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Abstract

A spatio-temporal model is constructed to interpolate yearly pre-
cipitation data from 1982 to 1996 over the African Sahel. The pre-
cipitation data used in the analysis comes from the Global Historical
Climatology Network.

The spatio-temporal model is based on a Gaussian Markov random
field approach with AR(1)-dependence in time and a spatial component
modeled using an approximation of a field with Matérn covariance. The
model is defined on an irregular grid on a segment of the sphere, both
avoiding the issue of matching observations to a regularly spaced grid,
and handling the curvature of the Earth.

The model is estimated using a Markov chain Monte Carlo ap-
proach. The formulation as a Markov field allows for relatively efficient
computations, even though the field has more than 3 · 104 nodes.

1 Introduction

One of the most widely used methods for interpolation of spatial data is
Kriging, named after Krige (1951) and popularised when Matheron (1963)
put linear interpolation in a geostatistical context. The Kriging predictor is
a linear combination of observations; and thus suitable for Gaussian data, or
data that is Gaussian after appropriate transformations (Box & Cox, 1964).
The Kriging weights in the linear combination depend on the estimated
mean and covariance structure of the data.

To allow for non-Gaussian observations of an unobserved, underlying
Gaussian field Diggle et al. (1998) introduced a model based approach that
uses Markov chain Monte Carlo (MCMC) methods to do Bayesian inference
for the spatial predictors. The MCMC predictors also address the uncer-
tainty due to parameter estimates. However, the approach is computation-
ally intensive, requiring the inverse of the full covariance matrix at each
iteration; for n observations, inverting the covariance matrix takes O

(
n3
)

operations.
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A computationally more effective method was introduced by Wikle et al.
(1998). They let the spatial field be a Gaussian Markov random field
(GMRF) defined on a rectangular grid in R

2. The formulation of GM-
RFs using a sparse precision (inverse covariance) matrix lends itself to fast
sampling from the predictive and posterior distributions (Rue, 2001). Due
to the computational gains provided by the sparse precision matrix (Rue
& Follestad, 2002) spatial modelling using GMRFs is popular and has been
used for a wide variety of applications (e.g. Knorr-Held & Rue, 2002; Gamer-
man et al., 2003; Bolin et al., 2008).

Rue & Tjelmeland (2002) provide a link between GMRFs and Kriging
by showing that a GMRF on a rectangular grid in R

2 can be used to ap-
proximate fields with a wide class of covariance functions; the approximation
is good even for fields with slowly decreasing correlation. A problem with
defining the field on a rectangular grid is that our observations seldomly fall
on the grid points. This can be remedied either by assigning each observa-
tion to the closest grid point (Hrafnkelsson & Cressie, 2003) or by letting
values at the observations points be some (linear) interpolation of the values
at nearby grid points (Werner Hartman, 2006).

Recently, Lindgren & Rue (2007) demonstrated that GMRFs also can be
constructed directly to approximate fields with Matérn covariance functions.
The approximating GMRF can be defined at irregular locations on a general,
smooth manifold. Defining the field at irregular locations avoids the task of
having to map observations to grid points. Additionally, since the GMRF is
defined on a smooth manifold, it is possible to handle the curvature of the
Earth; an effect that often is ignored by projecting the observation locations
to R

2 or by embedding the sphere in R
3 and using covariance functions

defined in R
3.

Here we will use a spatio-temporal model, where the spatial component
is based on the GMRF approximation proposed by Lindgren & Rue (2007),
to interpolate precipitation data over the African Sahel, the region between
Sahara and the rainforest. Parameter estimation is done using a MCMC
approach.

Section 2 motivates the study of precipitation by giving a brief back-
ground to the environmental situation in the African Sahel, with 2.1 pre-
senting the precipitation data; a brief overview of relevant theory is given
in Section 3, the spatio-temporal model is described in Section 4, Section 5
discusses some details of the MCMC approach that is used for parameter
estimation, and the analysis and results are detailed in Section 6. Finally,
Section 7 summarises, and outlines some possible extensions.
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2 The African Sahel

The African Sahel suffered a severe decline in rainfall following the 1960’s
(Hulme, 2001), and several droughts and famines have beset the area (Ols-
son, 1993). Recent studies indicate a vegetation recovery (Eklundh & Ols-
son, 2003; Olsson et al., 2005; Bolin et al., 2008) linked to an increase in
precipitation (Hickler et al., 2005). The region has attracted the interest of
the remote sensing community for several years (Tucker et al., 1985; Ras-
mussen, 1992; Prince et al., 1998; Fensholt et al., 2004), an interest fueled
by the availability of remotely sensed vegetation data (Agbu & James, 1994;
NASA, 2004) stretching back to 1982.

