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ABSTRACT

The use of hypoxic air venting system as fire protection is increasing and is sometimes used to replace
traditional extinguishing systems. An oxygen level of 15% is generally used because a lower concentration
could pose serious health risks. On the request of the Swedish Radiation Safety Authority, a literature review
was conducted to determine advantages and challenges with the system and further research needs. The
main advantages with a reduced oxygen environment are the reduced probability of ignition and lowered
heat release rate. However, at 15% oxygen level, risk for fire still exists, and the system cannot be seen as an
alternative to extinguishing systems. Reduced oxygen environment also results in higher production rates of
soot and smoke, and there is limited knowledge regarding the effect of fuel configuration and fire behavior
of products. In addition, a first evaluation of the test method specified in the hypoxic air venting standards
was carried out through testing. The testing showed that the particleboard passed the test criteria at normal
atmosphere even though it is commonly known that a particleboard burns in normal air. It is concluded that
the test method has deficiencies, and there is clearly a need for development of the test method to guarantee
safety levels. © 2013 The Authors. Fire and Materials published by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the last years, the use of hypoxic air venting systems has increased and been proposed as an
alternative to traditional extinguishment systems. Hypoxic air systems have been introduced, for
example, in storage rooms of museums, computer rooms, and warehouses [1], where even a small
fire could cause large damage before the fire is extinguished. The systems are now being considered
in other industries as well, for example, the system is planned to be installed in electrical appliance
rooms in one of the Swedish nuclear power plants. Further, in multifunctional buildings, electrical
appliance rooms and computer rooms have been found to be essential to societal important functions
[2,3]. These occupancies are very sensitive to fire and products of combustion, and the main
purpose of hypoxic air venting is to prevent ignition by a permanent reduced oxygen environment,
hence, potentially offering a suitable protection option. The level of protection, however, is
dependent on the oxygen level, which in reality has to be balanced against the possible negative
health effects of working or being present in a reduced oxygen atmosphere without personal
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M. NILSSON AND P. VAN HEES
protective equipment [4]. Usually, a design oxygen concentration level of around 15% is used [1,4,5];
hence, the achieved oxygen level is generally higher than the limiting oxygen concentration, for example,
refer to Xin and Khan [6], and therefore, a potential for fire occurring and developing still exists.
2. PURPOSE, GOAL, AND METHOD

On request of the Swedish Radiation Safety Authority, a literature review was conducted. The purpose
of the literature review was to determine the current state of the art regarding hypoxic air venting as fire
protection and to increase the knowledge about using the system as fire protection in electrical
appliance rooms. The goal was to present advantages and disadvantages with the system and to
identify areas where further research is needed. A number of specific questions were formulated to
achieve the purpose and goal of the literature review:

• How is the risk for fire affected by a reduction of the oxygen concentration to 15% ,and how is the
potential for ignition affected by a reduction in oxygen concentration?

• How is the fire development (heat release rate (HRR), soot production, and flame speed) affected
by a reduction in oxygen level?

• How does a reduced oxygen environment affect a smoldering fire?
• What are the advantages and disadvantages with different test methods, and how well do they
account for different configurations of fuel?

• How is the information on reliability and effectiveness of a hypoxic air venting system? Especially
considering uneven oxygen levels, experiences from fires, and the need for redundant systems.

• What are the health risks associated with a reduced oxygen environment?
• Are there any specific considerations (temperature, combustible material, functionality of equip-
ment, etc.) needed with respect to the occupancy, that is, electrical appliance rooms?

For the literature review, two scientific databases were used, Web of Science and Google Scholar.
Searches were made with the keywords ‘fire’, ‘burning behavior’ in combination with ‘hypoxic air’,
‘reduced oxygen’, ‘hypoxic’, and ‘hypoxia’. The searches in the two scientific databases yielded 27
articles considered to be relevant to obtain the purpose and goal of the literature review, that is,
focusing on hypoxic air venting systems for fire protection. Many of the articles that came up in the
searches discussed medical aspects of hypoxic air. Because of the limited amount of relevant peer-
reviewed articles, the search engine ‘Google search’ was used to find more articles on the subject.
Through these searches and through the reference lists in the articles, a base with relevant literature
was established through which the questions could be answered. In addition, standardization web
pages were used to find any standards for hypoxic air venting systems. The relevant literature has
been cited in the reference list of this paper.

In addition to the literature review, the test method, specified in hypoxic air standards [5,7], to
determine the required oxygen level in a protected space was evaluated through testing. This testing
was performed in a normal atmosphere, and the material used was a regular particleboard. The
purpose of the testing was to determine if the test method results in an adequate safety level based
upon the known fact that regular particleboard burns in normal atmosphere.
3. RESULTS AND DISCUSSION

The results are presented and discussed in the succeeding texts; each subsection addresses the
questions previously mentioned. The last question in the aforementioned bullet list is, however,
discussed under Section 4.

3.1. The risk for fire at 15% oxygen concentration and the potential for ignition

According to PAS 95:2011 [7] and VdS 3527en [5], different oxygen concentrations should be used
depending on the material subject to burning (refer to Section 3.4 for description of the tests). In
© 2013 The Authors. Fire and Materials published by John Wiley & Sons, Ltd. Fire Mater. (2013)
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HYPOXIC AIR VENTING AS FIRE PROTECTION
Table I, different values of oxygen concentrations, below which burning cannot take place in the test
application, is shown. It can be seen that the values differ quite widely; this is dependent upon the test
procedure. The limiting oxygen concentration was obtained by Xin and Khan [8] in the Fire
Propagation Apparatus (FPA) with an external heat flux of 30 kW/m2 for solid fuels and with no
external heat flux for the liquids. In the table, values for the oxygen index obtained according to
ASTM 2863/ISO 4589-2, and values from NFPA 69 [9] are given. It should be noted that NFPA 69
covers explosion prevention systems; hence, values for solids are obtained for dusts resulting in low
values, which are not appropriate for the hypoxic air application.

