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Abstract
We have compared the predictions of ligand-binding affinities from several methods based on end-
point molecular dynamics simulations and continuum solvation,  i.e.  methods related to MM/PBSA 
(molecular mechanics combined with Poisson–Boltzmann and surface area solvation). Two continuum-
solvation  models  were  considered,  viz.  the  Poisson–Boltzmann  (PB)  and  generalised  Born  (GB) 
approaches. The non-electrostatic energies were also obtained in two different ways, viz. either from 
the  sum  of  the  bonded,  van  der  Waals,  non-polar  solvation  energies,  and  entropy  terms  (as  in 
MM/PBSA),  or  from the  scaled  protein–ligand  van der  Waals  interaction  energy (as  in  the  linear 
interaction energy approach, LIE). Three different approaches to calculate electrostatic energies were 
tested, viz. the sum of electrostatic interaction energies and polar solvation energies, obtained either 
from a single simulation of the complex or from three independent simulations of the complex, the free  
protein, and the free ligand, or the linear-response approximation (LRA). Moreover, we investigated 
the effect  of scaling the electrostatic  interactions  by an effective internal  dielectric constant  of the 
protein (εint). All these methods were tested on the binding of seven biotin analogues to avidin and nine 
3-amidinobenzyl-1H-indole-2-carboxamide  inhibitors to factor Xa. For avidin, the best results were 
obtained  with  a  combination  of  the  LIE  non-electrostatic  energies  with  the  MM+GB electrostatic 
energies from a single simulation, using εint = 4. For fXa, standard MM/GBSA, based on one simulation 
and using εint = 4–10 gave the best result. The optimum internal dielectric constant seems to be slightly 
higher with PB than with GB solvation. 

Keywords: Continuum  solvation,  dielectric  constant,  ligand-binding  affinities,  linear  interaction 
energy, MM/PBSA, PDLD/s-LRA/β
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Introduction
The binding of a small molecule (a ligand, L) to a protein or another macromolecular receptor (P) can  
be described by the reaction

L + P → PL (1)

This  reaction  is  governed  by  several  different  intermolecular  forces,  e.g.  electrostatic,  steric,  and 
hydrophobic effects. In particular, electrostatic effects are essential for protein functions and hence for 
the ability to accurately predict binding affinities.1 

The most rigorous methods to estimate the binding free energy of the reaction in Eqn. 1 are 
free-energy perturbation and thermodynamic integration.  In these methods, the energy difference is 
estimated  when  the  interactions  between  the  ligand  and  the  surroundings  are  turned  off.  This  is 
typically  performed  by first  turning  off  the  charges  of  the  ligand,  giving  the  electrostatic  (polar) 
contribution  to  the  free energy.  Then,  the  Lennard-Jones  parameters  are  removed,  giving  the non-
electrostatic (non-polar) contribution to the free energy.2 These calculations are performed both when 
the  ligand  is  bound to  the  protein  and when it  is  free  in  solution,  and the  binding energy is  the 
difference between the corresponding two free energies. The disadvantage of these methods is that they 
give converged results only if the phase spaces of the initial and final states overlap. Therefore, the 
calculations typically have to be divided into several  (typically 10–40) steps,  involving unphysical 
intermediate states, in which the interaction between the ligand and the surroundings is partly removed. 
This, in combination with the fact that extensive sampling is needed for each step, preferably in the 
form of many independent simulations,  make these methods too computationally demanding to be 
routinely used in drug design3,4 (however, for relative binding energies of ligands differing in only a 
single group, the convergence is better5).

Consequently,  more  approximate  methods  to  estimate  ligand-binding  affinities  have  been 
developed. One group of methods sample only the end-points of the reaction in Eqn. 1, i.e. the free 
protein,  the  free  ligand,  and  the  complex,  and  are  thus  computationally  much  cheaper.  For  the 
electrostatic  contribution,  such  approaches  are  often  based  on  the  linear-response  approximation 
(LRA),6 according to which only the charged and uncharged states of the ligand need to be simulated 
and the electrostatic contribution can be calculated as

 Gele
LRA

= 0.5  〈 Eele
L−S 〉PL  〈Eele

L−S 〉 PL' − 〈E ele
L−S 〉L − 〈 Eele

L−S 〉 L'  (2)

where Eele
L−S  is the electrostatic interaction energy between the ligand and the surroundings (S; protein 

and water), the < > brackets indicate ensemble averages, and the subscripts of the brackets indicate the 
simulation over which the average is calculated: PL and L indicate normal simulations of the complex 
or  of  the  ligand  free  in  solution,  respectively,  whereas  PL'  and  L'  indicate  the  corresponding 
simulations in which the ligand charges have been zeroed. 

As  the  name implies,  the  LRA is  based  on the  observation  that  the  free-energy change  is  
approximately linear with respect to the ligand charge. Unfortunately, the same does not apply for non-
electrostatic  part.  The  linear  interaction  energy (LIE)  method7 suggests  that  the  latter  part  can  be 
calculated from the difference in the average van der Waals interaction energies between the ligand and 
the  surroundings,  Evdw

L−S ,  in  simulations  of  the  complex and the  free ligand.  Furthermore,  the  LIE 
approach  goes  beyond  the  LRA by assuming  that  the  electrostatic  energies  from the  PL' and  L'  
simulations can be neglected. Moreover, the constant of 0.5 in the LRA is often taken as an adjustable 
parameter, α. Hence, in the LIE method, the total binding free energy is calculated from 
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 Gbind
LIE

=   〈 Eele
L−S 〉PL − 〈 Eele

L−S 〉 L    〈 Evdw
L−S 〉PL − 〈 Evdw

L−S 〉 L (3)

Usually α is between 0.33 and 0.5, depending on the charge and number of hydrogen-bond donors of 
the ligand, and β is taken to be 0.18,8,9 but in many cases, better results are obtained by using different 
α and β for each drug target.10,11

The LRA and LIE methods are both based on interaction energies obtained from microscopic 
calculations. Such simulations typically show a slow convergence, meaning that long simulations are 
needed before the results become stable and reliable.1 Therefore, many attempts have been made to 
improve the convergence and speed up the calculations by using continuum-solvation methods.  In 
particular,  Warshel  and  coworkers  have  suggested  the  PDLD/s-LRA/β method  (semi-macroscopic 
protein-dipoles Langevin-dipoles method within a linear-response approximation).6,10 In this approach, 
the  LRA (Eqn.  2)  is  used  to  calculate  the  electrostatic  contributions,  and in  the  Eele

L− S  terms,  the 
interaction between the ligand and water is  calculated with the semi-microscopic Langevin-dipoles 
(LD) approach, in which dipoles are placed on a cubic grid (excluding grid points close to the protein 
or  ligand)  and  their  electrostatic  response  is  calculated  from  the  Langevin  equation.12 The  non-
electrostatic part is borrowed from the LIE method, as is indicated by the symbol β in the abbreviation. 

The  MM/PBSA  method  (molecular-mechanics  with  Poisson–Boltzmann  and  surface-area 
solvation) follows a similar approach.13,14 In this method, the binding free energy in Eqn. 1 is calculated 
from

 Gbind = 〈 GPL〉 − 〈 GP 〉 − 〈 GL 〉 (4)

where the brackets indicate ensemble averages. Each free energy in Eqn. 4 is calculated from

G = Ebnd  EvdW  Eele   Gsolv   Gnp − TSMM (5)

where Ebnd is the bonded molecular mechanics (MM) energy, i.e. the MM energy from the bond, angle, 
and dihedral terms, EvdW is the MM van der Waals energy, Eele is the MM electrostatic energy, ∆Gsolv is 
the polar solvation free energy, calculated by a continuum solvation method,  ∆Gnp is the non-polar 
solvation  free  energy,  taken from a  linear  relation  to  the  solvent-accessible  surface  area,  T is  the 
absolute  temperature,  and  SMM the  total  entropy,  consisting  of  translational,  rotational,  and 
conformational  contributions.  The  Poisson–Boltzmann  (PB)  continuum  solvation  method  can  be 
replaced by any other  continuum solvation method and a  common choice is  the generalised Born 
method15 (in which case the method is called MM/GBSA). 

Strictly, the averages in Eqn. 4 should be calculated from three separate simulations, i.e. from 
molecular dynamics (MD) simulations of the complex, the free protein, and the free ligand, i.e.

 Gbind = 〈 GPL〉 PL − 〈 GP 〉 P − 〈 G L〉 L (6)

where the subscripts of the brackets indicate from what simulation the ensemble average is calculated. 
This approach will be called three-average MM/PBSA (3A-MM/PBSA) in the following. A much more 
common approach is to simulate only the complex, whereas the structures of the free protein or the free 
ligand are  obtained by simply deleting either  the  ligand or  the protein from each snapshot  of  the 
simulations of the complex:11 
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 G bind = 〈GPL 〉 PL − 〈 GP 〉PL − 〈GL 〉PL = 〈GPL − GP − GL 〉PL (7)

We will call this approach one-average MM/PBSA (1A-MM/PBSA) in the following. It requires fewer 
simulations,  but  it  also  leads  to  an  exact  cancellation  of  Ebnd in  Eqn.  4  and  a  strongly  increased 
precision of the method, owing to decreased fluctuations in all the energy terms.

