
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A Convex Approach to Path Tracking with Obstacle Avoidance for Pseudo-
Omnidirectional Vehicles

Olofsson, Björn; Berntorp, Karl; Robertsson, Anders

2015

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Olofsson, B., Berntorp, K., & Robertsson, A. (2015). A Convex Approach to Path Tracking with Obstacle
Avoidance for Pseudo-Omnidirectional Vehicles. (Technical Reports TFRT-7643). Department of Automatic
Control, Lund Institute of Technology, Lund University.

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/e94a2763-95d5-4ab7-938c-561803015f07

A Convex Approach to Path Tracking

with Obstacle Avoidance for

Pseudo-Omnidirectional Vehicles

Björn Olofsson, Karl Berntorp, and Anders Robertsson

Department of Automatic Control

Technical Report
ISRN LUTFD2/TFRT--7643--SE
ISSN 0280–5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

c© 2015 by Björn Olofsson, Karl Berntorp, and Anders Robertsson. All
rights reserved.
Printed in Sweden by Media-Tryck.
Lund 2015

Abstract

This report addresses the related problems of trajectory generation and
time-optimal path tracking with online obstacle avoidance. We consider the
class of four-wheeled vehicles with independent steering and driving on each
wheel, also referred to as pseudo-omnidirectional vehicles. Appropriate ap-
proximations of the dynamic model enable a convex reformulation of the
path-tracking problem. Using the precomputed trajectories together with
model predictive control that utilizes feedback from the estimated global
pose, provides robustness to model uncertainty and disturbances. The con-
sidered approach also incorporates avoidance of a priori unknown moving
obstacles by local online replanning. We verify the approach by successful
execution on a pseudo-omnidirectional mobile robot, and compare it to an
existing algorithm. The result is a significant decrease in the time for com-
pleting the desired path. In addition, the method allows a smooth velocity
trajectory while avoiding intermittent stops in the path execution.

Authors Contact Information

Björn Olofsson, Karl Berntorp1, & Anders Robertsson
Department of Automatic Control, LTH, Lund University
SE–221 00 Lund
Sweden
E-mail: firstname.lastname@control.lth.se

1 Present address: Mitsubishi Electric Research Laboratories, Cambridge, MA 02139.

3

1
Introduction

During the past decade, the interest for mobile robots in production scenarios
as well as in domestic applications has increased as a result of the develop-
ment of algorithms, computing power, and sensors. In addition, to reduce
the complexity of the programming phase and to increase the learning capa-
bilities by cognitive functionalities, large efforts have been put in the area of
software services for mobile robots. Two examples of this are the Robot Oper-
ating System (ROS) [WillowGarage, 2015] and Orocos [The Orocos Project,
2015]. In a production scenario with small batch sizes, combination of a mo-
bile robot platform with conventional robot manipulators mounted on the
base offers flexible and cost-efficient assembly solutions. Hence, mobile robot
platforms have the potential of reducing the costs for production and im-
proving productivity.

An integral part of the programming and task execution of mobile robots
is the path and trajectory generation. A common task is to move the robot
from point A to point B, without constraints on the path between the start
and end points except avoiding known obstacles [LaValle, 2006]. However, in
certain applications the path between the points is of explicit interest, and
thus reliable path tracking is desired. Another scenario is that a global path
planner provides the path, and a subsequent trajectory generation is to be
made [Verscheure et al., 2009c]. To this purpose, the decoupled approach to
trajectory generation has been established in literature [LaValle, 2006; Kant
and Zucker, 1986]. To utilize as much as possible of the capacity of the robot
in a path-tracking application in industry where the actuators are the limiting
factors, a near time-optimal path tracking, where the constraints on the
actuators are considered and robustness to modeling errors and disturbances
is taken into account, is desirable. Note here that time-optimal does not per
se imply high velocities, only that the maximum capacity of the actuators is
used. In addition, avoidance of dynamic obstacles online [Khatib, 1986] is a
desired characteristic of the path tracking.

In this report, we discuss a system architecture for trajectory generation
and path tracking with online obstacle avoidance, applied to four-wheeled ve-

5

Chapter 1. Introduction

hicles with independent steering and driving on each wheel. A dynamic model
of the vehicle is derived using the Euler-Lagrange approach. The trajectory-
generation, online path tracking, and collision-avoidance problems are for-
mulated as convex optimization problems, with various degrees of model
approximations in a hierarchical control structure. In particular, we consider
scenarios where a nominal path is planned using a predefined static map
of the environment (accounting for all a priori known obstacles). A time-
optimal trajectory is then generated, and model predictive control (MPC)
[Mayne et al., 2000; Maciejowski, 1999] is used for online high-level feedback
from the estimated vehicle state. Moreover, the vehicle avoids new emerging
obstacles, detected during runtime, using online local replanning of the path
and corresponding trajectory with a scheme integrated in the MPC.

1.1 Previous Research

Trajectory generation and collision avoidance for mobile robots are well-
studied areas, see [Khatib, 1986; Fox et al., 1997; Choi et al., 2009; Qu et
al., 2004; Quinlan and Khatib, 1993] for a few examples. A two-level hierar-
chical architecture was proposed in [Kant and Zucker, 1986], where a local
replanning of the nominal trajectory was performed online to avoid moving
obstacles. A solution to the time-optimal path-tracking problem was derived
in the 1980’s [Bobrow et al., 1985; Shin and McKay, 1985] for robot ma-
nipulators. By utilizing the special structure of the model resulting from
the Euler-Lagrange formulation and a parametrization of the spatial path
in a path coordinate, the minimum-time problem can be reformulated to an
optimal control problem (OCP) with fixed horizon for the independent vari-
able and with a significantly reduced number of states. Solutions to these
OCPs were found offline. The obtained trajectories were in later research
combined with feedback, thus accounting for model uncertainties and dis-
turbances in the online task execution [Dahl and Nielsen, 1990; Dahl, 1992].
In the feedback, it is necessary to maintain the synchronization between the
degrees-of-freedom of the system in order to achieve accurate path tracking.
By utilizing convex optimization [Boyd and Vandenberghe, 2004], the paper
[Verscheure et al., 2009c] showed how the time-optimal path-tracking prob-
lem for robot manipulators can be solved efficiently using convex optimization
techniques. However, certain constraints on the dynamic model, such as ne-
glecting the viscous friction in the joints, were imposed. A subsequent online
path-tracking algorithm was proposed in [Verscheure et al., 2009a; Verscheure
et al., 2009b], where the geometric path was delivered online to the trajec-
tory generator. Further investigation of applications areas and extensions of
the method in [Verscheure et al., 2009c] was presented in [Lipp and Boyd,
2014; Castro et al., 2014], including applications to vehicles and aircrafts.

6

1.2 Contributions and Relations to Previous Research

Trajectory optimization for electric vehicles based on the same convex opti-
mization methods was proposed in [Castro et al., 2014]. Velocity-dependent
constraints in the convex optimization formulation were handled in [Ardeshiri
et al., 2011]. This was later elaborated for convex-concave constraints in [De-
brouwere et al., 2013]. Time-optimal path planning for two-wheeled robots
was investigated in [Van Loock et al., 2013]. MPC [Mayne et al., 2000; Ma-
ciejowski, 1999] has been developed for trajectory tracking and path tracking
for mobile robots previously, see, for example, [Kanjanawanishkul and Zell,
2009; Howard et al., 2009; Klančar and Škrjanc, 2007; Connette et al., 2010].
The differences compared to the approach in this report are in the modeling
and in the integration of the obstacle-avoidance functionality. Time-optimal
path following for mobile robots with independent steering and driving was
considered in [Oftadeh et al., 2014], based on kinematic models. Nonlinear
MPC for obstacle avoidance in the case of autonomous vehicles has been
investigated in [Norén, 2013], and [Berntorp and Magnusson, 2015] proposed
a hierarchical predictive-control architecture for solving the motion-planning
problem for road vehicles.

1.2 Contributions and Relations to Previous Research

The contributions of this report are as follows: First, an architecture for
minimum-time trajectory generation and online path tracking for four-
wheeled vehicles with independent steering and driving of each wheel, in-
corporating online obstacle-avoidance functionality, is developed. Second, we
consider an approach to how the convex time-optimal trajectory-generation
algorithms for robot manipulators with a fixed base proposed in [Verscheure
et al., 2009c] can be applied to the case of pseudo-omnidirectional mobile
robots, which have significantly different dynamics, using a limited model-
ing effort for the mobile robot. The third and major contribution of the
report is the implementation of the methods in an integrated framework and
the subsequent validation of the approach with successful experiments in a
challenging scenario, employing a recently developed pseudo-omnidirectional
mobile robot platform [Connette et al., 2009; Weisshardt and Garcia, 2014].

