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Abstract—We introduce a unified ensemble for turbo-like codes
(TCs) that contains the four main classes of TCs: parallel con-
catenated codes, serially concatenated codes, hybrid concatenated
codes, and braided convolutional codes. We show that for each
of the original classes of TCs, it is possible to find an equivalent
ensemble by proper selection of the design parameters in the
unified ensemble. We also derive the density evolution (DE)
equations for this ensemble over the binary erasure channel. The
thresholds obtained from the DE indicate that the TC ensembles
from the unified ensemble have similar asymptotic behavior to
the original TC ensembles.

I. INTRODUCTION

Over the last few years, research on low-density parity-
check (LDPC) convolutional codes [1], also known as spatially
coupled LDPC (SC-LDPC) codes [2], has become very popu-
lar. It is proved that for these codes, the belief propagation
(BP) decoder can achieve the threshold of the maximum-
a-posteriori (MAP) decoder [2], [3]. This remarkable phe-
nomenon is known as threshold saturation. Spatial coupling is
a general concept that is not limited to LDPC codes. Recently,
spatially coupled turbo-like codes (SC-TCs) were introduced
in [4], [5], [6]. In these works, the spatial coupling of the
four main classes of TCs was considered. These included
parallel concatenated codes (PCCs) [7], serially concatenated
codes (SCCs) [8], braided convolutional codes (BCCs)[9], and
hybrid concatenated codes (HCCs) [10], [11]. The density
evolution (DE) analysis performed in [4], [S], [6] suggests
that SC-TCs have an excellent asymptotic behavior and for
them, threshold saturation occurs. This gives a new perspective
in designing a concatenated coding scheme: optimizing the
uncoupled ensembles for achieving the best BP threshold may
not necessarily lead to the best overall performance.

TCs are adopted in many communication standards. Each
class of TCs exhibits a unique asymptotic behavior. While
certain classes—such as PCCs—yield good BP thresholds,
certain others—such as SCCs and BCCs—have excellent MAP
thresholds. However, spatial coupling gives a new perspective
in the designing of TCs; relying on threshold saturation, we
can optimize the component codes of SC-TCs for higher MAP
threshold. In this way, powerful ensembles with good distance
properties can perform very close to capacity [6].
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So far, the different classes of TCs have been considered
separately. A unified ensemble which contains all main TC
ensembles can unify the frameworks for analysis, and clarify
the connections between the TC classes. In fact, this ensemble
can lead to a better understanding of the similarities and
differences between various TC classes and the possible trade-
offs in the code design. In addition, the ensemble allows us to
design new ensembles that do not belong to any of the original
classes of TCs.

In [12], the authors introduced an ensemble which unifies
PCCs and SCCs. This ensemble is based on concatenations
of several component encoders and does not cover the BCC
and HCC ensembles. In this paper, we introduce an ensemble
of concatenated convolutional codes that encompasses all the
above-mentioned four major classes of TCs. For simplicity, we
only use a single rate-1 component code '. In other words, the
different trellises are combined to a single self-concatenated
trellis. Probably, the most famous class of self-concatenated
convolutional codes are repeat accumulate (RA) codes, first
introduced in [13]. This class of codes is covered by the
proposed ensemble if the component code in the equivalent
PCC ensemble is set as an accumulator. In order to find a
self-concatenated equivalent for the other classes of TCs, some
feedback path has to be introduced in the encoder structure.
The differences between the various original TC ensembles
are then reflected in the permutation structure and the amount
of feedback in the unified ensemble.

We also derive the exact density evolution equations for
the binary erasure channel (BEC). Using these equations, we
compute the BP thresholds of the corresponding classes of
TCs and we show that the obtained thresholds are very close
to the thresholds of the original ensembles.

II. STEPS TOWARD THE SELF-CONCATENATED ENSEMBLE

In this section, for each class of TCs, we separately describe
how to reduce the number of component codes in order to
obtain the equivalent self-concatenated ensemble.