When staff occupies the protected area occasionally or normally, the used oxygen concentration is
generally 15–16%, which is referred to as preventive mode [1]. The 15% oxygen concentration was
also the preferred concentration in the electrical appliances rooms in the Swedish nuclear power
plants. When comparing this concentration to the concentrations in Table I, it can be seen that
according to the VdS standard, a 15% oxygen concentration can generally be used to protect an area
with plastic materials as the combustible load, which is applicable to electrical appliances rooms.
However, the values provided by Xin and Khan [8] shows significantly lower concentrations
because of the applied external heat flux, which is not present in the test method in VdS 3527en.
Xin and Khan [8] showed that the oxygen concentration needed to extinguish a fire is highly
dependent upon the external radiation level; however, below a certain oxygen level, extinguishment
will occur even with an infinite external radiation. Delichatsios [10] also showed that with an
external heat flux plywood can be ignited at 15% oxygen concentration, at 13% ignition was not
possible. An external heat flux could be obtained, for example, if an arson fire is expected where
flammable liquids are used as an ignition source or if materials are reradiating towards each other as
in the parallel panel test [8]. The test method, specific for hypoxic air venting systems, to determine
the required oxygen concentration for protection with hypoxic air venting is described in VdS
3527en [5] and Pas 95:2011 [7]. This test method challenges the material more than the oxygen
index according to ASTM 2863/ISO 4589-2, but there is still a risk for fire if the ignition source is
more challenging than the one used in the test method. Stating that a 15% oxygen concentration
fully protects against fire in plastic materials is therefore not completely true, it is only under those
conditions used during the test where the 15% was obtained that fire is prevented. Polyvinyl
chloride (PVC), for example, needs 44.9% oxygen to burn on the basis of the ASTM 2863/ISO
4589-2 test, and there are several examples where PVC has burnt in normal air. The oxygen index
method is therefore questionable for purposes other than ranking materials, and the obtained result
is, for example, dependent upon the material, sample type, and ignition procedure. Another example
is the parallel panel test where PMMA is extinguished first at 14.7% oxygen concentration with no
external radiation present [8].

The ignition energy, needed to ignite dusts, as a function of oxygen concentration has been studied
by, for example, Schwenzfeuer et al. [12] and Ackroyd et al. [13]. The results show that the ignition
energy needed increases with a reduction in oxygen level; measurements have been made with
oxygen concentrations as low as 6% [13]. A schematic is shown in Figure 1, which also shows two
Table I. Oxygen concentrations below which burning cannot occur in the test.

Substance

VdS ignition threshold (vol%)
(design concentration vol%)

[5]

Limiting oxygen
concentration (vol%)

[8]

Oxygen index ASTM
2863/ISO 4589-2 (vol%)

[11]

NFPA 69
(vol%)
[9]

Methanol 11.0 (10.0) 11.64 — 10
Ethanol 12.8 (11.8) 12.40 — 10.5
PMMA 15.9 (14.9) 10.48 17.8
Polyethylene HD: 16.0 (15.0) HD: 16.9 h.p.: 10

LD: 15.9 (14.9) LD: 11.39
Corrugated
Board

15.0 (14.0) 12.86 — —

Polyvinyl
chloride

16.9 (15.9) — 44.9 —

HD, high density; LD, low density

© 2013 The Authors. Fire and Materials published by John Wiley & Sons, Ltd. Fire Mater. (2013)
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Figure 1. Schematic of relationship between oxygen concentration and MIE, reproduced from Schwenzfeuer
et al. [12].

M. NILSSON AND P. VAN HEES
asymptotes [12]. One asymptote, lowest ignition energy (LIE) line, represents the energy below which
no ignition is possible even in 100% oxygen. The other asymptote, lower oxygen limit (LOL) line,
represents the oxygen concentration below which no ignition is possible even with an unrealistic
high ignition source. The same trends have been shown for gases (see e.g., Blanc et al. [14] and
Glor [15]). Because the ignition energy needed increases with a reduction in oxygen concentration,
the probability for fire occurring is lowered with a reduction in oxygen concentration; it can be
compared with removing some of the ignition sources. Little information has been found on the
minimum ignition energy needed to ignite solid materials in reduced oxygen atmosphere, but the
same trend is expected for solids; however, such values would be beneficial for risk assessment
purposes.

Babrauskas [16] discussed the oxygen concentration's effect on ignition times. He stated that there
are studies that show a dependence upon oxygen concentration where a decrease in oxygen
concentration leads to an increased ignition time [16]. However, the reported tests were either
performed with fuels where an oxidizer was mixed in the fuel or autoignition was tested [16].
Babrauskas also reported results from the tests in Mullholland et al. [17] (PMMA, ABS, PE, and
Douglas Fir); with external radiant heat flux and piloted ignition, it is shown that the oxygen
concentration had no bearing on the time to ignition down to a 14% oxygen level [16]. Delichatsios
[10] in his experiments with wood concluded that a reduced oxygen atmosphere does not affect the
time to ignition as long as the fuel mass flux is nearly independent of oxygen concentration and
suggests that ignition times are weakly dependent upon reduced oxygen concentrations, that is,
when the irradiance level is low (larger dependence upon oxygen concentration was shown for an
irradiance of 50 kW/m2 in Delichatsios tests) [10]. Hshieh and Beeson [18] also showed that for
flame retardant epoxy composites and two out of three tested phenolic composites, the time to
ignition is relatively constant between 30% and 18% oxygen concentration, but for phenolic
graphite, the time to ignition increases with a decrease in oxygen. Chiti et al. [19] reported that the
ignition times are increased with a decrease in oxygen concentration. This is consistent with
Mikkola [20] who reported an increase in ignition time of about 25% for a variety of solid fuels.
However, Mikkola [20] used an external radiation level of 50 kW/m2, the same level at which
Delichatsios [10] also saw a weak dependence. It appears that the time to ignition could be
increased with a reduction in oxygen, and this seem to be dependent upon fuel and external
radiation level; however, the results are not completely conclusive.

