
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

fUML Activity Diagrams with RAG-controlled Rewriting: A RACR Solution of The TTC
2015 Model Execution Case

Bürger, Christoff

Published in:
CEUR Workshop Proceedings

2015

Link to publication

Citation for published version (APA):
Bürger, C. (2015). fUML Activity Diagrams with RAG-controlled Rewriting: A RACR Solution of The TTC 2015
Model Execution Case. In L. M. Rose, T. Horn, & F. Křikava (Eds.), CEUR Workshop Proceedings (Vol. 1524,
pp. 27-36). CEUR-WS. http://ceur-ws.org/Vol-1524/paper10.pdf

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/399d64f8-f02c-448e-95ff-9b879a3ddc14
http://ceur-ws.org/Vol-1524/paper10.pdf


Submitted to:
TTC 2015

c© Christoff Bürger
This work is licensed under the Creative Commons
Attribution-Noncommercial-No Derivative Works License.

fUML Activity Diagrams with RAG-controlled Rewriting
– A RACR Solution of The TTC 2015 Model Execution Case –

Christoff Bürger
Department of Computer Science, Faculty of Engineering, LTH, Lund University

Lund, Sweden
christoff.burger@cs.lth.se

This paper summarises a RACR solution of The TTC 2015 Model Execution Case. RACR is a
metacompiler library for Scheme. Its most distinguished feature is the seamless combination of
reference attribute grammars and graph rewriting combined with incremental evaluation semantics.
The presented solution sketches how these integrated analyses and rewriting facilities are used
to transform fUML Activity Diagrams to executable Petri nets. Of particular interest are (1) the
exploitation of reference attribute grammar analyses for Petri net generation and (2) the efficient
execution of generated nets based on the incremental evaluation semantics of RACR.

1 Prerequisites and Contents

The following document describes a RACR-based [1] solution of the Model Execution Case [6] of the 8th
Transformation Tool Contest which was part of the Software Technologies: Applications and Foundations
(STAF) conference 2015. It assumes readers are familiar with the contest task (cf. [6]); no further previous
knowledge is required, although a basic understanding of reference attribute grammars [5] and familiarity
with the Scheme programming language [3] will be helpful. The presented solution is part of RACR’s
source code repository at https://github.com/christoff-buerger/racr; a deployed SHARE [8]
demonstrator is provided at https://is.ieis.tue.nl/staff/pvgorp/share/.

The structure of this document is as follows: Section 2 gives a short overview of the solution. It first
presents the implemented analyses in Section 2.1, concluding in a sketch of the intended abstract syntax
graphs used to execute fUML Activity Diagrams [4]. Afterwards, Sections 2.2 sketches the implementation
of execution semantics by means of rewrites reusing the implemented analyses. An evaluation follows in
Section 3. The actual source code is investigated in the appendix; readers are highly encouraged to closely
follow it and consult RACR’s reference manual [1] as required.

2 Solution Overview

The activity diagram interpreter presented in the following is realised in the form of two language
processors. The first analyses the actual activity diagram and its inputs and translates them to a Petri
net [7]. The second executes generated Petri nets – it is a Petri net interpreter.

2.1 RAG-based Analyses: From Activity Diagrams to Petri Nets

Figure 1 sketches the abstract syntax graph of an exemplary activity diagram. Our interpreter is imple-
mented in terms of such graphs; they represent the original input diagram, its current execution state
and analysis results, including static and dynamic analyses like diagram well-formedness or whether

http://creativecommons.org
http://creativecommons.org/licenses/by-nc-nd/3.0/
https://github.com/christoff-buerger/racr
https://is.ieis.tue.nl/staff/pvgorp/share/


2 fUML Activity Diagrams with RAG-controlled Rewriting

ASG	  

ac)vity	  

variable	  

variable	  

node	  

node	  

edge	  

edge	  

edge	  

node	  edge	  

outgoing	  

expr.	  