Several approaches to time-optimal trajectory generation and online ob-
stacle avoidance for wheeled vehicles have been reported in the literature
during the past decades as reviewed in Section 1.1. There seems to be only
a few such methods for mobile robots or wheeled vehicles in general that
are based on online convex optimization. Comparing the architecture in this
report to the convex approaches presented in [Lipp and Boyd, 2014; Castro
et al., 2014], our methods rely on different modeling assumptions and are
therefore requiring less dynamic modeling. This enables more straightfor-
ward application of the methods at the cost of limiting the application area

7

Chapter 1. Introduction

slightly. The mechanical design of the considered types of vehicles allows for
models with reduced complexity in the problem formulation; for example,
the omnidirectional characteristics make it possible to turn without signifi-
cant slipping and/or skidding. This differs to most types of mobile robots,
such as differential-drive robots, where slip is a necessity for rotational move-
ments. Lateral friction is required for turning at nonzero velocities with the
considered type of vehicles due to the centripetal acceleration. However, for
the velocities and the nature of the paths that are typically used for mobile
robots, other dynamics dominate. This implies that lateral friction is not an
essential feature of pseudo-omnidirectional vehicles.

A key feature of the developed architecture is that it combines a time-
optimal trajectory-reference generator (based on a nonlinear vehicle model
with friction) with a feedback controller, where the problems of finding the
references and control signals are posed as convex optimization problems.
This implies that the optimal solution will be found quickly, enabling high
sampling frequencies in the control, as well as with guaranteed convergence
to a global optimum. In addition, some of the previously proposed methods
were only based on the kinematic relations of the robot, and did not consider
a nonlinear dynamic model incorporating friction, see Section 1.1. Moreover,
differential-drive mobile robots are often considered in literature. The char-
acteristics of differential-drive robots are considerably different compared to
four-wheeled vehicles with independent steering and driving—for example,
significant constraints are enforced on the maneuverability and the required
slip modeling for the former. The main advantages of the considered for-
mulation of the trajectory-tracking controller is that it incorporates both
prediction and optimizing characteristics in a convex optimization formula-
tion, allowing fast real-time solutions. In addition, constraints derived from
dynamic obstacles and map information can be introduced during runtime
by utilizing the receding-horizon principle of the MPC.

A preliminary version of the trajectory generator was presented in [Bern-
torp et al., 2014a]. This report extends the results of [Berntorp et al., 2014a]
in several respects: First, this report provides an improved and more rigor-
ous presentation of the method. Second, we incorporate a global path plan-
ner into our algorithm. Third, we use an MPC approach for online feedback
from global position and orientation (pose) estimates with collision-avoidance
functionality. Fourth, the experimental scenario used for evaluation is more
demanding in terms of the obstacle shapes and the length of the path.

1.3 Outline

The outline is as follows: Chapter 2 establishes an Euler-Lagrange model and
the kinematic relations of the considered class of four-wheeled vehicles. This

8

1.3 Outline

derivation is the basis for the formulation of the convex optimization problem
for trajectory generation presented in Chapter 3. High-level feedback using
MPC and obstacle avoidance are discussed in Chapter 4. Further, Chapter 5
discusses the experimental setup and the implementation structure for the
considered path-tracking scenario. Moreover, the same section presents ex-
perimental results for path tracking with a mobile robot platform in a realistic
and demanding scenario. We elaborate on the applicability and generality of
the proposed method in Chapter 6, and compare the results achieved with
the proposed algorithms to corresponding results obtained with a reference
method previously implemented by the robot manufacturer on the consid-
ered robot platform. Finally, the report is summarized and conclusions are
drawn in Chapter 7.

9

2
Modeling

Here, we derive a model of the vehicle dynamics and the inverse kinematic
relations. We also discuss model approximations for obtaining a model that
is suitable for convex optimization.

2.1 Modeling of the Dynamics

For modeling of the vehicle, we assume that the motor torques are controlled
directly; that is, we neglect the motor dynamics. This is motivated by the
fact that the motor dynamics is inherently fast compared to the other dy-
namics of the vehicle. Also, the inner motor-current controllers used in this
kind of vehicles ensure fast torque tracking. Further, we assume planar move-
ment, thus neglecting vertical dynamics and rotational coupling such as roll
dynamics.

The Euler-Lagrange equations [Spong et al., 2006] state that

d

dt

∂L

∂q̇k
− ∂L

∂qk
= τk, k = 1, . . . , n, (2.1)

where d
dt is the time-derivative with respect to an earth-fixed inertial frame.

In (2.1), qk is the kth generalized coordinate, τk is the kth external torque,
q̇ is the time-derivative of q, L = T − V is the difference between the kinetic
and potential energy, and n is the number of generalized coordinates. Since
we assume planar movement, V = 0. Denote the coordinates of the center-of-
geometry (CoG) of the vehicle with respect to an earth-fixed inertial frame
XY as (pX , pY), see Figure 2.1. Further, denote the heading angle of the
vehicle with respect to the inertial frame with ψ. Then, the kinetic energy is

T =
1

2

(
m(ṗ2X + ṗ2Y) + Irψ̇

2 +

4∑
j=1

(Iφ,j φ̇
2
j + Iδ,j δ̇

2
j)

)
, (2.2)

11

Chapter 2. Modeling

where m is the mass of the vehicle, Ir is the vehicle moment-of-inertia, Iφ is
the wheel moment-of-inertia in the drive direction, Iδ is the wheel moment-
of-inertia in the steer direction, and φi, δi are the drive and steer angles
for wheel i, respectively. A natural choice of generalized coordinates is q =
(pX pY ψ φi δi)

T, i = 1, . . . , 4. A more convenient choice than pX
and pY , however, is to express the dynamics in local coordinates and linear
base velocities, since velocity references and torque commands are, according
to convention, given in this frame. Therefore, the quasi coordinates in the
vehicle frame is used instead, see [Pacejka, 2006]. A coordinate transformation
between (ṗX , ṗY) and the CoG velocities in the vehicle frame, (vx, vy), is given
by (

vx
vy

)
=

(
cψ sψ
−sψ cψ

)(
ṗX
ṗY

)
= R(ψ)

(
ṗX
ṗY

)
, (2.3)

where cψ = cosψ and sψ = sinψ. The following transformation from global
to local coordinates can be established using the chain rule:

∂T

∂ṗX
=

∂T

∂vx
cψ −

∂T

∂vy
sψ, (2.4)

∂T

∂ṗY
=

∂T

∂vx
sψ +

∂T

∂vy
cψ. (2.5)

By insertion of (2.4) and (2.5) into (2.1) and premultiplying with R(ψ), the
following two modified Euler-Lagrange equations are obtained:

d

dt

∂T

∂vx
− ψ̇ ∂T

∂vy
= τx, (2.6)

d

dt

∂T

∂vy
+ ψ̇

∂T

∂vx
= τy. (2.7)

Using the partial derivatives of the kinetic energy T (which can be expressed
in the velocities in the vehicle frame) and (2.6)–(2.7), the following set of
dynamic equations are derived:

mv̇x −mψ̇vy = τx, mv̇y +mψ̇vx = τy, (2.8)

Irψ̈ = τψ, (2.9)

Iφ,iφ̈i = τφ,i, Iδ,iδ̈i = τδ,i, i = 1, . . . , 4, (2.10)

where τ are the forces and torques for the respective generalized coordinate.
We model the motor torques acting on wheel i as two independent torques
for driving and steering, Mφ,i and Mδ,i, respectively. Moreover, we model

friction forces and torques acting on wheel i, and denote them by F fx,i, F
f
y,i,

and Mf
i . These are defined in Figure 2.2. Finally, the drive torque generates

12

2.1 Modeling of the Dynamics

a resultant force Fx,i between the tire and road, see Figure 2.2. To compute
the right-hand sides in (2.8)–(2.10), note that the longitudinal and lateral
vehicle forces are

τx =

4∑
i=1

(
cδi(Fx,i − F

f
x,i)− sδi(Fy,i − F

f
y,i)
)
, (2.11)

τy =

4∑
i=1

(
sδi(Fx,i − F

f
x,i) + cδi(Fy,i − F

f
y,i)
)
, (2.12)

where cδ = cos δ, sδ = sin δ, and Fy,i is the lateral force on wheel i, whereas
the resulting torque acting on the vehicle is

τψ = (l1sδ1 − w1cδ1)(Fx,1 − F fx,1) + (l1sδ2 + w2cδ2)(Fx,2 − F fx,2)

− (l2sδ3 + w2cδ3)(Fx,3 − F fx,3)− (l2sδ4 − w1cδ4)(Fx,4 − F fx,4)

+ (l1cδ1 + w1sδ1)(Fy,1 − F fy,1) + (l1cδ2 − w2sδ2)(Fy,2 − F fy,2)

− (l2cδ3 − w2sδ3)(Fy,3 − F fy,3)− (l2cδ4 + w1sδ4)(Fy,4 − F fy,4). (2.13)

Moreover, the torques in the wheels’ steer and drive directions are

τδ,i = Mδ,i −Mf
i , τφ,i = Mφ,i − rw(Fx,i − F fx,i), (2.14)

for wheel i, i = 1, . . . , 4, where rw is the wheel radius.

