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SUMMARY 

 
The report is based on the assumption that reinforcement corrosion is initiated when the free 

chloride concentration in pore water surrounding the bar has reached a certain critical level, 

which is proportional to the OH
-
 -ion concentration in the pore water; Eq. (1). According to 

Hausmann (1967) the proportionality coefficient K is supposed to be 0.6. Other values are 

imaginable, depending on such factors as w/c-ratio, cement composition and thickness of 

cover.  

 

Formulas are presented in the report for calculation of: 

1.The threshold chloride concentration in pore water (mole/litre or g/litre). 

 It depends on two coefficients; K and k. 

2.The threshold total chloride content (bound+free) expressed as weight-% of cement. 

It depends on four coefficients. Two of these depend on the alkalinity of the concrete; K 

and k. Two coefficients depend on the chloride binding capacity; a and b; see Eq. (16). 

 

The equations are applicable to any value of the threshold chloride concentration versus  

OH
-
-ion concentration (coefficient K), to any value of the water soluble alkali content in the 

cement (coefficient k), and to any water-cement ratio and age of the concrete.  

 

Formulas are derived for many scenarios: 

 Different alkalinity of cement (coefficient k in Eq. (3)).  

 Paragraphs 5. and 7. 

 Different critical chloride concentration for start of corrosion (coefficient K in Eq. (1)). 

 Paragraph 8. 

 Different chloride binding capacity of cement gel.  

 Paragraph 9. 

 Different degree of hydration (concrete age).  

 Paragraph 10. 

 Different amount of limestone filler in cement.  

 Paragraph 11. 

 Different types and amount of mineral admixtures in cement.  

 Paragraph 12. 

 Total or partial leaching of alkali from the concrete.  

 Paragraph. 13. 

 A theory for calculation of the rate of leaching is presented in APPENDIX 2. 

 Different moisture content in the concrete (different RH).  

 Paragraph 14. 

 Corrosion of steel in carbonated concrete.  

 Paragraph 15. 

 

Furthermore, a qualitative discussion of the effect of the following factors is performed: 

 Effect of the cover thickness.  

 Paragraph 16. 

 Effect of defect bond.  

 Paragraph 17.  
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The threshold chloride value depends on how Cl
-
-ions and OH

-
-ions are distributed within the 

pore system. Three alternatives are imaginable, Figure 1. Alternative 3 seems most logical. 

Therefore, most examples in the report are based on Alternative 3. However, formulas are 

given for all three alternatives. Examples of calculated threshold values for two cement types 

based on the three alternatives are given in Tables 6 and 7. An experimental method to 

determine which alternative is valid is presented in APPENDIX 1. 

 

Examples of calculated threshold chloride content as weight-% of cement are given in the 

tables below. The water-cement ratio is 0.40 and the degree of hydration 65%. The ion-

distribution is assumed to be described by Alternative 3. 

 

High alkali cement (Na2O)equiv.=1.29 %. High critical threshold conc.; K=0.60 (Eq. (1).) 

Threshold value, weight-% of cement 

Effect of binding 

capacity, Eq. (16) 

Effect of 30% 

limestone. High 

binding cap. 

Effect of 10% 

silica fume 

High binding cap. 

Effect of drying to 

RH=80% 

High binding cap. High, a=13.5 Low, a=6.75 

1.52 1.00 1.32 0.66 1.45 

 

High and low alkali cement. Effect of critical [Cl
-
]/[OH

-
]-ratio. High and low critical 

threshold conc.; K=0.60 and 0.40 (Eq. (1).) High binding capacity. 

Threshold value, weight-% of cement 

K=0.60 K=0.40 

High alkali cement 

1.29 

Low alkali cement 

0.5% 

High alkali cement 

1.29% 

Low alkali cement 

0.5% 

1.52 0.89 1.20 0.72 

 

The calculations indicate the following interesting observations regarding the threshold 

content of total chloride in weight-% of cement: 

 The threshold chloride content is of the order 1.0 to 1.5 weight-% of cement for 

mature concrete made with high alkali Portland cement (Na2O)equiv1.3%. 

 The threshold chloride content is of the order 0.7 to 0.9 weight-% of cement for 

mature concrete made with low alkali Portland cement (Na2O)equiv0.5%. 

 The effect of water-cement ratio is very small for mature concrete. 

 The effect of 50% reduction in binding capacity, Eq. (16), or 50% reduction in 

threshold concentration, K in Eq. (1), gives only about 40% reduction in the chloride 

threshold value. 

 The negative effect of limestone and silica fume in cement is big 

 The effect of drying is marginal. 

 

The effect of water-cement ratio, cement alkalinity (k) and threshold concentration (K) on the 

threshold concentration of free chloride in g/litre (or mole/litre) is big. Examples are shown in 

the table below. The ion-distribution is assumed to be described by Alternative 3. 

 

w/c 
Threshold concentration in pore water (g/litre) 

High alkali cement 

(Na2O)equiv.=1.29 %. 

Low alkali cement 

(Na2O)equiv.=0.5 %. 

K=0.6 K=0.4 K=0.6 K=0.4 

0.6 20 13 7 5 

0.5 24 16 9 6 

0.4 32 21 12 8 

0.3 43 29 17 11 
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LIST OF SYMBOLS   
(Except formulas in APPENDIX 1) 
 
a Coefficient in the binding isotherm Eq. (16) 

b Coefficient in the binding isotherm Eq. (16) 

freec  Concentration of free chloride in pore water (mole/litre), Eq. (16) 

boundc  Amount of bound chloride (mg/g cement gel), Eq. (16) 

AFmboundc ,  Bound chloride in the Arm-phase in cement (mole Cl
-
/mole AFm) 

CSHboundc ,  Bound chloride in CSH-gel (mole Cl
-
/g CSH-gel) 

g Weight fraction of inert filler in cement (-) 

h Amount of hydration product, Eq. (38) (kg/kg hydrated cement) 

k Amount of alkali (Na2O and K2O) in cement expressed as OH
-
-ions   (mole/kg cement) 

wcap The capillary pore volume, Eq. (4), (litres or litres/m
3
 of concrete) 

wtot The total pore volume in concrete, Eq. (5), (litres or litres/m
3
 of concrete) 

wo/c Water-cement ratio  (-) 

 
eff

cw /0  Effective water-cement ratio defined by Eq. (31)  (-) 

cwe /  Amount of pore water (kg/kg cement) 

C Cement content (kg) 

K Relation between threshold chloride concentration and OH
-
-concentration, Eq. (1) 

eqONa2  Amount of OKONa 22 66.0   (weight-% of cement) 

PC Amount of Portland component in cement (kg) 

gelQ  Weight of cement gel (kg) 

ClPV ,  Volume of pore water able to dissolve chloride, Eq. (46) (litres/m
3
 of concrete) 

 thrfreeCl   Concentration of free chloride ions in pore water (mole/litre) 

 OH  Concentration of OH
-
-ions in pore water (mole/litre) 

 thrfreeCl  Amount of free chloride ions at threshold concentration (g/litre pore water) 

 
thrfreeCl

Q   Amount of free chloride ions at threshold concentration (kg) 

 
CboundCl

Q   Amount of bound chloride ions (weight-% of cement) 

 
CtotalCl

Q   Total amount of bound+free chloride ions (weight-% of cement) 

 
CfreeCl

Q   Amount of free chloride ions (weight-% of cement) 

 
thrCfreeCl

Q
,

  Amount of free chloride ions at threshold concentration (weight-% of cement) 

 
thrCboundCl

Q
,

  Amount of bound chloride at threshold concentration (weight-% of cement) 

 
thrCtotalCl

Q
,

  Total amount of chloride at threshold concentration (weight-% of cement) 

 Degree of hydration (-) 

  Degree of reaction of cement, Eq. (38) (-) 
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1. BASIC ASSUMPTIONS 

 
The analysis below is based on the following two assumptions: 

1. Start of corrosion is determined by the free chloride concentration in pore water           

surrounding the reinforcement bar. The total chloride content is supposed to be of no 

importance
1
. 

 

2. The threshold concentration of free chloride content is supposed to be directly 

proportional to the OH-ion concentration of the pore solution: 

 

                OHKCl thrfree    mole/litre.   (1) 

 

where K is a coefficient which might depend on many parameters, such as the chemical 

composition of the pore solution, the oxygen concentration in pore water surrounding the 

reinforcement bar, and the type of steel.  

 

According to Hausmann (1967) the constant K is about 0.6 for ordinary steel immersed in 

bulk chloride solution, i.e.: 

      

     OHCl thrfree 6.0    mole/litre (2) 

 

 
2. DISSOLUTION OF ALKALI AND CHLORIDE IN PORE WATER –  
    THREE ALTERNATIVES 
 

The pore system of cement paste is divided in two parts: 

1. The extremely narrow gel pores containing pores with average width about 15 Å 

2. The coarser capillary pores with pore size varying from about 50 Å to 1000 Å. 

 

There are two extreme possibilities for water soluble alkali oxides in cement (Na2O and K2O), 

to be dissolved. As one extreme, all alkali is evenly dissolved in water present in the entire 

pore system (Alt 2 and 3 in Figure 1). As the other extreme it is only dissolved in the capillary 

pore water (alt 1 in Figure 1).  

 

Similarly, chloride ions might be dissolved, either in all pore water (Alt 2 in Figure 1), or only 

in the capillary water (Alt 1 and 3 in Figure 1). 

 

The threshold concentration will depend on how the dissolution of alkali and chloride takes 

place as will be shown below. 

 

 

 

                                                 
1
 The total chloride content, which is the sum of free and bound chloride, is however of big importance for the 

diffusion rate of chloride in the pore system; the higher the fraction of bound chloride, the lower is the effective 

diffusion coefficient. Therefore, bound chloride affects the service life of the concrete with regard to chloride 

induced corrosion despite the fact that it does not affect the threshold concentration. The present report only 

deals with the threshold concentration. 
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Alt 1                             Alt 2                         Alt 3

Gel 

pores

Capillary

pores

OH- and 

Cl-ions

Pure water
OH-ionsOH- and Cl-ions

OH- and 

Cl-ions

 
 

Figure 1. Different alternatives for dissolution of alkali and chloride. 

 
Alternative 3 is most plausible for the following reasons: 

1. Alkali is dissolved rapidly when cement comes in contact with water during concrete 

mixing. Thus it is reasonable to assume that all pore water is alkaline already from 

early age. 

2. Chloride ions enter the concrete when the solid structure has already developed. It 

seems reasonable to assume that the ions cannot easily penetrate the very narrow 

entrances to gel pores. For example it has been shown experimentally that nitrogen 

vapour cannot enter gel pores, while the smaller water molecules can, and that organic 

liquids cannot enter gel pores, Powers (1962).  

 

An experimental method to determine which pores are available for dissolving chloride is 

suggested in the APPENDIX.  

 

 
3. THE THRESHOLD CONTENT OF FREE CHLORIDE - THEORY 
 

Concrete based on ordinary Portland cement is treated in this paragraph. Therefore, known 

formulae for capillary porosity and total porosity of Portland cement paste can be used. 

Water-cement ratio is defined in the normal way as wo/c where wo is the amount of mixing 

water (kg) and c is the amount of cement (kg). The effect of other types of binders is 

discussed in paragraphs x and y. 