Petri	  net	  

place	  

place	  

place	  

transi)on	  

transi)on	  

transi)on	  

place	  

petrinet	  

token	  

arcs	  

enabled	  

in	  

v-‐lookup	  

Original	  Input	  Tree	   Derived	  Petri	  Net	  

seman)c	  overlay	  graph	  (excerpt):	  n	  name	  analysis	  	  nn	  code	  genera)on	  	  n	  enabled	  analysis	  

transi)ons	  

transi)ons	  

place	  

place	  

incoming	  

out	  

Figure 1: Example abstract syntax graph of the activity diagram interpreter c©Christoff Bürger

activities are ready for execution. The graph consists of two abstract syntax trees (black and purple nodes
and edges). The black one on the left encodes the actual activity diagram; it is the original input of the
interpreter1 and constructed by a hand written recursive-decent parser (the parser is straightforward and
not investigated in the following). The purple right tree encodes the Petri net used to execute the diagram;
code generation derives it from the original input tree (blue edges). Name analysis extends both trees
to the actual diagram each represents. In case of the original input tree, it resolves the symbolic names
of activity edges to the target and source activity nodes they refer to, such that each node knows all its
in- and outgoing edges (Original Input Tree, red edges). In case of the derived Petri net, name analysis
resolves the symbolic names of the arcs of transitions to the actual places they refer to (Derived Petri Net,
red edges). Enabled analysis finally associates transitions with the tokens they consume if fired or no
token if disabled (green edges). It just is a special kind of name analysis, searching for consumable tokens
and returning the tokens consumed if a transition is enabled and false if it is disabled.

Everything in Figure 1, except the original input tree encoding the activity diagram, is derived by
the interpreter. The interpreter computes an semantic overlay graph that extends its input tree to a graph
well-suited for digram execution. The required analyses are implemented using RACR’s reference attribute
grammar facilities, each by a set of attributes. Figure 1 shows only an excerpt of the actually implemented
analyses and the resulting abstract syntax graph. The names of reference attributes are labeled next to
the edges they induce; for example, the v-lookup attribute finds the variables the assignee and operands
of expressions refer to. Not shown are non-reference attributes like type and well-formedness analysis,
parts of the code generation, for example for expressions of executable nodes, and minor query-support
analyses like lookup of activity nodes and edges by name.

Important for the development-effort-benchmarks in Section 3 is, that analyses can be interdependent,
fostering reuse and modularisation. RACR’s demand-driven evaluation strategy automatically deduces
correct evaluation orders, easing the implementation of complex or mutually dependent analyses. For
example, code generation can reuse name analysis, execution reuses code generation and the runtime

1Input for the interpreter are textual diagram specifications as given by the tool contest [6]. Parsing such specifications yields
abstract syntax trees like the one labeled Original Input Tree in Figure 1; they satisfy the scheme in Appendix A.1.



Christoff Bürger 3

lookup of tokens (i.e., the name and enabled analyses of Petri nets) reuses the places code generation
generated. From the perspective of a user – whether interpreter or Petri net developer – a common
interface for querying analyse results is provided: abstract syntax graphs as shown in Figure 1. Moreover,
analyses are automatically memoized; deduced abstract syntax tree parts are only re-evaluated if required.

2.2 Rewriting-based Transformations: Incremental Execution of Petri Nets

Given abstract syntax graphs as in Figure 1 and all the deduced analyse results they encode, the specifica-
tion of execution semantics boils down to simple transformations manipulating their tokens. After all,
convenient means to find enabled activity nodes considering the state of execution are already provided
(enabled analysis reasons about the current marking of the generated Petri net). Execution therefore can
be realised by a simple loop that reuses the enabled analysis to find an enabled transition and deletes its
consumed and adds its produced tokens using RACR’s primitive rewrite functions rewrite-delete and
rewrite-add [1]; if no transition is enabled, execution terminates.

Important for the performance-benchmarks in Section 3 are the automatic incremental evaluation
semantics of RACR. When an abstract syntax graph information is queried throughout attribute evaluation,
RACR maintains a dependency to remember that the value of the attribute depends on the queried
information. If an abstract syntax graph information changes, RACR invalidates all attributes transitively
depending on it. The enabled analysis of the Petri net language is no exception since it is implemented
using attributes. It depends on tokens that would be consumed or are missing, including the special case
of tokens encoding variable values. All these dependencies are automatically tracked by RACR, such
that the enabled status of incoming arcs is only re-evaluated if it could be changed by a fired transition,
otherwise the cached is used. Likewise, the enabled status of transitions is only re-evaluated if the enabled
status of any of their incoming arcs was invalidated. For example, if any of the two enabled transitions of
Figure 1 (highlighted green) is fired, the enabled attributes of both are invalidated since each depends
on the token deleted according to firing semantics. Similarly, when a new value is assigned to a variable
via rewrite-terminal (cf. Appendix A.3.2), the enabled status of transitions depending on its value is
re-evaluated, if either, they were enabled or, although all tokens they consume are provided, still were
disabled. Without special implementation efforts, RACR optimises the implemented execution semantics.