Y

Xψ

x

y
δ1

w1

l1

δ2

w2

δ3

w2
δ4

w1

l2

Figure 2.1 The vehicle and the coordinate systems used for modeling.

13

Chapter 2. Modeling

F fxFx

F fy

Fy

Mφ

Mf

Mδ

rw

y

x

α

vw

Figure 2.2 An illustration of the forces acting on each wheel (left), and
the wheel together with its coordinate system seen from above (right).

2.2 Wheel-Force Modeling

The friction forces for each wheel i, i = 1, . . . , 4, are modeled using Coulomb
friction. The index i is omitted in the presentation in this subsection for
notational convenience. Hence, the friction forces and torque are given by

F fx = F xCsign(vw,x), (2.15)

F fy = F yCsign(vw,y), (2.16)

Mf = MCsign(δ̇) (2.17)

where F xC , F yC , and MC are the Coulomb-friction constants, sign(·) is the
signum function, and vw,x, vw,y are the velocities of each wheel in the lon-
gitudinal and lateral direction, respectively (see Figure 2.2). The reason for
only considering Coulomb friction is that we assume that velocities neces-
sary for, for example, viscous friction to be significant will typically not be
reached under normal operating conditions for the considered type of mobile
platforms.1

When a vehicle accelerates or decelerates, longitudinal slip develops

1 For very large velocities air drag becomes a factor, and will typically dominate over
Coulomb and viscous friction. This can be modeled within this framework as pointed
out in [Lipp and Boyd, 2014].

14

2.3 Model for Optimization

[Schindler, 2007]. Here, the slip λ is defined according to [Schindler, 2007] as

λ =

1− rwφ̇

vw,x
, v̇w,x < 0,

vw,x

rwφ̇
− 1, v̇w,x ≥ 0.

(2.18)

The wheel velocities vw,x, vw,y are straightforward to determine by using the
geometric dimensions of the robot (see Figure 2.1), trigonometry and utilizing
the velocity of the CoG, obtained from the dynamic model previously derived
in this section. The lateral slip angle α is defined according to convention (see,
for example, [Pacejka, 2006]) by

tanα = −vw,y
vw,x

. (2.19)

For the types of maneuvers the considered class of four-wheeled mobile
robots perform it is in general safe to assume that the longitudinal and lateral
tire forces are proportional to the respective slip quantity.2 The wheel forces
caused by wheel slip are then

Fx = Cλλ, Fy = Cαα, (2.20)

where Cλ, Cα are constants found from experiments, dependent on the robot
mass, wheel material, and surface conditions. For small slip values, (2.20) is
justified by experimental verification [Pacejka, 2006]. With this wheel-force
modeling, the dynamic equations of the vehicle are constituted by (2.8)–
(2.20). Note that (2.17)–(2.20) hold for each wheel individually.

2.3 Model for Optimization

Two different strategies can be adopted when formulating the trajectory-
generation problem for time-optimal path tracking. The first strategy is to
formulate it using the generalized forces and torques acting on the vehicle
platform as inputs in the dynamic model instead of the wheel torques. This
approach is considered for speed optimization for cars in [Lipp and Boyd,
2014; Castro et al., 2014], where the friction ellipse is used as a constraint
for the maximum longitudinal and lateral forces in the optimization. The
latter is necessary to consider when turning at high velocities, because then
it is the maximum friction forces between wheel and road that are limiting
the path traversal rather than the wheel torques. In [Lipp and Boyd, 2014]

2 Here, vehicles performing under extreme conditions are excluded since they require
detailed tire-force modeling and consideration of load-transfer effects in the case of
aggressive maneuvers [Berntorp et al., 2014b].

15

Chapter 2. Modeling

it is further assumed that the motors or engines driving the vehicle have
sufficient power to realize the desired wheel forces. However, for the class of
mobile platforms targeted with the architecture proposed in this report, it is
rather the constraints on the motors and not the maximum friction between
the wheels and the floor that limit the path traversal. In addition, establish-
ing the required parameters for the friction-ellipse modeling for mobile-robot
systems is not straightforward without appropriate measurement equipment.
In contrast, there are well-established models for rubber tires used for auto-
mobiles, see, for example, [Pacejka, 2006]. Considering these two aspects, it
is advantageous to formulate the trajectory-generation problem based on the
wheel dynamics and this is consequently the choice in this report. For sim-
plification, we invoke the no-slip assumption, which implies that the torques
applied to the wheels directly influence the vehicle movement. Hence, the
wheel dynamics, derived from (2.10) and (2.14) by assuming that the longi-
tudinal forces Fx are proportional to the angular acceleration of the wheels,
can be written as (

Mφ

Mδ

)
= Mφ,δ = Ie(ξ)ξ̈ + F ξCsign(ξ̇), (2.21)

where ξ = (φ1 · · · φ4 δ1 · · · δ4)T and F ξC is the Coulomb-friction
parameter vector. We refer to Ie(ξ) as the effective inertia matrix, because it
accounts for both the wheel inertia and the inertia required for acceleration
of the mobile platform.

Remark 1
The no-slip assumption only holds during (arbitrarily fast) constant-velocity
motions. However, the assumption was evaluated in simulations for a repre-
sentative mobile robot platform in [Berntorp et al., 2014a], and was shown
to be approximately true for the considered path traversals. This assump-
tion is also valid for automotive systems in steady-state driving. The no-slip
assumption also implies that the relations vw,x = rwφ̇, vw,y = 0 hold. More-
over, we implicitly assume that the lateral friction required when turning is
negligible for the considered types of vehicles and paths. 2

2.4 Kinematics

The geometric vehicle path is in general determined in Cartesian space by a
high-level path planner. Hence, for the optimization approach on wheel level
presented in Chapter 3, a method is needed in order to transfer the Cartesian
path coordinates {pX , pY , ψ} to wheel-space coordinates {φi, δi}4i=1. Thus
we want to find a transformation according to Ω : {pX , pY , ψ} → {φi, δi}4i=1.
Since wheels exhibit slip, finding a closed-form transformation is in general

16

2.4 Kinematics

not possible. To derive analytic expressions, we again impose the no-slip
assumption. As pointed out in Remark 1 this assumption does not hold during
acceleration and deceleration, but the resulting deviations are handled online
using high-level feedback, see Chapter 4, and the low-level wheel control
loops. Conceptually, the transformation for the drive angles can be derived
as follows: Assume a path and orientation for the CoG of the robot for K
grid points as {pX(k), pY (k), ψ(k)}Kk=1. The inverse kinematics derivation
further assumes that the global robot velocity in the XY coordinate system
is positive and that −π/2 ≤ ψ ≤ π/2. The other cases are straightforward to
derive but omitted here.

Given the geometry of the vehicle, the specified path and orientation
imply knowledge of the path at the wheel center point, for all wheels at time
step k. With the no-slip assumption, the drive angle for each wheel at each
grid point k is found as

φ(k) = φ(k − 1) + ||∆pw(k)||2/rw, (2.22)

for small enough ∆pw(k) = pw(k)− pw(k− 1) and ∆φ = φ(k)−φ(k− 1). To
find the steer angles we apply trigonometry, yielding

δ(k) = arctan2(∆pw,y(k),∆pw,x(k))− ψ(k), (2.23)

where arctan2(·, ·) is the four-quadrant inverse tangent function. Again, the
inequality holds for small enough differences. Note that ψ is subtracted since
we want to know δ with respect to the vehicle frame. To summarize, a valid
approximation of the inverse kinematics is given by (2.22) and (2.23) for K
large enough (that is, the sampling is dense enough with respect to the path).

17

3
Optimal Trajectory
Generation

In this section the approach for generating time-optimal trajectories given
a nominal geometric path is described. In addition, the discretization of the
continuous-time optimization problem for enabling online numerical solutions
is considered.

3.1 Time-Optimal Trajectory Generation

For the trajectory generation, a convex optimization problem for time-
optimal tracking of a given geometric path f for the wheel coordinates ξ
is formulated. The formulation considers the constraints on the actuators in
terms of maximum and minimum realizable torques. The slip is neglected,
as discussed in Section 2.3, which means that the considered dynamic equa-
tions are expressed in (2.21). The path to be tracked is parametrized in a
path coordinate s(t), where the dependency on time t will be implicit in the
rest of the report, according to1

f(s) =
(
f1(s) · · · fn(s)

)T
, s ∈ [s0, sf], (3.1)

where n is the number of wheel coordinates in ξ. Also, s0 and sf are the
path coordinates at the start and end points of the path, respectively. To
the purpose of tracking, the relation ξ = f(s) holds when the vehicle is
on the desired path. From this requirement, the following relations can be
established by using the chain rule:

ξ̇ = f ′(s)ṡ, ξ̈ = f ′(s)s̈+ f ′′(s)ṡ2, (3.2)

1 The derivation in this section is performed using the more general assumption on n
wheel coordinates of the vehicle. In the case of the dynamic model considered in Chap-
ter 2, it holds that n = 8.