 

The amount of water soluble alkali in cement expressed as OH
-
-ions is  

 

k  mole /kg cement 

 

The amount of water soluble OH
-
-ions in concrete is: 

 

OH
- 
=k∙C   mole     (3) 

 

where C is the cement content. 
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The volume of pore water able to dissolve alkali depends on the degree of saturation of the 

concrete. Only complete saturation is considered in the present paragraph because this is “the 

most dangerous case” (lowest OH
-
-concentration). Non-saturated concrete is treated in 

paragraph 14. 

 

The amount of water able to dissolve alkali can correspond either to the capillary pore volume 

(Alt 1) or to the entire pore volume (Alt 2 and Alt 3) 
2
. 

 

Alt 1: Only water in capillary pores dissolves alkali. The volume of this water is: 

 

  







  39.039.0 0

0
C

w
CCwwcap   litres (4) 

where 

  w0 is the amount of mixing water (litres/m
3
 concrete) 

   is the degree of hydration of the cement (-) 

 

Alt 2 and Alt 3: All pore water dissolves alkali. The volume of this water is: 

 

  







  19.019.0 0

0
C

w
CCwwtot    litres (5) 

 

The concentration of OH
-
 in pore water becomes: 

 

Alt 1: 

   
 







39.0/39.0 00 cw

k

Cw

Ck
OH   mole/litre (6) 

 

where wo/c is the water-cement ratio. 

 

Alt 2 and Alt 3: 

   
 







19.0/19.0 00 cw

k

Cw

Ck
OH   mole/litre (7) 

 

The threshold concentration of free chloride ions becomes: 

 

Alt 1: 

 

   





39.0/0 cw

kK
Cl thr    mole/litre (8) 

 

                                                 
2
) It is assumed that air pores do not contain water. In reailty, during very moist conditions, a fraction of the air-

pore system might be water-filled for longer or shorter periods; see the analysis in Fagerlund (2004). This means 

that the alkalinity of pore water might be lower and therefore also the threshold concentration be lower than the 

values calculated below. The effect is however limited, which is shown by the following example: 

For a concrete with w/c-ratio 0.40, cement content 420 kg/m
3
,  and air content 5%, 30% of which is water-filled, 

the total porosity (exclusive of air-pores) is about 115 litres/m
3
 (porosity 11.5%). The water-filled air-pore 

volume is 15 liter/m
3
. Thus, the water volume is increased by about 13%. The decrease in OH

-
-concentration and 

threshold concentration is also about 13%. 
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Alt 2 and Alt 3: 

   

   





19.0/0 cw

kK
Cl thr    mole/litre (9) 

 

The threshold concentration expressed as weight of chloride ions is given by Eq. (8) and (9) 

multiplied by the mole weight of chlorine 35.5 g/mole: 

 

Alt 1: 

 

   





39.0/

5.35

0 cw

kK
Cl thrfree    g/litre (10) 

 

Alt 2 and Alt 3: 

 

   





19.0/

5.35

0 cw

kK
Cl thrfree     g/litre (11) 

 

Assuming the Hausmann criterion to be valid (i.e. K=0.6), the threshold concentration 

calculated by these equations is given in Table 1 and plotted in Figure 2. 

 

Table 1: The threshold concentration of free chloride ions in saturated portland cement 

concrete. The degree of hydration selected is normal for concrete a couple of months 

old. The values are based on the Hausmann criterion (i.e. K=0.6). 
wo/c  Threshold amount of chloride ions 

1) 

  kCl thrfree /
 

Alt 1 

Only capillary water dissolves alkali 

Alt 2 and Alt 3 

All water dissolves alkali 

0.60 0.75 69 47 

0.50 0.70 94 58 

0.40 0.65 145 77 

0.30 0.50 203 104 

1) The unit is:  
cementkgOHmole

waterporelitreClg

/

/




 

 

The theoretical analysis shows that the threshold concentration of free chloride increases 

with decreasing w/c-ratio, which is a consequence of the fact that a decreased w/c-ratio 

means a decreased porosity and therefore an increased OH
-
-concentration.  

 

For Alt 3, which is the most plausible of the three alternatives, a decrease of the w/c-ratio 

from 0.6 to 0.4 causes an increase in the threshold concentration by 40%, which is of course 

very favourable with regard to decreasing the risk of chloride induced corrosion.. 
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Alt 1: Capillary water dissolves alkali

Alt 2 and Alt 3: All water dissolves alkali

 
Figure 2: Calculated threshold level of free chloride in saturated Portland cement based on 

the Hausmann criterion. Data from Table 1. 

 

4. COMPARISON OF THEORY WITH EXPERIMENT 
 

According to the theory above the threshold value increases with decreased water/cement 

ratio. This has also been observed experimentally by Pettersson (1994); see Figure 3. The 

determination was made for saturated concrete. 

 
Figure 3: Measured threshold concentration of free chloride, Pettersson (1994). 

                Degerhamn: Low alkali cement (0.5%). Slite: High alkali cement (1.29%).  

                SiO2: Silica fume. 
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In Table 2 theoretically calculated threshold values from Table 1 are compared with 

experimentally determined threshold values from Figure 2. Comparisons are made with 

threshold concentration for water/cement ratio 0.40. 

 

Table 2: Relative values of the free chloride concentration in water saturated concrete. 

Theoretical values from Table 1 and measured values from Figure 2. Only data for 

ordinary Portland cement (OPC) are used in the comparison. Concrete with low 

alkali/sulphate resistant cement and concrete with silica fume are omitted since 

these binders have different amount of alkali. 
wo/c  thrfreeCl  theoretical from Table 1 

(% of value for w0/c=0.40) 

 thrfreeCl experimental from Figure 3 

(% of value for w0/c=0.40) 

Alt 1 Alt 2 and Alt 3 

0.60 48 61 38-48 (average 42) 

0.50 65 75 38-52 (average 45) 

0.40 100 100 100 

0.30 140 135 Information lacking 

 

Both the theoretical analysis and the experimental finding indicate that the threshold 

concentration is not a constant but that it increases with decreased water/cement ratio. When 

total chloride is used as criterion for onset of corrosion, which normally is the case at 

calculation of service life, one single value is normally used for all water/cement ratios. 

 

 

5. QUANTITATIVE THRESHOLD VALUES OF FREE CHLORIDE 
 

As shown above, the OH-ion concentration of pore water and therefore the threshold 

concentration of free chloride are determined by two main factors: 

 

1. The amount of water-soluble Na2O and K2O in the cement.  

2. The amount of pore water able to dissolve alkali. There are two possibilities, see 

Figure 1. Alt 1 where only capillary water is “active”, and Alt 2 and Alt 3 where all 

water acts as solvent 

 

When all Na2O and K2O has been completely leached out the OH
-
-concentration is 

determined by the saturation pH of Ca(OH)2, which is about 12.3. This corresponds to the 

OH
-
-concentration 0.02 mole/litre. 

 

5.1 HIGH-ALKALI CEMENT 
Swedish Portland cement used for the concrete in Figure 3, contains about 0.3 weight-% 

Na2O and about 1.5 weight-% K2O. From the OH-concentration point of view, the 

corresponding so-called (Na2O)eq is 1.29 weight-%. (Na2O)eq =Na2O+0.66∙K2O. 

 

* The (equivalent) amount of Na2O is12.9 g/kg cement. 

* The mole weight of Na2O is 62 g/mole. 

* The number of mole Na2O in cement is 12.9/62=0.208 mole/kg cement 

* Na2O is dissociated according to: 

Na2O+H2O=2Na
+
+2OH

-
  (12) 

i.e. 1 mole sodium oxide gives 2 moles of OH
-
. 

* The amount of OH
-
 in the cement expressed as mole/kg (i.e. the coefficient k) is: 

k=2∙0.208=0.416 mole OH
-
/kg cement. 
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In Table 3 the theoretically calculated threshold values from Table 1 are multiplied by the 

coefficient k=0.416. This gives the free chloride concentration in g/litre. Calculated values are 

compared with experimentally determined from Figure 3. 

 

Table 3: Calculated and measured threshold values for the free chloride content of water 

saturated concrete made with Portland cement with the equivalent Na2O content 

1.29 weight-%. The values are based on K=0.6 (the Hausmann criterion) 
wo/c  Calculated threshold chloride content 

in pore water according to Table 1 

 thrfreeCl   g/litre 

Measured threshold chloride content 

in pore water according to Figure 2 

 thrfreeCl   g/litre 

Alt 1 

Only capillary water 

dissolves alkali 

Alt 2 and Alt 3 

All water 

dissolves alkali 

0.60 0.75 29 

(0.82) 
1)

 

20 

(0.56) 

20-22 (average 21) 

(average 0.58) 

0.50 0.70 39 

(1.10) 

24 

(0.70) 

20-25 (average 23) 

(average 0.65) 

0.40 0.65 60 

(1.69) 

32 

(0.90) 

47-53 (average 51) 

(average 1.44) 

0.30 0.50 85 

(2.39) 

43 

(1.21) 

Information lacking 

1) Values within parentheses are in mole/litre 

 

The values are plotted in Figure 4.The agreement between calculation and measurement is 

fairly good, particularly when the calculated value of the OH
-
-concentration is based on the 

entire water volume. For the lowest water/cement ratio the agreement is best when only 

capillary pore water is supposed to dissolve alkali.  

 

It must be considered that the data used for soluble alkali in the cement are rather uncertain. 

Also rather small variations in alkali content affect the calculated threshold value quite much. 

Furthermore, the selected value K=0.6 is quite uncertain. It must also be noted that the 

experimental data are uncertain depending on big experimental difficulties associated with 

these types of measurements. 

0

10

20

30

40

50

60

70

80

90

0,2 0,3 0,4 0,5 0,6 0,7

w0/c

C
l- th

r

Theoretical Alt 1

Only capillary water dissolves alkali

Theoretical Alt 2 and Alt 3.

All water dissolves alkali

Experimental fig 3

Average values

 
Figure 4: Calculated and measured threshold concentration of free chloride.  

Data from Table 3. 
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5.2 LOW-ALKALI CEMENT 
A typical low alkali cement like the Swedish Anläggningscement has an Na2O-equivalent of 

about 0.5 weight-%. Thus, the coefficient k becomes: 

  k=2∙(5/62 )=0.161  mole OH
-
 per kg cement. 

 

The threshold concentration is obtained by multiplying the values in Table 1 and 3 by the 

factor 0.161. The coefficient K is assumed to be 0.6. 

 

Example:  

Concrete with w/c-ratio 0.40, degree of hydration 0.65. The difference between high-alkali 

cement (k=0.416) and low alkali cement (k=0.161) is shown in the table below. 

 
Threshold chloride content in pore water  

 thrfreeCl    g/litre 

Low-alkali cement High-alkali cement 

Alt 1 Alt 2 

Alt 3 

Alt 1 Alt 2 

Alt 3 

23 

(0.65)
1)

 

12 

(0.34) 

60 

(1.69) 

32 

(0.90) 

1) Values within parentheses are in mole/litre 

 

The effect of the cement alkalinity is summarized in Figure 5. It is valid for K=0.6. 
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Figure 5: Effect of alkalinity of cement on the threshold concentration of free chloride. The 

diagram is valid for Alt 2 and Alt 3. 