While the remotely sensed vegetation data covers the entire Sahel, pre-
cipitation measurements are restricted to point measurements at weather
stations. Several analysis of the dependence between vegetation and pre-
cipitation have been done, however most of these either take a time series
perspective, limiting the analysis to vegetation measurements close to each
weather station and treating data from each station as independent time
series (Los et al., 2006) or give only qualitative (Nicholson et al., 1990)
analyses of relationships. As a first step in an effort towards building a
spatio-temporal model for the dependence between vegetation and precipi-
tation we interpolate the precipitation data between stations. Since studies
of long term, year to year variations in vegetation (Eklundh & Olsson, 2003;
Olsson et al., 2005) primarily use measures of total biomass during each
growing season, we will limit ourselves to interpolation of total yearly pre-
cipitation.

2.1 Precipitation data

The precipitation data used in our analysis comes from the Global Histor-
ical Climatology Network (GHCN) (NOAA, 2007; Vose et al., 1992). The
data in GHCN consists of monthly temperature, precipitation, and pressure
measurements from a large number of weather stations around the globe,
stretching back as far as the 18th century in some locations. Extracting the
geographical area and time period of interests gives us precipitation mea-
surements from a total of 550 measurement stations across the Sahel for
15 years of data (1982–1996). After 1996 the number of reporting stations
decline sharply. The measurements are then summed to total yearly pre-
cipitation at each station. An example of data and measurement locations
from 1982 is given in Figure 1. Finally we remove ten stations from the data
set; these stations will be used to asses model accuracy after the analysis.
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Figure 1: Yearly precipitation, in metres, for the 443 stations that have
reported measurements for 1982. Note that the colour scale is non-linear.

3 Theory

Here the definition and properties of a Gaussian Markov random field are
given, and the approximation of a spatial field with Matérn covariance using
a GMRF is outlined.

3.1 Gaussian Markov random fields

A random variable x = (x1, . . . , xn)
⊤ ∈ N

(
µ,Q−1

)
is called a Gaussian

Markov random field (see Rue & Held, 2005, for extensive details) if the joint
distribution for x satisfies p(xi|x−i) = p(xi|xNi

) ∀ i. Here x−i denotes all
elements in x except xi and Ni is the neighbourhood of i; the neighbourhood,
Ni, is a set of pixels j ∈ Ni that, in some sense, are ”close” to i. An
important implication of the above definition is that if i 6= j, then

xi ⊥ xj |x−{i,j} ⇐⇒ Qi,j = 0 ⇐⇒ j /∈ Ni.

That is, the following properties are equivalent: 1) xi and xj are condition-
ally independent 2) the corresponding element in the precision matrix, Qi,j

is zero and 3) i and j are not neighbours. Since Qi,j 6= 0 only if i and j are
neighbours, most GMRFs will have sparse precision matrices. If the sparse
precision matrix is utilised when doing calculations on the GMRF, large
gains in computational time are often possible (Rue, 2001; Rue & Follestad,
2002; Knorr-Held & Rue, 2002).

3.2 Approximation of Matérn fields

We are now ready to study the approximation of fields with Matérn covari-
ances using GMRFs. As noted by Whittle (1963), the solutions, in R

d, to
the stochastic partial differential equation (SPDE)

(∆ − κ2)α/2x(s) = E(s), (1)
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where E is Gaussian white noise, α > 0 and κ > 0, are Gaussian random
fields with covariances that correspond to the Matérn family

C(x(s),x(s+ τ )) ∝ (κ ‖τ‖)νKν(κ ‖τ‖).

Here Kν is a modified Bessel function and the relation between the regularity
parameter, ν, and α in the SPDE is α = ν + d/2.

