaqMan 

TaqMan allelic discrimination assays, run on the ABI7900HT sequence detection 
system (Applied Biosystems, Foster City, CA, USA), were used in studies I and II in 
cases where iPLEX failed and for the purpose of technical replication. The allelic 
discrimination assay contains two different fluorescently labelled probes, one for each 
allele of the SNP. Each probe consists of an oligonucleotide with a fluorescent 
reporter dye at the 5’ end and a quencher at the 3’ end. During PCR amplification, 
the TaqMan probes hybridise only to perfectly matching DNA, and Taq polymerase 
with 5’ to 3’ exonuclease activity cleaves the hybridised probe. This cleavage separates 
the quencher from the reporter, allowing the fluorescence of the reporter dye to be 
detected. The measured emission represents the genotype of each sample [60, 61]. 

DNA methylation analysis 

Methods for DNA methylation analysis can be either gene-specific or global; in the 
current studies we have focused on gene-specific methods. For gene-specific 
methylation analysis, a number of different techniques have been developed. Today, 
the bisulfite conversion method is the most commonly used DNA methylation 
technique for identifying specific methylation patterns. 

Bisulfite sequencing 

Treatment of DNA with sodium bisulfite converts cytosine residues to uracil, but 
does not affect 5-methylcytosine residues, i.e., methylated DNA. In the resulting 
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genomic sequence that is produced after PCR amplification, a cytosine residue 
denotes a methylated site whereas unmethylated DNA is seen as a thymine (Figure 4). 

The first bisulfite sequencing method that we used in our studies (I and II) included 
bisulfite treatment using the EZ DNA methylation kit (Zymo Research, Orange, CA, 
USA) followed by nested PCR with primers designed using MethPrimer [62]. The 
resulting PCR products were cloned into plasmid vectors (pCR 4-TOPO; Invitrogen, 
Carlsbad, CA, USA) and transformed and amplified using Escherichia coli. DNA from 
ten colonies of each sample was isolated and sequenced, and the level of DNA 
methylation was determined using BiQ Analyzer [63]. 

Secondly, following the bisulfite conversion and PCR amplification steps, we directly 
sequenced t samples. To be able to obtain a quantitative result, the sequencing trace 
files were analysed using ESME (epigenetic sequencing methylation analysis software; 
Epigenomics, Berlin, Germany) [64]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Analysis of DNA methylation using bisulfite conversion followed by PCR amplification 
and sequencing 

A simplified picture of the bisulfite conversion method and the following sequencing trace file. The 
figure is adapted from http://www.acgtinc.com/specialty_dna_sequencing.htm. 
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EpiTYPER 

EpiTYPER (Sequenom) is a tool for discovery and quantification of DNA 
methylation using the MassARRAY system, and was used in study IV. This method 
starts with bisulfite treatment of genomic DNA, followed by PCR amplification of 
selected regions in which a T7-promoter tag is introduced. These first steps are 
followed by in vitro RNA transcription on the reverse strand, and in the next step 
RNase A is used for base-specific cleavage. The cleavage products are analysed using 
MALDI-TOF MS, which discriminates between methylated and non-methylated 
DNA due to a shift in mass. By comparing the signal intensity between the mass 
signal of non-methylated and methylated template, the relative amount of 
methylation can be calculated [65, 66]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Overview of EpiTYPER process 

Picture adapted from Sequenom [65]. SAP, shrimp alkaline phosphatase. 

mRNA expression analysis 

In studies I and II, mRNA levels were quantified by TaqMan real-time PCR with an 
ABI7900HT detection system (Applied Biosystems) to identify changes in gene 
expression. In contrast to real-time PCR, the microarray method allows for 
quantification of most transcripts present in a sample, and this was applied in study 
IV. Both of these methods require that mRNA is converted into cDNA, using reverse 
transcription and random primers. 
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TaqMan 

TaqMan real-time PCR uses continuous measurements of fluorescence throughout 
the PCR reaction to quantify differences in cDNA levels between samples. The 
technique is based on the 5’ to 3’ exonuclease activity of Taq polymerase. In the real-
time PCR reaction, a combination of primers and a probe are used, where the probe 
is marked with a 5’ fluorescent reporter dye and a 3’ quencher. When the probe is free 
in solution, the quencher prevents the reporter dye from emitting a fluorescent signal. 
However, when the probe hybridises to the DNA and gets incorporated into a new 
DNA strand, both the quencher and the reporter dye are cleaved and released. The 
reporter dye then emits the fluorescent signal, which is measured each cycle by a 
detector. The cycle number where the fluorescence exceeds a threshold value is then 
recorded as the Ct-value, and these values can be compared between different samples 
[67]. Transcript quantity of the studied genes was normalised to the mRNA level of 
cyclophilin A, an endogenous control known to have consistent expression levels in 
skeletal muscle. Data were calculated using the standard curve method, i.e., a standard 
curve was generated for each primer/probe set confirmed to increase linearly with 
increasing amounts of cDNA [68]. 