 

 

5.3 EFFECT OF THE COEFFICIENT K 
The threshold concentration of Cl

-
-ions required for initiation of corrosion is assumed to be 

proportional to the concentration of OH
-
-ions; see Eq. (1). So far the proportionality 

coefficient K in Eq. (1) has been assumed to be 0.6. This value is based on experiments were 

ordinary steel has been immersed in chloride solution. The value might be different for steel 

in concrete due to the following factors: (1) a more complex solution surrounding the steel, 

(2) a different oxygen concentration, (3) varying electrical potential on different parts of the 

steel surface. The value might be higher than 0.6, but it might also be lower. 
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The threshold concentration is directly proportional to the value of K, see Eq. (8) and (9) or 

(10) and (11). Threshold values can therefore be obtained from Table 1 or 3 by multiplying 

the table values by the factor K/0.6 and multiplying by the relevant value of the coefficient k. 

 

Example: 

High-alkali cement. w/c-ratio 0.40 (k=0.416). Degree of hydration 0.65. K=0,4. 

The difference between threshold values for K=0.4 and 0.6 is shown in the table below. 

 
Threshold chloride content in pore water  

 thrfreeCl   g/litre 

K=0.4 K=0.6 

Alt 1 Alt 2 

Alt 3 

Alt 1 Alt 2 

Alt 3 

40 

(1.12)
1)

 

21 

(0.59) 

60 

(1.69) 

32 

(0.90) 

1) Values within parentheses are in mole/litre 

 

 

6. THRESHOLD VALUE OF FREE, BOUND AND TOTAL CHLORIDE  
    AS WEIGHT-% OF CEMENT  
 
6.1 Theory 
Normally in literature on service life of concrete, the threshold chloride concentration is 

expressed in terms of the total chloride content and not in terms of free chloride content. 

There is a relation between these two values. In the following a theoretical derivation of this 

relation will be made. It depends on the relation between free and bound chloride 

 

Total chloride content is the sum of bound and free chloride: 

 

       CfreeClCboundClCtotalCl
QQQ      weight-% of the cement (13) 

The relation between bound chloride content and free chloride content in a concrete is 

determined by the sorption isotherm for chloride. This relation between the two chloride 

contents is: 

 

      CfreeClCboundCl
QfQ      weight-% of the cement (14) 

 

In the simplest case the relation is linear, i.e.: 

 

      CfreeClCboundCl
QconstQ    (15) 

 

This type of relation was observed by Tuutti (1982). 

 

Often, the isotherm is non-linear. A typical example is seen in Figure 6, Tang (1996). The 

isotherm is valid for a type of Swedish Portland cement. It must be noted that the unit for 

bound chloride is different from the unit for free chloride.  

 

The isotherm in Figure 6 can be described by the following equation (a Freundlich isotherm): 
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b

freebound cac     mg/g cement gel (16) 

 

    where  

a and b are coefficients 

cbound is bound chloride expressed as mg chloride/g cement gel, i.e. 10
-3

 kg/kg gel  

cfree is free chloride expressed as mol chloride ions/litre pore liquid 

 

For the isotherm in Figure 6, a=13.5 and b=0.41. 

 

  
41.0

5.13 freebound cc     mg/g cement gel (16b) 

 

Note: the isotherm is only determined for the Cl
-
-range 0 to1 mole/litre (0-35.5 g/litre). In the 

following it is assumed that Eq. (16) can also be used for higher concentrations. 

 

Bound and free chloride must be transformed to the unit weight-% of cement. 

 
 

Figure 6: Relation between free and bound chloride in Portland cement paste and Portland 

cement mortar; Tang (1996). 

 

The weight of cement gel is (by “gel” is in this case meant the sum of all hydration products): 

 

  CCCwCQ ngel   25.125.0    kg       (17) 

 

or 

 

   25.1gelQ    kg/kg cement (17b) 

 

where  

 is the degree of hydration 

C is the cement weight, kg 

wn is the chemically bound water, kg 
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The bound chloride in weight-% of cement therefore is: 

 

      
 125.010025.110 3

boundboundCboundCl
ccQ      weight-% of cement (18) 

 

and 

 

 





125.0

CboundCl

bound

Q
c          mg/g cement gel                                                                     (18b)              

 

Example: Concrete with degree of hydration 0.8. The y-axis of Figure 6 (and Eq. (16b)) gives 

cbound=12.3 mg/g.  

 

According to Eq. (18) the amount of bound chloride is 12.3∙0.125∙0.8 = 1.23 weight-%. 

 

The free chloride concentration in Figure 6 is the same as  freeCl  in Eq. (8) and (9). 

 

   freefree Clc      mole/litre (19) 

 

and 

 

     thrfree
thrfree Clc      mole/litre                                                                                     (19b) 

 

The threshold amount if free chloride depends on how chloride is dissolved. There are three 

possibilities, see Figure 1. 

 

Alt 1:  

The weight in kg of dissolved chloride at threshold, per litre of water is given by Eq. (10) 

multiplied by the factor 10
-3

 kg/g.     

 

   









39.0/

105.35

0

3

cw

kK
Q

thrfreeCl
  kg/litre (20) 

 

The total amount of free chloride is found by multiplying Eq. (20) by the amount of water 

containing chloride. This is given by Eq. (4). Dividing by the cement weight and multiplying 

by 100 (%) gives: 

 

      kKcw
cw

kK
Q

thrCfreeCl









 55.310039.0/
39.0/

105.35
0

0

3

,



  weight-% of cement

 (21) 

 

The threshold concentration (mole/litre) is given by Eq. (8). Thus, according to Eq. (16b) the 

amount of bound chloride at threshold concentration is: 

 

  
  b

thrCboundCl

cw

kK
a

Q



















 39.0/125.0 0

,
 (22) 

or  
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   
b

thrCboundCl cw

kK
aQ 

















39.0/
125.0

0
,

   weight-% of cement (22b) 

 

The total chloride content at threshold concentration as weight-% of cement is: 

 

    kK
cw

kK
aQ

b

thrCtotalCl













 55.3

39.0/
125.0

0
, 

    weight-% of cement (23) 

 

Alt 2:  

The weight in kg of dissolved chloride at threshold per litre of water is given by Eq. (11) 

multiplied by the factor 10
-3

 kg/g.    

  

   









19.0/

105.35

0

3

cw

kK
Q

thrfreeCl
  kg/litre (24) 

 

The total amount of free chloride is found by Eq. (24) multiplied by the amount of water 

containing chloride. This is given by Eq. (4). Dividing by the cement weight gives: 

 

      kKcw
cw

kK
Q

thrCfreeCl









 55.319.0/
19.0/

105.35
0

0

3

,



  weight-% of cement (21) 

 

This is the same as for Alt 1. 

 

The threshold concentration (mole/litre) is given by Eq. (9). Thus, according to Eq. (16b) the 

amount of bound chloride at threshold concentration is: 

 

  
  b

thrCboundCl

cw

kK
a

Q



















 19.0/125.0 0

,
 (25) 

or  

   
b

thrCboundCl cw

kK
aQ 

















19.0/
125.0

0
,

   weight-% of cement (25b) 

 

The total chloride content at threshold concentration as weight-% of cement becomes: 

 

    kK
cw

kK
aQ

b

thrCtotalCl













 55.3

19.0/
125.0

0
, 

    weight-% of cement (26) 

 

Alt 3:  

The weight in kg of dissolved chloride at threshold per litre of water is given by Eq. (11) 

multiplied by the factor 10
-3

 kg/g.  The result is Eq. (24) above. 

 

The total amount of free chloride is found by Eq. (24) multiplied by the amount of water 

containing chloride. This is given by Eq. (5). Dividing by the cement weight and multiplying 

by 100 (%) gives: 
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      10039.0/
19.0/

105.35
0

0

3

,









 


cw
cw

kK
Q

thrCfreeCl
  weight-% of cement (27) 

 

The threshold concentration is given by Eq. (9). Thus, according to Eq. (16b) the amount of 

bound chloride at threshold concentration is: 

 

  
  b

thrCboundCl

cw

kK
a

Q



















 19.0/125.0 0

,
 (28) 

or  

 

   
b

thrCboundCl cw

kK
aQ 

















19.0/
125.0

0
,

   weight-% of cement (28b) 

 

The total chloride content at threshold concentration as weight-% of cement becomes: 

 

 

   

























19.0/

39.0/
55.3

19.0/
125.0

0

0

0
, cw

cw
kK

cw

kK
aQ

b

thrCtotalCl
   weight-% (29) 

 

6.2 CONCLUSIONS 
The threshold concentration of free chloride expressed in g/litre or mole/litre of pore solution 

is determined by 2 coefficients: 

 

1. k determined by the alkalinity of the cement 

2. K determined by the relation between the alkalinity of the pore solution and the 

chloride concentration to start corrosion; Eq. (1). 

 

The threshold value of total chloride as weight-% of cement is determined by 4 coefficients, k 

and K but also two coefficients describing chloride binding: 

 

3. a in Eq. (16) 

4. b in Eq. (16) 

 
 
7. EFFECT OF ALKALINITY OF CEMENT ON THE THRESHOLD   
    CHLORIDE CONTENT 
 

Assuming the Hausmann criterion to be valid (K=0.6) the threshold value of total chloride 

expressed as weight-% of the cement weight are calculated by Equations (23), (26) and (29). 

These equations show that there is a linear relation between the coefficient k expressing the 

alkalinity of cement and the chloride threshold values. 

 

7.1 High alkali Portland cement 
The alkalinity of the cement is given by Na2Oeq=1.29 weight-% (the same as the cement in 

Table 3). This is a typical Swedish ordinary Portland cement. 
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The coefficient k=0.416, see Eq. (12). 

 

It is assumed that the chloride binding isotherm can be described by Figure 6, i.e. a=13.5, 

b=0.41. 

 

The calculated threshold values are given in Table 6.  

 

Table 6: The threshold concentration of chloride as weight-% of cement in saturated portland 

cement concrete. The degree of hydration selected is normal for concrete that is a 

couple of months old. The cement alkalinity Na2Oeq=1.29 %. The values are based 

on the Hausmann criterion, K=0.6. Isotherm according to Figure 6. 
wo/c  Threshold chloride concentration (weight-% of cement) 

Alt 1  Alt 2  Alt 3  

free bound total free bound total free bound total 

0.60 0.75  

0.89 

1.16 2.05  

0.89 

0.99 1.88 0.60 0.99 1.59 

0.50 0.70 1.23 2.12 1.01 1.90 0.55 1.01 1.56 

0.40 0.65 1.36 2.25 1.05 1.94 0.47 1.05 1.52 

0.30 0.50 1.20 2.09 0.92 1.91 0.46 0.92 1.38 

Average value 

(std. dev.) 
2.1 

(0.09) 

  1.9 

(0.03) 

  1.5 

(0.09) 

 

The effect of the manner in which chloride and alkali is dissolved is rather big. As said above 

in paragraph 2, Alt 3 seems to be the most plausible alternative. 