The relationship between the SPDE (1) and Gaussian random fields with
covariances from the Matérn family is used by Lindgren & Rue (2007) to
construct GMRF approximations to fields with Matérn covariances on R

d.
Lindgren & Rue argue that a natural generalisation of Matérn covariances to
general manifolds can be found by solving (1) on said manifolds, and they
proceed to construct a GMRF approximation of the solution on general
manifolds. The approximation is found using the finite element method on
a triangulation of irregularly spaced points. The resulting GMRF is defined
on the points of the triangulation, making it suitable for modelling fields
that are observed at irregular locations.

For α = 2 in (1), the precision matrix of the approximating GMRF is

Q = (H − κ2C)⊤C−1(H − κ2C), (2)

where the matricesH and C depend on the triangulated point configuration
(see Lindgren & Rue, 2007, for details on how to calculate H and C).
The matrix H is sparse and C is diagonal, resulting in a sparse precision
matrix Q. Since we model precipitation on the sphere, i.e. d = 2, a GMRF
with precision matrix according to (2) approximates a field with generalised
Matérn covariance where the smoothness parameter is ν = 1.

As a final detail it should be noted that Whittle studied the SPDE (1)
in R

d; When working with fields on a finite manifold, boundary effects will
influence the field close to the edge of the manifold. In order to minimise
these edge effects the manifold on which the field is defined is extended some
distance outside of the area of interest.

4 Model

Given the GMRF approximation of fields with generalised Matérn covariance
outlined above we are now ready to introduce the spatio-temporal model for
the precipitation. First we will introduce the model in a general setting,
thereafter Section 4.1 describes the spatio-temporal model using GMRFs,
and finally Section 4.2 deduces the posterior distribution for the field given
observations.

To simplify the following narrative we first introduce some notation.
Below I denotes identity-matrices, 1 denotes unity (column) vectors and ⊗
is the Kronecker product. Further we will need the canonical representation
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of Gaussian densities (Rue & Held, 2005):

x ∈ N
(
Q−1b,Q−1

)
⇐⇒ x ∈ NC (b,Q) .

In general terms our model is a latent field on a segment of the globe, Ω,
and in time, i.e. x(s, τ) with s ∈ Ω and τ ∈ R. The field is approximated
by a GMRF evaluated at a number of discrete points, X(si, t), i = 1 . . . N
and t = 1 . . . T ; and the precipitation is modeled as observations of the
latent field. The yearly precipitation measurements are highly skewed, but
transforming the observations as

y = ỹ1/3 ·
(
1 − 0.13ỹ1/3

)
,

where ỹ is precipitation in metres, the transformed precipitation can be
modelled as Gaussian observations of the latent field (Glasbey & Nevison,
1997). Each of the d observations is now taken as the field value at the
corresponding measurement locations with additive, independent N

(
0, σ2

)

errors

yj = X(sj , tj) + ǫj , (3)

where j = 1 . . . d and ǫj are the errors.

4.1 Spatio-temporal model

Given the GMRF approximation of fields with Matérn covariances we intro-
duce a precision matrix for the spatial dependence as QS = χQ where Q is
defined in (2) and χ is a variance scaling parameter. Further letting Xt de-
note the N -by-1 column vector representing the GMRF at each time point,

the spatio-temporal field can be represented as X =
[
X⊤

1 · · · X⊤
T

]⊤
.

Assuming an AR(1)-structure between consecutive years and a mean
field, µ(s), that is constant in time, the field X, can be modeled as

(Xt − µ) = a(X t−1 − µ) + ηt, (4)

where the innovations are independent in time but spatially correlated,

ηt ∈ N
(
0,Q−1

S

)
.

Further we take X1 ∈ N
(
µ,Q−1

S /(1 − a2)
)
, analogously with the stationary

distribution of an AR(1)-process. Combining the distribution of X1 with
(4) the distribution for the spatio-temporal GMRF becomes

X ∈ N

(
1⊗ µ,

(
QT ⊗QS

)−1
)

. (5)
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where QT is the tri-diagonal T -by-T matrix

QT =




1 −a 0
−a 1 + a2 −a 0

. . .

0 −a 1 + a2 −a 0
. . .

0 −a 1 + a2 −a
0 −a 1




. (6)

Note that |QT ⊗QS | = |QT |N |QS |T = (1−a2)N |QS |T , since |QT | = 1−a2,
see Appendix A.

The spatio-temporal covariance function of the field will be separable
since the precision matrix for the joint spatio-temporal field can be written
as a Kronecker product between the precision matrices for the temporal and
spatial dependencies respectively.