In electrical appliances rooms, there is a potential for higher temperature than ordinary temperature,
especially in electrical cabinets. In addition, extremely high temperatures can arise if a high-energy
electrical discharge because of an electrical fault occurs. The flammability limits are affected by
temperature and is extended with an increase in temperature as shown in Figure 2 [21]. This means
that the oxygen limit is reduced when the temperature increases [22]. Such a situation could move
the fuel into the flammable limit even with a lower than normal oxygen concentration.

In conclusion, a reduction of the oxygen level to 15% does not achieve conditions where a fire
cannot occur or is extinguished. However, it reduces the probability of a fire occurring by increasing
© 2013 The Authors. Fire and Materials published by John Wiley & Sons, Ltd. Fire Mater. (2013)
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Figure 2. Effect of temperature on flammability limits for propane, reproduced from Drysdale [21].

HYPOXIC AIR VENTING AS FIRE PROTECTION
the ignition energy needed, and there are also indications of increased ignition times. To fully protect
against a fire, the oxygen level needs to be lowered even more, to the inerting point of the fuel also
known as the limit line [22]. As a comparison, the FM Global Data Sheet on clean agent
extinguishing systems recommends a 12–14% design concentration for typical electrical equipment
where no ordinary combustibles are present [23]. In addition, different test methods provide
different oxygen concentrations at which burning cannot take place for the same material, and these
materials are only generic (PVC, PE, etc.) and not for specific components. The test method in
hypoxic air venting standards [5,7] appear to obtain concentrations where burning is still possible
under certain conditions. The effect of a rise in temperature on flammability limits also needs to be
accounted for.
3.2. The oxygen concentration's effect on fire development

If the oxygen concentration is higher than the inerting point, a risk for fire still exists. If a fire occurs in
a reduced oxygen atmosphere, the fire will become ventilation controlled or smolder. Under such
conditions, for example, more soot, carbon monoxide, and other hydrocarbons will be produced
[24]; the effect is illustrated in Figure 3. The increased production of these products could increase
the damage to sensitive components, the need for clean up, and some products also have a negative
effect on life safety. However, the knowledge on production of other gases such as corrosive and
irritating is limited. Tewarson et al. [25], however, showed that there is an increase in other gases
than soot, CO, CO2, and hydrocarbons when the oxygen concentration decreases, examples are
HCHO and HCN.
Figure 3. Effect of underventilation on yields for carbon monoxide, carbon dioxide, oxygen, and soot based
on correlations by Tewarson [24].

© 2013 The Authors. Fire and Materials published by John Wiley & Sons, Ltd. Fire Mater. (2013)
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Xin and Khan [8] conducted one parallel panel test in the FPA using PMMA with 21% oxygen
concentration until the HRR reached steady state (after that, the oxygen concentration was reduced
to obtain extinction). Xin and Khan [8] also conducted one parallel panel test using PMMA and a
constant oxygen concentration of 15%. When comparing the graphs, that is, the slope of the HRR
curve, from the two tests, it can be concluded that the test with 15% oxygen concentration had a
lower fire growth rate than the test with 21% oxygen concentration. This indicates that a decrease in
oxygen concentration results in a decrease in fire growth rate for the two tested oxygen levels.
Rasbash and Langford [26] showed the same trend where the flame speed for wood in a vertical
configuration is reduced from 2.75 to 1.82 cm/s when the oxygen concentration is reduced from
21% to 13.7%. Loh [27] studied flame spread of PMMA and filter paper in concurrent flow and
concluded that the flame spread was reduced with a decrease in oxygen concentration; oxygen
concentrations from 100% to 18% were tested. From the graphs in Loh [27], it can be seen that the
decrease in flame spread for PMMA is marginal when reducing the oxygen concentration from 21%
to 18%; the thin filter paper was not tested below 21% oxygen concentration. Fernandez-Pello et al.
[28] studied PMMA and thin paper sheets as well, but in opposed flow, he also concluded that the
flame spread decreased with a decrease in oxygen concentration; oxygen concentrations from 100%
down to 19% were used. Tewarson and Ogden [29] also showed a decrease in flame spread rate for
PMMA with a decrease in oxygen; oxygen concentrations down to 16% were used. Carhart [30]
provides a graph where he showed an increase in burning rate (m/s) with an increase in oxygen
concentration for thin paper, but the study seems to be for elevated oxygen concentration only.
Tewarson and Khan [31] showed an increase in flame propagation rate with an increase in oxygen
concentrations; however, 21–45% oxygen concentration was used. Rasbash and Langford [26] also
discussed that the effect on flame speed with oxygen reduction is greater for horizontal
configurations. They attribute this to the mechanism of heat transfer, that is, for horizontal
configurations, the radiation is dominant and where convective heat transfer is substantial, such as
for vertical configurations, the effect of oxygen reduction is less prominent [26]. This is consistent
with observations by Tewarson [32] that radiation to the fuel surface (horizontal configuration)
decreases significantly with reduction in oxygen concentration.