Pearlman has compared the 1A and 3A-MM/PBSA approaches16 for a set of 16 ligands binding 
to p38MAP and found that 3A-MM/PBSA in fact gave more accurate results. However, the uncertainty 
in the binding free energy of the 3A-MM/PBSA was a factor of ~5 larger than that in the 1A approach, 
making it unclear whether the improved accuracy is statistically significant. Swanson et al. also used 
both approaches, but they did not explicitly compare the final free energies.17 They argued against the 
3A approach, because it introduces noise from insufficient sampling and from errors inherent in the 
force field and the continuum-solvation method. Instead, they suggested a two-trajectory approach in 
which both the complex and the free ligand are simulated,  because it  is  easier  to obtain complete 
sampling of the free ligand. Thereby, the reorganisation free energy of the ligand (the difference in Ebnd 

between the  bound and free  energies)  can  be  obtained.  A similar  argument  has  recently been put 
forward and it was argued that this reorganisation energy is important for obtaining accurate results.18

Both the PB and GB methods assign a dielectric constant to each point in space. For the bulk 
solvent,  this  is  a  well-defined  property,  εext.  However,  for  the  protein  and the  ligand,  the  internal 
dielectric constant,  εint  is not well-defined, because they are not uniform electrostatic media.  Usually, 
εint = 1 in MM/PBSA calculations, but this value has been much discussed.1,19,20,21 Results obtained with 
εint = 1–10 have been reported.11,22,23 εint can be considered to be a compensation factor for the interaction 
that are neglected in the continuum method, and as such, it is more a method-dependent parameter than 
a physical constant.21,24 For instance, if all types of interactions are included in the simulations,  εint 

should be set to 1, as it is in explicit-water simulations.1 The standard value of 1 in the MM/PBSA 
method is based on the argument that the calculations should be compatible with the explicit-water 
simulations.14 A recent MM/GBSA study using only minimised structures, i.e. without any sampling, 
attempted a systematic investigation of the value of εint, but it was concluded that εint = 1 gave the best 
ranking of the binding affinities.25 On the other hand, a study of the binding of 156 ligands to seven 
different proteins with full sampling but no entropy term gave the best results with  εint  = 4.22 In an 
investigation of the binding affinities of 59 ligands to six proteins, the results were best with εint = 1 for 
three proteins, with εint = 2 for one protein, and with εint = 4 for the other two proteins.23 

The  PDLD/s-LRA/β  approach  also  employs  εint to  make  the  energies  more  stable  (the 
electrostatic interactions are scaled down by 1/εint,  thereby reducing the fluctuations with the same 
amount).1,21 Typically, a rather low εint (2–4) is recommended for neutral ligands and larger values (~25) 
for charged ligands.1,10,24 Warshel has also suggested that MM/PBSA should also gain from scaling 
down  the  electrostatic  interactions  by  using  εint >  1,10 which  is  supported  by  the  fact  that 
MM/PB(GB)SA often  gives  a  too  large  range of  calculated  binding affinities  for  a  set  of  ligands  
compared  to  experiment  estimates26 and  that  MM/PB(GB)SA  is  missing  the  scaling  factor  of 
electrostatic interaction in LRA and LIE (α = 0.33–0.5).

It has been argued that MM/PBSA is a simplified version of the PDLD/s-LRA/β, in which the 
apolar states (PL' and L') have been ignored.10 The entropy estimate and the lack of a strict theoretical 
foundation  have  also  been  criticised.10,27 As  both  MM/PBSA and  PDLD/s-LRA/β are  based  on  a 
continuum treatment,  it  would be of interest  to compare their  performance.  Warshel et  al.  recently 
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compared the PDLD/s-LRA/β,  LRA/β,  and LIE methods,  and concluded that  PDLD/s-LRA/β was 
most  efficient  and did not  require  any protein-specific  parameterisation of  β.10 They also included 
MM/PBSA in  the  comparison,  but  only with  literature  values,  which  introduces  the  risk  that  the 
observed differences may come from differences in the force field, simulation set-up, and continuum 
models used (and also from the large statistical uncertainty in standard MM/PBSA results28), rather than 
to differences in the approaches. However, the results indicated that MM/PBSA gives a too negative 
entropy by a factor of ~50 kJ/mol. Of course, this is of great importance when estimating absolute 
binding affinities. However, recent investigations have shown that some additive terms are missing in 
standard MM/PBSA29 and that different solvation methods give widely different absolute affinities.30 
Therefore,  MM/PBSA should  probably be restricted  to  calculations  of  relative  affinities  of  similar 
ligands with the same charge,  for which most  available continuum solvation methods give similar 
results.31 

In this paper we present a comparison of LRA, LIE, and MM/PBSA-based approaches on a 
more equal footing, using the same force field and the same simulations. Moreover, we use the same 
continuum solvation methods, either PB or GB. Thereby, we obtain a new MMPB(GB)-LRA/β variant 
of  PDLD/s-LRA/β.  Finally,  we  employ  our  recent  approach  to  obtain  a  statistical  precision  of 
~1 kJ/mol28,32 and use statistical methods to compare the various approaches. For all methods, we test 
five different values of the internal dielectric constant in order to evaluate the effect of scaling of 
electrostatic  interactions.  We  also  compare  the  1A-  and  3A-  variants  of  MM/PBSA.  Finally,  we 
combine the electrostatic and non-electrostatic parts from different methods in an attempt to identify 
strengths and weaknesses of the various methods. As test cases we use the binding of biotin and six 
analogous  to  the  avidin  tetramer  and  the  binding  of  nine  3-amidinobenzyl-1H-indol2-carboxamide 
inhibitors  to  factor  Xa.  These  system  are  well-characterised  by  X-ray  crystallography33,34 and 
experimental  binding affinities  are  available.35,36,37,34 They have been extensively studied previously 
with various theoretical methods.27,30,32,38,39,40,41,42,43,44,45,46

Methods

MM/PB(GB)SA
The MM/PBSA and MM/GBSA energies were calculated from Eqns. 4–7 with infinite cut-off using the 
same force fields as in the MD simulations.  ∆Gsolv  was calculated by solving the Poisson–Boltzmann 
equation or with a generalised Born method. The Poisson–Boltzmann calculations were performed with 
the Delphi program.47 The calculations employed the Parse radii48 for all atoms, a grid spacing of 0.5 Å, 
a fill ratio of 90%, and a probe radius of 1.4 Å. For the GB calculations, we used the generalised Born 
method of Onufriev, Bashford, and Case, model I (OBCI)49, i.e. with  = 0.8,  = 0, and  = 2.91. For 
these calculations, the second set of modified Bondi radii (mbondi2) was used.49 ∆Gnp was in all cases 
calculated from a linear relation to the solvent-accessible surface-area (SASA): ∆Gnp = 0.0227 * SASA 
(in  Å2)  –  3.85  kJ/mol.  The  vibrational  entropy  was  calculated  from  the  harmonic  frequencies, 
calculated at the MM level. They were obtained for a truncated and buffered system (8 + 4 Å), as has 
been detailed previously to increase the precision.46 The temperature (T in Eqn. 5) was set to 300 K.

Sometimes, it  is appropriate to divide the MM/PBSA estimates into electrostatic (∆Gele) and 
non-electrostatic contributions (∆Gnon-ele) so that 

 Gbind =  Gele   G non-ele (8)
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The electrostatic part is then taken to be the sum of the electrostatic energy, Eele, and the polar solvation 
free energy, ∆Gsolv, whereas the non-electrostatic part is the sum of the other four terms in Eqn. 5.

It is non-trivial to change the internal dielectric constant when using the mm_pbsa.pl script in 
Amber. There is no less than three internal dielectric constant that can be set, DIELC for scaling the 
electrostatic interactions,  INDI for scaling the PB energies (when using Delphi), and INTDIEL for 
scaling the GB energies. DIELC is not necessary to set, because Eele is a linear term that can be scaled 
afterwards (i.e. only a single calculation is needed). However when changing INDI, DIELC needs to be 
changed accordingly, whereas when INTDIEL is changed, INDI has no longer any effect. In practice, 
we obtained Eele and  Gsolv in this paper running the mm_pbsa.pl script twice for each  εint. In the first 
calculation, Gsolv(GB) and unscaled Eele were obtained by setting DIELC = 1 and INTDIEL = εint. In the 
second calculation, Gsolv(PB) and scaled Eele were obtained by setting both DIELC and INDI to εint. 