19

Chapter 3. Optimal Trajectory Generation

where (·)′ denotes d
ds , ṡ is the path velocity and s̈ is the path acceleration.

Utilizing the derivatives in (3.2), the dynamic equations in (2.21) can be re-
formulated in the path coordinate, [Bobrow et al., 1985; Pfeiffer and Johanni,
1987; Shin and McKay, 1985; Dahl, 1993], according to

Mφ,δ = Γ1(s)s̈+ Γ2(s)ṡ2 + Γ3(s), (3.3)

where

Γ1(s) = Ie(ξ(s))f
′(s), Γ2(s) = Ie(ξ(s))f

′′(s), Γ3(s) = F ξCsign(f ′(s)). (3.4)

Since the aim of the trajectory generation is to minimize the execution time
of the path tracking, the optimal control problem is formulated over the time
horizon t ∈ [0, tf], with the cost function chosen as the end time tf . Utilizing
the path coordinate and its time-derivatives, the cost function is reformulated
(see, for example, [Bobrow et al., 1985]) as follows

tf =

∫ tf

0

1 dt =

∫ sf

s0

dt

ds
ds =

∫ sf

s0

1

ṡ
ds. (3.5)

With the state variable β(s) and the algebraic variable α(s) introduced as
suggested in [Verscheure et al., 2009c] according to

β(s) = ṡ2, α(s) = s̈, (3.6)

the continuous-time optimal control problem to be solved is stated as in
[Verscheure et al., 2009c] according to:

minimize
α(s),β(s)

∫ sf

s0

1√
β(s)

ds

subject to Mφ,δ(s) = Γ1(s)α(s) + Γ2(s)β(s) + Γ3(s),

β(s0) = β(sf) = 0, β′(s) = 2α(s), (3.7)

β(s) ≥ 0, Mφ,δ,min ≤Mφ,δ(s) ≤Mφ,δ,max,

where the assumptions that the vehicle has zero initial and terminal velocity
were made. An explicit time dependency is recovered from the trajectories
computed in the solution of (3.7) by using the relation

t(s) =

∫ s

s0

1√
β(ζ)

dζ, s0 ≤ s ≤ sf , (3.8)

which can be utilized for determining the input trajectories as functions of
time. The optimal control problem is convex as shown in [Verscheure et al.,
2009c], since the cost function is a convex function of the state variable

20

3.2 Discretization and Numerical Solution

and the input torques, and the model dynamics is affine in the optimization
variables and inputs. It is to be noted that only one state (that is, β(s))
and one algebraic variable α(s) are required for formulation of the optimal
control problem, compared to originally 2n states required for the dynamics
in (2.21).

3.2 Discretization and Numerical Solution

For numerical solution of (3.7) using convex optimization tools, the
continuous-time optimization problem is discretized using direct transcrip-
tion according to the procedure in [Verscheure et al., 2009c; Verscheure et al.,
2008], where it is assumed that α(s) is piecewise constant, which implies that
β(s) is piecewise linear. Using a grid with L elements in the interval [s0, sf]
and eliminating the torques Mφ,δ(s) and the algebraic variable α(s) from
(3.7), result in

minimize
β1,...,βL−1

L−1∑
k=0

2∆sk+1√
βk+1 +

√
βk

subject to βk ≥ 0, k = 1, . . . , L− 1, (3.9)

Mφ,δ,min ≤ g(sk+1/2) ≤Mφ,δ,max,

k = 0, . . . , L− 1,

where β0 = βL = 0 and

g(sk+1/2) = Γ1(sk+1/2)
βk+1 − βk
2∆sk+1

+ Γ2(sk+1/2)
βk+1 + βk

2
+ Γ3(sk+1/2),

(3.10)
with ∆sk+1 = (sk+1 − sk) and sk+1/2 = (sk+1 + sk)/2. It is straight-
forward to solve (3.9) for the values of β(s) at the discretization points
sk, k = 1, . . . , L−1, using general-purpose convex optimization tools such as
CVX [CVX Research Inc., 2015; Grant and Boyd, 2008]. However, to find the
solution online, we compute an approximate solution to (3.9) using a method
suggested in [Verscheure et al., 2009b; Verscheure et al., 2009a; Wang and
Boyd, 2010], where an unconstrained approximate version of (3.9) is formu-
lated by employing logarithmic barrier-functions [Boyd and Vandenberghe,
2004] for the constraints. This gives that (3.9) approximates to

minimize
β1,...,βL−1

L−1∑
k=0

ḡ(βk, βk+1), (3.11)

21

Chapter 3. Optimal Trajectory Generation

where

ḡ(βk, βk+1) =
2∆sk√

βk+1 +
√
βk
−

µ

n∑
i=1

(
log
(
Mφ,δ,max − gi(sk+1/2)

)
+ log

(
gi(sk+1/2)−Mφ,δ,min

))
.

In (3.11), µ denotes the log-barrier parameter, n is the number of wheel
coordinates, and gi is element i in the vector g. With the unconstrained
optimization problem (3.11), an approximately globally optimal solution is
computed using Newton’s method. This requires computation of the Jacobian
and Hessian related to the problem. For our model, the problem structure
allows for analytic expressions of these quantities, which are used in the
implementation. The Hessian in the Newton iterations is tridiagonal, which
follows from that element k in the Jacobian only depends on βk−1, βk, and
βk+1. Hence, the time complexity for solving the inherent linear equation
system is linear in the number of discretization elements as noted in [Golub
and Van Loan, 1996; Verscheure et al., 2009b], which enables fast solutions
also in the case of high grid density.

22

4
High-Level Feedback
Controller

The trajectory generator described in Chapter 3 computes time-optimal tra-
jectories given a geometric path. The path is predetermined and is based on
a static map of the environment. When objects that are not part of the map,
for example, humans, other robots operating in the same area, open/closed
doors, and moving obstacles are present, the given path may not be collision
free during runtime. One alternative to remedy this is to plan a completely
new path once new sensor data are available, taking the obstacles into ac-
count. There are two problems with this approach. First, the dimension and
shape of the object might be uncertain depending on the available sensor
data, and the replanned path will thus possibly also render a collision. Sec-
ond, if the object is moving several replanning and reoptimization steps are
required, hindering smooth vehicle movement and most certainly increasing
the path-traversal time. Another approach is to decrease the velocity along
the desired path to avoid the obstacle; however, this method is limited to
moving obstacles and cannot handle new static obstacles intersecting the
nominal path. Thus, to accommodate dynamic obstacles, not known in the
map M a priori and possibly moving during runtime, an obstacle-avoidance
scheme leading to a local replanning of the path and trajectory is required.
This scheme is here integrated with MPC. Consequently, the considered ap-
proach provides feedback from global coordinates for robustness to model
uncertainties, present when determining the time-optimal trajectories in the
optimization, and disturbances in the online task execution.

4.1 Obstacle-Avoidance Scheme

We assume that m range measurements {di}mi=1, di ∈ R+, of l objects
{oi}li=1, oi ∈ O ⊂ R2 are available in each time step. The obstacle-avoidance
scheme is activated when mini ({di}mi=1) ≤ ε1. To allow for a convex problem

23

Chapter 4. High-Level Feedback Controller

formulation, the objects are modeled as hyperplanes πo, computed from the
N closest points on the object edge. Then the normal vector v⊥ orthogonal
to the vector vo between the plane πo of the closest object omin, defined as
omin , argminoi(dj), i ∈ {1, l}, j ∈ {1,m}, and the closest point on the hull
of the vehicle is determined. The sign of v⊥ is based on the relative position
between the vehicle and obstacle, aiming to minimize the deviation from the
nominal path.1 The norm of v⊥ is chosen as the corresponding norm of the
time-optimal velocity trajectory, ‖vopt‖2, for the point on the nominal path
that is closest to the vehicle CoG. To keep track of the current point along
the nominal trajectories, the path coordinate s is updated based on the path
traversal. When activating the obstacle-avoidance scheme and thus leaving
the nominal path, the point at the nominal path closest to the current point
in the XY -plane is used for computing the path coordinate. The modified
velocity vector vmod, which replaces vopt, is computed as a linear combina-
tion of v⊥ and vopt. The motivation for this choice is to allow for a smooth
transition between the different velocity vectors. The scheme is illustrated in
Figure 4.1 and formally defined in Algorithm 1. For a static obstacle, Algo-
rithm 1 ensures obstacle avoidance since v⊥ is always directed parallel to the
hyperplane approximating the shape of the obstacle at the closest point on
the obstacle. If the distance d between omin and the vehicle is smaller than
a predefined threshold ε2, vmod is increased proportional to the inverse of
the distance d, in order to increase the likelihood of avoiding the obstacle.
The scheme is deactivated when the robot is considered to have escaped the
obstacle. Here, hysteresis is implemented so as to avoid chattering when close
to the predefined threshold ε1.