Microarray  

The Affymetrix oligonucleotide microarray method (Affymetrix, Santa Clara, CA, 
USA) is based on slides with a solid surface that are covered with thousands of short 
DNA molecules called oligomere probes. The DNA sequence for each probe is 
specific for a certain transcript. The samples to be analysed are first labelled with a 
fluorescent dye and then hybridised to the arrays, and a laser is used to visualise the 
hybridised transcripts. The light emission is detected as a measure of the transcript 
level and is used for analysis of differences in gene expression between groups of 
samples. On the Human Gene 1.0 ST Array (Affymetrix), all well-annotated genes 
are represented by approximately 26 probes each [69]. Basic Affymetrix chip and 
experimental quality analyses were performed using the Expression Console Software 
package, and the robust multi-array average (RMA) method was used for probe 
summarisation and data normalisation [70]. 

Statistical analysis 

Phenotype characteristics are described as the means ± standard deviation (SD). Non-
normally distributed data were logarithmically transformed. Statistical calculations in 
studies I-III were performed using Number Cruncher Statistical Systems 2004 release 
(NCSS; Kaysville, UT, USA). 
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Association testing 

Association of individual genetic variants and type 2 diabetes was calculated using 
logistic regression, adjusted for age, sex and BMI, assuming an additive genetic 
model. The results are presented as odds ratio (OR) with 95% confidence intervals 
(CI). Power calculations were performed using the genetic power calculator 
(http://pngu.mgh.harvard.edu/~purcell/gpc/), assuming a type 2 diabetes prevalence 
of 6% in the population, a genotype relative risk of 1.3 at alpha = 0.05 and a minor 
allele frequency (MAF) > 5%. 

Linear regression 

In studies I and II, we used backward-elimination multivariate regression analysis to 
identify factors independently associated with the response variable with p > 0.05 set 
as the level for exclusion of model terms. In study III, a multivariate linear regression 
analysis including age, sex and BMI as covariates was used to test genetic association 
with fasting plasma glucose. 

Generalised estimating equations 

A basic assumption of regression analysis is that all observations are statistically 
independent. To correct for the strong intrapair correlation of twin data, generalised 
estimating equations (GEE) methodology was used in studies I and II [71, 72]. All 
observations were used for estimation of the beta-coefficient, whereas the variance was 
calculated using each twin pair as one cluster. 

Biometric modelling 

The intraclass correlation gives an estimate of the similarity within a monozygotic or 
dizygotic twin pair, respectively, and is used to calculate heritability. This analysis was 
applied in studies I and II, together with biometric modelling, which is a method 
used to estimate the degree of genetic and environmental influence on a phenotypic 
variable [73]. The models tested include the following parameters: genetic variance 
due to additive genetic effects or dominant genetic effects, and environmental 
variance due to an individual environment not shared with co-twin or a common 
environment shared among co-twins. 

DNA methylation 

Power to detect differences in DNA methylation in studies I and II was calculated 
using DSS research statistical power calculator (www.dssresearch.com; Fort Worth, 
TX, USA). In study I, a robust rank-order test was used to test whether the total 
amount of DNA methylation was different between the two age groups [74]. 
 
 

http://pngu.mgh.harvard.edu/~purcell/gpc/�
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Hierarchical clustering 

In study IV, a hierarchical clustering analysis was performed in R using the ‘hclust’ 
and ‘dist’ methods of the Core Stats package [75]. Each observation was initially 
assigned to its own cluster, and the distance between each cluster was calculated using 
the N-dimensional Euclidean distance between the two vectors of the observed 
methylation ratio. The two clusters with the nearest distance were merged, and the 
distances between all clusters were recalculated, and the process was then repeated 
until there was only one remaining cluster containing all observations. Bootstrap 
resampling was used to generate p-values, to demonstrate with confidence that each 
cluster was different than the others. 

mQTL analysis 

The experimental variables analysed in the mQTL analysis were the percentage of 
methylation detected at CpG sites in selected amplicons and the genotype of a SNP 
in the same region. Both quality control and analysis were carried out separately in 
each of the four tissues in a stratified manner. We additionally controlled for several 
other covariates including age, sex, BMI, and plate ID (where methylation data 
within a single tissue was collected across more than one reaction plate). 