The activity diagrams of the tool contest result in very simple and restricted Petri nets with just a
single token type (except tokens encoding variable values; cf. Appendix A.3.2) and at most one token per
place. The developed Petri net language is much more expressive however, supporting coloured, weighted
Petri nets with arbitrary input arc conditions and output computations; it was developed before the tool
contest for more general applications. In case of the tool contest, the restricted type and number of tokens,
and therefore simple enabled decisions, preclude major performance benefits from incremental enabled
analysis. If there are only few tokens and conditions to check, caching the results of such checks does not
pay-off as much as in more complex cases. Of course, the execution semantics could be optimised for such
less expressive nets. For example, the transitions of the Petri nets generated for most activity diagrams
never compete for tokens (this holds for example for all test cases given by the tool contest). In this case,
all enabled transitions can be fired in one pass (enabled pass); only thereafter, for the next iteration of the
execution loop, enabled analysis has to be repeated2. In general however, Petri net transitions can compete
for tokens. For example, in Figure 1 the two enabled transitions highlighted green compete for the same
token; their enabled attributes point to the same token to consume if fired. To fire one of the two enabled
transitions disables the other one.

2Enabled passes still sequentially execute parallel fork branches; they perform no multi threaded execution. They execute one
activity of each active branch in each iteration step instead of a single activity of some active branch.



4 fUML Activity Diagrams with RAG-controlled Rewriting

Source Code File Solution Part (language task) LOC

Activity diagram language (507): 499
analyses.scm: 255 AST specification 18 4%

ASG accessors (constructors, child & attribute accessors) 65 13%
Name analysis 32 6%
Type analysis 23 5%
Well-formedness 32 6%
Petri net generation 90 18%

parser.scm: 219 Parsing 214 43%
user-interface.scm: 33 Initialisation & execution 25 5%

Petri net language (255): 200
analyses.scm: 102 AST specification 9 5%

ASG accessors (constructors, child & attribute accessors) 32 16%
Name analysis 13 7%
Well-formedness 10 5%
Enabled analysis 29 15%

execution.scm: 43 Running and firing semantics 31 16%
user-interface.scm: 80 Initialisation & Petri net syntax 33 17%

Read-eval-print-loop interpreter 19 10%
Testing nets (marking & enabled status) 24 12%

Figure 2: Solution size (lines of code, LOC)

3 Evaluation

Development-effort-benchmarks Figure 2 summarises the size of the implementation in terms of lines of
code, excluding empty lines and pure comments. The difference between the size of the solution parts and
their source code files is due to boilerplate code for library imports and exports not being accountable to
any certain task. Also, the abstract syntax graph accessors are boilerplate code that could be generated and
should not be counted. They are mostly one liners to introduce convenient functions for node constructions
and child and attribute querying. For example, in the listings of Appendix A we will write (->target n)

to query the target of an activity edge. RACR provides generic query functions however, such that the
query would be (ast-child ’target n) (cf. reference manual [1, Chapter: Abstract Syntax Trees]). To this
end we specify the abstract syntax graph access function (define (->target n) (ast-child ’target n))

which is obviously boilerplate. Finally, note that the implementation of user interface functionality makes
up huge parts of the implementation (in case of the activity diagram language 48%; for the Petri net
language 39%). To develop language user interfaces is not subject of RACR however; input parsing and
abstract syntax tree instantiation therefore should also be excluded.
Performance-benchmarks Figure 3 presents the results of benchmarking the performance test cases
given by the tool contest. The benchmarks have been executed on a MacBook Air (Mid 2011) with
a 1.7GHz Intel Core i5 CPU, 4GB 1333MHz DDR3 RAM and Mac OS 10.10.3. As Scheme system
Larceny 0.98 (General Ripper)3 was used. Times were measured using the time command of UNIX
without warming up the Larceny virtual machine just by execution from Bash. Each test case was
performed with increasing numbers of translation tasks, such that the actual times spend for parsing,
well-formedness checks, Petri net generation and their actual execution can be investigated. For example,