Algorithm 1 Obstacle-Avoidance Scheme

if ∃di ≤ ε1 & oi /∈M then . ε1 > 0
d← least element in {di}mi=1

v̄⊥ ← vo ×
(
0 0 1

)T
v⊥ ← ‖vopt‖2/‖v̄⊥‖2v̄⊥
if d ≤ ε2 then . ε1 > ε2 > 0

vmod ← (1 + c(ε2/d− 1))v⊥ . c ≥ 0
else

vmod ← (ε1 − d)v⊥ + (d− ε2)vopt
vmod ← ‖vopt‖2/‖vmod‖2vmod

end if
end if . Go back to beginning

1 Note that the shape of the object is not critical, because the velocity vector is recom-
puted in each sample based on the new sensor data.

24

4.2 Model Predictive Controller

vo

v⊥

πo

vopt

vmod

Figure 4.1 A sketch of how the modified velocity reference is generated
in each time instant in the case of dynamic (moving) obstacles. The green
line is the nominal path consistent with vopt. The sketch shows the case
when the modified velocity reference vmod is based on the minimal distance
to one point. In the implementation, we use the N closest points on the
object seen from the vehicle for robustness.

Remark 2
The idea for approximating the obstacle shape is similar to the convex-
concave procedure (also known as sequential convex programming) for solv-
ing optimization problems [Yuille and Rangarajan, 2003], where the concave
part of the constraint is approximated using a linearization about the current
solution. 2

4.2 Model Predictive Controller

The computed time-optimal trajectories for the wheel torques can be applied
directly to the vehicle. However, model uncertainties and sensor imperfections
will lead to deviations from the torque and velocity trajectories, computed
by the time-optimal trajectory generation and collision-avoidance schemes,
if sent directly to the internal low-level wheel torque controllers. In addition,
wheel slip will lead to a discrepancy between the wheel coordinates and the
corresponding global Cartesian vehicle pose. We use MPC to introduce feed-
back from the estimated global pose of the vehicle on a high level in a hierar-
chical control architecture, with the aim of suppressing the effects of model
uncertainties and disturbances. The precomputed trajectories, computed as
in Chapter 3, can here be seen as time-optimal feedforward control inputs.
The control input to the vehicle is the desired global velocity. In practice,

25

Chapter 4. High-Level Feedback Controller

this velocity is realized with torque-resolved wheel-rotational velocity con-
trollers. In the case of no obstacles, the MPC computes references for the
global velocity based on the time-optimal wheel velocity trajectories. With-
out disturbances and model errors, and with appropriate MPC tuning, this
results in a path traversal according to the computed time-optimal control
as computed in Chapter 3.

The MPC approach has the benefit that it naturally admits obstacle
avoidance with a local replanning of the path and trajectory according to
Algorithm 1. The reference values for the global velocity determined by the
MPC are transformed to wheel velocities using the inverse differential kine-
matics of the vehicle and subsequently applied on each wheel. A kinematic
model derived in discrete time is considered in the MPC design on the form

xk+1 = Axk +Buk, (4.1)

with

xTk =
(
pTk vTk ψk ψ̇k

)
, uTk =

(
vTk,ref ψ̇k,ref ,

)
where pk ∈ R2 is the position in the XY -plane, vk ∈ R2 is the velocity in
the XY -plane, ψk, ψ̇k ∈ R are the yaw angle and yaw rate, respectively, and
uk ∈ R3 contains the corresponding control inputs (reference values to the
internal wheel controllers in the vehicle). All variables are expressed with
respect to an earth-fixed, inertial frame (see Figure 2.1). Moreover,

A =

1 0 η1 0 0 0
0 1 0 η1 0 0
0 0 η2 0 0 0
0 0 0 η2 0 0
0 0 0 0 1 η1
0 0 0 0 0 η2

 , B =

η3 0 0
0 η3 0
η4 0 0
0 η4 0
0 0 η3
0 0 η4

with

η1 = T (1− Tσ), η2 = 1− Tσ, η3 =
T 2σ

2
, η4 = Tσ,

where T is the sample time and σ represents the time constant of the low-level
wheel control loops. The rationale behind (4.1) is that the wheel control loops
ensure accurate velocity-reference tracking. The assumptions on mechanical
properties of the vehicle imply that the translational and rotational dynam-
ics are almost independent from each other. Hence a decoupled, kinematic
model is sufficient. This is motivated here, since it is combined with low-level
feedback in an hierarchical control architecture, where less complex models
are natural in the high-level layer. With the weighting matrices Q and R, the

26

4.2 Model Predictive Controller

quadratic cost function in the MPC is2

Jk =

Hp∑
m=1

||xk+m − rk+m||2Q +

Hc−1∑
m=0

||uk+m||2R, (4.2)

where ||x||Q = xTQx, correspondingly for ||u||R, and rm are the position and
velocity references at time step m computed by the time-optimal trajectory
generator or the local trajectory replanner in Algorithm 1. The optimization
problem in the MPC at time step k is

minimize
Uk

Jk (4.3a)

subject to xk+m+1 = Axk+m +Buk+m (4.3b)

xk+m+1,min ≤ xk+m+1 ≤ xk+m+1,max (4.3c)

umin ≤ uk+i ≤ umax, (4.3d)

∆umin ≤ (uk+i − uk+i−1)/T ≤ ∆umax (4.3e)

xk = x̄ (4.3f)

m = 0, . . . ,Hp − 1, i = 0, . . . ,Hc − 1

where Uk = {uk, . . . , uk+Hc−1} is the set of control inputs to be determined,
x̄ is the initial state at time step k, Hp is the prediction horizon, and Hc is the
control horizon. If Hc < Hp, the control signal ui is assumed to be constant
and equal to uk+Hc−1 for all i ≥ k + Hc. In (4.3), the position constraints
included in (4.3c) are given by rectangular approximations of the surrounding
a priori known obstacles in the map, and (4.3d)–(4.3e) are implied by the
physical properties of the robot. As a summary of the high-level feedback
controller, the complete control architecture is visualized in Figure 4.2.

2 We exclude weights on the final state due to the nature of the a priori unknown dynamic
obstacles. Given the vehicle dynamics, it is plausible that this does not imply stability
violations. Further, it is easily added if desired.

27

Chapter 4. High-Level Feedback Controller

TG
Path

MPC
r

C
u

Vehicle
τ

φ̇, δ̇xp

Figure 4.2 The control architecture. A path planner provides the tra-
jectory generator (TG) with a desired path. The trajectory generator com-
putes corresponding time-optimal trajectories, which are sent to the MPC.
The internal wheel controllers, C, transform the Cartesian velocities to the
respective wheel. Based on these references, wheel torques are computed.
The trajectory generator only computes new trajectories when a new path
is available.

28

5
Experimental Results

To validate the proposed approach to trajectory generation, path tracking,
and obstacle avoidance for four-wheeled vehicles, the methods discussed in
Secs. 3–4 were implemented and subsequently experimentally verified in a
relevant scenario on a pseudo-omnidirectional mobile robot platform. The
particular scenario was chosen to illustrate the capabilities of the algorithms
in factory-type setups.

5.1 Experimental Setup

The robot employed for the experimental validation was a four-wheeled
pseudo-omnidirectional mobile robot equipped with eight motors, two for
each wheel realizing the steering and driving, see Figure 5.1. The mobile robot
[Weisshardt and Garcia, 2014], which was built and designed at Fraunhofer
IPA in Stuttgart, is the successor to the Care-O-Bot 3 mobile base [Con-
nette et al., 2009; Weisshardt and Garcia, 2014]. It was equipped with two
SICK S300 laser scanners, which delivered laser-range measurements from
the front and rear corners of the robot. The robot was controlled and sensor
data were acquired using the ROS software package [WillowGarage, 2015].
The wheel-encoder position and velocity measurements were extracted at a
rate of 100 Hz. The individual wheels were controlled with torque-resolved
cascaded position and velocity controllers running at 100 Hz. The controllers
were implemented in C++ and executed internally in ROS. To estimate the
parameters in the effective inertia matrix Ie(ξ) and Coulomb-friction param-

eter vector F ξC required for the robot model in (2.21), experimental data were
collected. Under the assumption that the translational motion of the robot
is significantly larger than the rotational motion, the matrix is approximated
to be diagonal with inertia elements

Ie(ξ) = diag
{
Ieφ,1, I

e
φ,2, I

e
φ,3, I

e
φ,4, I

e
δ,1, I

e
δ,2, I

e
δ,3, I

e
δ,4

}
, (5.1)

29

Chapter 5. Experimental Results

Figure 5.1 The mobile platform used for the experimental validation,
together with one of the items (garbage bin in the background) that served
as obstacles during the experiments. The yellow laser scanners attached to
two of the corners of the robot were used for obstacle detection, localization,
and map building.

where diag{·} is a diagonal matrix with the specified elements along the
diagonal. The parameters were estimated by linearly increasing the velocity
references to the wheel controllers, starting at rest. A linearly increasing
velocity corresponds to a constant applied torque in the robot model. Hence
the inertia elements in the mass matrix can be estimated as the ratio between
the applied torque and the corresponding angular acceleration. The motor
torque measurements were accessible within the mobile robot platform via
ROS. For details regarding estimating F ξC , see [Berntorp et al., 2014a].