We performed an inverse-normal transformation on the methylation data to yield a 
normally distributed phenotype that could be used in a standard parametric test. For 
each CpG site, the following procedure was performed: 
The age, sex, and BMI covariates were taken in their raw form, while plate ID was 
converted to a contrast (a set of variables that only take on the values of 0 and 1). A 
linear model was then fitted using the percentage methylation as the response variable 
and covariates as the linear predictor variables to calculate residuals of percent 
methylation after regressing out the effect of the covariates. The resulting residuals 
were then inverse-normally transformed to yield a normal distribution by ranking the 
data from lowest to highest and then fitting the ranks to a normal distribution with 
mean of 0 and standard deviation of 1. A linear model was then fitted using the 
normalised methylation data as the response and the genotype of the nearby SNP 
(using the additive genetic model) as the predictor variable. The significance of the 
genotype-methylation association was then tested using a two-sided t-test. P-values 
were adjusted for multiple testing using Bonferroni correction to correct for a total of 
1180 tests (295 CpG sites times 4 tissues). 
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RESULTS 

Study I 

Age influences DNA methylation and gene expression of COX7A1 in human 
skeletal muscle 

The aim of this study was to investigate the regulation of COX7A1 gene expression in 
human skeletal muscle and its role in glucose metabolism and type 2 diabetes. 
Genetic (SNPs), epigenetic (DNA methylation) and non-genetic (age, insulin and 
body composition) factors were studied. COX7A1 resides at a locus that exhibits 
tissue-specific DNA methylation [76] and encodes a subunit of complex IV in the 
mitochondrial respiratory chain that is down-regulated in skeletal muscle of type 2 
diabetic patients [17]. 

The COX7A1 mRNA expression was decreased in skeletal muscle from elderly 
compared to young twins, both in the basal (1.00 ± 0.05 versus 1.68 ± 0.06) and 
insulin-stimulated (1.04 ± 0.05 versus 1.71 ± 0.06) states (Figure 6a). The 
hyperinsulinaemic euglycaemic clamp did not influence the mRNA level of COX7A1, 
suggesting that this gene is not regulated by insulin (Figure 6a). An effect of age was 
also seen on the level of DNA methylation in the selected 5’ region of COX7A1, with 
higher methylation in elderly (19.9 ± 8.3%) than in young (1.8 ± 2.7%) twins 
(Figure 6b). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Age influences COX7A1 mRNA expression and the level of DNA methylation 

In a, the effects of age and insulin on human skeletal muscle COX7A1 mRNA expression are shown. 
White bars represent the basal and black bars the insulin-stimulated state. The results are presented as the 
mean ± SEM. The level of DNA methylation is shown in b, where boxes represent the 25th to 75th 
percentiles with median value, and the upper whiskers represent the maximum values. * p < 0.05. 
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A multivariate regression analysis showed that the level of COX7A1 was positively 
associated with PPARGC1A mRNA expression (regression coefficient = 0.27, p = 
3x10-3). Furthermore, one genetic variant located in the 5’ untranslated region of 
COX7A1 (rs753420) was shown to influence COX7A1 gene expression in skeletal 
muscle, but this effect was only seen in young twins. The minor allele (G) was 
associated with an increase in COX7A1 expression (T/T: 1.53 ± 0.08, T/G: 1.71 ± 
0.08 and G/G 2.3 ± 0.19), p = 1x10-4 based on a recessive model.  

Next, we investigated whether common variants in or near the COX7A1 gene are 
associated with an increased risk of type 2 diabetes. Three SNPs were genotyped in 
two independent cohorts. In the Botnia case-control cohort, we could not detect an 
association with disease for any of these three SNPs. However, in the Malmö cohort, 
one SNP (rs7255180) showed a nominal association with risk of type 2 diabetes (OR: 
0.80 [0.66 – 0.97], p = 0.027). 

To test the effect of COX7A1 mRNA expression in skeletal muscle on in vivo 
metabolism, multivariate regression analyses including age, sex and BMI as covariates 
were performed. COX7A1 was positively correlated with both insulin-stimulated 
glucose uptake (p = 0.01) and maximal aerobic capacity (VO2max; p = 1x10-3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Proposed mechanisms for the regulation of COX7A1 in human skeletal muscle and its 
effect on in vivo metabolism 

According to our findings, age increases DNA methylation and decreases COX7A1 mRNA expression. 
Furthermore, COX7A1 mRNA expression is associated with genetic variation (SNP rs753420) and 
PPARGC1A mRNA expression. As a result, these expression changes could affect in vivo metabolism 
because COX7A1 mRNA expression was positively associated with both insulin-stimulated glucose 
uptake and VO2max. 
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Study II 