A. Parallel Concatenated Codes

Fig. 1(a) and (b) show the encoder block diagram and
compact graph representation [6] of a PCC, respectively. The

'In particular, we use a single rate-1/2 component encoder for which the
systematic bits are punctured, thus obtaining a rate-1 encoder. We remark that
it is also possible to build the unified ensemble based on a component encoder
with general rate R and considering proper puncturing of the encoder.
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Fig. 1. (a) Block diagram of a PCC, (b) Compact graph of a PCC, (c)
Block diagram of a self-concatenated PCC, and (d) Compact graph of a self-
concatenated PCC

considered PCC ensemble is built of two identical rate-1
component encoders, called upper and lower encoders, and
shown by CY and CV, respectively. The information sequence
u is connected to CY to produce the parity sequence vV.
Likewise, a reordered copy of u is connected to C* to produce
the parity sequence v“. The output of the PCC encoder is
the tuple (w,vY,v%). In the compact graph representation
(see Fig. 1(b)), the trellises corresponding to CV and C, are
depicted by squares (factor nodes) and denoted by TV and T,
respectively. These factor nodes are labeled with the length of
the corresponding trellises. Each of the sequences u, vV, and
v" is represented by a black circle, called variable node. The
permutation IT in the block diagram is replaced in Fig. 1(b)
by a line that crosses the edge between u and v".

Fig. 1(c) and (d) show respectively the encoder block
diagram and compact graph representation of the self-
concatenated coding ensemble corresponding to a PCC. In this
ensemble, the two component encoders of the PCC ensemble
are replaced by a repetition encoder CR (with repeating factor
2) followed by a rate-1 convolutional encoder C. The informa-
tion sequence w is connected to CR to produce the sequence
(u, u). The resulting sequence is reordered by the permutation
IT and used as input to C. The parity sequence v has length 2V
and corresponds to both vV and " in the original ensemble.
Note that, by replacing C by an accumulator in Fig. 1(c), an
RA code can be obtained. However, the ensemble in Fig. 1(c)
is more general as C can be any convolutional encoder.

In the compact graph representation (see Fig. 1(d)), the
repetition of the information sequence is shown by increasing
the degree of the corresponding variable node. As it is shown
in the figure, the sequence u and its repetition are multiplexed
to produce the sequence (u, u). The multiplexer is represented
by a rectangle. The resulting sequence is connected to trellis
T to produce the parity sequence v. Note that the length of
the trellis in the self-concatenated ensemble is twice of the
length of TV and T" in the original ensemble.

In this paper we consider block-wise multiplexers. By
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(a) Block diagram of a SCC, (b) Compact graph of a SCC, (c)

Fig. 2.
Block diagram of a self-concatenated SCC, and (d) Compact graph of a self-
concatenated SCC

selecting

~ I 0
where I is the N x N identity matrix, the self-concatenated
ensemble is equivalent to the original ensemble.

B. Serially Concatenated Codes

The encoder block diagram and the compact graph repre-
sentation of the SCC ensemble are shown in Fig. 2(a) and
(b), respectively. This ensemble is built of two identical rate-
1 component encoders called outer and inner encoders and
shown by C° and C', respectively. The length-N information
sequence, u, is connected to C° to produce the parity sequence
vO. Then, the sequences w and v° are multiplexed and
reordered. The resulting sequence is used as input for C' to
produce the parity sequence v'.

The encoder block diagram and compact graph representa-
tion of the equivalent self-concatenated ensemble are shown
in Fig. 2(c) and (d), respectively. In this ensemble, the trellises
of the outer and inner encoders are combined to make a trellis
with length 3N. Similarly to the self-concatenated ensemble
for PCCs, u is connected to CR with repetition factor 2 to
produce the sequence i = (u, u). In the original ensemble v©
is used as part of the input to C!. To satisfy this condition with
only one component encoder, the overall parity sequence of the
self-concatenated ensemble, v, is divided into two sequences
v and v®), of length 2N and N, respectively. Then, v(2)
is used as a part of the input sequence through a feedback
path. The feedback path connects v(®) to a multiplexer. Then,
this sequence is multiplexed with sequence u. The resulting
sequence is reordered by IT and used as input to C. Note
that sequences v*) and v(? correspond to v© and v! in the
original ensemble, respectively.