MMPB/s-LRA/β 
The MMPB(GB)/s-LRA/β method tested in this paper is a simple adaptation of the PDLD/s-LRA/β 
method by Warshel and coworkers,38,24 in which the Langevin-dipole solvation method is replaced by 
the PB or GB solvation methods. In this approach the binding free energy of a ligand to a protein is 
divided into electrostatic and non-electrostatic contributions. The electrostatic contribution is calculated 
within a LRA framework,24 as

 Gele
LRA/s

= 0.5  〈U ele
bound 〉PL  〈U ele

bound 〉PL' − 〈U ele
free 〉L − 〈U ele

free 〉 L'  (9)

This  is  identical  to  Eqn.  2,  besides  that  effective  electrostatic  potentials  Uele are  more  involved, 
including continuum solvation and scaling by an effective internal dielectric constant. They can be 
derived from the thermodynamic cycles in Figure 1 and are calculated as24

U ele
bound

=  Gsolv
PL

−  Gsolv
PL '  1

 int
−

1
ext   Gsolv

L 1 −
1
int 

Eele
L

int


E ele
L−S

int
(10)

U ele
free

=  Gsolv
L  1

int
−

1
ext   Gsolv

L 1 −
1
int 

Eele
L

int
(11)

where  Eele
L−S  and  Eele

L  are the intermolecular and intramolecular electrostatic energy of the ligand, 

respectively  (in  comparison  with  Eqn.  5,  note  that  Eele
PL

= Eele
P

 Eele
L

 Eele
L−P ,  where Eele

P  is  the 
intramolecular electrostatic energy of the protein).

The non-electrostatic part is taken from the LIE method49 and is calculated as

 Gnon-ele
LIE

=   〈 Evdw
L−S 〉PL − 〈Evdw

L−S 〉L (12)

where β is taken to be 0.18.8,9 

Binding analysis
Because avidin is a tetramer, three different binding reactions may be studied:
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P  L PL
PL3  L PL4

P  4 L PL4

(13)

For the first two reactions, there are four different possibilities for PL or PL3 (there are four different 
binding  sites  that  can  be  either  filled  or  empty)  and each of  them need  to  be  sampled,  which  is 
computational demanding. However, for the last reaction, both the P and PL4 species are unambiguous, 
so only a single simulation is needed. Therefore, we choose to study that reaction. The binding affinity 
of a single ligand is obtained by dividing the overall binding affinity by four, assuming that the four 
binding  sites  are  equivalent  (in  agreement  with  experiments35,36,37).  For  factor  Xa  (fXa),  the  first 
reaction is studied, because only a single ligand binds to fXa.

System preparation
The avidin tetramer and the seven ligands (shown in Figure 2) were prepared as described previously.41 

The simulations were based on the crystal structure of avidin in complex with biotin (Btn1; PDB file 
1avd.48 The structures of the other ligands were obtained by manually modifying biotin (which in all 
cases, except one involved the deletion of atoms or conversion of a heavy atom into another).41 All 
ionisable residues in the protein were assigned their standard protonation states at pH 7 and the single 
histidine residue in each subunit was protonated on the NE2 atom. 

The fXa protein and the nine inhibitors (also shown in Figure 2) were prepared as described 
previously.46 The simulations were based on the crystal structure of fXa in complex with ligand  125 
(PDB  file  1lpk).34 Again,  the  structures  of  the  other  ligands  were  obtained  by  small  manual 
modifications of ligand 125.  All ionisable residues were assigned their standard protonation states at 
pH 7 and the histidines were protonated in the following way: Residues 57 and 83 where protonated on 
the ND1 atoms, residues 91, 145, and 199 on the NE2 atom, and residue 13 on both atoms.

The proteins were described by the Amber99SB force field50 and the ligands by the Amber 1999 
force field (avidin ligands) or the generalised Amber force field (fXa ligands) with charges derived 
from RESP calculation.51,52,53 The protein–ligand complex, the free protein, and the ligands were all 
immersed in  a  truncated octahedral  box of  TIP4P-Ewald waters  extending at  least  10 Å from the 
solute.54 These water molecules were stripped off before the energies in Eqns. 5,  10, and 11 were 
calculated, whereas they were kept when the energies in Eqn. 12 were calculated (the non-electrostatic 
part of LIE). 

Simulations
The MD simulations were based on the following protocol: The  system was first energy minimised 
with 100 cycles of steepest descent, keeping all atoms, except water molecules and hydrogen atoms, 
restrained to the crystal structure with a harmonic force constant of 418 kJ/mol/Å2, followed by a 20 ps 
NPT simulation  with  the  same  restraints  and  a  100  ps  unconstrained  NPT equilibration.  This 
equilibration was followed by a 200 ps unconstrained  NPT production run, in which snapshots were 
saved every 5 ps, a conservative estimate of the correlation time of the MM/GBSA energies.39,55 The 
ensemble averages in Eqns. 2, 6, 7, and 9 were calculated from these snapshots. All reported values are  
averages over 20 independent MD simulations, obtained by using different random starting velocities. 
Likewise, reported standard errors (SE) are the standard deviations of the results obtained in these 20 
simulations, divided by  20 . This protocol has  been  shown to give good results for avidin–biotin 
system.44,45 The fXa complexes were simulated in a slightly different way: A single copy of each system 
was first equilibrated using the procedure described above, except that a 1 ns ps unconstrained  NPT 
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equilibration  was  used.  Thereafter,  40  independent  simulations  were  started  from this  equilibrated 
system by  assigning  different  starting  velocities.  These  simulations  were  equilibrated  for  another 
100 ps, followed by a 200 ps NPT production run. This protocol has shown to give good results for the 
fXa systems.44,45 

All MD simulations were run using the sander module of Amber 10.56 The SHAKE algorithm57 
was used to constrain bonds involving hydrogen atoms, allowing a time step of 2 fs. The temperature 
was kept  constant  at  300 K in all  MD simulations using a  Langevin thermostat58 with a  collision 
frequency of 2.0 ps–1  and the pressure was kept constant at 1 atm using a weak-coupling isotropic 
algorithm59 with a relaxation time of 1 ps. Particle-mesh Ewald summation,60 with a fourth-order B 
spline interpolation and a tolerance of 10–5,  was used to handle long-range electrostatics.  The non-
bonded cut-off was 8 Å and the non-bonded pair list was updated every 50 fs. 

Results and Discussion

Electrostatic contributions
We have estimated the binding free energy of seven biotin analogues to the avidin tetramer and nine 
inhibitors to fXa (Figure 2) using several approximate end-point approaches that employ continuum 
solvation methods. Each binding-affinity method consists of a electrostatic and a non-electrostatic term 
(Eqn. 8). For each of the two terms, we test three different variants as is summarised in Table 1. For 
each variant, two different continuum-solvation methods were used, GB or PB and five different values 
of the internal dielectric constant of the protein (εint) were tested, viz., 1, 2, 4, 10, and 25.

We start by considering the electrostatic contribution to the binding free energy (∆Gele). This 
energy is shown in Table 2 for the avidin test case and the 1A-MM/PB(GB), 3A-MM/PB(GB), and 
MMPB(GB)/s-LRA methods (cf. Table 1). Btn1–Btn3 have a net charge of –1 e, whereas the other four 
biotin analogues are neutral. As the charge determines the response to the varying dielectric constant, 
we will start by discussing the charged ligand. Interestingly, the MM/GB and MM/PB results show an 
opposite  dependence  on  εint:  The  MM/PB  energies  become  more  negative,  whereas  the  MM/GB 
energies become more positive as  εint  is increased. For  εint  10, both methods give the same  ∆Gele 

within 3 kJ/mol.  The LRA-based methods show another dependence: The MMGB/s-LRA estimates 
become more negative, whereas the MMPB/s-LRA estimates become more positive (not Btn2). For 
MM(GB)PB/s-LRA, the GB and PB estimates do not converge to the same value, nor do they converge 
to the same value as the MM/PB(GB) methods. At εint the MM/GB and MMGB/s-LRA estimate 
differ by more than 60 kJ/mol, whereas the MM/PB and MMPB/s-LRA results differ by 2–12 kJ/mol.

For the uncharged ligands, the trends are less clear, but with PB, all ligands give more negative 
∆Gele with increasing εint, except Btn7 with LRA. With GB, six of the cases give the same trend and the 
other six give the opposite trend. For all methods, the GB and PB results at  εint  = 25 agree within 
1 kJ/mol  for  all  ligands,  except  Btn4  and  Btn7  with  LRA and  Btn7  with  1A-MM/PB(GB).  The 
electrostatic contribution is close to 0 kJ/mol at  εint  = 25 for all methods, except for the same three 
cases.

The  average  standard  error  (SE)  of  the  electrostatic  contributions  over  the  seven  biotin 
analogues is also shown in Table 2 (there is no correlation between the ligand net charge and the SEs 
for each ligand). For 1A-MM/PB(GB) the SE is 0.1–1 kJ/mol and for MM/PB(GB)/s-LRA, it is 0.5–3 
kJ/mol (i.e. typically 2–3 times larger). For the 3A-MM/PB(GB) method, the SE is 3–6 times larger 
than for the corresponding 1A variant, which is the main reason why the 3A method has been little 
used. For all methods, PB gives a somewhat higher SE than GB and the SE decreases with increasing 
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εint.
The electrostatic contributions for the fXa inhibitors are shown in Table S1. All of the inhibitors 

are positively charged: C39, C57 and C63 have a single positive charge, whereas the others are doubly 
charged.  For  all  the PB-based method,  ∆Gele becomes more  negative with increasing  εint,  with the 
exception  of  C49  for  MMPB/s-LRA.  The  1A-MM/GB method  shows  the  same  trend  while  3A-
MM/GB and MMGB/s-LRA show varying trends. There is no correlation between the net charge and 
the trends. The SEs are similar to those for the avidin test case, but the 3A approach gives 7–11 times  
larger SEs than the 1A approach and the SEs of the LRA-based methods increase with εint. 