Genetic variation in ATP5O is associated with skeletal muscle ATP5O mRNA 
expression and glucose uptake in young twins 

The purpose of this study was similar to that of study I, to explore mechanisms 
regulating gene expression of a component of the respiratory chain, ATP5O, in 
human skeletal muscle and its association with glucose metabolism and type 2 
diabetes. A previous study showed that ATP5O was the most significantly reduced 
oxidative phosphorylation gene in skeletal muscle from type 2 diabetics [17]. The 
product of this gene is part of the ATP synthase complex, which is the final step in 
the respiratory chain and the complex that produces ATP. 

We found that the mRNA level of ATP5O was reduced in skeletal muscle of elderly 
compared to young twins, both in the basal (0.19 ± 0.01 versus 0.28 ± 0.01; p < 
5x10-4) and in the insulin-stimulated (0.21 ± 0.01 versus 0.30 ± 0.01; p < 5x10-4) 
state (Figure 8). Again, insulin did not influence mRNA expression (Figure 8). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Age, but not insulin, associates with ATP5O mRNA expression in human skeletal muscle 

Data are expressed as the mean ± SEM. White bars representing the basal and black bars the insulin-
stimulated state. * p < 0.05. 

 
Eleven tag SNPs in the ATP5O gene region were genotyped and related to mRNA 
expression. We found that two polymorphisms influenced the expression of ATP5O 
in skeletal muscle of young twins, rs12482697 (T/T 0.30 ± 0.010 and T/G 0.25 ± 
0.012; p = 0.02) and rs11088262 (A/A 0.31 ± 0.012 and A/G 0.25 ± 0.011; p = 
4x10-3). These two SNPs are in strong LD (r2 = 0.96) and are likely to represent the 
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same association. The 11 tag SNPs were additionally genotyped in a case-control 
cohort, but no association with type 2 diabetes was observed. 

We also analysed DNA methylation in a region close to the ATP5O transcription 
start site located in a CpG island. The level of methylation was very low in both 
young (0.14 ± 0.07%) and elderly (0.73 ± 0.33%) twins, without a significant 
difference. We also could not observe any significant correlation between DNA 
methylation and ATP5O mRNA expression. 

Finally, we found that the ATP5O mRNA expression in human skeletal muscle was 
positively correlated with insulin-stimulated glucose uptake (p = 0.02) in young and 
elderly twins. Additionally, the two SNPs shown to influence ATP5O expression were 
also associated with glucose uptake in the young twins (rs12482697: T/T 12.1 ± 0.36 
versus T/G 9.8 ± 0.75; p = 5x10-3 and rs11088262: A/A 12.2 ± 0.4 versus A/G 9.8 ± 
0.5; p = 2x10-3). 

Study III 

A common variant in MTNR1B, encoding melatonin receptor 1B, is associated 
with type 2 diabetes and fasting plasma glucose in Han Chinese individuals 

Genetic variation in MTNR1B was recently shown to be associated with an increased 
risk of type 2 diabetes, increased fasting plasma glucose and impaired insulin secretion 
[30, 37-39]. Following these results, we aimed to replicate this finding in a Han 
Chinese cohort to elucidate whether this effect is seen across different populations. 

The genetic variant rs10830963 is located within intron 1 of the MTNR1B gene. We 
found this SNP to be associated with increased risk of type 2 diabetes in a Han 
Chinese cohort including 1165 cases and 1105 controls, resulting in an OR of 1.16 
(95% CI 1.03-1.31, p = 0.015). The risk variant was also associated with increased 
fasting plasma glucose in normoglycaemic individuals, showing an increase of 0.068 
mmol/l (95% CI 0.036 – 0.100, p = 4x10-5) per risk allele. 

Table 5. Association between rs10830963 and type 2 diabetes and fasting plasma glucose level 

rs10830963  
Genotype frequency Association with T2D Fasting plasma glucose (mmol/l) 
T2D cases Controls ORadd (95% CI)a p value Controls Per-allele effectb p value 

CC 0.318 0.338 
1.16 (1.03-1.31) 0.015 

5.15 
0.068 4*10-5 CG 0.475 0.505 5.25 

GG 0.207 0.156 5.27 

a calculated using logistic regression, assuming an additive model and adjusted for age, sex and BMI. 
b calculated using multiple regression and adjusted for age, sex and BMI. 
T2D, type 2 diabetes. 
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Study IV 

Polymorphisms associated with type 2 diabetes and gene expression influence 
DNA methylation in human skeletal muscle, adipose tissue, pancreatic islets and 
blood 