We remark that, in general, the encoder of the self-
concatenated ensemble is not causal. However, this problem
can be solved by proper selection of IT or by spatial coupling.
By selecting II as in (1) the corresponding trellis is split
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Fig. 3. (a) Block diagram of a HCC, (b) Compact graph a HCC, (c) Block
diagram of a self-concatenated HCC (step 1), (d) Compact graph of a self-
concatenated HCC (step 1), (e) Block diagram of a self-concatenated HCC
(step 2), and (f) Compact graph of a self-concatenated HCC (step 2)

into two parts. The information sequence w is connected to
the first part to produce v(®). Then, a reordered copy of the
sequence (u,v(?)) is connected to the second part of the trellis
to produce v(!). By spatial coupling, the feedback path can be
fed forward to the corresponding multiplexer in the next time
slots.

C. Hybrid Concatenated Codes

Fig. 3(a) shows the encoder block diagram of an HCC
ensemble built from three identical rate-1 component encoders.
The corresponding compact graph representation is also shown
in Fig. 3(b). The considered HCC ensemble is a serial con-
catenation of a parallel ensemble with an inner encoder. The
information sequence u and a reordered copy of it are fed
to two encoders, referred to as upper and lower encoders, and
denoted by CY and C", to produce parity sequences vV and v",
respectively. Then, vY and v" are multiplexed and reordered.
The resulting sequence is used as an input to the inner encoder
Cl.

The corresponding self-concatenated ensemble can be ob-
tained in two steps. First, as it is shown in Fig. 3(c)(d), the
upper and lower trellises can be unified into a single trellis
with length 2N by the method described for PCCs. Then, the
resulting trellis can be connected to the inner trellis using the
method described for SCCs.

The self-concatenated ensemble for HCCs is shown in
Fig. 3(e)(f). In this ensemble, the overall trellis has length 4NV
The parity sequence v is divided into two equal-size sequences
v and v® of length 2N . Then, v(®) is multiplexed with
sequence (u,u) generated by a repetition encoder CR. The
resulting sequence is reordered and used as an input to a rate-

Fig. 4. (a) Block diagram of a BCC, (b) Compact graph a BCC, (c) Block
diagram of a self-concatenated BCC (step 1), (d) Compact graph of a self-
concatenated BCC (step 1), (e) Block diagram of a self-concatenated BCC
(step 2), and (f) Compact graph of a self-concatenated BCC (step 2)

1 convolutional encoder C. Note that v(*) and v(® correspond
to (vY,vY) and v' of the original ensemble. By selecting

~ I 0 0
O=|0 m+ o |, )
0 0 I

the self-concatenated ensemble is equivalent to the original
ensemble.

D. Braided Convolutional Codes

Fig. 4(a) shows the encoder block diagram of a BCC
ensemble. This ensemble is similar to the PCC ensemble
but the BCC ensemble is built of two rate-2 > convolutional
encoders and the parity sequence of each encoder is fed back
to the input of the other encoder. Similarly to PCCs, the
component encoders are denoted by CY and C' and called
upper and lower encoders, respectively. The compact graph
representation of the ensemble is shown in Fig. 4(b). The
information sequence u and a reordered copy of v" are used
as the first and second input of CY, respectively to produce
the parity sequence vY. Likewise, a reordered copy of u and
a reordered copy of vV are used as the first and second input
of C* respectively, to produce v".

In order to obtain the self-concatenated ensemble for BCCs,
we can use the method described for PCCs. Fig. 4(c) and
(d) show the encoder block diagram and compact graph rep-
resentation of the corresponding self-concatenated ensemble.

>The component encoders are rate-2/3 convolutional encoders with all
systematic bits punctured.