The  results  in  Table  2  show  that  the  3A-MM/PB(GB)  and  MMPB(GB)/s-LRA methods 
sometimes give quite different results. We have tried to understand this difference by comparing them 
term-wise (Table S2). Unfortunately, it turns out that most of the terms show differences that are much 
larger than the net difference in the electrostatic energy (e.g. up to 894 kJ/mol, compared to 6–18 
kJ/mol difference between 3A-MM/GB and MMGB/s-LRA with  εint  = 1), owing to the fact that the 
MMPB(GB)/LRA terms are based on simulations both with a normal ligand and with a ligand with 
zeroed charges, and that the solvation terms are scaled by a factor of (1/εint  – 1/εext). Likewise, there is 
an extensive cancellation of the difference among the terms, perhaps best illustrated by the  Eele

P  term 
that is ignored in MMPB(GB)/LRA, although it amounts to 52–433 kJ/mol in 3A-MM/GB.

 
Non-electrostatic contribution
Next, we turn to the non-electrostatic contribution, for which we can compare three approaches: 1A-
MM/SA, 3A-MM/SA, and LIE, i.e. ∆Ebnd + ∆EvdW + ∆Gnp + T∆SMM for MM/SA and ∆Gnon-ele in Eqn. 12 
for LIE (cf. Table 1; note that the non-electrostatic energy is independent of the solvation model and the 
internal dielectric constant). The results are shown in Table 3 for the avidin test case. There is a fair  
correlation between the 1A- and 3A-MM/SA (r2 = 0.74). The 1A results are 18 kJ/mol more positive on 
average, but the individual differences range from 42 kJ/mol for Btn2 to –15 kJ/mol for Btn4. 

There is also a fair correlation between the 3A-MM/SA and LIE estimates (r2 = 0.63). The 3A-
MM/SA results are 70 kJ/mol more negative on average and the individual differences range from –19 
kJ/mol for Btn7 to –97 kJ/mol for Btn4. The LIE estimates show a much smaller variation among the 
seven ligands (–7 to –21 kJ/mol, compared to –26 to –116 kJ/mol), owing to the scaling by β = 0.18. 
On the other hand, 3A-MM/SA shows a smaller variation than 1A-MM/SA (–1 to –130 kJ/mol).

The average standard errors over the seven biotin analogues are also shown in Table 3. It can be 
seen that the 1A-MM/SA estimates have a precision of 1 kJ/mol, i.e. similar to that of the electrostatic 
contribution.  The precision of the 3A-MM/SA estimate is much worse, 7 kJ/mol, which is slightly 
larger than for the electrostatic contribution. The LIE method has the smallest uncertainties, 0.2 kJ/mol, 
again owing to the scaling by β = 0.18.

If we instead look at the fXa test case (results shown in Table S3), the correlation between 1A- 
and 3A-MM/SA is much worse (r2 = 0.22), but the average difference (26 kJ/mol) is comparable to that 
in the avidin test case. The correlation between the 3A-MM/SA and the LIE estimates is slightly larger 
(r2 = 0.39) and the average difference is –100 kJ/mol. The standard errors of the 1A-MM/SA and the 
LIE methods are similar to those in the avidin test case, whereas those of the 3A-MM/SA results are 
slightly larger (9 kJ/mol). The largest difference between the two test cases is that the range of the non-
electrostatic energies over the seven or nine ligands is much smaller for fXa for the 1A-MM/SA and 
LIE methods (14 and 3 kJ/mol, compared to 129 and 14 kJ/mol, respectively), whereas for the 3A-
MM/SA method, the ranges are similar, 89 and 92 kJ/mol.
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The two MM/GBSA methods
The most interesting results are the total binding free energies (i.e. the sum of the electrostatic and non-
electrostatic energies, cf. Table 1), which can be compared with experimental data.36 In Table 4, the 
various methods based on GB solvation, obtained with five different values of the internal dielectric 
constant are compared, using four different quality measures, viz. the mean absolute deviation (MAD), 
the MAD after  removal  of systematic errors (i.e.  after  subtraction of the signed average;  MADtr), 
Pearson's correlation coefficient (r2), and the predictive index (PI).61 The MAD estimates the quality of 
the absolute binding affinities, whereas the other three measures estimate the quality of the relative 
affinities within each set of ligands. The latter is normally of the prime interest in ligand design, so we 
will pay more attention to the latter three measures. The corresponding raw data are shown in Tables 
S4–S12 in the supporting material.

We  start  by  considering  the  1A-MM/GBSA  method,  which  has  become  the  standard 
MM/GBSA procedure.  Figure 3 shows the experimental and calculated free energies for the seven 
ligands. Detailed results with precision estimates are shown in Table S4. Figure 3 and Table 4 show that 
the best results are obtained with εint = 1: Both r2 and PI decrease drastically if εint is increased, whereas 
MADtr  increases.  This  is  caused mainly by a deterioration of the estimate of Btn4.  However,  the 
absolute errors decrease slightly when  εint is increased, as is manifested by a decreased MAD. The 
precision of the free-energy estimates is ~1 kJ/mol, and it improves slightly with increased εint. This is 
expected  because  as  we  increase  the  scaling  of  the  electrostatic  terms,  we  also  scale  down  the 
uncertainties of these estimates. 

Next, we consider the 3A-MM/GBSA approach. This method is seldom used because it requires 
more simulations (one for the free protein and one for each ligand free in solution) and it gives more 
noisy data that result in poorer precision.43 However, from a theoretical point of view, it should be more 
accurate  because  it  explicitly  considers  ligand  and  protein  reorganisation.42,50 The  results  of  this 
approach are shown in Figure 4 and detailed results can be found in Table S5. From Table 4 it can be 
seen that a larger systematic error is introduced by using this approach: MAD is larger than for 1A-
MM/GBSA, whereas MADtr is slightly smaller. Likewise, both r2 and PI are better with 3A than with 
1A-MM/GBSA. However, the standard error has increased to 7–9 kJ/mol because we have less error 
cancellation than in the 1A approach. As with 1A-MM/GBSA, the results deteriorates with increased 
εint, although the precision is somewhat improved with increased εint.

The corresponding results for the fXa test case are shown in Table 5. Unfortunately, this test  
case gives essentially the opposite result: The 3A-MM/GBSA results are mostly worse than the 1A-
MM/GBSA results, especially for low values of εint, and both method becomes better if we increase εint. 
The MADtr of 1A-MM/GBSA is particularly low for this test case ~3 kJ/mol (but MADtr much worse 
with the 3A-MM/GBSA approach). The reason for this is that the range of the experimental affinities is 
much smaller for fXa, 20 kJ/mol, compared to 67 kJ/mol for avidin (and eight of the nine fXa inhibitors 
have affinities within 9 kJ/mol). This means that the null-hypothesis that all ligands have the same 
affinity actually gives a MADtr of 4 kJ/mol for fXa, but 20 kJ/mol for avidin. Thus, all methods that 
give a small enough variation among the nine fXa will also give a good MADtr. Therefore, it is more 
important to consider  r2 and PI, which are not affected by the small range of experimental affinities. 
From Table  5,  it  can  be  seen  that  1A-MM/GBSA corresponding  resultgives  a  better  r2 than  3A-
MM/GBSA, whereas the opposite is true for the PI. Both quality measures are best for εint = 4–10. 

Comparing Eqns. 6 and 7, it can be seen that the difference between the 1A and 3A approaches 
comes from two terms   Gre

P
= 〈GP 〉PL − 〈GP 〉P  and   Gre

L
= 〈 G L〉 PL − 〈 GL 〉 L , which have been called 

the reorganisation free energies of the protein and the ligand, respectively.50 The latter term has recently 
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been investigated for the binding of 31 ligands to the X-linked inhibitor of apoptosis protein and it was 
concluded that  it  is  important  for accurate  estimates  of binding free energies.50 In that  study,  they 
obtained ligand reorganisation energies between 0 and 33 kJ/mol. The corresponding results for the 
biotin analogous are shown in Table 6. It can be seen that  Gre

L  ranges between 0 and 22 kJ/mol and 
that the difference is uncorrelated to the size of the ligand. The number of rotatable bonds for the seven 
ligands are 5, 5, 6, 7, 6, 6, and 0, respectively and there is no correlation to this property either, as noted 
in Ref. 50 as well.  Gre

L  is insensitive to of the internal dielectric constant and to the solvation method 
(variation up to 2 kJ/mol). Most of the reorganisation energy comes from the non-electrostatic part, 
especially the entropy term. Similar conclusions can be drawn for the fXa test case, as can be seen in 
Table S12, although there are somewhat larger effects from Ebnd and EvdW, as well as from εint (up to 18, 
10, and 5 kJ/mol, respectively).

The protein reorganisation energy  Gre
P , which is shown in Table 7 for avidin, is much larger, 

ranging from –218 to 19 kJ/mol. Six of the ligands have a large negative protein reorganisation energy, 
whereas Btn4 has a much smaller  and positive reorganisation energy.  For the charged ligands,  the 
largest contributions come from the non-electrostatic part, with only a modest contribution from the 
electrostatic part. For Btn5 and Btn6, there is a much larger contribution from the electrostatic part (for 
small  εint).  For the fXa test case (shown in Table S13), the electrostatic part dominates the protein  
reorganisation energy for six of the ligands, but the opposite is true for the other three. 