5.2 Implementation and Software Architecture

Figure 5.2 shows a schematic representation of the implementation structure.
The path planner implemented in ROS generated a feasible geometric path,
given a predefined static map of the environment, using Dijkstra’s algorithm
[LaValle, 2006]. The map was determined prior to the experiment based
on data from the two laser scanners, attached to the corners of the mobile
robot-platform, combined with the wheel odometry, using the Simultaneous
Localization and Mapping (SLAM) algorithm described in [Grisetti et al.,
2007; Grisetti et al., 2005]. The generated path was sent to the time-optimal
trajectory generator, which provided wheel position and velocity trajectories

30

5.3 Path-Tracking Scenario

corresponding to the time-optimal input torques. The wheel-velocity refer-
ences given by the trajectory generator were subsequently transformed to
Cartesian velocity references using the forward differential kinematics. These
velocity trajectories and the corresponding position trajectories were then
sent to the MPC together with the current estimates of the state vector
(pose and velocity), estimated by a particle filter based on the static map
with the laser-scanner data and the wheel odometry.

The log-barrier solver in Section 3.2 was implemented in Matlab and
then transformed to C code using the Coder toolbox in Matlab and com-
piled. The MPC was implemented in C using CVXGEN [Mattingley and
Boyd, 2012], which resulted in an average solution time of 1 ms for the model
at hand and the prediction horizons considered (Hp = Hc = 10, correspond-
ing to a horizon of 0.4 s, was found to result in desired tracking behavior).
Considering the fast solution times for the MPC, longer prediction horizons
would therefore be possible if necessary. Further, it is not the MPC compu-
tations that are limiting the choice of sample time, but rather the navigation
and computation algorithms in ROS running on the same computer. To link
the developed controllers with the robot operating system, we employed a
Python abstraction of ROS, denoted ROSPy, which executed at a rate of
25 Hz. To invoke the trajectory generator and the MPC, both implemented
in C, from Python the ctypes library [Python Software Foundation, 2015]
was employed.

5.3 Path-Tracking Scenario

The experiments were performed in a room with an area of approximately
75 m2. The map of the room, resulting from application of the SLAM al-
gorithm, is shown in Figure 5.3. Based on this map, a geometric path was
planned from the coordinate (0, 1.5) m to (7,−1.5) m; the orientation of the
robot platform was computed such that the robot heading ψ was constant
along the path. The time-optimal trajectory generation was performed, re-
sulting in the velocity trajectories shown in Figure 5.4 (expressed in Cartesian
XY -coordinates). The constraints on the steering actuators were introduced
as Mδ,max = 0.27 and on the driving actuators as Mφ,max = 0.31 and sym-
metrically for the lower bound. These constraints were chosen based on the
physical properties of the wheel motors in the mobile robot. Note that the
wheel torques have been normalized. These constraints were chosen with a
slight conservatism to provide actuation capability in the MPC for the obsta-
cle avoidance. The corresponding time-optimal torques for the steering and
driving motors are shown in Figure 5.5. Note that at least one input torque is
at the limit at each time point, indicating the desired time-optimality [Chen
and Desrochers, 1989]. In addition, it is clear that the driving motors are

31

Chapter 5. Experimental Results

ROS

Odometry

Path Planner

Torque-Resolved Velocity Controllers

ROSPy

Obstacle Avoidance

p,v uk

25 Hz
MPC

uk

xk, rm, m = k, . . . , k +Hp

Trajectory Generator

path

r

Wheel Encoders Laser Scanners

φ, δ Range

100 Hz

Figure 5.2 A sketch of the implementation structure. The odometry,
navigation, and torque-resolved velocity controllers can be interacted with
through ROS. They consist of compiled C++ code. We use a Python ab-
straction of ROS, called ROSPy, and connect the MPC and log-barrier
solver to ROSPy using compiled C code via the ctypes library.

the limiting factors, which is expected from the geometry of the path with
only limited orientation changes of the wheels. Still, there is significant mo-
tion perpendicular to the orientation of the platform, resulting in the steer
torques observed in the upper plot in Figure 5.5.

Initially, in the absence of dynamic obstacles, the mobile robot tracked
the nominal path and the time-optimal trajectories using the MPC. The
controller parameters (that is, the weight matrices in (4.2)) were chosen as

Q = diag{1, 1, 0.1, 0.1, 0.1, 0.1}, R = diag{0.1, 0.1, 1}.

The constraints on the control signal were

umax =
(
1 1 0.1

)T
,

and umin = −umax with the units m/s and rad/s, whereas the slew-rate limit
was chosen as

∆umax =
(
0.5 0.5 0.05

)T
,

32

5.3 Path-Tracking Scenario

−4 −2 0 2 4 6 8

−3

−2

−1

0

1

2

3

X [m]

Y
[m

]

Planned Executed

Figure 5.3 The scenario considered for evaluation of the proposed ap-
proach to trajectory generation for four-wheeled vehicles. The nominal
planned path is shown together with the actual traversed path, the lat-
ter resulting because of the a priori unknown obstacles (red). The mobile
robot hull is displayed (dashed blue) every other second.

0 4 8 12 16

−0.4

0

0.4

0.8

Time [s]

C
a
rt

es
ia

n
V

el
o
ci

ty
[m

/
s]

ṗX
ṗY

Figure 5.4 Time-optimal velocity-trajectory references in the Cartesian
XY -space obtained from the trajectory generator, measured in global co-
ordinates.

33

Chapter 5. Experimental Results

0 4 8 12 16

−0.3

0

0.3

Time [s]

M
δ

[-
]

0 4 8 12 16

−0.3

0

0.3

Time [s]

M
φ

[-
]

Wheel 1

Wheel 2

Wheel 3

Wheel 4

Figure 5.5 Time-optimal normalized motor-torque trajectories obtained
from the trajectory generator. The torque constraints are indicated by the
horizontal dashed red lines. Notice that due to the mechanical design of
the robot, the wheel driving torques are pairwise equal and that the wheels
are mounted in opposite directions to each other. Moreover, the steering
torques are equal for all wheels since the orientation of the robot is fixed
along the path.

34

5.3 Path-Tracking Scenario

and ∆umin = −∆umax with the units m/s2 and rad/s2. After the robot
started to move along the nominal path, two new obstacles were placed such
that they intersected the nominal geometric path (where the obstacle loca-
tions are not encoded in the static map defined previously). These obstacles
were instead detected during runtime using the laser scanner sensors. To
minimize the path deviation because of the obstacles, the threshold value ε1
was chosen as short as possible; in this case to 400 mm. Further, the pa-
rameters c and ε2 in Algorithm 1 were zero in the considered experiment,
because the obstacles were assumed to have slowly varying or static posi-
tions, rendering the additional term negligible. The executed path is shown
in Figure 5.3 together with the map of the environment. The corresponding
Cartesian velocity references computed by the MPC are shown in Figure 5.6,
where also the time instants at which the obstacle avoidance scheme was ac-
tivated are displayed. From Figure 5.4 it is clear that the robot is detecting
and subsequently avoiding the new obstacles, and also that when following
the nominal path the time-optimal velocity trajectories are tracked closely.
Further, the downmost plot in Figure 5.6 indicates that the coupling between
translational and rotational movement is small, implying that the decoupled
model (4.1) is indeed a valid approximation in this experiment.

35

Chapter 5. Experimental Results

0 5 10 15 20 23

−1

−0.5

0

0.5

Time [s]

ṗ
Y
,r
e
f

[m
/
s]

0 5 10 15 20 23

−0.5

0

0.5

1

Time [s]

ṗ
X
,r
e
f

[m
/
s]

0 5 10 15 20 23

−3

−1.5

0

Time [s]

ψ̇
re

f
[m

ra
d

/
s]

Figure 5.6 Cartesian velocity commands, measured in the global XY -
coordinate system, computed by the MPC based on the time-optimal tra-
jectories and the obstacle avoidance scheme. The instants at which switches
between path tracking and obstacle avoidance occur are indicated by the
vertical dashed red lines. Note that the time-optimal trajectories in Fig-
ure 5.4 are closely tracked when not avoiding the new obstacles.