 

The threshold of total chloride content of mature concrete varies within the span 1.4-1.6 % for 

Alt 1. The other two alternatives give higher values; about 1.9 to 2.2%. Thus, for each 

alternative the variation in threshold concentration is quite small. 

 
7.2 Low alkali Portland cement 
A typical low alkali cement like the Swedish Anläggningscement has the Na2O-equivalent 

about 0.5 weight-% =5g/kg cement.  

 

The coefficient k=2∙(5/62) =0.161; see paragraph 5.2. 

 

The Hausmann criterion (K=0.6) is supposed to be valid. The binding isotherm is described 

by Figure 6.  

 

The values for free chloride are based on the values in Table 6 multiplied by the factor 

0.161/0.416=0.39. The values for bound chloride are based on the values in Table 6 

multiplied by the factor (0.161/0.416)
0.41

=0.68. 

 

The threshold concentration is listed in Table 7. 

 

For Alt 3 the threshold of total chloride content of mature concrete is about 0.6 weight-% for 

all w/c-ratios. For the other two alternatives lies within the span 0.7-0.8 weight-%. 

 

The calculation indicates that corrosion will start at lower chloride content in a concrete with 

low alkali cement, provided that the binding capacity of chloride is not increased, viz. it must 

be noted tat all data in Tables 6 and 7 are based on the same binding isotherm. If  low alkali 

cement is able to bind more chloride, the negative effect regarding threshold concentration 

will be compensated for more or less completely; see paragraph 9. 
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Table 7: The threshold concentration of chloride as weight-% of cement in saturated portland 

cement concrete. The degree of hydration selected is normal for concrete that is a 

couple of months old. The cement alkalinity Na2Oeq=0.5 %. The values are based on 

the Hausmann criterion, K=0.6. Isotherm according to Figure 6. 
wo/c  Threshold chloride concentration (weight-% of cement) 

Alt 1  Alt 2  Alt 3  

free bound total free bound total free bound total 

0.60 0.75  

0.35 

0.79 1.14  

0.35 

0.67 1.02 0.23 0.67 0.90 

0.50 0.70 0.83 1.18 0.68 1.03 0.21 0.68 0.89 

0.40 0.65 0.92 1.27 0.71 1.06 0.18 0.71 0.89 

0.30 0.50 0.81 1.16 0.62 0.97 0.18 0.62 0.80 

Average value 

(Std. dev.) 
1.19 

(0.05) 

  1.02 

(0.04) 

  0.87 

(0.05) 

 

 

7.3 Conclusions 
1. The calculations above show that the assumption that there exists a critical free 

chloride concentration –Eq.(1)- theoretically leads to a threshold chloride 

concentration expressed as weight-% of cement that is almost constant irrespectively 

of the composition of the concrete as long as the same cement type is used. It only 

depends on how alkali is dissolved in the pore system, Alt 3 giving the lowest 

threshold concentration. 

 

2. For all three alternatives of dissolution of chloride and alkali, the effect of the 

water/cement ratio on the threshold chloride content is small when this is expressed in 

terms of weight-% of cement. However, when the threshold of free chloride is 

expressed in terms of chloride concentration in pore water the effect of w/c-ratio is 

big; see Table 3.  

 

 
8. EFFECT OF THE CRITICAL [Cl-]/[OH-]-RATIO ON THE   
    THRESHOLD CHLORIDE CONTENT 
 
Equations (23), (26) and (29) show a linear relation between the coefficient K in Eq. (1) and 

the threshold concentration. Thus, the threshold concentration for another value of K than 0.6 

is found by multiplying the vales in Table 6 or 7 by the factor K/0.6, assuming the isotherm in 

Figure 6 is still valid. 

 
Example: 

 The coefficient K is 0.4. Then, the threshold concentrations of free chloride in Table 6 and 7 

shall be multiplied by the factor 0.4/0.6=0.67. The threshold concentration of bound 

chloride in Tables 6 and 7 shall be multiplied by the factor (0.4/0.6)
0.41

=0.85. 

 Concrete with w/c-ratio 0.40 and degree of hydration 0.65.  

 Dissolution of chloride and alkali defined by Alternative 3. 

 The binding isotherm is given by Figure 6. 

 

The threshold chloride content for this concrete expressed in weight-% of cement is shown in  

Table 8 
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Table 8:  The critical threshold value of chloride for different values of the critical [Cl
-
]/[OH

-
] ratio. 

Water-cement ratio 0.40. Alt 3. Values for K=0.6 taken from Tables 6 and 7.  

Cement type Low critical OH
-
concentration 

K=0.4 

Weight-% of cement 

High critical OH
-
concentration 

K=0.6 

Weight-% of cement 

free bound total free bound  total 

High alkali 

k=0.416 

0.31 0.89 1.20 0.47 1.05 1.52 

Low alkali 

k=0.161 

0.12 0.60 0.72 0.18 0.71 0.89 

 

The effect of K is smaller than what might have been expected. A reduction of K by 50% (from 

0.6 to 0.4) only causes a decrease in the threshold chloride concentration by about 20%.The 

reason is that the bound chloride is less than directly proportional the value of K. 

 
 
9. EFFECT OF THE CHLORIDE BINDING CAPACITY ON THE  
    THRESHOLD CHLORIDE CONTENT 
 

The chloride binding capacity depends on the chemical composition of the cement. Binding is 

both chemical and physical.  

 

Portland cement paste is composed of four major components. 

1. Hydrated calcium-silicate gel (C-S-H). 

2. Calcium hydroxide 

3. AFm-phase (monosulfate) 

4. AFt-phase (ettringite) 

 

The first phase is formed at hydration of the calcium-silicate in cement. The second phase is 

primarily formed at hydration of calcium-silicate, but also at hydration of aluminate in 

cement. The last two phases are formed at hydration of the aluminate and ferrite in cement.  

 

Hirao et al (2005) have shown experimentally that the calcium hydroxide and the Aft-phase 

do not bind chloride. AFm on the other hand binds chloride chemically primarily by 

formation of a compound called Friedel´s salt. The binding isotherm of chloride on AFm is of 

a Freundlich type which is described by Eq. (16). Hirao et al (2005) give the following 

isotherm: 

 

  
6016.0

, 4566.0 freeAFmbound cc   (16b) 

 

where 

  cbound,AFm is expressed in the unit (mole bound Cl
-
/mole AFm). (The mole weight of AFm  

           (3CaO∙Al2O3∙CaSO4∙12H2O) is 622 g/mole.) 

  cfree is expressed in the unit (mole Cl
-
/litre) 

 

The total amount of bound chloride depends on the amount of AFm in cement paste. This is 

different for different types of cement. 

 

Pure C-S-H gel (Ca(OH)2 not included) binds chloride physically. Experiments by Hirao 

(2005) at al indicate that the binding isotherm is of a Langmuir type: 
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free

free

CSHbound
c

c
c






65.21

65.2
61.0,  (30) 

 

where 

  cbound,CSH is expressed in the unit (mmole bound chloride/g C-S-H gel 

     cfree is expressed in the unit (mole chloride/litre) 

 

According to Eq. (30) binding is saturated when cbound=0.61.  

 

When Ca(OH)2 is included in “gel”, Eq (30) is changed to, Hirao et al (2005): 

 

   
free

free

CSHbound
c

c
c






65.21

65.2
47.0,  (30b) 

 

Comparison of the two equations (30) and (30b) shows that 1 kg of fully hydrated cement 

produces 0.30 kg Ca(OH)2.  

 

Eq. (30b) gives the bound chloride content 0.34 mmole/g gel, or 12 mg/g, when the outer 

chloride concentration is 1 mmole/litre. This is somewhat smaller binding than obtained from 

Figure 6. However, in this figure also the AFm and Aft phases are included in the definition 

of gel. This can explain the higher value. 

 

Since the amount of AFm and AFt is different for different cement types, the sorption 

isotherm will be different. It is, however, assumed that total binding can always be described 

by a Freundlich type of isotherm for all cements; Eq. (16). The coefficients a and b will 

however be somewhat different for different types of cement.  

 

It is assumed that the coefficient b is the same as for Figure 6, i.e. b=0.41. 

 

Then, the threshold concentration of bound chloride as weight-% of cement can be calculated 

by Equations (22b), (25b) and (28b) with the relevant value of b inserted. 

 

Let us assume that binding is only 50% of that shown in Figure 6. Then, the coefficient a 

becomes: 

 

   a=13.5/2=6.75. 

 

For a high-alkali cement with Na2Oeq=1.29 (k=0.416) and K=0.6 (the Hausmann criterion) the 

threshold concentration can be calculated from the values in Table 6. The value for critical 

free chloride is unchanged. The value for bound chloride is multiplied by the factor 0.5. 

Calculated threshold concentrations for this cement is shown in Table 9. 
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Table 9: The threshold concentration of chloride as weight-% of cement in saturated portland 

cement concrete. The degree of hydration selected is normal for concrete that is a 

couple of months old. The cement alkalinity Na2Oeq=1.29 %. The values are based 

on the Hausmann criterion, K=0.6. Isotherm according to Figure 6 with bound 

chloride divided by the factor 2. 
wo/c  Threshold chloride concentration (weight-% of cement) 

Alt 1 
1)

 Alt 2 
2)

 Alt 3 
3
) 

free bound total free bound total free bound total 

0.60 0.75  

0.89 

0.58 1.47  

0.89 

0.50 1.39 0.60 0.50 1.10 

0.50 0.70 0.62 1.51 0.51 1.40 0.55 0.51 1.06 

0.40 0.65 0.68 1.57 0.53 1.42 0.47 0.53 1.00 

0.30 0.50 0.60 1.49 0.46 1.35 0.46 0.46 0.92 

Average value 

(std. dev.) 
1.5 

(0.04) 

  1.4 

(0.03) 

  1.0 

(0.07) 

1) Only capillary water dissolves alkali and chloride 

2) All pore water dissolves alkali and chloride 

3) All water dissolves alkali. Only capillary water dissolves chloride 

 

 

10. EFFECT OF CONCRETE AGE ON THE THRESHOLD CHLORIDE 
      CONTENT 
 

Effect of concrete age on the threshold chloride concentration and content is calculated by 

equations above by inserting the relevant value of degree of hydration. 

 

10.1 Threshold concentration of free chloride in pore water 
Alt 3 for dissolution of alkali and chloride is used; i.e. Equation (11) is used.  

 

An example of the effect of degree of hydration is shown in Table 10 for the water/cement 

ratio 0.40. As before, in Table 3, 6 and 8, the coefficient K is 0.6 (the Hausmann criterion) 

and the coefficient k is 0.417 (high-alkali cement).  

 

The threshold concentration of free chloride expressed in kg/litre is shown in Table 10. 