MMGB/s-LRA/β
The results of the MMGB/s-LRA/β method for avidin are shown in Figure 5 and details can be found 
in Tables 4 and S6. It can be seen that for the optimum εint = 1, the method performs slightly better than 
the MM/GBSA methods, with MADtr = 8 kJ/mol, r2 = 0.85, and PI = 0.89. The standard error is 0.5–2 
kJ/mol, which is similar to that of the 1A-MM/GBSA method.

For the fXa test case, shown in Table 5, the MMGB/s-LRA/β results are worse. The best results 
are still obtained with εint  = 1, but they are always worse than for 1A-MM/GBSA. In fact, for εint > 1 
MMGB/s-LRA/β even gives negative PIs and negative correlations. It is also notable that the standard 
error increases with εint, in variance to the MM/GBSA methods.

Singh and Warshel recently compared the results of the PDLD/s-LRA/β method with literature 
values of MM/PBSA for two biotin analogues (Btn2 and Btn3) and five HIV1-RT inhibitors, and argue 
that the former results are superior.40 They fit β for each target protein (i.e. to two values for avidin) and 
use εint = 4 for neutral ligands and εint  = 25 for charged ligands. However, β has a quite small effect on 
the quality estimates, as can be seen in Table S14. On the other hand, the results for the two common 
ligands differ considerably between our calculations and those in Ref.  40. For MMGB/s-LRA/β with 
εint = 25 and β = 0.33, we obtain –189 and –116 kJ/mol for Btn2 and Btn3, respectively, (and –66 and –
48 kJ/mol with PB solvation) whereas they obtained –61 and –59 kJ/mol. This shows that the results  
strongly depend  on  the  system preparation,  simulation  protocol,  and  continuum-solvation  method. 
Moreover, the results for fXa show that the performance of the various methods depends on the test 
system.

Other GB-based method
Both the MM/GBSA and MMGB/s-LRA/β methods involve separate electrostatic and non-electrostatic 
terms. Therefore, additional methods can be constructed by combining the various terms as is shown in 
Table  1.  For  instance,  we  can  combine  the  non-electrostatic  terms  from 3A-MM/GBSA with  the 
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electrostatic terms from 1A-MM/GBSA (which show a better  precision than the corresponding 3A 
terms). This approach will be called 1A-MM/GB–3A-MM/SA and the detailed results are collected in 
Table S7. From the quality measures in Tables 4 and 5, it can be seen that the accuracy is similar to that 
of 3A-MM/GBSA, which implies that the accuracy of the 3A-MM/GBSA method is limited by the 
non-electrostatic part. As expected, the precision is improved compared to the 3A-MM/GBSA method, 
but only marginally (to 7 kJ/mol for avidin and 9 kJ/mol for fXa), showing that the precision of the two 
terms is similar.

Furthermore, we can abandon the non-electrostatic part of MM/GBSA and replace it with the 
corresponding term from LIE. Depending on the number of averages used for the electrostatic part, we 
will call these approaches 1A-MM/GBβ or 3A-MM/GBβ. Detailed results of these methods can be 
found in Tables S8 and S9, and quality measures are given in Tables 4 and 5. For avidin, the best results 
are obtained for intermediate values of  εint (4–10). For these values, the two approaches give similar 
results, and these are the best obtained for any method in this investigation, viz. MADtr = 7–9 kJ/mol, 
r2 = 0.86–0.89, and PI = 0.92–0.99. However, for fXa, the best results are obtained with εint = 25 and 
the 1A-MM/GBβ approach is better, but the results are only mediocre, e.g. with r2 = 0.38.

Two additional methods can be formed by combining the electrostatic part  from MMGB/s-
LRA/β with non-electrostatic part from either 1A-MM/GBSA or 3A-MM/GBSA. We will call these 
methods  MMGB/s-LRA/1A-MM/SA  and  MMGB/s-LRA/3A-MM/SA.  Detailed  results  of  these 
methods can be found in Tables S10 and S11, and quality measures are shown in Tables 4 and 5. Both  
methods show only mediocre results  compared to  the other  methods.  For fXa, the best  results  are 
obtained with  εint = 1–2, whereas for avidin,  the various quality measures give differing trends.  In 
general MMGB/s-LRA/3A-MM/SA gives better results than the 1A variant.

PB-based methods
Quality measures of all methods based on PB solvation are shown in Table 8 for the avidin test case 
(detailed results are given in Table S4–S12). It can be seen that the results are rather similar to those 
obtained with GB solvation (Table 4): The MMPB/s-LRA/MMSA methods give the best results with 
εint = 1, but they are worse than for some other methods. The MM/PBSA methods also give the best 
results at εint = 1, but with PB solvation, the 1A approach actually gives slightly better results than the 
3A approach. All the other method gain from the use of a larger εint and the best results are typically 
obtained with a slightly larger value than with GB.

As with GB solvation, the best results are obtained with the 1A-MM/PB  and 3A-MM/PB  
methods (with εint = 10), with MADtr = 7–8 kJ/mol, r2 = 0.85–0.89, and PI = 0.91–0.99, i.e. similar to 
the best results obtained with GB solvation. The 1A-MM/PBSA and MMPB/s-LRA/  methods (with  
εint = 1 and 2, respectively) give only slightly worse results, with MADtr = 9–10 kJ/mol, r2 = 0.76–0.90, 
and PI = 0.90–0.96.

The SE of the various methods is consistently slightly higher with PB solvation than with GB 
solvation. However, the difference is quite small, 0.5 kJ/mol on average for εint = 1, but less than 0.1 
kJ/mol  εint > 4.  Μoreover, the trends are the same as with GB solvation. In particular, all methods 
involving 3A estimates have quite large SEs of 7–10 kJ/mol, whereas the other methods have SEs of 
less than 3 kJ/mol. All SEs are reduced when εint is increased, but the 3A-MM/PB  method gains most  
from the scaling and gives at εint = 25 a SE of 0.5 kJ/mol, which is lower than for all the other methods, 
except 1A-MM/PB .

For the fXa test case (shown in Table 9), none of the methods give reasonable results, except the 
three MM/PBSA methods at high  εint, with  r2 = 0.41–0.56 and PI = 0.55–0.73. However, only 1A-
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MM/PBSA gives a  low MADtr (4 kJ/mol).  This  is  similar  to  the GB results,  except  that  the 1A-
MM/GB  method also gave reasonable results.

Conclusions
In this paper, we have investigated five related issues of great interest for the calculation of ligand-
binding  affinities  with  end-point  methods  involving  continuum  solvation  models.  First,  we  have 
compared the 1A and 3A approaches to obtain MM/PB(GB)SA binding affinities. Our results show that 
the performance of the two approaches depends on the test case and the solvation model: For avidin 
and GB solvation, the 3A-MM/GBSA approach gave better results than 1A-MM/GBSA. However, with 
PB solvation and for fXa, the opposite was observed. However, in all cases, the 3A approach gave 4–5 
times  larger  standard  errors  than  the  1A  approach,  meaning  that  16–25  as  many  independent 
simulations are needed to reach a similar precision.

Second, we have compared the MM/PB(GB)SA approach to obtain non-electrostatic energies 
(involving bonded, van der Waals, SASA, and entropy terms from harmonic frequencies) with the LIE 
approach.  The  results  in  Tables  4  and  8  quite  clearly  show  that  for  the  binding  of  seven  biotin 
analogues to avidin, the LIE approach gives better results than the MM/PB(GB)SA approach. It  is 
possible  that  the entropy in MM/PBSA deteriorates the results,  as  has recently been suggested by 
Warshel.40 However,  for  fXa,  with  its  small  (but  more  typical)  range  of  binding  affinities,  the 
MM/PB(GB)SA approach gives the better results. Of course, the LIE results could be improved by 
fitting the  parameter for each drug target, as has been done before, 40 but then we start to move away 
from physics to statistical QSAR method. 

Third, we have compared the MM/PB(GB) approach to obtain electrostatic binding energies 
from the electrostatic interactions and the continuum solvation energies with the stricter LRA approach. 
Interestingly, our results indicate that for both avidin and fXa, the former approach gives better results, 
implying  that  the  MM/PB(GB)  combinations  give  the  best  results  for  avidin,  whereas  the  pure  
MM/PB(GB)SA methods give the best results for fXa. The MM/PB(GB) approach also requires fewer 
simulations  than the LRA approach.  On the other hand, 1A-MM/PB  is the method with the best  
precision.

Fourth, we have studied the effect of varying the internal dielectric constant of the protein, εint. 
For  our test  cases,  the MMPB(GB)/s-LRA/  and MMPB(GB)/s-LRA/3A-MMSA methods seem to  
prefer low values of εint  (1–2), whereas the two MM/PB(GB)  methods prefer large values of   εint (4–
25). For the other four methods, the preferred value depends on the test case or the solvation model.  
The optimum value of εint is typically slightly higher for PB than for GB solvation. In almost all cases, 
the precision is improved with increased εint, because we scale the two terms with lowest precision. The 
effect is especially pronounced for the 3A-MM/PB  method. 