3http://www.larcenists.org and https://github.com/larcenists/larceny

http://www.larcenists.org
https://github.com/larcenists/larceny


Christoff Bürger 5

Tasks Performed Test Cases (testperformance variant) Time Spend
(later tasks include previous ones) 1 2 3 1 3 2 (lowest / highest / average)

Activity diagram parsing 831 / 831 871 / 871 875 / 875 718 / 718 41% / 86% / 50%
Activity diagram well-formedness 926 / 95 1017 / 146 1079 / 204 739 / 21 3% / 11% / 7%
Petri net generation 1042 / 116 1061 / 44 1196 / 117 741 / 2 0% / 6% / 4%
Petri net well-formedness 1220 / 178 1230 / 169 1466 / 270 746 / 5 1% / 14% / 10%
Petri net execution 2026 / 806 1776 / 546 1912 / 446 831 / 85 10% / 40% / 29%
Petri net execution (enabled passes) 2618 / 1398 1344 / 114 1572 / 106 836 / 90 7% / 53% / 27%

Figure 3: Time measurements (times in ms: total / task-only)

testperformance variant2.ad spend 169ms on checking the well-formedness of its Petri net making
a total of 1230ms with Petri net execution excluded. Of this 1230ms, 44ms where spend to generate the
Petri net, 146ms to check well-formedness of the activity diagram and 871ms to parse the test file and
construct an abstract syntax tree. The activity diagram parsing time includes loading the Larceny virtual
machine, RACR and the activity diagram and Petri net languages. The percentage of time spend for a
certain task is w.r.t. a test case’s total execution time. It is only shown for the test cases with the lowest
and highest percentage spend for each task (highlighted by colouring the time of the respective test case).
The average percentage is the sum of all test cases to perform a certain task divided by the sum of their
total execution times. Again, readers should exclude parsing times when judging RACR.

The last row in Figure 3 presents the execution times of a variant with enabled passes. The implemen-
tation of this variant requires three more lines of code. As described in Section 2.2, it just fires all enabled
transitions each execution loop iteration instead of a single. Of course, if there are no forks the enabled
pass variant wastes time to filter all enabled transitions. If there are parallel branches however, enabled
passes improve execution performance a lot. Thanks to the incremental enabled analysis, the execution
without enabled passes nevertheless performs surprisingly well.

References

[1] Christoff Bürger (2012): RACR: A Scheme Library for Reference Attribute Grammar Controlled Rewriting.
Technical Report TUD-Fl12-09, Lehrstuhl Softwaretechnologie, Technische Universität Dresden. Updated
version distributed with RACR at https://github.com/christoff-buerger/racr.

[2] Christoff Bürger, Sven Karol, Christian Wende & Uwe Aßmann (2011): Reference Attribute Grammars for
Metamodel Semantics. In Brian Malloy, Steffen Staab & Mark van den Brand, editors: Software Language
Engineering: Third International Conference, Lecture Notes in Computer Science 6563, Springer, pp. 22–41.

[3] R. Kent Dybvig (2009): The Scheme Programming Language, 4 edition. MIT Press.

[4] Object Management Group (2013): Semantics of a Foundational Subset for Executable UML Models (fUML).
Technical Report, Object Management Group. Version 1.1.

[5] Görel Hedin (2000): Reference Attributed Grammars. Informatica (Slovenia) 24(3), pp. 301–317.

[6] Tanja Mayerhofer & Manuel Wimmer (2015): The TTC 2015 Model Execution Case. Technical Report,
Business Informatics Group, Vienna University of Technology.

[7] Wolfgang Reisig (2013): Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Studies.
Springer. English translation of Petrinetze: Modellierungstechnik, Analysemethoden, Fallstudien.

[8] Pieter Van Gorp & Steffen Mazanek (2011): SHARE: a web portal for creating and sharing executable research
papers. Procedia Computer Science 4, pp. 589–597.

https://github.com/christoff-buerger/racr


6 fUML Activity Diagrams with RAG-controlled Rewriting

A Activity Diagram Language

The abstract syntax graph of the activity diagram language corresponds to the metamodel given in the task
description [6, Figure 1].