 

Table 10: Threshold concentration of free chloride as function of the degree of hydration.  

               w/c-ratio 0.40. K=0.6 and k=0.416. Alt 3 for dissolution. 
Degree of hydration 

 

The threshold concentration 

 thrfreeCl  

(g/litre pore water) 

Alt 1 Alt 2 and Alt 3 

0.40 36.4 27.4 

0.60 53.5 31.1 

0.80 100.9 35.8 

1.00 888.2 42.2 

 

The threshold concentration increases with increased concrete age. This is particularly evident 

when it is assumed that chloride and alkali is only dissolved in capillary water, Alt 1. In this 

case the capillary pore volume is very low in cement paste with w/c-ratio 0.4 when the degree 

of hydration is high. Thus, the OH
-
-concentration becomes extremely high at full hydration in 

a concrete with water/cement ratio 0.40. Therefore, very high chloride concentration is needed 

to initiate corrosion. However, as said above, Alt 3 is the most plausible alternative. 
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10.2 Threshold value of chloride in weight-% of cement 
Equations in paragraph 6.1 are used; i.e. Eq. (23), (26), (29). 

 

As example the same concrete as above is studied, i.e. w/c=0.40, K=0.6, k=0.417. Chloride 

binding is described by Figure 6. 

 

The threshold values of free, bound and total chloride expressed in weight-% of cement are 

shown in Table 11. 

 

Table 11: Threshold values as weight-% of cement of free, bound ant total chloride as 

function of the degree of hydration.  

              w/c-ratio 0.40. K=0.6 and k=0.416. Chloride binding according to Figure 6. 

 Threshold chloride concentration (weight-% of cement) 

Alt 1  Alt 2  Alt 3  

free bound total free bound total free bound total 

0.40 0.89 0.68 1.57 0.89 0.61 1.50 0.67 0.61 1.28 

0.60 1.20 2.09 0.96 1.85 0.51 0.96 1.47 

0.80 2.07 2.96 1.35 2.24 0.31 1.35 1.66 

1.00 6.31 7.20 1.81 2.70 0.04 1,81 1.85 

 

The threshold value of free chloride expressed as weigh-% of the cement is independent of 

age for alternatives 1 and 2. In this case, both the alkali and the chloride concentration 

changes to the same extent when concrete age is increased, at the same time as chloride 

binding has no influence. For alternative 3 the threshold value of free chloride decreases with 

concrete age. The reason is that the (aggressive) chloride concentration increases more with 

degree of hydration than the (protective) alkaline concentration. 

 

The bound chloride increases with increased degree of hydration for all alternatives which 

depends on the fact that more gel, which is the component binding chloride, is formed. 

 

 
11. EFFECT OF LIMESTONE IN CEMENT ON THE THRESHOLD  
      CHLORIDE CONTENT 
 
Cement containing limestone filler will have reduced alkalinity. Therefore the threshold value 

of free chloride will be reduced.  

 

It is assumed that filler does not influence the pore structure. This is determined by the 

Portland part of the cement. Therefore, one can define an effective water-cement ratio 

defined: 

 

   
g

cw
PCwcw

eff



1

/
// 0

00  (31) 

where 

 PC is the amount of Portland component in concrete (kg) 

 wo is the amount of mixing water in concrete (kg) 

 c is the amount of cement in concrete (including limestone) (kg) 

 g is the weight fraction of limestone filler in the cement (-) (the density of limestone is  

    supposed to be the same as the density of Portland cement). (g=(c-PC)/c) 
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11.1 Threshold concentration of free chloride in pore water 
Equations (10) and (11) can be used provided wo/c in these equations is replaced by the 

effective water-cement ratio. The revised equations are: 

 

Alt 1:  

 

   







39.0
1

/

5.35

0

g

cw

kK
Cl thrfree    g/litre (10a) 

 

Alt 2 and 3: 

 

   







19.0
1

/

5.35

0

g

cw

kK
Cl thrfree    g/litre (11a) 

 

These equations are applied to the same portland clinker as that used in the calculation behind 

Table 4 (k=0.417). The Hausmann criterion is used (K=0.6). The filler content g is supposed 

to be 20% (the highest value accepted according to the cement standard). The calculated 

threshold concentrations are shown in Table 12. 

 

Table 12: Calculated threshold values for the free chloride content of water saturated 

concrete made with Portland cement mixed with 20% limestone filler. Na2O content 

of the Portland component is 1.29 weight-%. The values are based on K=0.6 (the 

Hausmann criterion) 
wo/c 

 
 Calculated threshold chloride content in pore water 

 thrfreeCl    g/litre 

   Alt 1 Alt 2 and Alt 3 

0.60 0.75 19.4 14.6 

0.50 0.70 25.2 18.0 

0.40 0.65 36.0 23.6 

0.30 0.50 49.3 31.7 

 

These values can be directly compared with the calculated values in Table 4, which are valid 

for pure Portland cement. The relation between the threshold values is shown in Table 13. 

 

Table 13: Threshold concentration of free chloride content. Portland cement compared with     

                filler cement containing 20% filler. 
wo/c Threshold concentration of free chloride 

filler cement/Portland cement 

 Alt 1 Alt 2 and Alt 3 

0.60 0.67 0.73 

0.50 0.65 0.75 

0.40 0.60 0.74 

0.30 0.58 0.74 

Average 0.63 0.74 

 



 25 

Thus, the reduction in threshold chloride content when inert filler is mixed into the concrete is 

bigger than the fraction of filler. 

 

11.2 Threshold value of chloride in weight-% of cement 
The threshold concentration of total chloride in weight-% of cement is calculated by Eq. (23), 

Eq. (26) or Eq. (29). The equations have to be modified to take the filler into consideration. 

 

The amount of cement gel is reduced, since limestone filler is non-reactive. Eq. (17) is 

changed to: 

 

   gQgel  125.1     kg/kg cement (17c) 

 

Thus, Eq. (18b) describing the amount of bound chloride is changed to: 

 

       gcgcQ boundboundCboundCl
 

 1125.0100125.110 3     weight-%  (18c) 

 

The water cement ratio in the three equations is changed for the effective water cement ratio; 

Eq. (31). 

 

The threshold chloride content becomes for the three alternatives: 

 

Alt 1: 

      kK

g

cw

kK
agQ

b

thrCtotalCl
























 55.3

39.0
1

/
1125.0

0
,



       weight-%  (23a) 

Alt 2: 

       kK

g

cw

kK
agQ

b

thrCtotalCl
























 55.3

19.0
1

/
1125.0

0
,



        weight-%  (26a) 

Alt 3: 

   








































19.0
1

/

39.0
1

/

55.3

19.0
1

/
1125.0

0

0

0
,

g

cw

g

cw

kK

g

cw

kK
agQ

b

thrCtotalCl
    % (29a) 

 

These equations are applied to the same portland clinker as that used in the calculation behind 

Table 6 (k=0.417). The Hausmann criterion is used (K=0.6). The filler content g is supposed 

to be 20%. Chloride binding is described by Figure 6. The calculated threshold concentrations 

are shown in Table 14. 
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Table 14: Calculated threshold values for the free chloride content of water saturated 

concrete made with Portland cement mixed with 20% limestone filler. Na2O 

content of the Portland component is 1.29 weight-%. The values are based on 

K=0.6 (the Hausmann criterion) and chloride binding according to Figure 6. 
wo/c 

 
 Calculated total chloride threshold content as weight-% of cement 

     
thrCtotalCl

Q
,

  

    Alt 1 Alt 2 Alt 3 

0.60 0.75 1.68 1.59 1.37 

0.50 0.70 1.71 1.60 1.35 

0.40 0.65 1.77 1.63 1.32 

0.30 0.50 1.66 1.53 1.22 

Average 1.70 1.59 1.32 

 

The values can be directly compared with the calculated values in Table 6, which are valid for 

pure Portland cement. The relation between the threshold values is shown in Table 15. 

 

Table 15: Threshold concentration of free chloride content. Portland cement compared with     

                filler cement containing 20% filler. 
wo/c Threshold amount of total chloride 

fillercement/portlandcement 

 Alt 1 Alt 2 Alt 3 

0.60 0.82 0.84 0.86 

0.50 0.81 0.84 0.87 

0.40 0.79 0.84 0.87 

0.30 0.79 0.80 0.88 

Average 0.80 0.83 0.87 

 

The total chloride threshold is markedly reduced when the cement contains inert filler. 

Comparison with Table 12 shows, however, that the effect of filler on the threshold in terms 

of weight-% of cement is somewhat smaller than the reduction in terms of chloride 

concentration in pore water. 
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12. EFFECT OF MINERAL ADMIXTURES ON THE THRESHOLD  
     CHLORIDE CONTENT 
 

Reactive mineral admixtures (silica fume, granulated blast furnace slag, fly ash) reduce the 

alkalinity of the pore solution. Examples are shown in Figure 7 (silica fume) and Figure 8 

(blast furnace slag, silica fume, and Portland cement). 

 
Fig 7: Observed pH-values of pore solution in cement paste mixed with different amount of   

           silica fume, Page & Vennesland (1983). w/c=0.50. 

 
Fig 8: Measurements of the pH-value of pore solution in concrete produced with Portland 

cement (OPC) or slag cement with 70% slag (BFSC). Both types of concretes were produced 

with or without 20% silica fume, Bijen (1989). w/c=045. 
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12.1 Threshold concentration of free chloride in pore water 
 

The OH
- 
-concentration in the pore solution is calculated from the pH-value: 

 

    1410   pHOH    mole/litre (32)

  

The threshold concentration is; Eq. (1): 

 

    1410   pH

thr KCl     mole/litre (33) 

 

where K=0.6 according to Hausmann. 

 

The threshold concentration expressed in the unit g/litre is obtained by: 

 

    14105.35   pH

thrfree KCl  g/litre (34) 

 

pH of the pore solution can be determined experimentally on water squeezed out from the 

concrete. Examples of the application of this technique are given in Tuutti (1982). 

 

In the following, pH-values from Figure 7 and 8 are inserted in eq. (34).   

 

Silica fume 

Threshold values of free chloride for cement paste with silica fume (from Fig. 7) are shown in 

Table 16. The Hausmann criterion (K=0.6) is assumed to be valid. 

 

Table 16: Threshold value of free chloride in cement paste and concrete containing silica  

                fume. Long-term values. K=0.6. 
 

 

Cement paste 

Fig. 7 

Amount of silica fume 

% 

pH Threshold value 

g/litre 

0 14.0 21.3 

10 13.4 5.4 

20 13.0 2.1 

30 12.0 0.2 

 

Concrete 

Fig. 8 

 

Amount of silica fume 

% 

  

0 13.66 9.7 

20 12.97 2.0 

 

The threshold value for pure cement in Fig. 8 is lower than calculated above in paragraph 5 

for high and low alkali cements. This might depend on errors in determination of the pH-

value. Even very small errors in measured pH of squeezed-out pore water give very big effect 

in alkali content. 

 

The calculation shows that silica fume will have a negative effect with regard to the threshold 

concentration of chloride in pore water. Already 10% silica fume in cement paste reduces the 

threshold concentration by 75%. 20% silica fume in concrete reduces the threshold value by 

80%. 
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Blast furnace slag with or without silica fume 

The threshold values of free chloride for concrete with blast furnace slag concrete compared 

with OPC concrete (from Fig. 8) are shown in Table 17. The Hausmann criterion (K=0.6) is 

assumed to be valid. 

 

Table 17: Threshold value of free chloride in concrete containing blast furnace slag with or 

without silica fume. K=0.6. 
 

Slag cement 

70% slag 

Amount of silica fume 

% 

pH Threshold value 

g/litre 

0 13.41 5.5 

20 12.79 1.3 

 

The slag cement concrete has lower threshold value than the pure Portland cement concrete; 

5.5 g/litre versus 9.7 g/litre. Thus, the threshold value is reduced by 45%. 