Finally,  we have compared the results  obtained with two continuum solvation methods,  PB 
calculated with Delphi47 and the GBOBCI method in Amber.49 These two methods gave the best PB and 
GB results  in  a previous  investigation of more PB and GB methods with the 1A-MM/PB(GB)SA 
approach for the avidin test case (and the PB results were appreciably better than the GB results).39 In 
this paper, we show that PB gives somewhat better results than GB for avidin and most methods (not 
1A-MMPB-3A-MMSA). However, for fXa, GB gives better r2 and PI for all methods (with optimum 
εint). PB also gives slightly larger standard errors than GB. The raw data in Tables S3–S12 show that the 
absolute binding affinities strongly depend on the continuum solvation method used for all methods 
(e.g. by up to 123 kJ/mol for MMPB(GB)/s-LRA/ ), in accordance with our previous results. 39 This 
shows  that  it  quite  meaningless  to  discuss  absolute  binding  energies  for  methods  that  contain  a 
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continuum-solvation estimate.
The results in Tables 4 and 9 show that best results for avidin are obtained with the MMGB/s-

LRA/ , 1A-MM/PB(GB) , 3A-MM/PB , and 1A-MMGB-3A-MMSA methods. With optimum values    
of εint, all five methods give MADtr = 7–8 kJ/mol,  r2 = 0.85–0.89, and PI = 0.89–0.99, but there is a 
systematic error (MAD) of 17–23 kJ/mol. However, for the more demanding fXa test case, only the 
1A-MM/PB(GB)SA approach gives reasonable results (MADtr = 3–4 kJ/mol, r2 = 0.56–0.64, and PI = 
0.55–0.72). 

The various methods have different computational demands. 1A-MM/PBSA requires a single 
MD simulation (of the complex), whereas 3A-MM/PBSA requires three MD simulations, viz. also of 
the free protein and the free ligand,  although the former is  the same for all  ligands and the latter 
involves smaller simulated systems than the complex. The LIE approach involves two simulations (the 
complex and the free ligand), whereas the LRA approximation involves two additional simulations (the 
complex and the free ligand with zeroed protein charges). Therefore, the computational effort of the 
methods increases in the order 1A-MM/PB(GB)SA (1) < 1A-MM/PB(GB)  (2) < 3A-MM/PB(GB)SA  
= 1A-MMPB(GB)-3A-MMSA = 3A-MM/PB(GB)  (3) < MMPB(GB)/s-LRA/  = MMPB/s-LRA/1A- 
MMSA = MMPB/s-LRA/3A-MMSA(4). 

However, the precision of the methods needs also to be considered, because fewer independent 
simulations are needed for methods with a low standard error. For the five best methods, the standard 
error with the optimum εint are 0.8, 2.0, 0.3, 0.9, and 0.3 kJ/mol for 1A-MM/PB(GB)SA (εint = 10 and 
25 for GB and PB, respectively, for fXa), MMGB/s-LRA/  ( εint = 1 for avidin), 1A-MM/(PB)GB  ( εint 

= 4 and 10 for GB and PB, respectively,  for avidin),  3A-MM/PB  ( εint = 10 for avidin),  and 1A-
MMGB-3A-MMSA (εint = 1 for avidin), respectively. This means that if a precision of 1 kJ/mol is  
intended, the various methods would require 13, 80, 2, 16, and 2 independent simulations, respectively. 
Finally, we should consider that the GB calculation is about three times faster than the corresponding 
PB  calculation.  Therefore,  for  the  avidin  test  case,  the  best  method  in  terms  of  accuracy  and 
computational efficiency seems to be 1A-MM/GB  with  εint = 4. For fXa, 1A-MM/GBSA works best. 
On  the  other  hand,  the  3A and  LRA approaches  are  expected  to  be  theoretically  more  accurate, 
although it is not reflected in our results. 
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Table 1. Summary of the various methods used in the article. The first part of the table defines the 
various electrostatic and non-electrostatic methods. The second part of the table defines the various 
binding-affinity methods, which consist of one electrostatic and one non-electrostatic method (in this 
part of the table, only methods based on GB solvation are shown, although each method also have a 
variant with the PB method instead). The tables in which the results for the various methods are 
presented are also given, besides Tables 4, 5, 8, and 9, which contain results for all binding-affinity 
methods. For all electrostatic methods, calculations with  εint = 1, 2, 4, 10, and 25 were performed.

Method Terms Eqns. Tables

Electrostatic methods

1A-MM/GB Eele + ∆Gsolv(GB) 5, 7 2, S1

1A-MM/PB Eele + ∆Gsolv(PB) 5, 7 2, S1

3A-MM/GB Eele + ∆Gsolv(GB) 5, 6 2, 6, 7, S12, S13

3A-MM/PB Eele + ∆Gsolv(PB) 5, 6 2, 6, 7, S12, S13

MMGB/s-LRA  Gele
LRA/s Gsolv GB 9–11 2, S1

MMPB/s-LRA  Gele
LRA/s Gsolv PB 9–11 2, S1

Non-el methods

1A-MM/SA EvdW + ∆Gnp – TSMM 5, 7 3, S3

3A-MM/SA Ebnd + EvdW + ∆Gnp – TSMM 5, 6 3, 6, 7, S3, S12, S13

LIE ( )  Gnon-ele
LIE

12 3, S3, S14

 Binding-affinity method  Electrostatic method Non-electrostatic method Tables

1A-MM/GBSA 1A-MM/GB 1A-MM/SA S4

3A-MM/GBSA 3A-MM/GB 3A-MM/SA S5

MMGB/s-LRA/ MMGB/s-LRA LIE ( ) S6

1A-MMGB-3A-MMSA 1A-MM/GB 3A-MM/SA S7

1A-MM/GB 1A-MM/GB LIE ( ) S8

3A-MM/GB 3A-MM/GB LIE ( ) S9

MMGB/s-LRA/1A-MMSA MMGB/s-LRA 1A-MM/SA S10

MMGB/s-LRA/3A-MMSA MMGB/s-LRA 3A-MM/SA S11
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Table 2. Electrostatic contributions (∆Gele in kJ/mol) to the free energy of the binding the seven biotin 
analogues to avidin for the 1A-MM/PB(GB)SA, 3A-MM/PB(GB)SA, and MMPB(GB)/s-LRA/β 
methods, with either PB or GB solvation and calculated with five different values of the internal 
dielectric constant, εint. SE is the average standard error for the seven biotin analogues.

1A-MM/GB 1A-MM/PB
εint 1 2 4 10 25 1 2 4 10 25

Btn1 -45.5 -31.0 -23.7 -19.4 -17.6 4.3 -14.1 -20.7 -21.9 -20.0
Btn2 -35.9 -26.2 -21.4 -18.5 -17.4 13.2 -9.5 -18.4 -21.1 -19.8
Btn3 -47.6 -31.9 -24.1 -19.4 -17.5 2.7 -14.3 -20.5 -21.6 -19.7
Btn4 18.0 7.8 2.8 -0.3 -1.5 118.3 54.9 23.8 6.0 -0.2
Btn5 7.0 2.8 0.7 -0.5 -1.0 82.3 38.5 16.9 4.4 -0.4
Btn6 12.7 5.8 2.3 0.2 -0.6 83.0 38.9 17.4 4.9 0.4
Btn7 -16.6 -8.8 -4.9 -2.6 -1.7 12.1 4.8 1.1 -1.0 -8.0

SE 1.0 0.5 0.3 0.1 0.1 1.3 0.6 0.3 0.2 0.2

3A-MM/GB 3A-MM/PB
εint 1 2 4 10 25 1 2 4 10 25

Btn1 -51.7 -33.7 -24.7 -19.3 -17.2 5.0 -9.0 -15.3 -18.0 -17.9
Btn2 -40.5 -27.9 -21.6 -17.8 -16.3 19.7 -1.5 -11.5 -16.4 -17.0
Btn3 -42.0 -28.4 -21.7 -17.6 -16.0 20.3 -0.7 -10.6 -15.5 -16.3
Btn4 10.8 4.6 1.5 -0.4 -1.1 73.9 34.8 15.4 4.1 -0.2
Btn5 -16.5 -9.3 -5.7 -3.5 -2.6 60.2 27.0 10.8 1.5 -1.6
Btn6 -9.0 -5.2 -3.3 -2.2 -1.7 57.8 26.7 11.4 2.5 -0.7
Btn7 -19.9 -10.8 -6.2 -3.5 -2.4 7.2 2.4 -0.2 -1.7 -2.1

SE 6.4 3.3 1.7 0.8 0.4 7.8 3.9 1.9 0.8 0.5
MMGB/s-LRA MMPB/s-LRA

εint 1 2 4 10 25 1 2 4 10 25
Btn1 -33.9 -58.0 -70.0 -77.2 -80.1 -19.5 -14.5 -12.0 -10.5 -9.9
Btn2 -24.1 -89.7 -122.5 -142.2 -150.1 -14.4 -21.2 -24.6 -26.7 -27.5
Btn3 -31.4 -58.1 -71.4 -79.5 -82.7 -18.4 -16.3 -15.2 -14.5 -14.3
Btn4 6.2 6.2 6.1 6.1 6.1 31.8 8.9 -2.5 -9.4 -12.1
Btn5 3.1 1.3 0.4 -0.1 -0.3 18.5 9.3 4.6 1.9 0.7
Btn6 -2.7 -1.5 -0.8 -0.5 -0.3 7.8 4.2 2.3 1.3 0.8
Btn7 -4.5 -2.6 -1.7 -1.1 -0.9 -2.1 3.8 6.7 8.5 9.2

SE 2.0 1.0 0.7 0.5 0.5 2.6 1.3 0.8 0.6 0.6
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Table 3. Non-electrostatic contribution to the free energy of the binding the seven biotin analogues to 
avidin in kJ/mol (∆Gnon-ele) for the 1A-MM/SA, 3A-MM/SA, and LIE methods. SE is the average 
standard error over the seven biotin analogues.