4.2 Posterior density given observations

As previously mentioned we model the transformed precipitation as Gaus-
sian observations of an underlying GMRF. Stacking all the observations in
a d-by-1 vector Y the observation equation (3) can be formulated in matrix
form as

Y = AX + ǫ, (7)

where ǫ ∈ N
(
0, Iσ2

)
and A is a d-by-NT observation matrix with one non-

zero value on each row picking out the field value corresponding to that
observation. The structure of A implies that A⊤A is a diagonal matrix. It
is also worth noticing that, comparing to a direct covariance formulation for
the measurements, σ2 represents a nugget effect.

The mean field µ in (5) should handle large scale variations and is mod-
eled as µ = Bθ where B is a known matrix of regression basis vectors and
θ contains the unknown regression parameters. Selection of a suitable re-
gression basis is discussed in Section 6.1. Using this mean field the prior
distribution of the underlying GMRF is

X ∈ N

(
1 ⊗Bθ,

(
QT ⊗QS

)−1
)

. (8)

Finally we collect the model parameters as ψ = {χ, κ2, a, σ2}.
Given (7) and (8) the full posterior is

p(X,θ,ψ|Y ) ∝ p(Y |X, σ2)p(X |θ,ψ)p(θ)p(ψ), (9)

where the priors for θ, and ψ are assumed to be independent and we select
a conjugate Gaussian prior for θ, i.e. θ ∈ N

(
µθ,Q

−1
θ

)
.
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An alternative formulation of (9) is

p(X,θ,ψ|Y ) = p(X|θ,ψ,Y )p(θ|ψ,Y )p(ψ|Y ). (10)

As shown in Appendix B, the densities in (10) are given by

(X|θ,ψ,Y ) ∈ NC

((
QT1 ⊗QSB

)
θ + b, Q̂

)
(11a)

(θ|ψ,Y ) ∈ NC

(
bθ, Q̂θ

)
(11b)

p(ψ|Y ) ∝ exp

(
−Y

⊤Y

2σ2
+
b⊤Q̂

−1
b

2
+
b⊤θ Q̂

−1

θ bθ

2

)

·


 |QS|T (1 − a2)N∣∣∣Q̂

∣∣∣
∣∣∣Q̂θ

∣∣∣ |σ2I|




1/2

p(ψ),

(11c)

where

b =
A⊤Y

σ2
, Q̂ =

(
QT ⊗QS

)
+
A⊤A

σ2
,

bθ = Qθµθ +
(
QT1⊗QSB

)⊤
Q̂

−1
b,

Q̂θ = Qθ +
(
QT1 ⊗QSB

)⊤
Q̂

−1
(A⊤A

σ2

)
(1 ⊗B).

The final element of the model is now to define the priors for ψ. We
assume independent priors and note that χ, κ2, and σ2 takes values in R

+

and that a ∈ (−1, 1). Therefore we select Gamma priors for the first three
variables and a uniform prior for a:

χ ∈ Γ(αχ, βχ), κ2 ∈ Γ(ακ, βκ), σ2 ∈ Γ(ασ, βσ), a ∈ U (−1, 1) . (12)

Suitable values for the hyper-parameters are given in Appendix C. Figure 2
depicts a directed acyclic graph for our model with hyper-parameters.

5 Markov chain Monte Carlo

To estimate the posterior of the parameters, p(θ,ψ|Y ), and the posterior
of the field, p(X|Y ), a Metropolis-Hastings based MCMC-algorithm is used
(Metropolis et al., 1953; Hastings, 1970). The proposal kernel, q(·, ·), in the
MCMC-algorithm, should generate a proposal for the variables {X,θ,ψ}
given variables at a previous iteration {Xold,θold,ψold} and observed data
Y . The proposal is then accepted with a certain probability αmcmc.

Due to the structure of the posterior density in (10) a suitable form of
the proposal kernel is

q({Xold,θold,ψold}, {X ,θ,ψ};Y ) = p(X|θ,ψ,Y )p(θ|ψ,Y )qψ(ψold,ψ),
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αχ βχ ακ βκ

χ κ2 a

µθ Qθ

θ

X

ασ βσ

σ2

Y

Figure 2: Directed acyclic graph for the hierarchical model with hyper-
parameters.

where p(X|θ,ψ,Y ) and p(θ|ψ,Y ) are taken from (11). Using this proposal
the acceptance probability for the new proposal, {Xθ,ψ}, reduces to

αmcmc = min

(
1,

p(X,θ,ψ|Y )q({X ,θ,ψ}, {Xold,θold,ψold};Y )

p(Xold,θold,ψold|Y )q({Xold,θold,ψold}, {X ,θ,ψ};Y )

)

= min

(
1,

p(ψ|Y )qψ(ψ,ψold)

p(ψold|Y )qψ(ψold,ψ)

)
.