Fig. 5. (a) Block diagram of encoder (b) Compact graph representation of
the unified ensemble

The two component encoders, with N trellis sections, in the
original ensembles are combined to a component encoder with
length-2N trellis. The sequence w is connected to a repetition
encoder CR to produce the sequence (u,w). The resulting
sequence is reordered by permutation II") and used as the first
input of a rate-2 convolutional encoder C. The second input of
the encoder is a copy of the parity sequence v that is reordered
by the permutation @, By selecting the permutations as

"(1)_ I O
=[5 n)
=(2) _ 0 1Y
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the encoders in Fig. 4(a) and (c) are equivalent.

The encoder ensembles in Fig. 4(a) and (c) are not causal.
For the original ensemble of BCCs introduced in [9], this
problem was solved by spatial coupling. In the block-wise
BCC ensemble, the parity sequences vV and v“, (or v in the
self-concatenated ensemble), are connected to the inputs of
the corresponding encoders after passing delay blocks. This
makes the encoder causal.

It is also possible to find a self-concatenated ensemble for
BCCs that is very close to those for the other TC classes.
We can replace the rate-2 component encoder in the self-
concatenated ensemble by a rate-1 encoder for that half of
its output sequence is punctured. The encoder block diagram
for this ensemble is shown in Fig. 4(e) and its corresponding
compact graph representation is depicted in Fig. 4(f). As it is
shown in these figures, the parity sequence is divided into two
parts v(!) and v(?). Sequence v is fully punctured and v(?
is multiplexed with the sequence (u,u) at the output of the
repetition encoder CR. The resulting sequence is reordered and
fed to the convolutional encoder C with corresponding trellis
of length 4N.

III. THE UNIFIED ENSEMBLE

Comparing the obtained self-concatenated ensembles intro-
duced in the previous section for the considered classes of
TCs, we note similarities between them (see Fig. 1-Fig. 4).
Based on these similarities, we develop a unified ensemble.
The block diagram of the encoder and the compact graph
representation of this ensemble is shown in Fig. 5. In this
ensemble, the component convolutional encoder is a rate-1
convolutional encoder. The information sequence u, of length
N, is connected to a repetition encoder CR with repetition
factor 2 to produce the sequence & = (u,w). This sequence

TABLE I
PARAMETERS OF PCCs, SCCs, BCCs AND HCCs

Ensemble R p1 p2 | 11 la 2/l
PCC 173 1 2 2 0 0
SCC 1/4 1 1 3 2 1 172
BCC 1/3 0 1 4 2 2 1
HCC 1/5 1 1 4 2 2 1

is multiplexed with v(® which is a part of the overall parity
sequence v. Then, the resulting sequence is reordered by the
permutation H(l), of size [N, and fed to the convolutional
encoder C. Parameter [ is a design parameter which can be
tuned to yield a specific TC class (PCC, SCC, BCC, or HCC).
The values of [ for the different classes of TCs are presented
in Table L.

The sequence v is divided into two sequences v(!) and v
of length [y N and [5N, respectively. In order to guarantee
random division of v, first, this sequence is reordered by a
permutation. Then, it is divided into the two sequences v(!)
and v®, The values of I; and Iy for each class of TCs, are
provided in Table 1. Note that | = I; + I5.

Parameters p; and py in Table I are the permeability rates
for sequences v1) and v(?), respectively, giving the fraction of
surviving bits of v(*) and v(? after puncturing. For example,
to obtain the equivalent ensemble for BCCs, p; = 0, as
v is fully punctured. We remark that by selecting p; and
p2 properly, the obtained ensemble covers a family of rate
compatible TCs.

An inspection of Fig. 5(b) reveals that the compact graph
representation of the unified ensemble is very close to the
protograph of an irregular LDPC code. The factor node is a
trellis with length [N, where its degree is fixed to two. The
variable nodes are classified into three groups as follows: u
is an information variable node with degree 2, v(!) is a parity
variable node with degree 1, and v®) is a parity variable
node with degree 2. The length of theses variable nodes are
not equal. Considering length N for u, ") and v(®) have
length I; N and I N = 2N, respectively. According to Table
I, different ensembles of TCs can be obtained by changing the
ratio ly/l; which is the proportion of degree-1 and degree-2
parity variable nodes. This is very close to defining the variable
node degree distribution for LDPC codes.