 

Use of silica fume in slag cement concrete further lowers the threshold value. 

 
12.2 Threshold value of chloride in weight-% of cement 
Only alternative 3 is considered below. The effect of the other two alternatives can be easily 

calculated in similar manner. 

 

Free chloride 

The total amount of free chloride at threshold concentration is obtained by the following 

equation: 

 

      ClPthrfree
thrfreeCl

VClQ ,

310  
       kg

 
(35) 

 

   where VP,Cl is the capillary pore volume in litres. By “capillary pore volume” is now meant  

               pore volume able to contain chloride ions. 

 

Dividing by the cement content C (kg) and multiplying by 100 gives the total amount of free 

chloride in weight-% of the concrete: 

 

     
C

VK

C

VCl
Q ClP

pH

ClPthrfree

thrCfreeCl

,

14

,

1

,

1055.310 







   weight-% of cement (36) 

 

Where C is the sum of the amount of Portland cement and mineral admixture. 

 

If mineral admixtures do not affect the porosity, which is the case at moderate contents, VP,Cl 

is given by Eq. (5). Therefore, Eq. (35) is transformed to: 

 

        
 39.0/10 0

3 cwCClQ thrfree
thrfreeCl

    kg/m
3
 (36a) 

 

Inserting Eq. (34), dividing by C and multiplying by 100 (to give %) gives: 

 

      
 39.0/1055.3 0

14

,
cwKQ pH

thrCfreeCl
   weight % of cement (37) 
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Principally, this is the same equation as Eq. (27). The difference is that in this equation the 

threshold concentration is based on calculation, while it is based on measurement in Eq. (37). 

 

Bound chloride 

The binding isotherm for concrete with mineral admixtures is different from concrete with 

Portland cement. The higher the amount of admixture the bigger is the difference. It is 

assumed, however, the binding isotherm is of the Freundlich type described by Eq. (16). cbound 

in this equation is bound chloride expressed in terms of mg gel/g hydration product. This 

depends on the type of mineral admixture and on the degree of reaction of this. It can be 

described: 

 

  ChQ producthydration      kg (38) 

 

where 

  h is the amount of hydration product formed per kg hydrated cement, kg/kg 

   is the degree of reaction of the “binder” (cement+admixture) (0h1) 

  C is the amount of cement (Portland+mineral admixture), kg 

 

This equation is of the same type as Eq. (17). For pure Portland cement, h=1.25. 

 

The total amount of bound chloride in weight-% of the cement becomes, cf. Eq. (18): 

 

    10010 3  

 hcQ boundCboundCl
    weight-% of cement (39) 

 

The threshold free concentration in mole/litre is given by Eq. (33). Inserting this in Eq. (16) 

gives: 

 

   bpH

bound Kac 1410   (40) 

 

Inserting this in Eq. (39) gives the total amount of bound chloride in weight-% of cement: 

 

   bpH

CboundCl
KahQ )141 1010     (41) 

 

For Portland cement Eq. (41) is equivalent to Eq. (28b). 

 

Total chloride 

The threshold of total chloride as weight-% of cement becomes: 

 

     
C

VK
KahQ

ClP

pH

bpH

thrCtotalCl

,

14

141

,

1055.3
1010







   (42) 

 

For small amount of mineral admixture the capillary pore volume can be described by Eq. (4). 

Eq. (42) is changed to: 

 

         
 39.0/1055.31010 0

14141

, cwKKahQ pHbpH

thrCtotalCl
 (42a) 

 

For pure Portland cement this equation is transformed to Eq. (29). 
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Eq. (42a) is applied to concrete with silica fume. pH from Fig 7 and Table 15 is used (the 

silica content limited to 20%). The Hausmann criterion (K=0.6) is supposed to be valid. 

Chloride binding is supposed to be described by Figure 6; i.e. a=13.5, b=0.41. h=1.25 (the 

same as for Portland cement). The capillary porosity is supposed to be the same as for pure 

Portland cement which means that  is replaced by the degree of hydration  which is 

supposed to be 0.70. The water-cement ratio is supposed to be 0.50.  

 

Under these conditions, threshold values in Table 18 are valid. 

 

Table 18: Threshold values of free, bound and total chloride for the cement pastes with silica 

fume. pH  from Figure 7. Alt 3 for dissolution. 
Amount of  silica fume 

% 

Threshold concentration 

weight-% of cement 

Alt. 3 

Free Bound Total 

0 0.48 0.96 1.44 

10 0.12 0.54 0.66 

20 0.05 0.30 0.35 

 

Theoretically, 10% silica fume reduces the threshold value of total chloride by about 50%. 

Normally only 5% silica fume is used. Interpolation of the values in Table 17 indicates that 

this would cause a reduction in the threshold concentration by about 25%. 

  

 
13. EFFECT OF LEACHING OF ALKALI ON THE THRESHOLD  
     CHLORIDE CONTENT 
A method to calculate the rate of leaching is presented in APPENDIX 2. 

 
13.1 Threshold concentration of free chloride in pore water 
When concrete is stored in water (salt or pure) alkali is leached out which will decrease the 

threshold concentration.  

 

13.1.1 Total leaching 

When all alkali (NaOH and KOH) has been leached out in concrete surrounding the 

reinforcement bar the pore water surrounding this is a saturated solution of Ca(OH)2. Its pH-

value is 12.3.  

 

The threshold chloride concentration is: 

 

    KKCl thr   02.010 143.12    mole/litre (43) 

 

or 

 

    KKCl thrfree  71.002.05.35    g/litre (44) 

 

For K=0.6 (the Hausmann criterion) the free chloride content for all w/c ratios is: 

 

    43.06.071.0 

thrfreeCl    g/litre (44a) 



 32 

This is a very low value compared with the values for non-leached concrete, see Tables 3  

and 4.  

 

13.1.2 Partial leaching 
When only part of the alkali have been leached out the pH-value will be higher than 12.3. The 

threshold concentration becomes, see Eq. (43): 

 

      OHKKCl pH

thr

1410    mole/litre (43a) 

 

or 

 

       OHKKCl pH

thrfree 5.35105.35 14    mole/litre (45) 

 

Where the pH-value and OH
-
-concentration depends on the remaining amount of Na

+
 and K

+
-

ions. 

 
13.2 Threshold value of chloride in weight-% of cement – total leaching 
Only Portland cement is considered. 

 

Only total leaching is considered. When leaching is not complete the same equations can be 

used by exchanging the coefficient 0.71 for the expression 14105.35  pH , or  .5.35  OH  

 

Free chloride 

The total amount of free chloride at threshold concentration is obtained by the following 

equation: 

 

      ClPClPthrfree
thrfreeCl

VKVClQ ,

3

,

3 1071.010  
       kg

 
(46) 

 

where VP,Cl is the volume of pore water able to dissolve chloride (litres).  

 

Alt 1 and Alt 3: 

VP,Cl is equal to the capillary pore volume, Eq. (4). Inserting this in Eq. (46), dividing by C,  

and multiplying by 100 (for %) gives the free chloride content in weight-% of cement: 

 

     
 39.0/1071.0 0

1

,
cwKQ

thrCfreeCl
  weight-% of cement (47) 

 

Alt 2: 

VP,Cl is equal to the total porosity, Eq. (5). Inserting this in Eq. (46), dividing by C, and 

multiplying by 100 gives: 

 

       
 19.0/1071.0 0

1

,
cwKQ

thrCfreeCl
   weight-% of cement (48) 

 

Bound chloride 

The bound chloride is described by Eq. (16). The free chloride in mg/litre is given by Eq. (43) 

multiplied by 10
3
 mmole/mole. The total chloride content is: 

 

 b

bound Kac  02.0     mg/g cement gel (49) 
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or 

 

    31002.0  b

bound Kac    kg/kg cement gel (49a) 

 

Inserting Eq. (17) gives the total weight of bound chloride: 

 

      31002.025.1 

b

thrboundCl
KaCQ     kg (50) 

 

Dividing by C and multiplying by 100 gives the bound chloride in weight-% of cement: 

 

      b

thrCboundCl
KaQ  02.0125.0

,
    weight-% of cement. (50b) 

 

Thus, the bound chloride is directly proportional to the degree of hydration. 

 

Total chloride 

 

Alt 1 and Alt 3: 

 

         
 39.0/1071.002.0125.0 0

1

,
cwKKaQ

b

thrCtotalCl
  weight-%  (51) 

 

Alt 2: 

 

         
 19.0/1071.002.0125.0 0

1

,
cwKKaQ

b

thrCtotalCl
   weight-% (52) 

 

 
13.3 Calculated threshold chloride contents in weight-% of cement – total  
        leaching 
Chloride binding is supposed to be described by Figure 6; i.e. the coefficients a and b are 

a=13.5, b=0.41. Hausmann criterion is supposed to be valid; i.e. K=0.6. 

 

Then the threshold values in Table 19 are valid. 

 

Table 19: Threshold concentration of free, bound and total chloride in weight-% of cement. 
wo/c  Threshold chloride concentration (weight-% of cement) 

Alt 1; Alt 3 Alt 2 

free bound total free bound total 

0.60 0.75 0.013 0.206 0.22 0.019 0.206 0.23 

0.50 0.70 0.009 0.193 0.20 0.016 0.193 0.21 

0.40 0.65 0.006 0.179 0.19 0.012 0.179 0.19 

0.30 0.50 0.004 0.138 0.14 0.009 0.138 0.15 

 

The threshold concentration is very low when concrete is totally leached out of alkali.  

 

The effect of partial leaching is calculated by exchanging the parameter 0.71 in Eq. (47), (48), 

(51), (52) for the parameter   OH5.35 . The parameter 0.02 in Eq. (50), (51) and (52) is 

exchanged for the parameter  OH . 
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Example:  

The pH-value in a concrete with w/c-ratio 0.40 and 65% hydration is found to be 13.2; i.e. 

  158.010 142.13  OH   mole/litre after partial leaching.  

 

The parameter,   61.5158.05.355.35  OH .  

 

Inserting the exchanged values in Eq. (51) gives the following threshold concentration of total 

chloride. (Alt 3 is supposed to be valid): 

 

       65.039.040.0106.061.56.0158.05.1365.0125.0 141.0

,
 


thrCtotalCl

Q  

or 

 

    47.0049.0417.0
,


thrCtotalCl

Q   weight-% of cement 

 

The threshold concentration is increased by 250% in comparison to the completely leached 

concrete. It is however considerably lower than for the un-leached concrete, c.f. Table 6 for a high 

alkali cement and Table 7 for a low alkali cement. 

 

 

14. EFFECT OF MOISTURE LEVEL ON THE THRESHOLD  
      CHLORIDE CONTENT 
 
14.1 Effect of RH on the alkalinity of pore water and on the threshold  
        concentration of free chloride  
The analysis above is based on completely water saturated concrete (except for air-pores and pores in 

aggregate). The fact that concrete is not always saturated has been verified by analysis of the moisture 

content stored for long time in water or sea water. The phenomenon is particularly marked in concrete 

with low w/c-ratio like High Performance Concrete. The reason might be that continued hydration 

gives a self-desiccating effect occurring more rapidly than water can enter the dense pore structure. 