A.1 Abstract Syntax Tree Scheme

The metaclasses and their composite relations determine the solution’s abstract syntax tree scheme. For
example, the following excerpt of the abstract syntax tree scheme specifies the metaconcepts Activity,
Variable, ActivityEdge and ControlFlow:

1 (ast-rule ’Activity->name-Variable*-ActivityNode*-ActivityEdge*)

2 (ast-rule ’Variable->name-type-initial)

3 (ast-rule ’ActivityEdge->name-source-target)

4 (ast-rule ’ControlFlow:ActivityEdge->guard)

Note, that names starting lowercase on right-hands (following the ->) denote terminal children – i.e.,
ordinary properties – whereas names starting uppercase denote non-terminals – i.e., composite rela-
tions. Unbounded composites (Kleene closures/unbounded repetitions) are denoted by a * following
the respective non-terminal. Analogous to the task description’s metamodel, ControlFlow inherits from
ActivityEdge denoted by :ActivityEdge. By doing so control-flow edges not only inherit the name, source
and target properties of activity edges, but also their attributes and therefore semantic analyses (in terms
of metamodelling the attributes of a reference attribute grammar are derived properties and methods [2]).

A.2 Name, Type and Well-formedness Analyses

The main purpose of the attribute-based semantic analyses of the activity diagram language is, besides the
actual generation of Petri nets, the provision of information convenient for such code generation. This
comprises the construction of a graph structure encoding all information required for code generation
(name analysis) and checks that ensure diagrams are also valid such that the generated Petri nets do not
misbehave (type and well-formedness analyses).

As a name analysis example consider the association of activity edges with nodes (incoming and
outgoing attribute). To do so, hash maps from node names to their respective incoming and outgoing
edges are constructed. Given these maps, each node can just lookup its own name to determine its edges:

1 (ag-rule

2 incoming ; List of incoming edges of a node.
3 (Activity (lambda (n) (make-connection-table ->target (=edges n))))

4 (ActivityNode (lambda (n) (hashtable-ref (=incoming (<- n)) (->name n) (list)))))

To query an attribute for its value we just write (=attribute-name n); to query an abstract syntax tree
child or parent we just write (->child/terminal-name n) and (<- n) respectively. In all three cases, n is
the context node, i.e., the node the attribute is associated with/the node which has the child/the node
whose parent is queried respectively. The lookup of incoming edges at an activity node n works as follows
(Line 4): get the diagram’s hash table via (=incoming (<- n)) and query it with the activity node’s name;
if it has no entry, return the empty list (the last (list) on Line 4). To construct the actual table (Line 3),
we just call a support function which given an access function -> and list of abstract syntax tree nodes
queries all its elements and adds them to a newly constructed hash table according to their -> values4.
In our case the arguments are just all edges of the diagram (supported by the =edges attribute) and the

4The implementation is straightforward and based on hashtable-update! provided by Scheme [3].



Christoff Bürger 7

A	  A	  

B	  

C	  

J	  

B	  

C	  

J	  

F	   A	  

B	  

C	  

A	  

B	  

C	  

F	  

α	  

β	  

γ	  

α	  

β	  

γ	  

A	  A	  

B	  

C	  

J	  

B	  

C	  

J	  

F	   A	  

B	  

C	  

A	  

B	  

C	  

F	  

α	  

β	  

γ	  

α	  

β	  

γ	  

(a) fork and join transformation

A	  

B	  

C	  

A	  

B	  

C	  

D	  D	  

[a]	  

[b]	  

[c]	  

a	  

b	  

c	  

α	  

β	  

γ	  

α	  

β	  

γ	  

(b) decision transformation

A	  A	  

B	  

C	  

B	  

C	  

N	  N	  α	  

α	  

α	  

α	  

(c) initial, final, merge & executable node transformation

Figure 4: Activity Diagram to Petri net transformation rules c©Christoff Bürger

target query function ->target. Likewise, the name analysis provides attributes to lookup variables, nodes
and edges (v-lookup, n-lookup and e-lookup attribute), the source and target of edges (source and target

attribute) and the initial node (initial attribute).

Given the name analysis, type analysis is easy to implement (well-typed? attribute). Consider for
example unary expressions, which, according to the metamodel, must be negations:

1 (UnaryExpression

2 (lambda (n)

3 (define ass (=v-lookup n (->assignee n)))

4 (define op (=v-lookup n (->operand1 n)))

5 (and ass op (eq? (->type op) Boolean) (eq? (->type ass) Boolean)))))

First we lookup the variable to write the result to and the negated operand (Lines 3 & 4). Afterwards we
ensure both exist and are indeed of type Boolean (Line 5).