A comparison of the results from the two parallel panel tests conducted by Xin and Khan [8] (also
discussed previously) indicated that the peak HRR and the mass loss rate (MLR) decrease with
reduced oxygen concentrations for the tested levels; Xin and Khan also pointed this out. In a
horizontal test with PMMA with an external heat flux of 30 kW/m2, Xin and Khan [8] showed a
reduction in the HRR by 15–20% when the oxygen concentration is reduced from 21% to 15%
compared at the same time into the test. However their horizontal experiment also showed that the
peak chemical HRR remained the same but with a time delay [8]. Xin and Khan [8] also stated that
the difference in fire growth rate is negligible for the horizontal test. Experiments with horizontal
samples were also carried out by Marquis et al. [33] for PMMA with an external heat flux of
50 kW/m2 in a modified cone calorimeter (CC) to examine the effect of the design of the controlled
atmosphere CC (CACC). Marquis et al. [33] showed that there is approximately a 20% reduction in
HRR per unit area, and also, the MLR is reduced when the oxygen concentration is decreased from
21% to 15%. They do not discuss fire growth, but by the slope of the HRR curve, it can be seen
that the slope is about the same for oxygen concentrations of 21–12.5% [33]. Mikkola [20] showed
a small decrease in HRR for horizontal samples for a variety of fuels with a 50 kW/m2 external heat
flux; the exception is PVC where the HRR was reduced by 60% when the oxygen concentration
was reduced from 21% to 15%. Tewarson et al. [32] and Mullholland et al. [17] showed a decrease
in MLR, Mullholland et al. [17] also showed a decrease in HRR (moderate for wood and greater for
plastics) and that the effective heat of combustion was independent of oxygen concentration, that is,
the HRR mirrored the MLR [16]. However, the experiments by Mullholland et al. [17] used a
lowest oxygen concentration of between 13.7% and 12.4% (refer to Section 3.4 for further
discussion). Yao et al. [34] conducted tests burning cardboard boxes with no external heat flux at
high altitude (3650m, corresponding to approximately 13.5% oxygen concentration (partial
pressure) at sea level [35]) and at sea level (50m). Similar to other references, Yao et al. [34]
showed a decrease in HRR and MLR when the oxygen concentration is decreased (oxygen partial
pressure). However, Yao et al. [34] showed that the heat of combustion is approximately 40% lower
© 2013 The Authors. Fire and Materials published by John Wiley & Sons, Ltd. Fire Mater. (2013)
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at the higher altitude, which contradict the results by Mullholland et al. [17]. From the tests by Xin and
Khan [8] (the two parallel panel tests previously discussed), the graphs indicate that the heat of
combustion is independent of the oxygen concentration. The reason for the deviating results could
be because of the total static pressure is lower at high altitudes and that Yao et al. [34] did not use
external heat flux to pyrolyze the material, whereas oxygen concentration has been shown to affect
the pyrolysis [36] (also, see discussion under smoldering combustion). It could also be because of
the way of calculating the total HRR. However, the reason for the deviating results cannot be fully
determined, and the affecting mechanism of low oxygen concentration on solid pyrolysis is complex
and needs further research [34]. Peatross and Beyler [37] put forward a correlation where the MLR
is dependent upon the oxygen concentration; this correlation agrees well with the test results for
PMMA from Tewarson [32], and the reduction in MLR will also result in a reduction in HRR at
moderately low oxygen concentrations. The mechanisms of heat transfer to the fuel surface reducing
the MLR, HRR, and flame speed in a reduced oxygen atmosphere in the aforementioned
applications is thought to be mainly two parameters. First, the flame temperature is decreased as an
effect of the decrease in oxygen but also as an effect of the increased thermal capacity by nitrogen
[38]. Second, because the combustion takes place further away from the fuel surface to encounter
oxygen, the view factor is reduced as well. This was also observed, for example, during the
experiments conducted by Marquis et al. [33] where combustion was observed further away from
the fuel surface, and no change on MLR was observed. This is also consistent with the observation
made by Tewarson and Steciak [39] where they show an increase in flame height with a decrease in
oxygen concentration. The results by Xin and Khan [8] where the peak chemical HRR does not
change with oxygen concentration for the horizontal configuration is deviating from the other
results. It would be beneficial to investigate the reason for this deviation.

There appears to be a reduction in HRR when the oxygen concentration is reduced; however, it
seems to be very dependent upon the fuel. The reduction in HRR would result in less radiation also
between fuel packages, which would reduce fire spread between fuel packages. Further, there are
indications that the flame spread decreases with a reduction in oxygen. Babrauskas [16] suggested
that for lower oxygen concentrations, the dependence of flame spread rate becomes larger and
approaches an asymptotic value upon which extinction occur. However, limited tests have been
found at low oxygen concentrations, that is, ranging from 18% down to the point of extinction. All
these effects would aid in limiting fire damage; however, there is an increased production of gases
negative for smoke damage, and the information is limited for production of, for example, corrosive
and irritating gases. Further, the underventilated fire could cause conditions where pyrolysis still
occurs creating the risk for a backdraft or gas explosion; the probability for this event occurring is
most likely low but has not been studied.
3.3. Smoldering combustion and oxygen concentration

Smoldering combustion may still occur even if flaming combustion is not possible, and materials might
still smolder at reduced oxygen concentrations because less oxygen is required for a smoldering fire
[35]. This process can produce combustible smoke, and if the smoke is ignited, a smoke gas
explosion can occur. Berg and Lindgren [35] concluded that if the oxygen concentration is reduced
to just a few percent smoldering heat will be significantly reduced. Chiti [4] concluded from his
review of the literature that a reduction in oxygen concentration limits the smoldering spread and
velocity, but the effect is not as relevant as in flaming fires. He also stated that hypoxic air would
not be fire preventing under the circumstances where smoldering can still occur at very low oxygen
concentrations [4]. Chaos et al. [36] studied pyrolysis of corrugated cardboard in inert and oxidative
environments (under non-flaming conditions). They showed that under low incident heat flux
(20 kW/m2) an increase in oxygen concentration resulted in an increase in MLR, that is, pyrolysis
rate, this was not evident for higher fluxes (60 and 100 kW/m2) [36]. This indicates reaction of
oxygen with char formed during pyrolysis [36]. The result is consistent with the conclusion made by
Yao et al. [34] where they state that incomplete paper and cardboard pyrolysis is a result of the
pyrolysis is suppressed by low oxygen concentration. Chaos et al. [36] also showed that the char
oxidation HRR per unit area is reduced with a decrease in oxygen concentration, which is consistent
© 2013 The Authors. Fire and Materials published by John Wiley & Sons, Ltd. Fire Mater. (2013)
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with Berg and Lindgrens previous statement. However, Chaos et al. also showed that the heat released
from the char oxidation process is always lower than 15 kW/m2 in their tests; hence, the contribution is
low when considering high heat fluxes, which explains why an increase in MLR was not evident for
higher heat fluxes [36]. However, effects on smoldering combustion at reduced oxygen
concentrations is fairly uninvestigated, but it is clear that even at low oxygen concentrations,
smoldering combustion can still occur.
3.4. Test methods and configuration of fuel

As discussed previously, at 15% oxygen concentration, most materials can still burn under certain
circumstances, and it is clear that the, for protection, obtained oxygen concentration is dependent
upon test procedure. A generalized test method to determine the required oxygen concentration to
prevent fire therefore needs to cover a range of different possible initiating events and scenarios
following to be able to state that the obtained oxygen level will prevent fire.