1A-MM/SA 3A-MM/SA LIE

Btn1 -69.7 -96.5 -19.9

Btn2 -67.8 -109.6 -21.2

Btn3 -55.6 -86.4 -18.1

Btn4 -130.2 -115.6 -18.5

Btn5 -75.1 -73.6 -16.2

Btn6 -77.4 -94.7 -11.1

Btn7 -1.4 -26.3 -7.0

SE 0.7 6.9 0.2
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Table 4. Quality measures of the methods based on GB solvation for the binding of seven biotin 
analogues to avidin.a 

1A-
MM/GBSA

3A-
MM/GBSA

MMGB/s-
LRA/

1A-MMGB-
3A-MMSA

1A-
MM/GB

3A-
MM/GB

MMGB/s-LRA/
1A-MMSA

MMGB/s-LRA/
3A-MMSA

 εint = 1
MAD 38.9 65.3 16.5 56.6 17.0 8.1 39.4 53.6
MADtr 15.2 14.2 7.9 16.2 14.2 9.5 22.0 19.3
r2 0.60 0.72 0.85 0.78 0.71 0.75 0.29 0.59
PI 0.85 0.87 0.89 0.87 0.78 0.87 0.65 0.87
SE 1.3 9.4 2.0 7.0 1.1 6.4 2.1 7.3

εint = 2
MAD 37.3 57.0 19.7 52.8 17.3 13.1 56.3 70.1
MADtr 19.9 17.1 19.6 18.1 8.5 8.1 25.5 26.6
r2 0.33 0.58 0.68 0.64 0.80 0.84 0.53 0.62
PI 0.69 0.87 0.85 0.87 0.87 0.87 0.80 0.87
SE 0.9 7.6 1.1 6.9 0.6 3.3 1.3 7.0

εint = 4
MAD 36.5 52.8 25.9 50.9 19.2 17.3 64.8 78.3
MADtr 24.6 19.2 28.1 19.1 7.0 7.9 30.0 33.7
r2 0.21 0.49 0.63 0.52 0.86 0.89 0.56 0.61
PI 0.65 0.80 0.91 0.80 0.99 0.99 0.87 0.87
SE 0.8 7.1 0.7 6.9 0.3 1.7 1.0 6.9

εint = 10
MAD 36.1 50.3 31.0 49.8 20.3 19.8 69.9 83.2
MADtr 27.3 20.5 33.2 20.4 7.6 8.7 33.7 39.4
r2 0.15 0.43 0.61 0.45 0.88 0.89 0.57 0.60
PI 0.44 0.64 0.82 0.80 0.92 0.99 0.87 0.87
SE 0.7 7.0 0.6 6.9 0.2 0.8 0.9 6.9

εint = 25
MAD 35.9 49.3 33.0 49.3 20.8 20.8 72.0 85.2
MADtr 28.5 21.0 35.3 21.1 8.5 9.4 35.2 41.7
r2 0.13 0.40 0.60 0.42 0.87 0.89 0.57 0.60
PI 0.44 0.64 0.82 0.64 0.92 0.92 0.87 0.87
SE 0.7 6.9 0.5 6.9 0.2 0.5 0.9 6.9
a The quality measures are the mean absolute deviation (MAD), the MAD after removal of systematic 
errors (i.e. after subtraction of the signed average; MADtr), Pearson's correlation coefficient (r2), and 
the predictive index (PI).61 Both MAD and MADtr are in kJ/mol. The best result for each value of εint is 
highlighted in bold face. SE is the standard error of the binding affinities, averaged over the seven 
biotin analogues.
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Table 5. Quality measures of the methods based on GB solvation for the binding of nine inhibitors to 
fXa.a

1A-
MM/GBSA

3A-
MM/GBSA

MMGB/s-
LRA/

1A-MMGB–  
3A-MMSA

1A-
MM/GB

3A-
MM/GB

MMGB/s-LRA/
1A-MMSA

MMGB/s-LRA/
3A-MMSA

εint = 1
MAD 16.2 66.2 21.2 43.3 57.6 46.1 52.6 78.5
MADtr 3.9 32.5 6.3 21.8 5.6 44.8 5.1 21.2
r2 0.38 0.14 0.08 0.41 0.01 0.00 0.36 0.47
PI 0.58 0.42 0.32 0.72 0.09 0.04 0.66 0.72
SE 1.1 12.4 1.1 9.3 0.9 8.3 1.3 9.3

εint = 2
MAD 36.5 74.5 28.3 62.4 37.4 27.3 45.5 71.4
MADtr 2.9 20.4 13.2 21.2 4.5 23.9 12.2 17.5
r2 0.59 0.35 -0.56 0.42 0.05 0.00 -0.21 0.22
PI 0.62 0.65 -0.76 0.72 0.24 0.04 -0.55 0.40
SE 0.9 10.2 1.0 9.2 0.5 4.3 1.3 9.3

εint = 4
MAD 46.6 78.7 32.1 72.5 27.2 21.1 42.0 67.9
MADtr 3.0 18.0 19.7 20.9 4.3 13.4 18.7 18.8
r2 0.64 0.46 -0.49 0.42 0.14 0.00 -0.29 0.07
PI 0.72 0.75 -0.76 0.72 0.61 0.03 -0.55 0.44
SE 0.8 9.5 1.5 9.2 0.3 2.3 1.7 9.4

εint = 10
MAD 46.6 78.7 32.1 72.5 27.2 21.1 42.0 67.9
MADtr 3.0 18.0 19.7 20.9 4.3 13.4 18.7 18.8
r2 0.64 0.46 -0.49 0.42 0.14 0.00 -0.29 0.07
PI 0.72 0.75 -0.76 0.72 0.61 0.03 -0.55 0.44
SE 0.8 9.5 1.5 9.2 0.3 2.3 1.7 9.4

εint = 25
MAD 55.1 82.2 35.8 81.0 18.7 17.6 39.4 64.9
MADtr 3.2 20.2 25.1 20.8 4.1 5.1 24.1 22.4
r2 0.64 0.43 -0.46 0.42 0.38 0.02 -0.32 0.01
PI 0.68 0.73 -0.76 0.81 0.70 0.09 -0.68 0.10
SE 0.8 9.3 2.0 9.2 0.2 0.8 2.2 9.5
a The quality measures are the same as in Table 4. A negative sign of r2 indicates that r is negative. 
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Table 6. Ligand reorganisation free energies (  Gre
L  in kJ/mol) for the binding of seven biotin 

analogues to avidin, calculated at different values of εint. The corresponding MM/GBSA components in 
Eqn. 5 are also given (note that ∆Gnon-ele = Ebnd + EvdW + ∆Gnp – TSMM). Av, Max, Min, and Range are the 
average, maximum, minimum, and range among the seven biotin analogues.

Ebnd EvdW ∆Gnp –TSMM ∆Gnon-ele Eele + ∆Gsolv(GB)  Gre
L

εint 1 2 4 10 25 1

Btn1 2.5 -1.5 0.1 5.1 6.2 1.8 0.8 0.4 0.1 0.0 7.9

Btn2 1.2 1.3 0.1 6.6 9.1 -1.1 -0.6 -0.3 -0.2 -0.1 7.9

Btn3 -3.0 3.6 0.1 18.6 19.4 2.4 1.2 0.6 0.2 0.1 21.8

Btn4 -3.7 -2.0 0.2 8.1 2.5 0.2 0.0 -0.1 -0.1 -0.1 2.7

Btn5 5.4 0.1 0.0 8.7 14.2 -0.1 -0.1 0.0 0.0 0.0 14.1

Btn6 -2.3 -0.2 0.1 2.4 -0.1 1.1 0.5 0.3 0.1 0.0 1.0

Btn7 -0.4 0.0 0.0 -0.4 -0.8 0.7 0.3 0.2 0.1 0.0 -0.1

Av -0.1 0.2 0.1 7.0 7.2 0.7 0.3 0.1 0.0 0.0 7.9

Max 5.4 3.6 0.2 18.6 19.4 2.4 1.2 0.6 0.2 0.1 21.8

Min -3.7 -2.0 0.0 -0.4 -0.8 -1.1 -0.6 -0.3 -0.2 -0.1 -0.1

Range 9.1 5.6 0.2 19.0 20.2 3.5 1.8 0.9 0.4 0.2 21.9
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Table 7. Protein reorganisation free energies ( Gre
P  in kJ/mol) and MM/GBSA energy components for 

the binding of seven biotin analogues to avidin, calculated at different values of εint. The terms are the 
same as in Table 6.