 

When the concrete is non-saturated (RH<100%) the amount of pore solution is lower than in saturated 

concrete. The content of alkali is however unchanged. Therefore, the concentration of OH
-
-ions will be 

higher. The amount of pore water is given by the sorption isotherm for water. Desorption isotherms 

are seen in Figure 7; Nilsson (1977). Hysteresis between desorption and adsorption of water is 

neglected. Therefore the isotherms in Figure 7 are supposed to be valid also at adsorption. 

 

Total water content, we (kg/m
3
) related to the cement content at different RH is shown in Table 20. 

Corrosion will hardly take place at RH<70%. Therefore, water contents below that are not shown. The 

maximum corrosion rate often occurs around the RH-region 95% 

 

Table 20: Water content in Portland cement concrete as function of RH. The figures are taken from 

Figure 7. 

wo/c  RH (%) 

Water content, we/c (litre/kg cement) 

70 80 90 95 100
1)

 

0.6 0.8 0.215 0.260 0.335 0.370 0.450 

0.5 0.8 0.195 0.235 0.275 0.305 0.350 

0.4 0.6 0.170 0.195 0.225 0.250 0.290 

0.3 0.5 0.135 0.150 0.170 0.180 0.205 

1) Equal to the entire pore volume divided by cement, wtot/c, see Eq. (5) 
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The alkalinity of pore water depends on which part of the pore water dissolves alkali. The 

three alternatives are illustrated by Fig 1. Only Alt 3 is considered below. 

 

The total water content W is: 

    eee wCcwW  /     litre (53) 

 

Where the parameter we/c is the value found in Table 19. C is the amount of cement. The OH
-

-concentration is: 

 

   
cw

k

Ccw

Ck

W

Ck
OH

eee //








    mole/litre (54) 

 

where k is the water soluble alkali expressed as mole OH
-
/kg cement. 

 

The threshold concentration of free chloride is: 

 

   
cw

k
KCl

e
thrfree

/
    mole/litre (55) 

or 

   
cw

k
KCl

e

thrfree

/
5.35     g/litre (56) 

 

In Table 21 calculated values of the threshold value of free chloride are given. It is assumed 

that high alkali cement is used with Na2O content 1.29 weight-% (i.e. k=0.416) and that 

K=0.6 (the Housmann criterion).  

 

Table 21: Effect of RH on the threshold value of free chloride. Degree of hydration as in 

Table 19. k=0.416, K=0.6. Alkali and chloride distribution according to Alt 3. 
wo/c  thrfreeCl   (g/litre) 

RH  (%) 

70 80 90 95 100 

0.6 41 34 27 24 20 

0.5 45 38 32 29 25 

0.4 52 46 39 35 31 

0.3 66 59 52 49 43 

 

Drying causes considerable increase in the threshold concentration. For w/c-ratio 0.4 the 

increase in threshold concentration is 25% when concrete is dried to equilibrium with 90% 

RH. For w/c-ratio 0.60 the increase is 35%. 
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14.2 Effect of RH on the threshold value in weight-% of cement  
Only Alt 3 is considered below, i.e. only capillary pores are assumed to dissolve chloride but 

all water is assumed to dissolve alkali. 

 

Free chloride 

The pore volume containing water able to dissolve chloride is: 

 

       20.0/20.0/
,

cwCCCcwV eeClP
  litres (57) 

 

where the parameter 0.20∙∙C is the volume of gel pores in litres/m
3
 which is not able to 

dissolve chloride. 

 

The total amount of free chloride in 1 m
3
 of concrete at threshold concentration is: 

 

       
 20.0/10 3 cwCClQ ethrfree

thrfreeCl
     kg (57) 

 

Inserting Eq. (55) gives: 

 

      
 20.0/10

/
5.35 3 cwC

cw

k
KQ e

e
thrfreeCl

    kg (57b) 

 

Dividing by C and multiplying by 100 gives the threshold free chloride in weight-% of 

cement: 

 

      20.0/
/

55.3
,

cw
cw

k
KQ e

e
thrCfreeCl    weight-% of cement (58) 

 

where we/c is obtained from Table 20. 

 

Calculated values of the threshold free chloride in weight-% of cement for different RH are 

shown in Table 22. The calculation is based on the Hausmann criterion (K=0.6), high alkali 

cement (k=0.416), and sorption isotherm shown in Figure 6 (a=13.5, b=0.41). 

 

Table 22: Influence of RH in concrete on the threshold free chloride concentration. Moisture 

contents in Table 19 are used. Alkali and chloride distribution according to Alt 3. 
wo/c   

thrCtotalCl
Q

,
  (weight-%) 

Alt 3 

RH (%) 

70 80 90 95 100 

0.6 0.8 0.23 0.34 0.46 0.51 0.57 

0.5 0.8 0.16 0.28 0.37 0.43 0.48 

0.4 0.6 0.26 0.34 0.42 0.46 0.52 

0.3 0.5 0.23 0.37 0.36 0.40 0.46 
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The threshold free amount of chloride in weight-% of cement decreases with decreased RH 

despite the fact that the threshold free chloride concentration increases, see Table 20. The 

reason is that, according to Alt 3, the volume of pore water able to dissolve chloride 

decreases even more rapidly with reduced RH; see Figure 57 

 
Example, w/c=0.40: 

Threshold free concentration is 40% higher at RH 70% than at RH 100% (Table 20) 

Pore volume able to dissolve chloride is 70% lower at RH 70% than at RH 100% (Eq. 57) 

 

Bound chloride 

The amount of bound chloride in weight-% of cement is obtained by Eq. (18). In this equation 

bound chloride is expressed by the parameter cbound which is the amount of bound chloride in 

mg/g cement gel, or 10
-3

 kg/kg. 

 

cbound is obtained from the binding isotherm; see Fig. 6. This can be expressed by Eq. (16). 

The concentration of free chloride cfree included in this equation is defined by Eq. (19). 

Inserting Eq. (55) in this gives for the threshold concentration of free chloride: 

 

  
cw

k
Kc

e
thrfree

/
       mole/litre (59) 

 

cbound at threshold concentration becomes: 

   
b

e

thrbound
cw

k
Kac 










/
  mg/g gel (60) 

 

The bound chloride as weight-% of cement is described by Eq. (18): 

   
b

e
thrCboundCl cw

k
KaQ 










/
125.0

,
   weight-% of cement (61) 

Calculated values of the threshold bound chloride in weight-% of cement for different RH are 

shown in Table 23. The calculation is based on the Hausmann criterion (K=0.6), high alkali 

cement (k=0.416), and sorption isotherm shown in Figure 6 (a=13.5, b=0,.41). 

 

Table 23: Influence of RH in concrete on the threshold bound chloride concentration. 

Moisture contents in Table 20 are used. Alkali and chloride distribution, Alt 3. 
wo/c   

thrCtotalCl
Q

,
  (weight-%) 

RH (%) 

70 80 90 95 100 

0.6 0.8 1.44 1.33 1.20 1.15 1.06 

0.5 0.8 1.50 1.39 1.30 1.25 1.18 

0.4 0.6 1.19 1.12 1.06 1.01 0.95 

0.3 0.5 1.08 1.04 0.99 0.97 0.92 

 

The threshold value of total chloride increases with decreased RH which depends on the 

higher alkalinity of pore water. The effect is predicted by the binding isotherm; see Figure 6. 

 

The fact that the amount of bound chloride is decreased with decreased w/c-ratio is explained 

by the lower degree of hydration. 
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Total chloride 

 

The total threshold chloride content in weight-% of the cement is: 

 

      







 20.0/

/
55.3

/
125.0

,
cw

cw

k
K

cw

k
KaQ e

e

b

e
thrCtotalCl

   weight-% (62) 

 

 

Calculated values of the threshold total chloride in weight-% of cement for different RH are 

shown in Table 24. The calculation is ased on the Hausmann criterion (K=0.6), high alkali 

cement (k=0.416), and sorption isotherm shown in Figure 6 (a=13.5, b=0,.41). 

 

Table 24: Influence of RH in concrete on the threshold total chloride concentration. Moisture 

contents in Table 20 are used. Alkali and chloride distribution according to Alt 3. 
wo/c   

thrCtotalCl
Q

,
  (weight-%) 

Alt 3 

RH (%) 

70 80 90 95 100 

0.6 0.8 1.67 1.67 1.66 1.66 1.63 

0.5 0.8 1.66 1.67 1.67 1.68 1.66 

0.4 0.6 1.45 1.46 1.48 1.47 1.47 

0.3 0.5 1.31 1.41 1.35 1.37 1.39 

 

The values are remarkably independent on the moisture content. This depends on the fact that 

the threshold free chloride decreases with decreased RH whereas the threshold of bound 

chloride increases by about the same relative amount.. 

 
Note: 

The values for RH 100% differs by a small amount from the values in Table 6. The reason is that 

the assumed degrees of hydration are not exactly the same, except for w/c=0.50 for which the 

agreement is good. 

 

An empirical expression for the relation between the threshold value of total chloride and 

degree of hydration of concrete made with the actual high alkali Portland cement and based 

on the data in Table 23 and valid for all RH and all w/c-ratios is: 

 

    88.0
,thrCtotalCl

Q  

  

Also the data from Table 6 at RH 100% satisfy this equation almost perfectly. 

 

The equation indicates that in fact no hydration is needed for a certain threshold value to 

appear. This limiting value is 0.88 weight-%. This value is also predicted by the theoretical 

Eq. (62). When the degree of hydration is zero, the water content we/c is equal to the w/c-ratio 

wo/c. Then, Eq. (62) is written: 

 

  kKQ
thrCtotalCl

 55.3
,

   weight-% (62a) 

 

Inserting values for K and k gives: 
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    88.0416.06.055.3
,


thrCtotalCl

Q   weight-% 

 

14.3 Effect of alkalinity of cement on the chloride threshold in weight-% 
The free chloride threshold is directly proportional the alkalinity of cement, k; Eq. (58). 

 

The bound chloride threshold is proportional to the parameter (k)
b
, Eq. (61) provided the 

coefficient K and the water content is unchanged. 

 

The threshold value of total chloride for a cement with other alkalinity than the cement treated 

above (k=0.41) can therefore be calculated from the values in Table 23 using these 

proportionalities. For a low alkali cement with alkalinity 0.5% (k=0.161) the values in Table 

25 are valid. 
  

Table 25: Influence of RH in concrete on the threshold total chloride concentration. Low 

alkali cement (k=0.161). Alkali and chloride distribution according to Alt 3. 
wo/c   

thrCtotalCl
Q

,
  (weight-%) 

Alt 3 

RH (%) 

70 80 90 95 100 

0.6 0.8 1.07 1.03 0.99 0.98 0.94 

0.5 0.8 1.08 1.05 1.02 1.02 0.99 

0.4 0.6 0.91 0.89 0.88 0.86 0.84 

0.3 0.5 0.82 0.84 0.81 0.82 0.80 

 

The threshold value before any hydration is changed to 0.88∙(0.161/0.416)=0.34 weight-%. 