Because a hypoxic air venting system is designed to keep the whole atmosphere at a constant
oxygen concentration, it is important that the testing procedures reproduce this condition; hence, it is
important that burning takes place within such an atmosphere. Marquis et al. [33] investigated the
design of the CACC where they varied the way of enclosing the sample and space in which burning
takes place. One variation had no enclosure (the same setup as used by Mikkola [20]), one with a
quartz chimney (similar to what Xin and Khan [8] used in the FPA) and one with a metal chimney
[33]. Marquis et al. [33] did not perform tests with a full enclosure to the exhaust hood as
Mullholland et al. [17] did. The tests by Marquis et al. [33] used horizontal samples of PMMA with
an external heat flux of 50 kW/m2, and the oxygen concentrations used was 21%, 15%, 12.5%, and
10%. From the test results, it can be seen that the MLR is independent upon the design of the
enclosure; however, the HRR varies depending on the design [33]. Just as Mullholland et al. [17]
concluded, it can be seen from the tests performed by Marquis et al. [33] that the HRR mirrors the
MLR with oxygen concentrations between 21% and 12.5% especially for the unenclosed
configuration, when a chimney is used, the peak HRR is somewhat lower; however, given
experimental uncertainties, this could not be proven. At 10% oxygen concentration, on the other
hand, there is a statistical difference in measured effective heat of combustion and HRR. It is
concluded that the design of CACC without direct connection to the exhaust hood and without a
chimney seems to be inappropriate to study phenomena in the gas phase under low oxygen
concentration [33]. In the tests for 10% oxygen concentration, a peak HRR of approximately
800 kW/m2 is observed when the chimney is used. Without a chimney, the peak HRR is
approximately 180 kW/m2, which is explained by dilution to below the lower flammability limit
when no chimney is used [33]. The previous texts illustrates the importance of the design of the test
apparatus and what conditions are actually tested. The design with a full enclosure to the exhaust
hood, as used by Mullholland et al. [17], is appealing because there intuitively would be less of a
risk for dilution with normal air, and the matter of deciding the length of the chimney so that all
burning takes place within the chimney, as pointed out by Marquis et al. [33], disappears.

The test procedures specified in VdS 3527en [5] and PAS 95:2011 [7] have the advantage that the
test is conducted in a room with reduced oxygen concentration, which is realistic to the real application
of hypoxic air venting systems. As ignition source, an acetylene–oxygen torch is used and placed to the
test sample for 180 s (also refer to Figure 5 for the test setup), if the sample keeps burning
independently for a period of 60 s after the ignition source has been removed the test has failed, and
a lower oxygen concentration is needed [5,7]. Use of acetylene as fuel for the ignition source is
maybe not so common because of its specific combustion/flammability characteristics. There are
small differences in the test procedures, PAS 95:2011 specifies that both a vertical and a horizontal
sample should be tested [7], and VdS 3527en specifies that materials shall be tested as unfavorable
as possible in terms of orientation [5]. In these proposed tests, there is no external radiation applied
as in the CC or FPA tests, that is, the flame need to supply sufficient heat to assist the pyrolysis
after the torch has been removed. External radiation in a fire scenario can occur if something else is
burning in the room and radiates towards another fuel package, for example, if flammable liquids
are used as ignition source. Although both VdS 3527en [5] and PAS 95:2011 [7] point out the
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importance of testing both horizontal and vertical arrangements of the fuel, the standards do not
consider the possible configuration between fuel packages. If the fuel packages are spaced close
together but with flue spaces between them, such as in rack storage, the ignition at the bottom of
such a flue with both surfaces burning would cause a radiation exchange between the surfaces. This
can be compared with the parallel panel test performed by Xin and Khan [8] where no external
radiation was applied, but sustained burning of PMMA was obtained at 14.7% oxygen concentration
as compared to the ignition threshold according to VdS 3527en of 15.9% oxygen concentration [5].
Chiti [4] tested cribs made of wood with an acetylene–oxygen torch; however, he applied the torch
only for 15 s on the wood cribs. The cribs were placed in a room similar to the one specified in
hypoxic air standards [5,7] with a reduced oxygen concentration. At 16% oxygen concentration,
there were small flames 2min after the torch had been removed [4], and therefore, the test criteria in
PAS 95:2011 or VdS 3527en would not have been fulfilled. As discussed previously, Rasbash and
Langford [26] also showed sustained burning of wood at oxygen concentrations of 13.1%, without
external radiation but with a configuration that favors radiation exchange between fuel packages.
However, VdS 3527en specifies 17% oxygen concentration as ignition threshold for wood [5] on the
basis of the test method in the standard. The reason for this discrepancy is probably because of the
configuration of the fuel packages, which in the tests in VdS 3527en and PAS 95:2011 is not
considered; hence, the potential for radiation exchange is ignored, and the obtained oxygen
concentration in the standards appears to be nonconservative maybe overestimating the performance
of the hypoxic air venting system. An even more common configuration might be that of a corner
where also radiation exchange between surfaces can take place and more intensive air entrainment.

In addition, the thickness of the sample for testing is specified not to exceed 25mm in VdS 3527en
[5]. The thickness of the material has an impact on the time to ignition where an increased thickness
increases the time to ignition. However, when increasing the external radiation, the time to ignition
for different thicknesses approaches the same value, and the importance of the thickness of the
material reduces when external radiation is applied [35]. Because the application of the torch for
ignition in both PAS 95:2011 and VdS 3527en is of limited time, it cannot with certainty be stated
that a thickness of 25mm will not affect the result. If the material used in the real application is
thinner than the one tested, the oxygen concentration might not prevent ignition. Application of
external radiation will reduce the risk.