We initially selected genome-wide SNPs that introduce or delete possible DNA 
methylation sites, i.e., CG dinucleotides (CpGs). Our analysis was restricted to 
regions 10 kb upstream (5’) of the transcription start site of annotated genes and 
included a total of 92,766 CpG-SNPs or 28.3% of all SNPs in these regions. The 
CpG-SNPs were then sorted based on their association with changes in mRNA 
transcription levels in blood cells (p < 1x10-3) [77] and their association with 
increased risk of type 2 diabetes (p < 0.05) [35]. This analysis resulted in a list of 657 
CpG-SNPs with a MAF ≥ 0.30. Of these, 33 were selected for further analysis, where 
we related genotype to DNA methylation and gene expression. DNA methylation was 
analysed using EpiTYPER and assay design was successful for 29 CpG-SNPs and a 
total number of 340 CpG units, and only these units were considered in further 
analyses. 

A hierarchical clustering analysis of the methylation data was performed, where 
samples with closer methylation patterns were more closely clustered. Our results 
clearly suggest that there is a tissue-specific pattern of DNA methylation that is 
different between all four tissues. 

We next examined whether the CpG-SNPs affect the degree of methylation in the 
corresponding regions as a methylation quantitative trait locus (mQTL). DNA 
methylation results were obtained for 19 of the 29 analysed CpG-SNP sites. At 11 of 
these sites, a significant difference in DNA methylation with regard to genotype was 
found in all four tissues, and these differences were consistent for both the forward 
and reverse DNA strands (where applicable). Additionally, a significant difference in 
DNA methylation was seen in another seven CpG-SNPs in at least one tissue (Table 
6). Only one CpG-SNP (rs922957) was not associated with the level of methylation 
in any of the analysed tissues, and it is of note that the DNA methylation in this case 
was very low in the majority of the samples. The mQTL in blood of one CpG-SNP, 
rs9422541 (ZNF239), is visualised in Figure 9. 

In addition to the CpG-SNP sites, a number of ordinary CpG sites showed a 
difference in DNA methylation with regard to the genotype of the lead CpG-SNP in 
that amplicon, suggesting that genetic variation has the potential to affect the degree 
of methylation in the nearby region, as exemplified by rs2329573 (CSTB) in Figure 
10. We did not obtain methylation data for the lead CpG-SNP in this amplicon, and 
hence, these data are missing from both Table 6 and Figure 10. 
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Figure 9. mQTL analysis of rs9422541 (ZNF239) in blood 

Percentage methylation is shown on the y axis, and the x axis displays chromosomal position and CpG 
coverage of the forward (forw) and reverse (revr) amplicons, respectively. The methylation ratios for each 
blood sample in five different CpG sites are shown. Each sample is coloured based on the genotype in 
the CpG-SNP site, i.e., site 1 on the reverse amplicon (rs9422541, C/T polymorphism). 
 
 

  

Figure 10. mQTL analysis of rs2329573 (CSTB) in blood 

Percentage methylation is shown on the y axis, and the x axis displays the chromosomal position and 
CpG coverage of the forward (forw) and reverse (revr) amplicons, respectively. The methylation is shown 
as the mean and 95% confidence interval for individuals grouped by genotype at each CpG site. The 
genotype is based on the lead CpG-SNP site (rs2329573, C/G polymorphism), which did not yield 
methylation data itself in this example. 
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Table 6. mQTL results of lead CpG-SNPs 