36

6
Discussion

A key feature of the considered system architecture is that it combines gener-
ation of time-optimal reference trajectories (based on a nonlinear model of the
vehicle incorporating friction) with a feedback controller for path tracking,
where the problems of finding the reference trajectories and control signals
are posed as convex optimization problems. This implies that an optimal so-
lution will be found quickly, enabling high sampling frequencies in the control
architecture. Typically, the solution time for the trajectory generator is well
below 1 s for paths of approximately 10 m (resulting in L = 500 discretiza-
tion elements in the optimization problem (3.9)), and the solution time for
the MPC is almost always within 1 ms (corresponding to 5–10 iterations)
for the scenarios we have tested. In our control architecture, the trajectory
generator is only executing when a completely new path is required. Thus, a
major part of the time in the motion-planning phase is spent on path plan-
ning, since this typically requires significantly longer time than the proposed
trajectory-generation algorithm. Further, considering different optimization
criteria than time, the trajectory generator can be modified to minimize
combinations of path-traversal time and, for example, energy consumption.
In [Grundelius, 2001], it is shown that solution of the minimum-energy opti-
mal control problem over a fixed time-horizon, where the final time is chosen
slightly longer than the corresponding time-optimal, is beneficial for robust-
ness of the control.

Another desired property inherent in the architecture is that the MPC
suppresses the effect of model errors. We showed in [Berntorp et al., 2014a]
that the model errors caused by the no-slip assumption are small, but com-
bining the proposed approach to time-optimal trajectory generation using
a model without slip decreases the influence of this model limitation even
further. Moreover, there are other imperfections present as well, such as un-
certainties in the geometry. Since the MPC uses the global pose estimate
for feedback, it effectively decreases the effects of model uncertainties when
combined with the low-level wheel controllers. This is a difference to many
existing reference implementations in mobile robots, where a reference tra-

37

Chapter 6. Discussion

jectory is generated and then typically fed to the low-level loops without
global feedback from workspace estimates.

As mentioned before, a motivation for using online trajectory and local
path regeneration rather than replanning the complete path when an obstacle
is encountered, is that it is sometimes desirable to stay close to the original
(nominal) path. Another motivation is that successive replanning and tra-
jectory generation might prevent task effectiveness. To demonstrate this, we
used the robot’s internal proprietary navigation module and applied it to
the same scenario as considered in Chapter 5. The navigation module has
been developed by the robot manufacturer. It is written in C++, and takes
full advantage of the omnidirectional characteristics of the considered robot,
but only considers constraints on a kinematic level. Thus, it is not using the
full potential of the wheel motors. Figure 6.1 shows the path traversed by
the robot and Figure 6.2 shows the Euclidean norm of the velocity vector
along the path. The same scenario that takes approximately 25 s to com-
plete with our architecture now demands roughly 60 s. The longer execution
time for the reference method is expected since the objective is not time-
optimality. Moreover, there are more restrictive velocity constraints in the
internal navigation module than in the approach presented in this report.
More interesting, however, is that the robot stops and finds new feasible
paths three times in total, with each replanning lasting about 1 s. Hence, it
is clear that an approach that performs online collision avoidance based on
local regeneration of the trajectory is advantageous when task effectiveness is
desired. By inspection of Figure 6.1 it is also obvious that the resulting geo-
metric path differs significantly from the nominal path, shown in Figure 5.3.
In addition, note that if it really is desired to initialize a replanning of the
path and trajectories when an obstacle is encountered, this is easily achiev-
able with the trajectory generator in this report, which enables fast solution
times for the reoptimization of the trajectory. Hence, it can be used together
with the low-level wheel controllers to improve the current implementation
of the navigation module.

The considered approach was verified and evaluated on a mobile-robot
setup, employing relatively low velocities, which are typical for mobile robots
in industrial production and manufacturing shop floors. However, the archi-
tecture could be valid for more scenarios where four-wheeled vehicles with
independent steering and driving are employed. When considering vehicle
platooning the routes are predetermined using maps of the available paths,
the global positions are received from a global positioning system, and obsta-
cles are typically detected using vision and/or sonar measurements. In these
cases, it is not time-optimality alone that is the objective. Rather, it should
be combined with other criteria, such as energy consumption, and with con-
straints on the acceleration and the jerk of the vehicle to allow for smooth
and stable driving.

38

Chapter 6. Discussion

0 2 4 6

−2

−1

0

1

2

X [m]

Y
[m

]

Figure 6.1 Resulting geometric path for the CoG when instead using
the internal navigation module in the considered mobile robot platform in
a comparative study. The locations at which replanning of the path occurs
are marked with blue +. The motion is performed from the coordinate
(0, 1.5) m to (7,−1.5) m.

0 8 15 20 40 60

0

0.1

0.2

Time [s]

‖v
‖ 2

[m
/
s]

Figure 6.2 Euclidean norm of the velocity vector when instead using the
considered robot’s internal navigation module in a comparative study for
the scenario in Figure 5.3. In contrast to the architecture in this report, the
robot stops for replanning purposes at t = 8, 15, and 20 seconds.

39

7
Conclusions

We have considered an approach to time-optimal trajectory generation and
online path tracking with obstacle avoidance for four-wheeled vehicles with
independent steering and driving. The approach is based on convex opti-
mization, allowing fast computations both for trajectory generation and on-
line control. The obstacle-avoidance scheme was integrated in a high-level
feedback controller based on MPC. The proposed architecture was fully im-
plemented on a pseudo-omnidirectional mobile platform and evaluated in ex-
periments in a demanding path-tracking scenario. The method was shown to
perform well, and exhibited several advantages in comparison to a reference
method, especially in terms of traversal time and velocity smoothness.

41

Acknowledgments

Björn Olofsson and Anders Robertsson are members of the LCCC Linnaeus
Center and the ELLIIT Excellence Center at Lund University. This research
was supported by the Swedish Foundation for Strategic Research through
the project ENGROSS and the European Commission’s Seventh Framework
Program under grant agreement SMErobotics (ref. #287787). This research
was not sponsored by Mitsubishi Electric or any of its subsidiaries.

43

Bibliography

Ardeshiri, T, M Norrlöf, J Löfberg, and A Hansson (2011). “Convex opti-
mization approach for time-optimal path tracking of robots with speed
dependent constraints”. In: Proc. IFAC World Congress. Milano, Italy,
pp. 14648–14653.

Berntorp, K, B Olofsson, and A Robertsson (2014a). “Path tracking with
obstacle avoidance for pseudo-omnidirectional mobile robots using con-
vex optimization”. In: Proc. Am. Control Conf. (ACC). Portland, OR,
pp. 517–524.

Berntorp, K. and F. Magnusson (2015). “Hierarchical predictive control for
ground-vehicle maneuvering”. In: Proc. American Control Conf. Chicago,
IL, pp. 2771–2776.

Berntorp, K., B. Olofsson, K. Lundahl, and L. Nielsen (2014b). “Models
and methodology for optimal trajectory generation in safety-critical road–
vehicle manoeuvres”. Vehicle System Dynamics 52:10, pp. 1304–1332.

Bobrow, J. E., S Dubowsky, and J. S. Gibson (1985). “Time-optimal control
of robotic manipulators along specified paths”. Int. J. Robotics Research
4:3, pp. 3–17.

Boyd, S. and L. Vandenberghe (2004). Convex Optimization. 6th ed. Cam-
bridge Univ. Press, Cambridge, UK.

Castro, R. de, M. Tanelli, R. E. Araújo, and S. M. Savaresi (2014).
“Minimum-time path following in highly redundant electric vehicles”. In:
Proc. IFAC World Congress. Cape Town, South Africa, pp. 3918–3923.

Chen, Y. and A. A. Desrochers (1989). “Structure of minimum-time control
law for robotic manipulators with constrained paths”. In: Proc. IEEE Int.
Conf. Robotics and Automation (ICRA). Scottsdale, AZ, pp. 971–976.

Choi, J.-W., R. E. Curry, and G. H. Elkaim (2009). “Obstacle avoiding real-
time trajectory generation and control of omnidirectional vehicles”. In:
Proc. Am. Control Conf. (ACC). St. Louis, MI, pp. 5510–5515.

45

Bibliography

Connette, C. P., C. Parlitz, M. Hägele, and A. Verl (2009). “Singular-
ity avoidance for over-actuated, pseudo-omnidirectional, wheeled mobile
robots”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA).
Kobe, Japan, pp. 1706–1712.