2)

A. Density Evolution

Considering transmission over a BEC with channel param-
eter €, we can analyze the asymptotic behavior of the unified
ensemble by tracking the evolution of the erasure probability
with the number of iterations of the decoding procedure.
This evolution can be shown as a set of equations called DE
equations, and for the BEC, it is possible to derive an exact
expression for them. In the ith iteration, the extrinsic erasure
probabilities from factor node 7' toward variable nodes are

denoted by xgi) and xéi), respectively, for the first and second



TABLE 11
THRESHOLDS OF PCCs, SCCs, BCCs AND HCCs

Ensemble R EBP egp EMAP skJA AP

PCC 1/3  0.6428 0.6428  0.6553  0.6552
ScC 174 0.6895 0.6863  0.7481  0.7482
BCC 173 0.5541 0.5603 0.6653  0.6646
HCC 175  0.7261  0.6997 0.7995  0.7994

edge connected to it.
as,

Then, the DE equations can be written
2 = Al 8, 3)
= fa(mt”, ") @)

(H-l)
where

o _ 2e2) + by(paeal’) + (1= py)al?)

yl = 2+12 ) (5)

(i) _ lL(pazat” + (1= po)al”) + li(pre + (1= p1))

Ys = . (6)
2+ 19

Here, f1 and f5 are the transfer functions of T for the sys-
tematic and parity bits, respectively. The a-posteriori erasure
probability of bits in the information sequence w at the th
iteration is,

The decoding thresholds obtained by DE are reported in
Table II. The table shows the BP threshold egp and the MAP
threshold epap of the original ensembles. To obtain egp and
emap, we used the corresponding DE equations and the area
theorem, respectively. We also report in the table the BP
threshold ef, and the MAP threshold eyy,p of the proposed
equivalent ensembles. From the results in the table, it can be
seen that in the PCC case there is a good match between
the thresholds of the original ensemble and the corresponding
values of the equivalent ensemble. For the other cases, egp and
egp are similar. However, there is a small gap between these
thresholds. This gap can be explained as follows. In the DE
analysis of the unified ensemble, we consider that the permuta-
tions are chosen randomly. Therefore, in equations (5) and (6),
we average over all possible cases. However, the original TC
ensembles are more structured and, in consequence, except for
BCCs, epp is larger than ey,. For BCCs, replacing the rate-
2 component encoder by a rate-1 component encoder with
puncturing, is another reason for observing the gap between
epp and e5p. We also computed the thresholds for the self-
concatenated ensemble in Fig. 4(c). The obtained BP and
MAP thresholds for this ensemble are identical to those of
the original BCC ensemble.

The results in Table II demonstrate that thresholds similar to
those of the original TC classes can be obtained by changing
the design parameters in the unified ensemble.

IV. CONCLUSIONS

In this paper, a unified ensemble for various classes of TCs
is introduced. This ensemble is based on a single trellis with
self-concatenation. We introduced two elementary steps to find
the self-concatenated equivalent of PCCs and SCCs. We also
used these elementary steps to find the self-concatenated HCCs
and BCCs. These elementary steps can also be applied to more
general concatenations.

Then, by considering the similarities between the self-
concatenated ensembles for different TC classes, we found a
unified ensemble. By changing the proportion of degree-1, and
degree-2 variable nodes in the graph or puncturing a part of the
parity sequence, the original TC ensembles can be obtained.
The compact graph representation of our ensemble establishes
a bridge between TCs and protograph based LDPC codes,
where the check nodes are replaced by trellis constraints.

We believe that the unified ensemble may help in better
understanding the connections between concatenated code
ensembles and LDPC code ensembles.
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