It need to be recognized that if a scenario was to occur that presents a larger initiating event, both in
terms of energy in the ignition source or exposure time, than was used in the test to obtain the oxygen
concentration, there is a clear possibility that ignition followed by sustained burning could occur.
Further, the tested configuration of the fuel packages and orientation of the fuel plays an important
role; there are several examples of more challenging scenarios than the ones covered in both PAS
95:2011 and VdS 3527en. External radiation is excluded in the test methods proposed by the
standards for hypoxic air venting; external radiation might be one way of challenging the test to
cover different configurations of fuel and larger ignition sources. However, it needs to be pointed
out that hypoxic air venting systems are not designed to extinguish fires, as is recognized in the
standards [5,7], and therefore, the need for applying external radiation might not be entirely
relevant. If external radiation is not applied, the configuration of the fuel becomes more important,
and there appears to be a need for further development of the test methods for hypoxic air venting
systems to cover this aspect and how large an initiating event needs to be.
3.5. Description and results from evaluation of the test method in PAS 95:2011 and VdS 3527en

Testing was performed according to the testing procedure in PAS 95:2011 [7] and VdS 3527en [5]. All
tests were performed at normal atmosphere (21% oxygen concentration) to investigate the test
conditions.

The flame length in all tests was approximately 0.3m; it should be noted that it is hard to be exact
when adjusting the flame length and the mixture between oxygen and acetylene, and there is no firm
description of this in the test method (e.g., equivalence ratio to be used, gas flows, etc.). Mainly, a
vertical orientation of the samples was used. All the tests specified in Table II had the sample in a
vertical position. All sample sizes measured 0.2m× 0.2m, the thickness of the standard
© 2013 The Authors. Fire and Materials published by John Wiley & Sons, Ltd. Fire Mater. (2013)
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Figure 4. Total mass loss during the different tests.

HYPOXIC AIR VENTING AS FIRE PROTECTION
particleboard was 10.5mm with a density of 610 kg/m3, the low density particleboard 13.5mm and
240 kg/m3, and the medium-density fibreboard board 18mm and 600 kg/m3.

From the tests (refer to Table II), it can be seen that regular particleboard passes the test in many
cases at normal atmosphere (21% oxygen concentration) (refer also to Figure 5 in the succeeding
texts). This is remarkable because it is common knowledge that this type of material burns and
contributes to fire spread in common applications and scenarios at normal atmosphere. Hence, it
seems that the test method in PAS 95:2011 and VdS 3527en results in a protection level that might
be on the unsafe side, and the test method does not differentiate protection performance sufficiently.

In test V4b, the test did not meet the test criterion, that is, sustained burning was still observed 60 s
after the ignition source was removed; this was due to the position of the flame on the test sample. The
position was so far down in the corner of the sample that once the flame burned through the sample the
edges of the sample caught fire and continued burning during the test. However, the test standards are
not clear on exactly where to position the flame, and the results illustrates the importance of flame
position. Further, the description of the test procedures and criteria is on approximately one page in
VdS 3527en [5] and on approximately two pages in PAS 95:2011 [7]; hence, it is fairly unspecified,
and there is limited guidance given presenting the potential for varying interpretations and test
procedures between labs. The lack of guidance on gas flows, equivalence ratio, imprecise, etc. can
be given as examples.

In test V4c and V5 where burn through occurs and the sample passes the test criteria, it can be seen that
the mass loss in principle stops shortly after burn through has occurred see Figure 4. This was observed in
the tests as well where the material was virtually not burning after burn through. Oxy-fuel flames in an
impinging jet-like configuration are designed to apply heat very locally [40] and at the same time
with a very high heat transfer rate [41]. The main heat transfer mechanism for these flame jets is
Figure 5. Particleboard tested according to the test method specified in PAS 95:2011 and VdS 3527en at
normal atmosphere (21% oxygen).
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forced convection, and when the flames are operated with an increased amount of oxygen, a higher
flame temperature and burning velocity are achieved, hence, increasing the convective heat transfer
[41]. The maximum laminar burning velocity at stoichiometric conditions for an acetylene-air flame
is 175 cm/s and for an acetylene-oxygen flame is 1120 cm/s [42]. This velocity can be compared
with, for example, methane air at stoichiometric conditions, which has a maximum laminar burning
velocity of 40 cm/s, or propane air with 41 cm/s or propane oxygen with 360 cm/s [42]. Wang et al.
[43] measured the convective heat flux of the Bunsen flame used in the UL94 test concluding that
the initial convective heat flux approached 100 kW/m2 with a convective heat transfer coefficient of
around 54.3W/m2/K. The UL94 test uses a premixed methane flame [43]; hence, the heat transfer
from the oxygen acetylene torch used in tests showed in Table II has the potential to be even larger
because of the higher burning velocity of acetylene oxygen. The high local heat transfer rate to the
sample causes pyrolysis of the sample in the tests at a high rate, at the same time the flame has a
high speed and momentum; this is thought to be the main reason for the burn through occurring. In
addition, the high speed causes other pyrolysis gases to be transported away from the sample
causing stretching and blowout of the flames. This is thought to be the reason why burning almost
stops after burn through has occurred. An observation that enforces this is that in some test,
continued burning was observed on the backside of the sample where the velocity of the acetylene-
oxygen flame has a limited impact. On the basis of the previous statements, it is believed that an
oxygen acetylene torch is unsuitable as an ignition source in this application because of its high
burning velocity (compared with any regular ignition source) causing blowout of flames that could
otherwise occur on the sample and causing burn through. Further, the flame presents almost no
radiation further enforcing that heat is applied only very locally resulting in an optimistic evaluation
of the safety level. It appears that a flame with a lower burning velocity, not as local application,
and a sootier flame causing more radiation would be a more appropriate and realistic ignition source.
3.6. Operational functionality and reliability

In general, hypoxic air can be created either by supplying nitrogen to a protected space (e.g., nitrogen
generator) or by removing oxygen by an air splitting unit with distribution through the regular
ventilation system [1,4]. According to Chiti [4], around 500 installations are known today. Because
the number of installations are few, there is limited knowledge regarding the reliability of the
system, and no incident has been found where the effectiveness of the system has been challenged.
There is a need for more information regarding the reliability and effectiveness of the system, that
is, how often is the system unavailable because of impairment, and how well does it work in actual
applications if put to the test. If a high protection level is warranted, as in the nuclear industry, it
might be necessary to provide redundancy, both for the hypoxic air venting system itself and/or a
back-up extinguishing system should a fire occur. Both VdS 3527en [5] and PAS 95:2011 [7] put
forward the possible need for redundancy. Berg and Lindgren [35] concluded that because there still
is a possibility of a fire occurring if the oxygen level is not reduced to the inerting point there is in
general a need for a highly sensitive detection system, manual fire fighting equipment and
emergency management procedures.