Note that the proposal for {X ,θ} does not effect the acceptance probability
and thus we only need to generate a new proposal for ψ before doing the
accept/reject step. The proposal for {X ,θ} is generated only if the new ψ

is accepted, resulting in corresponding savings in computation time.

Initial MCMC-runs indicated a strong correlation between the compo-
nents in ψ (see Figure 3). Transforming the variables as

σ̃2 = log(σ2),

κ̃2 = log(κ2),

ã = log(1 + a) − log(1 − a),

χ̃ = log(χ),
(13)

we obtain variables which can take values in R, so that a random walk
proposal on the transformed variables can be used




σ̃2

ã
κ̃2

χ̃


 ∈ N







σ̃2
old

ãold

κ̃2
old

χ̃old


 ,Σprop


 . (14)

Here the covariance matrix Σprop takes the correlation between variables
into account (suitable values are given in Appendix C). Using the above
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proposal and transforming back to the original coordinates the ratio of the
proposal densities is

qψ(ψ,ψold)

qψ(ψold,ψ)
=

σ2κ2χ(1 − a2)

σ2
oldκ

2
oldχold(1 − a2

old)
.

σ
2

a

a

κ2

κ
2

χ

σ̃
2

ã

ã

κ̃2

κ̃
2

χ̃

Figure 3: Two-dimensional histograms illustrating the dependence between
the components of (ψ|Y ) before (left pane) and after (right pane) the trans-
formation given above in (13).

6 Analysis

Having presented the spatio-temporal model and some details of the MCMC
estimation, we are now ready to interpolate the precipitation data. In Sec-
tion 6.1 we introduce the spatial regression basis that characterises our mean
field; hereafter the triangulation of the measurement locations is presented
in Section 6.2. Results from the MCMC are compared to measurements of
the field in Section 6.3, and in Section 6.4 covariance functions estimated
from data are compared to those obtained from the MCMC. Finally, in Sec-
tion 6.5, we make some notes and comments regarding the computational
cost of the algorithm.

6.1 Linear Regression basis

In Section 4.2 the prior mean of X was specified using a matrix of regres-
sion basis vectors, µ = Bθ. It is now time to specify the exact form of
the regression basis vectors. Studying the data the latitude (north-south)
dependence is described by a broken trend, which is modeled using two
piecewise linear functions, with the break point found using a least squares
criterion. Additionally, large scale variations in precipitation are modeled
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using a cubic B-spline surface with five knots in latitude and seven knots in
longitude under the additional constraint of zero derivatives at the edges,
resulting in 15 basis surfaces, see Figure 4. The latitude knots are selected
as the 0%, 25%, 50%, 75%, and 100% quantiles of the latitude coordinates;
selection of the longitudinal knots is done in a similar fashion.

6.2 Triangulation

As mentioned in Section 3.2, the GMRF used to model the data is defined
on a set of irregular, triangulated, points. This set of points includes the
measurement stations, but can also be extended by additional points to
obtain a suitable spatial resolution where we have few measurement stations.
The set of points should also include a few points surrounding the region of
interest to counteract the possible edge effects discussed in Section 3.2. Here
we have applied the triangulation algorithm written by Shewchuk (1996) to
latitude and longitude coordinates of the measurement stations, see Figure 5.
A dense grid without any extremely obtuse triangles is obtained by setting
limitations on area and minimal angle of each triangle within the area of
interest, allowing the algorithm to add points as needed.

latitude

tr
an

sf
or

m
ed

p
re

ci
p
it
at

io
n

8 12 16
0

0.75

1.5

Figure 4: The left pane illustrates how data depends on the latitude, the
two basis functions used to model this dependence are given in the lower
part of the figure. The three right hand panes illustrate some of the 15
B-spline surface basis functions. The top pane depicts the five longitudinal
B-splines while the mid and bottom panes show two of the resulting surfaces;
measurement locations and national boundaries included for reference.