 

 
15. EFFECT OF CARBONATION ON THE THRESHOLD  
      CHLORIDE CONTENT 
 

When concrete carbonates alkali hydroxides and calcium hydroxide (portlandite) are 

transformed to carbonates. The pH-value of the saturated pore solution will not be higher than 

9. Therefore, the OH
-
-concentration is not higher than: 

 

     5149 1010  OH    mole /litre (63) 

 

The threshold chloride concentration is: 

 

     510  KCl thr     mole/litre (64) 

 

The consequence of this very low threshold concentration is that corrosion will be initiated in 

a bar enclosed by carbonated concrete, as soon as any chloride reaches the bar i.e.: 

 

     0
,


thrCtotalCl

Q    weight-% of concrete (65) 

A negative side-effect of carbonation is that chloride that had been bound in un-carbonated 

concrete is released when this is carbonated. Thus, if the free chloride was fairly low before 

carbonation it might become high as a result of carbonation. 
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16. EFFECT OF THICKNESS OF COVER ON THE THRESHOLD  
      CHLORIDE CONTENT 
 

According to the basic assumption on which this report is based, corrosion starts when the 

chloride concentration transgresses a threshold value given by Eq. (2). According to 

Hausmann the coefficient K in the equation is 0.6. This value is based on tests of steel in bulk 

chloride solutions. It is assumed above that the same value might be used also for steel 

embedded in concrete. However, there is a possibility that the coefficient depends on the 

thickness of the concrete cover. Factors of importance for corrosion such as oxygen 

concentration and stability of moisture condition are probably more favourable at greater 

depth from the concrete surface.  

 

It might even be that the value K can become so high that corrosion cannot be initiated at 

normal chloride environments of interest for concrete construction, i.e. normal exposure to de-

icing salt and sea water. The idea is illustrated by Figure 9. For a certain concrete the cover is 

X mm. This corresponds to K=KX. The threshold chloride concentration for KX is KX∙[OH
-
]. 

This value is higher than the actual chloride concentration in the concrete. Therefore 

corrosion is impossible. Corrosion can only be initiated when the cover is smaller than Y.  

 

The idea put forward above is only a hypothesis. The effect of cover thickness on the 

threshold chloride concentration has not been thoroughly investigated. 

 

K

0.6

0                                             100

Cover, mm

[Cl-]thr

X

Threshold conc.

[Cl-]thr=KX[OH-]

Actual conc.

[Cl-]

KX

Y

 
 

Figure 9: The effect of concrete cover on the threshold concentration of free chloride. 

Hypothesis. 
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17. EFFECT OF DEFECT BOND BETWEEN STEEL AND CONCRETE   
      ON THE THRESHOLD CHLORIDE CONTENT 
 
When the reinforcement bar is not completely enclosed by concrete – see Figure 10- the 

chloride threshold value will normally be reduced. Two cases are imaginable: 

 

Case 1: The defect, i.e. the space between the steel surface and surrounding cement paste, is      

              constantly water-filled. 

Case 2: The defect cannot become water-filled, or it is just water-filled during short periods. 

 

Case 1 principally corresponds to a defect-free concrete, since water in contact with the steel 

surface will have almost the same alkalinity as the rest of the pore water. Therefore, the 

threshold value might be almost unchanged. 

 

In Case 2 the steel surface does not stay in contact with alkaline water. Therefore, principally 

the threshold value ought to be close to zero. However, both OH
-
-ions and Cl -ions will 

migrate along the steel surface within the adsorbed or condensed water layer which always is 

present on the surface. Exactly which concentration of these ions that will be reached at the 

surface is not known. Probably, however, it is lower than the values valid for perfectly cast-in 

steel. Therefore, the threshold chloride value is reduced. 

 

OH-ions and Cl-ions

migrate along the steel surface

Adsorbed

water layer

Defect, not water-filled

 
 

Figure 10: Reinforcement bar with defect bond. Despite the fact that the defect is “dry” OH-

ions might migrate within the adsorbed water layer thereby cause a certain 

increase in the threshold chloride level. 
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APPENDIX 1
3
 

 
The determination described below is based on analyses of specimens that are immersed in 

one or more baths containing chloride ions of known concentration. 

 

METHOD FOR DETERMINATION OF THE “ACTIVE” POROSITY FOR 
DISSOLVING CHLORIDE 
 

One possibility to determine the fraction of pore water participating in the dissolution of 

chloride is to use the hypothesis (strengthened by Figure 6) that a unit weight of the “cement 

gel” (hydration product) always binds the same amount of chloride at a given free chloride 

concentration. This quantity is denoted cb,gel (g/g).  

 

This means that the total amount of bound chloride Qbound (g) can be determined by (for 

OPC): 

 

    Qbound = cb,gel·Qgel´= cb,gel·1.25·α·C´·V   (A1) 

 

Where  Qgel´ is the amount of cement gel in the specimen (g). α is the degree of hydration, C´ 

is the cement content (g per cm
3
) and V the specimen volume (cm

3
). 

 

The pore water quantity dissolving chloride ww (cm
3
=g) is: 

 

    ww = C´·(w/c-γ·α)·V   (A2) 

 

Where 0.19<γ<0.39. γ=0.19 means that all pore water dissolves chloride while γ=0.39 means 

that only capillary water is available as solvent. The equation is valid for OPC. 

 

The free chloride content Qfree (g) becomes: 

 

    Qfree = c´´´·ww=c´´´·C´·(W/C-γ·α)·V    (A3) 

 

where c´´´ is the chloride concentration in the bath in which specimens are immersed (the 

same as in the pore water) (g/cm
3
) 

 

The total chloride content is determined experimentally. It becomes: 

 

    Qtot = Qbound+Qfree= cb,gel·1.25·α·C´·V  + c´´´·C´·(W/C-γ·α)·V    (A4) 

 

From this equation the coefficient cb,gel can be solved 

 

    cb,gel= [Qtot – c´´´·C´·(W/C-γ·α)·V/[1.25·α·C´·V]   (A5) 

 

 

All parameters on the right hand side, except γ, are known. By testing many specimens with 

different w/c-ratio in a chloride solution of constant strength, c´´´=constant, a value of γ that 

gives almost the same value of cb,gel valid for the actual strength might be found. 

                                                 
3
 Extract from the report: Fagerlund, G. Imaginable effects of limestone filler on chloride transport. Div. 

Building Materials. Lund Institute of Technology. Report TVBM-7187, 2005. 



 44 

 

For each experiment the relation between γ and cb,gel is calculated. Theoretically, all these 

relations will intersect at one single value of γ. This value describes the fraction of pore water 

that is available for dissolving chloride. The principles are shown in Figure A1.  

 
Note: Equation (A1), and equation (A2) are supposed to be valid for OPC-concrete. Other 

cements can produce other types and other amount of hydration products and other porosity. 

Since the reaction products of limestone filler are assumed to be of marginal volume it is 

assumed that the equations can also be used for concrete with limestone filler. Therefore, α 

expresses the degree of hydration of the OPC in the concrete. w/c in the equations is counted 

only on the OPC in the concrete. C is the OPC-content. 

 

 

γ
(assumed)

cb,gel calculated

cb,gel,1

γ

(true value)

Different mixes

Concentration 1

Equation (A5)

0.19 0.39

Different mixes

Concentration 2

Equation (A5)

cb,gel,2

 
Figure A1: Determination of the coefficient γ in equation (A5). 

 



 45 

APPENDIX 2 
 
EFFECT OF LEACHING ON THE THRESHOLD CHLORIDE CONTENT 
 

OH-ions will gradually be leached out of concrete when this is submerged in water. An 

example of leaching from a concrete with w/c-ratio 0.55 after 36 years in the North Sea is 

shown in Figure A2.1 
4
. On the depth 30 mm from the surface the pH-value for all locations 

of the structure is 12.6 almost exactly corresponding to the saturation concentration of 

calcium hydroxide. This means that all more soluble alkalis, NaOH and KOH, have been 

leached out completely on this depth. 

 

 
 

Figure 4.1: pH-profile in the surface part of a concrete structure exposed for 36 years to 

water in the North Sea. 

 

Leaching can be calculated by Fick´s 2:nd law. In the case where a substance is leaving the 

material, and the outer OH-concentration is zero (pH7), the solution of the equation is: 

 

  
 
    












2/1

0

,

4 t

x
erf

OH

OH

OH

tx


 (A2.1) 

 

Where [OH]x,t is the OH-concentration on distance x from the surface at time t, and [OH]0 is 

the initial OH-concentration before leaching. δOH is the diffusion coefficient of OH-ions. 

Most interesting is the OH-concentration at the surface of the reinforcement bar. Therefore, in 

the equation x shall be replaced by the cover T. 

 

The equation can be used for a parameter study of the effect of diffusivity and cover on the 

OH-concentration at the reinforcement bar. An example of a calculation of leaching is made 

below. The cement is of type low alkali with Na2Oequivalent 0.5 weight-%. Then, the coefficient 

                                                 
4
 ) Sandberg, P.: Unpublished results from the Swedish Cooperative Project “Marine Concrete Structures”. Div. 

Building Materials, Lund Institute of Technology, Lund 1993. (Similar results from field exposure are presented 

in Sandberg, P.: Chloride initiated reinforcement corrosion in marine concrete. Div. Building Materials, Lund 

Institute of Technology, Report TVBM-1015, Lund 1998). 
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k is 0.161  mole OH
-
 per kg cement; see paragraph 5.2. The water-cement ratio is 0.40 and the 

degree of hydration 65%. The initial concentration is in all cases given by Eq. (7) (OH from 

CaOH2 is neglected):  

 

     58.0
65.019.04.0

161.0



OH    mole/litre 

 

Solution of Eq. (A2.1) for different chloride transport coefficients (10
-12

 and 5∙10
-12

 m
2
/s) and 

different exposure times (10 and 50 years) is shown in Figure A2.1. 
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Figure A2.1: OH-concentration as function of the depth from the surface. Upper: Transport 

coefficient 5∙10
-12

 m
2
/s. Lower: Transport coefficient 10

-12
 m

2
/s. 

 

 
Example:  

Cover 50 mm. Transport coefficient is 5∙10
-12

 m
2
/s. Exposure time 50 years. 

 

The OH-concentration is 0.18 mole/litre; see the upper figure. pH=13.25. 

 

The threshold content of free chloride in weight-% of the cement is calculated by Eq. (37). The 

coefficient K=0.6. Ion distribution Alt 3.: 

 

    106.065.019.04.018.06.055.3.  thrCfreeCl
Q   weight-%. 
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The threshold content of bound chloride is calculated by Eq. (28b). The coefficient k in the 

equation is calculated by Eq. (7): 

 

  05.065.019.04.018.0 k    mole OH
-
 per kg cement. 

 

  441.0
65.019.04.0

05.06.0
5.1365.0125.0

41.0

,















thrCboundCl
Q   weight-% 

 

The threshold content of total chloride is: 

 

  55.0441.0106.0
,


thrCtotalCl

Q   weight-% 

 

For the un-leached concrete with the same cement type, the threshold total chloride is 0.89  

weight-%, i.e. about 60% higher value; see Table 7.  

 

Conclusion 

For long leaching time and thin cover, leaching causes a substantial reduction of the 

threshold concentration. 