CpG-SNP Gene 
Blood Muscle Fat Islets 

Effect P corr Effect P corr Effect P corr Effect P corr 
rs1041456_R13 RRP1 -0,72 <1x10-270 -0,71 <1x10-270 -0,74 1x10-230 -0,37 2x10-7 
rs1041456_F2  -0,9 <1x10-270 -0,76 <1x10-270 -1 <1x10-270 -0,75 2x10-38 
rs12355908_R7 ANK3 1,28 <1x10-270 0,92 <1x10-270 0,59 8x10-93 1,03 5x10-36 
rs12889309_R14 NEK9 -0,23 3x10-69 -0,51 3x10-235 -0,28 6x10-26 -0,16 ns 
rs12889309_F2  0,23 3x10-70 -0,14 7x10-15 -0,05 Ns 0,38 1x10-04 
rs1531798_F4 USP36 0,14 3x10-19 0,06 ns 0,22 6x10-15 0,43 2x10-02 
rs1872164_F2 PTPN23 0,04 ns 0,26 9x10-44 0,2 4x10-08 0,14 ns 
rs2665795_R2 SMARCD2 0,67 <1x10-270 0,45 8x10-184 0,3 2x10-29 0,63 8x10-09 
rs2665795_F1  1,26 <1x10-270 1,12 <1x10-270 1,18 <1x10-270 1,5 2x10-82 
rs2953802_R5 THEX1 0,73 <1x10-270 0,56 5x10-249 -  1,12 2x10-89 
rs2953802_F3  -0,38 2x10-174 -0,43 1x10-155 0,15 7x10-05 -0,52 1x10-7 
rs4660880_R2 GPBP1L1 0,07 1x10-3 -  -  -  
rs6785251_F2 WWTR1 -0,06 4x10-3 0,18 1x10-22 -  0,28 ns 
rs7395920_F2 MRPL23 -1,42 <1x10-270 -1,41 <1x10-270 -1,42 <1x10-270 -0,94 1x10-47 
rs757110_R9 KCNJ11 -0,23 9x10-51 -0,21 2x10-28 -0,12 3x10-2 -0,03 ns 
rs757110_F8  -0,61 <1x10-270 -0,34 6x10-74 -0,21 9x10-11 -0,59 5x10-22 
rs764129_R1 IGF2BP2 0,87 <1x10-270 0,52 2x10-265 0,86 1x10-269 0,72 5x10-16 
rs7766189_F2 HBS1L -0,37 8x10-140 -0,7 <1x10-270 -0,48 1x10-62 -0,92 4x10-15 
rs799905_F11 BRCA1 -0,1 5x10-11 0,04 ns 0,24 5x10-18 -0,12 ns 
rs799912_R1 BRCA1 1,27 <1x10-270 1,07 <1x10-270 0,93 <1x10-270 0,72 6x10-13 
rs799912_F3  1,16 <1x10-270 1,03 <1x10-270 0,52 2x10-72 0,93 7x10-26 
rs898893_R1 AIM1 -0,04 ns -0,08 8 x10-03 -0,06 Ns -0,18 ns 
rs922957_R12 PTPN23 0,42 ns 0,19 ns -0,14 Ns 0,52 ns 
rs922957_F13  0,02 ns 0,18 8x10-23 0,25 2x10-18 0,43 8x10-04 
rs9422541_R1 ZNF239 -1,3 <1x10-270 -1,26 <1x10-270 -1,15 <1x10-270 -0,83 5x10-30 
rs9422545_F4 ZNF239 -1,22 <1x10-270 -0,84 <1x10-270 -0,98 <1x10-270 -1,07 6x10-91 

Data are presented for the forward (F) and reverse (R) amplicon separately. All data are adjusted for age, 
sex, BMI and plate effects. CpG-SNP, lead CpG-SNP for each amplicon; Gene, nearest downstream 
gene of selected CpG-SNP; Effect, effect size (beta coefficient); P corr, p-value of differences in DNA 
methylation with regard to genotype, assuming an additive genetic model applied to the effect allele and 
corrected for multiple testing (number of analysed CpG units and tissues); -, missing data. 
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DISCUSSION 

Type 2 diabetes has long been known to be a multifactorial disease with a complex 
aetiology, including both genetic and non-genetic factors. However, when the 
research presented in this thesis was initiated, a relatively small number of studies had 
attempted to integrate this complexity; most studies focussed only on either the 
genetic contribution or environmental factors when estimating the risk of type 2 
diabetes. Additionally, the role of DNA methylation in the pathogenesis of the disease 
was previously unknown. In the studies we present here, we investigated not only 
genetic but also non-genetic factors and DNA methylation in the pathogenesis of type 
2 diabetes and glucose metabolism. 

Today, many genes are known to be associated with type 2 diabetes, but the effect size 
of each gene is generally low. Investigations based on candidate genes have mostly 
chosen candidates on the basis of biological function, but from many plausible 
candidates, only a few susceptibility genes have been convincingly replicated in several 
studies. In more recent years, breakthrough GWASs have resulted in the discovery of 
numerous genes using an unbiased means of investigating the association between a 
large number of common polymorphisms in the genome and type 2 diabetes or 
related traits. For example, polymorphisms in MTNR1B have been found to be 
associated with fasting plasma glucose, glucose-stimulated insulin secretion and type 2 
diabetes [37-39]. These studies were, however, all performed in populations of 
European ancestry, so the aim of study III was to investigate if this association was 
also seen in an ethnically different population. We replicated both the association 
with fasting plasma glucose and the risk of type 2 diabetes in a Han Chinese cohort, 
suggesting that the origin of rs10830963 could be relatively ancient. The effect size of 
this variant was similar independent of ancestry; however, the risk allele frequency 
was higher in Chinese than European individuals. 