Based on type and name analyses we can check well-formedness. As an example consider decisions
and executable nodes:

1 (DecisionNode (lambda (n) (and (in n = 1) (out n >= 1) (guarded n #t))))

2 (ExecutableNode (lambda (n) (and (in n = 1) (out n = 1) (guarded n #f)

3 (for-all =well-typed? (=expressions n)))))

In both cases we use three support functions. The in and out functions ensure the node has a certain
number of incoming and outgoing edges. The guarded function asserts, depending on its boolean argument,
whether outgoing edges must be control-flows (in case of true they must be, otherwise not). Decisions must
have a unique incoming edge, at least one outgoing edge and their outgoing edges must be control-flows
(Line 1). Executable nodes must have a unique incoming and outgoing edge which is not a control-flow
(Line 2). Furthermore, all their expressions must be type correct (Line 3).



8 fUML Activity Diagrams with RAG-controlled Rewriting

A.3 Code Generation

A.3.1 Places, Transitions & Arcs

Figure 4 summarises the code generation rules. For each activity node and variable a Petri net place is
constructed (places attribute). In case of variables, the place contains their respective initial value as
token. Otherwise, only the place of the initial node has a token. The general rule for generating transitions
(transitions attribute) is, that given an activity node, a transition is constructed for each of its predecessor
nodes. The transition just consumes a token from the predecessor’s place and puts it into the node’s place
(Figure 4 (c)).

Special means in case of control-flow edges and executable node’s expressions have to be taken
however. Consider Figure 4 (b). In case of control-flow edges, the respective guard must be checked
before any token is consumed. To do so, it is sufficient to lookup the value encoded in the token of the
place which encodes the variable the guard refers to. Further, before a token is placed by an outgoing
arc, all expressions of the node its destination place represents must be executed. In Figure 4, these two
actions are represented by dashed arcs from variable places to guarded input arcs and by Greek letters
representing the expressions to execute.

Forks and joins are exceptions form these default rules however, because of their parallelising and
synchronising semantics. In case of a fork, all its outgoing edges yield a single transition. Likewise, all
incoming edges of a join are translated to a single transition (Figure 4 (a)). As an example consider the
implementation of the transitions attribute of joins:

1 (JoinNode

2 (lambda (n)

3 (define incoming (=incoming n))

4 (list

5 (pn::Transition

6 (->name (car incoming))

7 (map >>? incoming)

8 (list (n>> (car incoming)))))))

Based on the join’s incoming edges (Line 3) a new transition named like the ”first” incoming edge is
constructed (Lines 5 & 6). The transition has a single outgoing arc (Line 8) and for each incoming edge of
the join one incoming arc5(Line 7). These arcs are constructed by the >>? and n>> support functions which
given an activity edge construct a new incoming or outgoing arc respectively. Incoming arcs consist of a
single symbolic name referencing the source place the arc is consuming tokens from and a list of functions,
each selecting a token to consume. Outgoing arcs consist of a single symbolic name referencing the target
place the arc is producing tokens to and a single function that given all consumed tokens computes the
produced ones. Consider the construction of incoming arcs via >>?:

1 (define (>>? n) ; Construct incoming Petri net arc for activity edge .
2 (if (ast-subtype? n ’ControlFlow)

3 (pn::Arc (->source n) (list (=v-accessor (=v-lookup n (->guard n)))))

4 (pn::Arc (->source n) (list (lambda (t) #t)))))

First, it is checked if the given activity edge is a control-flow (Line 2). If it is, the consumption function
has to query the value of its guard, i.e., given a consumable token the arc is enabled if, and only if,
the guard’s value is true. To enable the querying of variable values at runtime (i.e., during Petri net
execution), we construct special access functions that return the value of the token of the variable’s place
(v-accessor attribute). In case of a control-flow, >>? therefore finds the guard variable in the activity

5Incoming and outgoing arcs are consuming and producing tokens when a transition is fired respectively.



Christoff Bürger 9

diagram via =v-lookup and defines its access function to be the consumption function of the arc (Line 3).
If the argument of >>? is not a control-flow, the consumption function just returns true, i.e., whenever
a consumable token is given the arc is enabled (Line 4). In both cases, the place to consume a token
from is the given activity edge’s source, i.e., (->source n). All of this happens before runtime. When
the generated Petri net is executed the consumption function and source are already settled by the code
generation; no runtime lookup is required.