6.3 Posterior distributions

Given the spatio-temporal model described in Section 4.1 the MCMC-algorithm
outlined in Section 5 was run on the transformed yearly precipitation data
for 5000 iterations. The run was limited to 5000 iterations due to the compu-
tational cost, see Section 6.5. The Markov chain rapidly reached stationarity
and exhibited good mixing, see Figure 6, with an average acceptance prob-
ability of 32.5%. Additionally, the estimated autocorrelation functions for
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Figure 5: Triangulation (light grey) of the measurement locations (black
dots), adding extra points in the interior. Note that the triangulation ex-
tends beyond the measurement locations (and this figure) to handle edge
effects.

all four parameter trajectories decline below 0.1 somewhere between lag 25
and 55, and to zero between lag 40 and 70.

Given MCMC samples of (X | Y ), the posterior mean, E(X | Y ), and
95% pointwise confidence intervals were constructed. Studying the inter-
polated field from 1982 shows a good correlation between measurements
and the interpolation, see Figure 7. Results for the other years are similar.
Worth noticing is that, due to the transformation of the precipitation data,
back transformed confidence intervals are wider for large data values, as well
as being skewed towards larger values.

The models ability to reproduce data at the ten stations omitted from
the analysis is illustrated in Figure 8. In most cases the observations fall
within the 95% confidence bands.

6.4 Covariance functions

As a last step in assessing the model we study the spatial covariance func-
tions of the temporal residuals

et =
(
Y t − ÂtBθ

)
− a
(
Y t−1 − ÂtBθ

)
. (15)

Here Ât is a matrix that extracts fields points that have been observed
both at time t and t − 1. When actually calculating the residuals the true
parameter values are unknown and we replace them with the corresponding
posterior mean estiamtes. The residuals et should now essentially represent
the spatially dependent innovations ηt in the AR(1) formulation (4), with
additional independent measurement noise due to the errors ǫ in (7). It is
easy to show that the distribution of et is

et ∈ N

(
0, ÂtQ

−1
S Â

⊤
t + σ2(1 + a2)I

)
.
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Figure 6: The four panes illustrate the parameter trajectories for the 5000
MCMC simulations, with the dotted vertical lines indicating the end of the
burn in period.

The covariance function for et was estimated and compared to 1000 covari-
ance function estimates based on simulations from the model given by (7)
and (5) and using the posterior mean of the parameters. The estimates are
given in Figure 9 and it is clear that the covariance function estimated from
data does not deviate further from the theoretical covariance function than
what can be expected based on the estimates obtained from simulated data.

6.5 Computational costs

The dominating computational cost for each MCMC iteration is evalua-
tion of the likelihood (11c) and the most costly operation when evaluating
the likelihood is calculation of the Cholesky factorisation of Q̂. Given the
Cholesky factor, calculation of the determinant is trivial and vector calcu-

lations involving Q̂
−1

can be done efficiently using back-substitution (Rue,
2001).

Given a spatial GMRF (no time dependence) defined on a regular square
lattice consisting of n points (i.e. a side of

√
n) calculation of the Cholesky

factor takes O
(
n3/2

)
operations (Rue & Held, 2005, Chapter 2.4), compared

to O
(
n3
)

operations when inverting a full covariance matrix. The O
(
n3/2

)

complexity seems to hold also for the GMRFs defined on irregular grids used
here. However we pay a price for extending the GMRF to a spatio-temporal
model; for a spatio-temporal GMRF defined on a regular cube with of n
points (i.e. a side of 3

√
n) calculation of the Cholesky factor takes O

(
n2
)

operations (Rue & Held, 2005, Chapter 2.4), and this complexity seems to
be approximately true for our spatio-temporal GMRF.