Ebnd EvdW ∆Gnp -TSMM ∆Gnon-ele Eele + ∆Gsolv(GB)  Gre
P

εint 1 2 4 10 25 1

Btn1 -46.3 -65.9 -1.9 -17.7 -131.9 -32.2 -14.4 -5.6 -0.3 1.9 -164.0

Btn2 -102.5 -90.8 -1.6 -8.5 -203.4 -14.2 -4.3 0.6 3.5 4.7 -217.6

Btn3 -124.2 -52.1 0.0 -24.8 -201.0 13.1 9.2 7.3 6.1 5.6 -187.9

Btn4 -10.4 106.6 11.1 -59.0 48.4 -29.1 -13.0 -5.0 -0.1 1.8 19.3

Btn5 -24.2 -1.6 1.5 -26.6 -50.9 -93.9 -48.2 -25.4 -11.7 -6.2 -144.8

Btn6 -74.8 36.6 3.9 -34.6 -68.9 -91.0 -46.1 -23.7 -10.2 -4.8 -159.9

Btn7 -52.3 -37.8 -2.4 -3.9 -96.3 -15.9 -9.2 -5.8 -3.8 -3.0 -112.2

Av -62.1 -15.0 1.5 -25.0 -100.6 -37.6 -18.0 -8.2 -2.3 0.0 -138.2

Max -10.4 106.6 11.1 -3.9 48.4 13.1 9.2 7.3 6.1 5.6 19.3

Min -124.2 -90.8 -2.4 -59.0 -203.4 -93.9 -48.2 -25.4 -11.7 -6.2 -217.6

Range 113.8 197.5 13.5 55.1 251.8 107.1 57.5 32.7 17.8 11.9 236.9
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Table 8. Quality measures of the methods based on PB solvation for the binding of seven biotin 
analogues to avidin.a

1A-
MM/PBSA

3A-
MM/PBSA

MMPB/s-
LRA/

1A-MMPB-
3A-MMSA

1A-
MM/PB

3A-
MM/PB

MMPB/s-LRA/
1A-MMSA

MMPB/s-LRA/
3A-MMSA

 εint = 1
MAD 21.9 12.3 29.5 23.5 74.1 63.8 27.1 40.6
MADtr 9.9 9.9 12.6 23.0 30.7 15.2 18.5 17.4
r2 0.90 0.78 0.62 0.71 0.38 0.41 0.35 0.62
PI 0.96 0.90 0.77 0.70 0.82 0.69 0.65 0.82
SE 1.5 10.4 2.6 7.0 1.3 7.8 2.7 7.5

εint = 2
MAD 15.8 29.8 25.3 27.0 43.1 40.3 33.3 44.8
MADtr 13.9 15.2 8.5 15.8 16.4 9.6 25.7 21.7
r2 0.64 0.67 0.76 0.76 0.59 0.67 0.18 0.46
PI 0.88 0.87 0.92 0.87 0.82 0.82 0.44 0.80
SE 1.0 7.9 1.4 6.9 0.7 3.9 1.5 7.1

εint = 4
MAD 28.6 41.1 23.1 41.2 28.9 29.0 37.0 47.0
MADtr 18.8 18.2 9.3 18.0 10.1 7.7 29.3 24.7
r2 0.37 0.55 0.68 0.66 0.75 0.83 0.13 0.37
PI 0.65 0.80 0.83 0.87 0.87 0.87 0.44 0.64
SE 0.8 7.2 0.9 6.9 0.4 1.9 1.1 7.0

εint = 10
MAD 35.1 47.4 21.9 48.3 21.8 22.7 39.2 48.5
MADtr 24.0 20.0 10.6 19.6 7.2 7.7 31.6 26.4
r2 0.22 0.46 0.57 0.53 0.85 0.89 0.11 0.33
PI 0.65 0.80 0.83 0.80 0.91 0.99 0.36 0.64
SE 0.7 7.0 0.7 6.9 0.3 0.9 1.0 6.9

εint = 25
MAD 35.6 49.1 21.4 50.8 19.3 21.0 40.0 49.2
MADtr 26.3 20.8 11.2 19.9 7.9 8.7 32.4 27.1
r2 0.15 0.42 0.53 0.46 0.85 0.89 0.10 0.31
PI 0.44 0.64 0.67 0.80 0.91 0.92 0.36 0.64
SE 0.8 6.9 0.6 6.9 0.3 0.5 0.9 6.9
a The quality measures are the same as in Table 4.
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Table 9. Quality measures of the methods based on PB solvation for the binding of nine inhibitors to 
fXa.a

1A-
MM/PBSA

3A-
MM/PBSA

MMPB
/s-LRA/

1A-MMPB-
3A-MMSA

1A-
MM/PB

3A-
MM/PB

MMPB/s-LRA/
1A-MMSA

MMPB/s-LRA/
3A-MMSA

 εint = 1
MAD 116.0 42.1 69.6 90.1 189.8 141.1 14.2 30.1
MADtr 20.1 44.9 15.9 14.6 21.4 56.4 13.7 15.3
r2 -0.64 -0.02 -0.58 0.01 -0.81 -0.14 -0.39 0.16
PI -0.80 0.08 -0.77 0.13 -0.92 -0.44 -0.79 0.36
SE 1.7 13.8 1.4 9.3 1.5 10.2 1.6 9.3

εint = 2
MAD 22.6 30.2 50.5 17.0 96.4 74.0 23.3 49.2
MADtr 10.6 18.5 19.1 16.7 11.8 29.3 17.9 15.6
r2 -0.37 0.06 -0.71 0.23 -0.81 -0.13 -0.50 0.05
PI -0.71 0.14 -0.85 0.49 -0.95 -0.47 -0.69 0.34
SE 1.1 10.6 1.1 9.3 0.7 5.2 1.4 9.3

εint = 4
MAD 22.3 58.1 41.0 48.2 51.5 41.7 32.8 58.8
MADtr 6.2 13.5 22.5 18.6 7.3 15.8 21.5 18.9
r2 0.00 0.37 -0.57 0.34 -0.77 -0.11 -0.40 0.02
PI -0.14 0.66 -0.76 0.72 -0.95 -0.41 -0.68 0.26
SE 0.9 9.6 1.6 9.2 0.4 2.7 1.8 9.4

εint = 10
MAD 46.8 76.1 36.3 72.7 27.0 23.6 38.6 64.5
MADtr 4.1 16.4 24.9 20.2 5.0 7.8 23.9 21.5
r2 0.37 0.44 -0.50 0.40 -0.13 -0.05 -0.35 0.01
PI 0.50 0.73 -0.76 0.72 -0.30 -0.08 -0.68 0.10
SE 0.8 9.3 1.9 9.2 0.3 1.3 2.1 9.4

εint = 25
MAD 54.5 81.9 35.3 80.4 19.3 17.9 40.9 66.8
MADtr 3.5 19.3 25.9 20.7 4.3 5.2 24.9 22.6
r2 0.56 0.43 -0.47 0.41 0.18 0.00 -0.34 0.00
PI 0.55 0.73 -0.76 0.72 0.60 -0.01 -0.68 0.10
SE 0.8 9.3 2.1 9.2 0.2 0.8 2.2 9.5
a The quality measures are the same as in Table 4.
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Figure 1. The thermodynamic cycle used to derive the MMPB(GB)/s-LRA terms.38,51 The binding free 
energy is calculated by the central cycle, which is broken down into electrostatic and non-electrostatic 
contributions,  Gbind =  Gele

bound
−  Gele

free
 Gnon-ele . The non-electrostatic term is calculated by Eqn. 

12, whereas the electrostatic terms are further broken down.  Gele
bound  is described by the right, outer 

cycle:  G  A =  Gsolv
PL  1

int

−
1

ext
 ,  GB =  Gsolv

L 1 −
1
int  

Eele
L

int


E ele
L−P

int
, and

 GC  =  Gsolv
PL '  1

ext

−
1

int
 .  Gele

free  is calculated by the left, outer cycle: 

 GD  =  Gsolv
L

  Gsolv
P   1

int

−
1

ext
 ,  G E =  Gsolv

L 1 −
1
int  

E ele
L

int

, and 

 GF  =  Gsolv
P  1

ext

−
1

i nt
 . Eqn. 10 is the sum of the free energies A, B, and C and Eqn. 11 is the 

sum of the free energies D, E, and F. L is the ligand with full charge, whereas the ligand charges have 
been zeroed in L'.
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Figure 2. The seven avidin ligands (biotin, Btn1, and Btn2–Btn7) and the nine factor Xa ligands (C9–
C125) used in this study. The experimental binding free energies are given to right in kJ/mol.34,36
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Figure 3. Results of the 1A-MM/GBSA method with different values of εint for the binding of seven 
biotin analogues to avidin. 
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Figure 4. Results of the 3A-MM/GBSA method with different values of εint for the binding of seven 
biotin analogues to avidin.
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Figure 5. Results of the MMGB/s-LRA/β method with different values of εint for the binding of seven 
biotin analogues to avidin.
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