A.3.2 Variables, Expressions & The Execution of Executable Nodes

As already explained, each variable is translated to a place containing a single token encoding its value.
The v-token attribute refers for each variable to the respective token encoding its runtime value. Its
implementation queries the place representing the variable (places attribute), its list of tokens and finally
the list’s first and only child:

1 (ag-rule

2 v-token ; The Petri net token encoding the runtime value of the variable .
3 (Variable (lambda (n) (ast-child 1 (pn:->Token* (=places n))))))

Remember, that RACR is incremental and caches all attributes. As long as information places depends on
is not changed – like in the given tool contest scenario – it will construct a new Petri net place only the first
time queried; further queries will evaluate to this very place. This caching behaviour holds for all attributes
of the activity diagram language. Based on v-token, implementing v-accessor is straightforward:

1 (ag-rule

2 v-accessor ; Function returning the runtime value of the variable .
3 (Variable (lambda (n) (define token (=v-token n)) (lambda x (pn:->value token)))))

First, lookup the token representing the variable’s value using v-token. Afterwards, return a function in
whose closure the token is and which uses the Petri net language to query its value via pn:->value.

After investigating how runtime values of variables are encoded and can be accessed, it remains to
show how they are changed by expressions. The computation attribute generates for each expression a
function assigning its left-hand the value of its right-hand. For example, consider unary expressions:

1 (UnaryExpression

2 (lambda (n)

3 (define assignee (=v-token (=v-lookup n (->assignee n))))

4 (define op1 (=v-accessor (=v-lookup n (->operand1 n))))

5 (define op (->operator n))

6 (lambda () (rewrite-terminal ’value assignee (op (op1))))))

First, the token representing the assignee is looked up (Line 3); afterwards, the access function of the
operand variable and the operation to perform (Lines 4 & 5). These information are the closure of the
function to construct. The function itself uses RACR’s rewrite-terminal function to change the value
of the assignee to the one computed by applying the operator on the value the operand’s value access
function returns (Line 6). Again, all lookups are at generation time of the Petri net and not runtime.

The computation attribute is defined for every activity node. It generates a function whose execution
represents the execution of the respective activity node at runtime. This comprises three runtime actions:
(1) tracing the node’s execution, (2) computing its expressions if any (i.e., if the node is an executable
node) and (3) establishing its offers for successor nodes:

1 (ActivityNode

2 (lambda (n)

3 (define executed (->name n))



10 fUML Activity Diagrams with RAG-controlled Rewriting

4 (lambda x (trace executed) (list #t))))

5 (ExecutableNode

6 (lambda (n)

7 (define executed (->name n))

8 (define computations (map =computation (=expressions n)))

9 (lambda x (trace executed) (for-each (lambda (f) (f)) computations) (list #t))))

Note, that the computation functions generated by the computation attribute accept arbitrary many argu-
ments and always return a singleton list with element true. Their tracing and expression execution is
obvious (Lines 4 & 9); how token offers are established we still have to clarify however.

As already explained, for each activity node a place is generated. A token in such a place indicates
that the activity node provides an offer to its successors. According to the semantics of activity diagrams,
the offers of an activity edge are provided immediately after executing its expressions. The computation
function of an activity node therefore has to be executed immediately before a token is put into its
respective place, i.e., whenever an outgoing arc of a transition places a token in its place. Thus, outgoing
arcs must apply the computation function of their target. The implementation of >>n therefore is:

1 (define (n>> n) ; Construct outgoing Petri net arc for activity edge .
2 (pn::Arc (->target n) (=computation (=target n))))

As explained before, an outgoing arc consists of a symbolic name referencing the target place and a
production function that given the consumed tokens computes the ones placed in its target place. The
functions generated by the computation attribute are valid production functions; they accept arbitrary many
consumed tokens and place a single true token.


	Prerequisites and Contents
	Solution Overview
	RAG-based Analyses: From Activity Diagrams to Petri Nets
	Rewriting-based Transformations: Incremental Execution of Petri Nets

	Evaluation
	Activity Diagram Language
	Abstract Syntax Tree Scheme
	Name, Type and Well-formedness Analyses
	Code Generation
	Places, Transitions & Arcs
	Variables, Expressions & The Execution of Executable Nodes