Studies I and II investigated genes that are involved in oxidative phosphorylation, as 
impairment of oxidative capacity in skeletal muscle has been suggested to contribute 
to insulin resistance [15]. A number of studies have reported reduced expression of 
genes involved in oxidative phosphorylation and their regulators in skeletal muscle 
from type 2 diabetic patients [16-19] and elderly [20, 21]. COX7A1 and ATP5O were 
both identified in a group of PPARGC1A-responsive genes involved in oxidative 
phosphorylation, using a pathway analysis designed to detect modest but coordinated 
changes in the expression of groups of functionally related genes [17]. As expected, we 
confirmed a positive association between the expression of the genes we investigated 
and the transcriptional co-activator PPARGC1A in our studies. For both COX7A1 
and ATP5O, we found an age-related decrease in skeletal muscle mRNA expression, 



 42 

in line with earlier studies [13, 21, 78, 79]. This decrease was related to reduced 
insulin-stimulated glucose uptake, suggesting a role for COX7A1 and ATP5O in the 
regulation of in vivo metabolism. Furthermore, genetic variation in these genes was 
found to be associated with skeletal muscle mRNA expression for both COX7A1 and 
ATP5O, respectively, but not with increased risk of type 2 diabetes. 

A novel finding from study I was that there is an age-dependent increase in DNA 
methylation of the COX7A1 5’ region, which clearly coincides with the decreased 
COX7A1 mRNA expression, though this correlation was not statistically significant. 
Together with previous data, this result suggests that ageing has the ability to alter the 
level of DNA methylation [21, 80], which could then influence gene expression and, 
subsequently, human metabolism. The increase in DNA methylation with age seems 
not to be a general phenomenon, as we did not detect increased methylation around 
the ATP5O transcription start site in the elderly individuals. A similar result was seen 
in a previous study of genes involved in oxidative phosphorylation, where some, but 
not all genes, showed an age-related increase in DNA methylation [21]. A change in 
DNA methylation with increasing age has also been proposed in hepatic glucokinase 
(GCK), which encodes a key enzyme in glucose utilisation that is associated with 
insulin resistance and type 2 diabetes. In rat hepatocytes, gck expression and activity 
declined with age, concurrent with an increase in DNA methylation. Additionally, 
de-methylation using 5-aza-deoxycytidine in cultured hepatocytes from elderly rats 
restored the gck expression [81]. 

The role of DNA methylation in the study of complex diseases such as type 2 diabetes 
is still not clear. The prevalence of type 2 diabetes increases with increasing age as 
does epigenetic dysregulation [82]. It seems likely that there is a connection between 
these phenomena, but it remains to be seen whether DNA methylation is the cause or 
a consequence of the disease. In support of a role for DNA methylation in diabetes, a 
recent study suggested that insulin gene expression is partially regulated by DNA 
methylation. Several tissues were investigated in this study, and the INS promoter was 
found to be demethylated specifically in insulin-producing beta-cells. Additionally, 
methylation of these CpG sites was shown experimentally to suppress insulin gene 
expression [83]. In another study in human pancreatic islets, we showed that there 
was an increased level of DNA methylation in a region upstream of PPARGC1A in 
islets from type 2 diabetic donors compared with islets from non-diabetic human 
donors. This increase in DNA methylation was related to a decrease in PPARGC1A 
mRNA expression, which showed a positive correlation with glucose-stimulated 
insulin secretion [84]. An animal model of intrauterine growth retardation, leading to 
diabetes in adulthood, has been used to investigate the transcription factor Pdx1, 
which is important for pancreas development and beta-cell differentiation. A 
progressive decrease is Pdx1 mRNA expression levels was observed concurrent with 
the appearance of marks that indicate epigenetic silencing, including histone 
modifications and increased DNA methylation [85]. 
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DNA methylation is a dynamic, naturally occurring process, and changes in the 
epigenetic profile are more common than changes in genetic variation. Differentially 
methylated cytosines give rise to distinct patterns that are specific for tissue type or 
disease state. These methylation variable positions can be seen as common epigenetic 
markers that will hopefully improve our understanding of the pathogenesis of 
common human diseases in a way that is similar to what has been found from the 
study of common genetic variants [86]. 