Connette, C. P., S. Hofmeister, A. Bübeck, M. Hägele, and A. Verl (2010).
“Model-predictive undercarriage control for a pseudo-omnidirectional,
wheeled mobile robot”. In: Proc. 41st Int. Symp. Robotics (ISR) and 6th
German Conf. Robotics (ROBOTIK). Munich, Germany, pp. 1–6.

CVX Research Inc. (2015). CVX: matlab software for disciplined convex pro-
gramming, version 2.0 beta. http://cvxr.com/cvx, Accessed: 2015-01-12.

Dahl, O. (1992). Path Constrained Robot Control. ISRN LUTFD2/TFRT-
-1038--SE. PhD thesis. Department of Automatic Control, Lund Univer-
sity, Sweden.

Dahl, O. (1993). “Path constrained motion optimization for rigid and flex-
ible joint robots”. In: Proc. IEEE Int. Conf. Robotics and Automation
(ICRA). Atlanta, GA, pp. 223–229.

Dahl, O. and L. Nielsen (1990). “Torque limited path following by on-line
trajectory time scaling”. IEEE Trans. Robot. and Autom. 6:5, pp. 554–
561.

Debrouwere, F., W. Van Loock, G. Pipeleers, Q. Tran Dinh, M. Diehl, J. De
Schutter, and J. Swevers (2013). “Time-optimal path following for robots
with convex-concave constraints using sequential convex programming”.
IEEE Trans. Robot. 29:6, pp. 1485–1495.

Fox, D., W. Burgard, and S. Thrun (1997). “The dynamic window approach
to collision avoidance”. IEEE Robot. Autom. Mag. 4:1, pp. 23–33.

Golub, G. H. and C. F. Van Loan (1996). Matrix Computations. 3rd ed. The
Johns Hopkins Univ. Press, Baltimore, MD.

Grant, M. and S. Boyd (2008). “Graph implementations for nonsmooth con-
vex programs”. In: Blondel, V. et al. (Eds.). Recent Advances in Learning
and Control. Springer-Verlag, Berlin, Heidelberg, Germany, pp. 95–110.

Grisetti, G., C. Stachniss, and W. Burgard (2005). “Improving grid-based
SLAM with Rao-Blackwellized particle filters by adaptive proposals and
selective resampling”. In: Proc. IEEE Int. Conf. Robotics and Automation
(ICRA). Barcelona, Spain, pp. 2432–2437.

Grisetti, G., C. Stachniss, and W. Burgard (2007). “Improved techniques
for grid mapping with Rao-Blackwellized particle filters”. IEEE Trans.
Robot. 23, pp. 34–46.

Grundelius, M. (2001). Methods for Control of Liquid Slosh. ISRN
LUTFD2/TFRT--1062--SE. PhD thesis. Department of Automatic
Control, Lund University, Sweden.

46

Bibliography

Howard, T., C. Green, and A. Kelly (2009). “Receding horizon model-
predictive control for mobile robot navigation of intricate paths”. In: Proc.
7th Int. Conf. Field and Service Robotics. Cambridge, MA.

Kanjanawanishkul, K. and A. Zell (2009). “Path following for an omnidirec-
tional mobile robot based on model predictive control”. In: Proc. IEEE
Int. Conf. Robotics and Automation (ICRA). Kobe, Japan, pp. 3341–
3346.

Kant, K. and S. W. Zucker (1986). “Toward efficient trajectory planning: the
path-velocity decomposition”. Int. J. Robotics Research 5:3, pp. 72–89.

Khatib, O. (1986). “Real-time obstacle avoidance for manipulators and mo-
bile robots”. Int. J. Robotics Research 5:1, pp. 90–98.

Klančar, G. and I. Škrjanc (2007). “Tracking-error model-based predictive
control for mobile robots in real time”. Robotics and Autonomous Systems
55:6, pp. 460–469.

LaValle, S. M. (2006). Planning Algorithms. Cambridge Univ. Press, Cam-
bridge, UK.

Lipp, T. and S. Boyd (2014). “Minimum-time speed optimization over a fixed
path”. Int. J. Control 87:6, pp. 1297–1311.

Maciejowski, J. M. (1999). Predictive Control with Constraints. Addison-
Wesley, Boston, MA.

Mattingley, J. and S. Boyd (2012). “CVXGEN: A Code Generator for Embed-
ded Convex Optimization”. Optimization and Engineering 13:1, pp. 1–
27.

Mayne, D. Q., J. B. Rawlings, C. V. Rao, and P. O. Scokaert (2000). “Con-
strained model predictive control: stability and optimality”. Automatica
36:6, pp. 789–814.

Norén, C. (2013). Path Planning for Autonomous Heavy Duty Vehicles
using Nonlinear Model Predictive Control. LiTH-ISY-EX–13/4707–SE.
Linköping Univ., Linköping, Sweden.

Oftadeh, R, R Ghabcheloo, and J Mattila (2014). “Time optimal path fol-
lowing with bounded velocities and accelerations for mobile robots with
independently steerable wheels”. In: Proc. IEEE Int. Conf. Robotics and
Automation (ICRA). Hong Kong, China, pp. 2925–2931.

Pacejka, H. B. (2006). Tire and Vehicle Dynamics. 2nd ed. Butterworth-
Heinemann, Oxford, United Kingdom.

Pfeiffer, F. and R. Johanni (1987). “A concept for manipulator trajectory
planning”. IEEE J. Robot. Autom. 3:2, pp. 115–123.

Python Software Foundation (2015). Ctypes — A foreign function library for
Python. http://docs.python.org/2/library/ctypes.html, Accessed: 2015-
01-12.

47

Bibliography

Qu, Z., J. Wang, and C. E. Plaisted (2004). “A new analytical solution to
mobile robot trajectory generation in the presence of moving obstacles”.
IEEE Trans. Rob. 20:6, pp. 978–993.

Quinlan, S. and O. Khatib (1993). “Elastic bands: connecting path plan-
ning and control”. In: Proc. IEEE Int. Conf. Robotics and Automation
(ICRA). Atlanta, GA, pp. 802–807.

Schindler, E. (2007). Fahrdynamik: Grundlagen Des Lenkverhaltens Und Ihre
Anwendung Für Fahrzeugregelsysteme. Expert-Verlag, Renningen, Ger-
many.

Shin, K. G. and N. D. McKay (1985). “Minimum-time control of robotic ma-
nipulators with geometric path constraints”. IEEE Trans. Autom. Control
30:6, pp. 531–541.

Spong, M. W., S. Hutchinson, and M. Vidyasagar (2006). Robot Modeling
and Control. John Wiley and Sons, Hoboken, NJ.

The Orocos Project (2015). Orocos—Open robot control software. Accessed:
2015-01-12. url: http://www.orocos.org.

Van Loock, W., G. Pipeleers, and J. Swevers (2013). “Time-optimal path
planning for flat systems with application to a wheeled mobile robot”. In:
Proc. Workshop Robot Motion and Control (RoMoCo). Wasowo, Poland,
pp. 192–196.

Verscheure, D., B. Demeulenaere, J. Swevers, J. De Schutter, and M. Diehl
(2008). “Time-energy optimal path tracking for robots: a numerically
efficient optimization approach”. In: Proc. 10th Int. Workshop Advanced
Motion Control. Trento, Italy, pp. 727–732.

Verscheure, D., M. Diehl, J. De Schutter, and J. Swevers (2009a). “On-
line time-optimal path tracking for robots”. In: Proc. IEEE Int. Conf.
Robotics and Automation (ICRA). Kobe, Japan, pp. 599–605.

Verscheure, D., M. Diehl, J. De Schutter, and J. Swevers (2009b). “Recur-
sive log-barrier method for on-line time-optimal robot path tracking”. In:
Proc. Am. Control Conf. (ACC). St. Louis, MI, pp. 4134–4140.

Verscheure, D., B. Demeulenaere, J. Swevers, J. De Schutter, and M. Diehl
(2009c). “Time-optimal path tracking for robots: a convex optimization
approach”. IEEE Trans. Autom. Control 54:10, pp. 2318–2327.

Wang, Y. and S. Boyd (2010). “Fast model predictive control using online
optimization”. IEEE Trans. Control Syst. Technol. 18:2, pp. 267–278.

Weisshardt, F. and N. H. Garcia (2014). Care-O-bot Manual: Manual for
Care-O-bot users and administrators. Fraunhofer IPA, Institute for Man-
ufacturing Engineering and Automation, Stuttgart, Germany.

WillowGarage (2015). Robot Operating System. Accessed: 2015-01-12. url:
http://www.ros.org.

48

Bibliography

Yuille, A. L. and A. Rangarajan (2003). The Concave-Convex Procedure.
Vol. 15. 4. Neural Computation, MIT Press, Cambridge, MA, pp. 915–
936.

49