As an example, calculation of the Cholesky factor of the pure spatial
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Figure 7: The top pane shows E(X | Y ) for the precipitation data from
1982 obtained from MCMC-simulations. The following two panes gives the
boundaries of point-wise 95% confidence intervals of (X | Y ) obtained as
quantiles from the MCMC-simulations. The circles represent the measure-
ment locations and corresponding measurement values.
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Figure 8: The top left pane shows the locations of the 10 stations omitted
from the analysis. The remaining 10 panes show E(X | Y ) (solid lines), 95%
confidence intervals (dashed lines) and actual measurements (dots) for each
of the stations from 1982 to 1996. All the data has been back transformed
to yearly precipitation in metres.
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Figure 9: Covariance function for the residuals. The black line is the spatial,
isotropic covariance function for the residuals (15), the box-plots describe
the covariance functions estimated using a 1000 simulations from the model,
the grey line is the theoretical covariance function given the posterior means
of the parameters.
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2039-by-2039 precision matrix in (2) takes 0.05s on a 2.8GHz Celeron. Ex-
tending the field to include temporal AR(1)-dependence for the 15 years of
data calculation of the Cholesky factor of Q̂ in (11c) takes 46.8s, and con-
sequently each MCMC iteration takes roughly 60s. As a comparison, the
full spatio-temporal field has 2039 · 15 = 30585 nodes, if we instead study a
pure spatial field with 30585 nodes calculation of the Cholesky factor takes
only 2.48s, clearly illustrating the steep computational cost incurred by the
temporal dependencies.

7 Conclusion and discussion

The use of GMRFs to model spatial and spatio-temporal dependencies allows
for fast computations using algorithms for sparse matrices Rue (2001). This
work uses the computational efficiency of GMRFs together with the possibil-
ity to approximate fields with Matérn covariances using GMRFs (Lindgren
& Rue, 2007) to interpolate yearly precipitation over the African Sahel. The
resulting model and method presented here allows for spatio-temporal esti-
mation and interpolation of very large fields defined on irregular locations
using reasonable computational resources.

Model assessment using measurements at stations left out of the anal-
ysis, as well as a comparison between the empirical and theoretical spatial
covariance functions indicate that the model describes the data well and
provides a good interpolation of the precipitation data. This interpolation
can be used in future work examining the interactions between vegetation
and precipitation in the region.

Another interesting extension would be to model monthly precipitation.
Doing so would introduce a large number of zero measurements, especially
during the dry winter months. To handle these zero measurements non-
Gaussian observation model would have to be employed. Extending the
model to use non-Gaussian observations will add a small computational bur-
den. However, given the large literature of latent GMRFs with non-Gaussian
observations (Knorr-Held & Rue, 2002; Hrafnkelsson & Cressie, 2003; Rue
& Martino, 2007, etc.) an extension should not present any theoretical chal-
lenges. The computational burden incurred by using an AR(1)-dependence
in time could possibly be lessened by the use of temporal basis functions.
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A Determinant of the precision for an AR(1)-process

Given an AR(1)-process, xt = axt−1 + ηt, where ηt are i.i.d. N (0, 1), |a| <
1 and x1 belongs to the stationary distribution N

(
0, 1/(1 − a2)

)
the joint

distribution for {xt}t=1...T is N
(
0,Q−1

T

)
where QT is the tri-diagonal T -by-

T matrix from (6). To calculate the determinant, |QT |, we first need the
following lemma:

Lemma 1. Let AT be the tri-diagonal T -by-T matrix

AT =




1 + a2 −a 0
−a 1 + a2 −a 0

. . .

0 −a 1 + a2 −a 0
. . .

0 −a 1 + a2 −a
0 −a 1




,

with |a| < 1. Further let A1 = 1 and

A2 =

(
1 + a2 −a
−a 1

)
.

The determinant of AT is |AT | = 1, for any T ≥ 1

Proof. It is obvious that |A1| = 1 and |A2| = 1. For T > 2 expansion of
the determinant along the first column followed by expansion of the second
term along the first row gives

|AT | = (1 + a2) |AT−1| − a2 |AT−2| , (16)

and Lemma 1 follows by induction.

Proposition 2. The determinant of QT , defined by (6), is 1 − a2 for any
T ≥ 1.

Proof. For T = 1 and T = 2 the result is trivial. For T > 2 we expand
the determinant along the first column followed by expansion of the second
term along the first row which gives

|QT | = |AT−1| − a2 |AT−2| = 1 − a2,

where the last equality is obtained using Lemma 1.
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B Calculation of the posterior distribution

Expanding (9) the full posterior becomes

p(X,θ,ψ|Y ) ∝
( |QS |T (1 − a2)N

|σ2I|

)1/2

p(θ)p(ψ)

exp
(
−1

2

(
X − 1 ⊗Bθ

)⊤(
QT ⊗QS

)(
X − 1 ⊗Bθ

))

exp
(
− 1

2σ2

(
Y −AX

)⊤(
Y −AX

))
.