Our understanding of DNA methylation and its connection to transcriptional control 
is growing but far from complete. We previously reported that a SNP that introduces 
a CpG site was associated with DNA methylation, gene expression and metabolism in 
human skeletal muscle [21]. Additionally, the aberrant DNA methylation seen in 
transient neonatal diabetes has been associated with mutations in ZFP57 [87]. In 
study IV, we further demonstrated that common genetic variation in CpG sites 
introduces changes in DNA methylation, adding a new level of complexity to our 
understanding of the regulation of gene expression. This relationship between 
genetics and epigenetics was also supported by another recent study, which showed 
that although genetic variation was not strongly associated with a phenotype, it could 
still affect the variability of that phenotype through epigenetic mechanisms [88]. 

In study IV, CpG-SNPs were selected based on previously discovered associations 
with type 2 diabetes (p < 0.05) [35] and gene expression in blood (p < 1x10-3) [77], 
an attempt to increase the likelihood that we are analysing functional CpG-SNPs. We 
also restricted our search to a region 10 kb upstream of annotated genes because 
epigenetic influence on gene activity has been shown to mainly act in a cis-regulatory 
fashion [89]. Furthermore, it has been shown that 17% of human genes are 
differentially methylated in their 5’ untranslated region and that one third of these 
cases are also correlated inversely with the transcription level of the affected gene [90]. 
We found a difference in DNA methylation with regard to genotype in 11 genomic 
regions in all analysed tissues, corresponding to 10 unique genes. Both KCNJ11 and 
IGF2BP2 are type 2 diabetes candidate genes that have been convincingly replicated 
to associate with the disease [30, 31, 33, 91]. ANK3 encodes a neuronal adaptor that 
regulates the assembly of voltage-gated sodium channels and is suggested to have a 
role in bipolar disorder [92]. HBS1L is located in a region known to influence blood 
cell counts and hemoglobin content and is associated with b-Thalassemia/HbE [93]. 
A number of these genes are also proposed to be involved in gene regulation: 
SMARCD2 is a member of the SWI/SNF family, which alters chromatin structure 
[94]; THEX1 interacts with histone mRNA [95]; RRP1 acts in the processing of 
rRNA [96]; the tumour suppressor gene BRCA1 plays a role in maintenance and 
regulation of genome stability [97] and ZNF239 has the ability to bind both DNA 
and RNA to act on both transcriptional and posttranscriptional regulation of specific 
genes [98]. MRPL23 is located within a region of imprinted genes and encodes a 
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mitochondrial ribosomal protein that is up-regulated in chronic fatigue syndrome 
[99, 100].  

Our current knowledge about the human epigenome is very limited, and there have 
been only a few studies that have investigated DNA methylation patterns in multiple 
tissues. In study IV, we collected DNA and RNA from four tissues that are relevant to 
type 2 diabetes: blood, muscle and adipose tissue from the same individuals and 
pancreatic islets from a separate cohort. We observed a clear tissue-specific pattern of 
DNA methylation, which suggests an important role for epigenetics in tissue-specific 
regulation of gene activity. This result also emphasises the importance of choosing the 
correct tissue when designing a study. 
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SUMMARY AND GENERAL CONCLUSION 

The time as a PhD student is a constant learning process. Each time that you get the 
feeling that you actually understand what you are doing, it is time to move on. In the 
course of my PhD studies, I have experienced the methodological development to 
move forward in a similar way, both in the genetic and, in particular, in the 
epigenetic field. Techniques that seemed hardly possible when I entered the science 
world are well-established methods today. For instance, mapping the sequence of the 
human genome and the HapMap project made GWASs possible, which led to the 
discovery of multiple type 2 diabetes genes. 

In studies I and II, we found that the mRNA expression of ATP5O and COX7A1 was 
associated with age, genetic variation and PPARGC1A expression. We also found that 
there was a positive correlation with in vivo glucose uptake, suggesting that genes 
involved in oxidative phosphorylation may have a role in insulin sensitivity. In the 
case of COX7A1, we also found an increase in DNA methylation in elderly 
individuals concurrent with a decrease in mRNA expression, which demonstrates how 
genetic, epigenetic and non-genetic factors act in concert to guide gene expression. 

Study III replicated an association between a genetic variant in MTNR1B and fasting 
plasma glucose and type 2 diabetes, showing that the Han Chinese individuals that 
we studied share the same risk variant as has previously been reported in Europeans. 

In study IV, we showed that common genetic variants interfere with possible sites for 
DNA methylation, thereby causing a change in the methylation profile. This finding 
serves as an interesting model for a possible mechanism of how the epigenetic pattern 
may be inherited. 

There is much work left to do until we have a clear understanding of the process of 
DNA methylation and its role in the pathogenesis of type 2 diabetes. It will also be 
interesting to determine whether DNA methylation and epigenetics might have a role 
in the interplay between genetics, environment and disease. 
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