Jensen et al. [1] put forward the challenge of ensuring an even oxygen level, especially if a nitrogen
feed system is used for complex geometries. A special case of this could be where there are a lot of
concealed spaces present or, for example, enclosed electrical cabinets. Both VdS 3527en [5] and
PAS 95:2011 [7] state that the oxygen level should be monitored, but there is little guidance on
placement of where measuring points to ensure even oxygen levels and states that it needs to be
determined on a case-by-case basis. Another aspect regarding the obtained oxygen level is leakage
areas. The leakage area affects the required size of the nitrogen feed [4]; hence, if leakages increases
over time, the size might not be sufficient anymore.

However, a hypoxic air system benefits from always being in place and does not need to activate
like a regular extinguishing system, reducing the risk of failure to activate. When the system is
impaired because of, for example, maintenance measures to limit the risks are needed, as with any
other fire protection system.
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3.7. Health aspects

Health aspects with respect to a reduction in oxygen in the atmosphere are not the expertise of the
authors, and the subject is just discussed briefly in terms of findings in the literature. Further
information on the topic can be found in the literature [7,35,44–47].

Table III summarizes different symptoms at different oxygen concentrations; it should be mentioned
that depending on the reference, the symptoms at different oxygen concentrations varies a little.
However, the most important parameters are the oxygen concentration and duration of exposure but
also disease, physical fitness, age, and sex are important parameters [35]. Küpper et al. [46] stated
that an acute but limited exposure down to 13% oxygen concentration does not cause a health risk if
the persons are healthy; hence, this could be interpreted as a limit. Further, they pointed out that
employees in a reduced oxygen atmosphere for fire prevention purposes can leave the room
immediately if they do not feel well [46]. Burtscher et al. [45] stated that people without severe
illnesses, a health risk is unlikely at greater than 14.5% oxygen concentration. However, they
pointed out that there are large interindividual variations of response to hypoxia to be expected,
especially in persons with preexisting diseases and that physical activity may increase the risk to get
sick [45]. Angerer and Nowak [44] stated that oxygen reduced to 15% and 13% in normobaric
atmospheres is equivalent to 2 700 and 3 850m altitude, respectively. At these altitudes, persons
respond within minutes to hours with increased ventilation rates, increased heart rate, etc. [44].
However, acute mountain sickness occurs frequently at these oxygen partial pressures, but the full
syndrome is rare if the exposure is limited to 6 h [44]. Further, they state that at these concentrations
mood, cognitive and psychomotor functions may be mildly impaired and that persons suffering from
cardiac, pulmonary, or hematological diseases should consult a specialist [44]. Their conclusion is
that working in environments with oxygen concentrations down to 13% does not impose a health
hazard provided that precautions are observed, comprising medical exams and limited exposure time
[44]. Angerer et al. [44], however, also pointed out that the evidence is limited particularly with
respect to workers performing strenuous tasks or having various diseases.

Berg and Lindgren [35] suggested some possible consequences if fire occurs, for example, they
discuss synergic effects, for example, the additional production of CO and low oxygen concentration;
however, the effect is hard to determine. PAS 95:2011 [7] points out work environment
considerations such as signage and low oxygen alarm. In conclusion, there need to be procedures to
ensure people working in reduced oxygen atmospheres are healthy, that a risk assessment is
conducted and that, the possibility of human errors because of work in reduced oxygen atmosphere
with reduced cognitive performance as a result is considered among other aspects.
4. FURTHER DISCUSSION AND CONCLUSIONS

In general, a reduction of the oxygen concentration to 15% does not eliminate the possibility of a fire
occurring, and at this oxygen level, a hypoxic air venting system cannot be seen as a substitute for an
extinguishing system. If it should be seen as a substitute, the oxygen concentration needs to be lowered
Table III. Symptoms and exposure times at different oxygen concentrations, reproduced from Chiti [4].

Oxygen at sea level
(vol%) Symptoms Maximum exposure time

20.9–17 No observed effects —
17–15 Effects on night vision —
15–13 Increased breathing and heart rate —
13–11 Physical and intellectual performance impaired,

fatigue, and headache
1 h

11–10 Giddiness and disorientation 20min
10–8 Unconsciousness and torpor 2min
5–0 Convulsion, apnea, cardiac standstill, and death No exposure
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even further, and if this is feasible, the system would present a good protection option for electrical
appliances rooms and sensitive equipment rooms in multifunctional buildings. Those low oxygen
concentrations are often not possible because of health aspects; however, there are benefits with the
system even at a 15% oxygen concentration, but there are also challenges and disadvantages; these
are summarized in the succeeding texts.

The test method specified in PAS 95:2011 [7] and VdS 3527en [5] seem to be inappropriate, and the
oxygen levels obtained through this test method appears to result in an insufficient protection level.
This is particularly enforced by the fact that regular particleboard passes the test criteria in normal air.

4.1. Advantages

• Lowered probability for ignition and possible increased ignition times. Mikkola [20], for example
showed an increase in ignition time of roughly 25% when the oxygen concentration was
decreased from 21% to 15% oxygen; however, it differs between materials, and there are other
references showing other results. Also, see discussion in the section regarding risk for fire at
15% oxygen concentration.

• Heat release rate is decreased (magnitudes of around 15% decrease in HRR have been shown
when reducing the oxygen concentration from 21% to 15%; however, it is also shown to be very
material dependent). There are also indications of reduced flame spread/speed; this will also
reduce the fire spread between fuel packages. The reduction in flame spread is also supported
by the indications of increased ignition times; increased ignition times correlates to a decrease
in flame spread.