(17)

Expanding the terms in the exponents and collecting terms containing X
we obtain

−1

2

(
X⊤

(
QT ⊗QS +

A⊤A

σ2︸ ︷︷ ︸
bQ

)
X − 2X⊤

((
QT1⊗QSB

)
θ +

A⊤Y

σ2︸ ︷︷ ︸
b

)

+
Y ⊤Y

σ2
+ θ⊤

(
QT1⊗QSB

)⊤(
1 ⊗B

)
θ

)
.

Identifying the first two terms as part of a Gaussian distribution for X we
can rewrite (17) as

p(X,θ,ψ|Y ) ∝ p(X|θ,ψ,Y )p(ψ)

( |QS |T (1 − a2)N∣∣∣Q̂
∣∣∣ |σ2I|

)1/2

exp

(
−1

2

(
Y ⊤Y

σ2
+ θ⊤

(
QT1⊗QSB

)⊤(
1⊗B

)
θ

−
((
QT1 ⊗QSB

)
θ + b

)⊤
Q̂

−1
((
QT1 ⊗QSB

)
θ + b

)

+
(
θ − µθ

)⊤
Qθ

(
θ − µθ

))
)

,

(18)

where p(X|θ,ψ,Y ) is the density function for the posterior (X |θ,ψ,Y ) de-
fined in (11a). Note that we have divided by the determinant of Q̂ to cancel
the corresponding determinant which arises in p(X|θ,ψ,Y ); the quadratic

form involving Q̂
−1

in the third row arise for the same reason.

We again study the exponent but this time we collect terms containing
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θ, obtaining

−1

2

(
θ⊤
(
Qθ +

(
QT1 ⊗QSB

)⊤((
1 ⊗B

)
− Q̂−1(

QT1 ⊗QSB
))

︸ ︷︷ ︸
bQθ

)
θ

− 2θ⊤
(
µθQθ +

(
QT1⊗QSB

)⊤
Q̂

−1
b

︸ ︷︷ ︸
bθ

)

− b⊤Q̂−1
b+

Y ⊤Y

σ2
+ µ⊤

θ Qθµθ

)
.

We recognise the first two terms as belonging to the posterior (θ|ψ,Y )
given in (11b). We can now obtain (11c) by rewriting (18) in a similar way
as previously used when obtaining (18) from (17). Finally we rewrite Q̂θ as

Q̂θ = Qθ +
(
QT1⊗QSB

)⊤(
Q̂

−1
Q̂− Q̂−1(

QT ⊗QS

))(
1⊗B

)

= Qθ +
(
QT1⊗QSB

)⊤
Q̂

−1
(A⊤A

σ2

)(
1 ⊗B

)
.

C Parameter values

C.1 Hyper-parameters

The hyper-parameters of the priors in (12) are selected to make the priors
wide, while at the same time making values close to zero unlikely. Avoiding
zero values is reasonable since χ = 0 implies a filed with infinite variance;
and κ2 = 0 gives infinite range in the spatial covariance function. Thus, we
take the shape parameters to be

ασ = 2, ακ = 2, αχ = 1.5,

and the scale parameters are set to

βσ = 500, βκ = 0.0025, βχ = 5.

C.2 Proposal distribution

The covariance of the proposal distribution (14) is set through the standard
deviation of each parameter and the correlation between parameters, i.e.

Σprop =




σ2
1 ρ12σ1σ2 ρ13σ1σ3 ρ14σ1σ4

ρ12σ1σ2 σ2
2 ρ23σ2σ3 ρ24σ2σ4

ρ13σ1σ3 ρ23σ2σ3 σ2
3 ρ34σ3σ4

ρ14σ1σ4 ρ24σ2σ4 ρ34σ3σ4 σ2
4


 .

19



A short initial MCMC run on a triangulation of coarser resolution and using
data from 1982 to 1987 indicated reasonable values of the parameters to be
σ1 = 0.15, σ2 = 0.15, σ3 = 0.03, σ4 = 0.30 and

ρ12 = 0.6 ρ13 = 0.2 ρ14 = −0.4

ρ23 = 0.4 ρ24 = −0.6

ρ34 = −0.1.
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