• The reduced oxygen atmosphere is always operational and activation because of fire is not needed.

4.2. Challenges/disadvantages

• The magnitude of the aforementioned advantages seem to be very dependent upon the material
present, and the information available is mainly for generic materials; it might be necessary to
conduct tests of the specific materials supposed to be present within a protected area. It is not
uncommon that components consist of composite materials, and not all materials show the
same beneficial effects.

• The configuration of the fuel is of great importance, orientation and distance to other fuel
packages presenting the possibility of radiation could increase the risk for ignition and fire spread.

• The production of soot, smoke, and corrosive gases increases, if a fire was to occur creating a
potential for larger damage to sensitive equipment. However, this needs to be balanced against
the possible decrease in MLR.

• The information on reliability is uncertain, and there might still be a need for redundant systems
(to create the reduced oxygen atmosphere, detection, and extinguishing system).

• Better guidance on how to ascertain even oxygen levels, especially with complex geometries.
• Health risks need to be managed considering exposure times, medical exams, strenuous work,
increased risk for human error, technical provisions, and information among others.

4.3. Special considerations for electrical appliances rooms

In electrical appliances rooms, the primary default could heat the environment; further, there is a
possibility for high energetic discharges because of an electrical fault causing high temperatures
locally. Elevated temperatures widen the flammability limits, and this needs to be considered when
installing a hypoxic air venting system in an electrical appliances room because it will affect the
required oxygen level. Further, special attention is needed both for electrical rooms and for
computer rooms with respect to the possibility of an increase in production of smoke and corrosive
gases if fire occurs. In addition, where a high reliability and redundancy is warranted, such as in the
nuclear industry, a reduction of the oxygen concentration to 15% has been shown to be a borderline
case where a risk for fire still exists, and there is a possibility that additional fire protection systems
are needed to limit the risks. Further, the effects of a reduction in oxygen concentrations are material
dependent, and the introduction of a new material in such rooms or transient fire load needs to be controlled.
© 2013 The Authors. Fire and Materials published by John Wiley & Sons, Ltd. Fire Mater. (2013)
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4.4. Main concerns regarding the testing method in PAS 95:2011 and VdS 3527en

One of the main concerns regarding the testing method in PAS 95:2011 and VdS 3527en is that the
ignition source is unsuitable. The oxygen acetylene torch has too high burning velocity and results
in a very local heat transfer causing burn through of the material and blowout of any diffusion
flames on the sample. Further, the flame presents virtually no radiation, and it appears that a sootier
flame with a lower burning velocity and not as locally applied would be a more challenging,
appropriate, and realistic ignition source. Also, the ignition source is poorly defined, and in general,
the test procedure and criteria are imprecise and poorly specified. This could result in a large variety
of testing results between individual tests and between test labs.

In addition to the previous statements, the test method does not take fuel configuration and
reradiation between fuel packages into account resulting in optimistic oxygen concentrations
overestimating the performance of a hypoxic air venting system. There is no external radiation
applied; hence, the robustness in the test method is questionable. Applying external radiation would
result in less uncertainty regarding the achieved oxygen concentrations because it would account for
scenarios such as arson and radiation exchange between fuel packages.

The aforementioned issues are believed to contribute to the result raising the highest concern:
regular particleboard, known to burn and contribute to fire spread, passes the test criteria in normal
air (21% oxygen concentration). This indicates that the test procedure is inappropriate.
5. FURTHER RESEARCH

On the basis of the literature review, at least four research areas have been identified. These consist of
burning behavior, information needed to support risk analysis, burning behavior of more complex
materials, and testing methods.

Concerning burning behavior, information is limited on the effect of configuration and orientation of
fuel on HRR, fire spread, and ignition thresholds in reduced oxygen atmospheres. Especially most test
results found in the review have been for horizontal samples, and there is a special need to determine
the effect on HRR for vertical fuel configurations at reduced oxygen concentrations. Furthermore, the
production rates of corrosive, irritating, and other gases at reduced oxygen concentrations and choice
of the most effective test method to determine this needs to be investigated. There is also little
information on the oxygen concentration's effect on smoldering combustion and the affecting
mechanism of low oxygen concentration on solid pyrolysis. Finally, flame spread at oxygen
concentrations less than 18% (most test results found in the performed literature review were for
oxygen concentrations between 100% and 18%), also considering different orientation of the fuel
and the impact of external heat flux, needs more attention.

Because hypoxic air venting systems are used in the nuclear power industry, there is a clear need to
be able to perform risk analysis. To be able to perform such analyses, information on reliability and
monitoring is essential. Therefore, the probability of different failure modes for the system to
support risk assessment and studies of effectiveness of the system in a real scale is needed. To be
able to compare the ignition energy available in a protected room with the ignition energy required
to start a fire in a reduced oxygen atmosphere, studies of ignition energy needed for different
materials at different oxygen concentrations is necessary. A research area related to ignition energies
is also the effect on ignition time with a reduction in oxygen concentration. Ignition time studies to
cover both piloted and spontaneous ignition would be useful. Last, to improve the reliability of
hypoxic air venting systems, critical points for monitoring of oxygen levels to ascertain an even
concentration and how these measuring points could be determined needs to be investigated.

Information on ignition properties for generic materials (such as PVC and PMMA) is available.
However, ignition properties for less generic materials and products, such as composite materials
and products consisting of different materials, for example, cables and electrical components, needs
further investigation at different oxygen concentrations, temperatures and selection of the most
effective test method to determine this is needed. HRR for less generic materials and products at
© 2013 The Authors. Fire and Materials published by John Wiley & Sons, Ltd. Fire Mater. (2013)
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different oxygen concentrations, temperatures and selection of the most effective test method to
determine this is also needed.

The concerns raised previously regarding the test method in PAS 95:2011 and VdS 3527en calls for
validation and further development of this test method. Possibly, changes are needed of the fuel and
ignition source and modifications to account for fuel configurations, material thickness and possible
radiation are needed.
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