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Semiconductor superlattices may display dispersions that are degenerate either at the zone center or zone
boundary [G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, Monographies de Physique
(Les Éditions de Physique, Les Ulis, 1988); C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, Appl. Phys. Lett.
64, 2982 (1994)]. We show that they are linear upon the wave vector in the vicinity of the crossing point. This
establishes a realisation of massless Dirac bands within semiconductor materials. We show that the eigenstates
and the corresponding Wannier functions of these superlattices have peculiar symmetry properties. We discuss
the stability of the properties of such superlattices versus the electron in-plane motion. As a distinct fingerprint,
the inter-sub-band magnetoabsorption spectrum for such superlattices is discussed.

DOI: 10.1103/PhysRevB.89.235301 PACS number(s): 73.21.Ac, 78.67.Pt

I. INTRODUCTION

Massless Dirac bands, electronic dispersion relations that
are linear upon the wave vector in the vicinity of a high
symmetry point in the Brillouin zone, are heavily researched
because they lead to unusual physical properties [1,2]. The
prototype of material that displays such linear dispersion
relations is graphene. Here we will show that the very
same linear dispersions occur for the unbound states of
one-dimensional (1D) semiconductor superlattices [3] (SL),
such as GaAs/Ga(Al)As, provided the layer thicknesses are
appropriately chosen. In the following we will refer to such
specific superlattices as Dirac SL’s. The existence of gapless
states (sub-band crossing) in the continuum of superlattices
was briefly mentioned in Ref. [4] and their experimental
evidence was first obtained by Sirtori et al. [5] by means
of inter-sub-band absorption in (GA,In)As/(Al,In)As superlat-
tices. Going beyond these studies we address the following
issues here: (i) The occurrence of a linear dispersion with an
associated Dirac point is discussed. (ii) The change in the
parity property of the SL eigenstates and of their associated
Wannier functions when crossing the Dirac point by a small
change in the thicknesses is established. (iii) The stability of
the Dirac point with respect to the electron in-plane motion,
which is nontrivial as the longitudinal and in-plane motions
are coupled in general, is discussed. Furthermore we present
our results for the inter-sub-band magnetoabsorption where
the Dirac SL’s should be best evidenced.

II. ANALYTICAL RELATION FOR A DIRAC POINT

Within the present work we consider a binary SL made of
a periodic stacking of layers A (well-acting material) and B
(barrier-acting material) with thicknesses LA, LB . We denote
d = LA + LB as the SL period. We use parabolic dispersion
relations in both kinds of layers characterized by effective
masses mA, mB in the well and barrier, respectively [6]
(including band nonparabolicity is doable if requested but

*francesca.carosella@lpa.ens.fr

cumbersome and does not bring any new feature to the linear
dispersion problem1). We choose the energy origin at the
bottom of the conduction band of the well-acting material
and call Vb the barrier height. We note q the SL wave vector
and concentrate on the electron motion along the growth axis
for states that are propagating in both kinds of layers (ε � Vb).
The superlattice dispersion relation for a zero in-plane wave
vector, i.e., at the sub-band edge, is therefore [6]:

cos(qd) = cos(kALA) cos(kBLB)

− 1

2

(
ξ + 1

ξ

)
sin(kALA) sin(kBLB), (1)

where

ξ = kAmB

mAkB

, kA =
√

2mAε

�2
, kB =

√
2mB(ε − Vb)

�2
.

In Eq. (1) one sees immediately that the energies εjj ′ which
fulfill

kALA = jπ, kBLB = j ′π (2)

with j and j ′ integers are solutions of the equation. If j + j ′
is even (odd) these energies are associated with qd = 0 (qd =
π ). This double Fabry-Perot condition was mentioned to be
associated with zero band gap in the SL dispersion relations
[4,5,7]. This implies a definite relationship between LA, LB

and Vb:

mBj 2π2

mAL2
A

− 2mBVb

�2
= j ′2π2

L2
B

. (3)

Hence, for masses that are not too different, LB has to
be larger than LA if j = j ′. We show in Fig. 1 the LB

1In the case of InAs/GaSb superlattices where the nonparabolicity
is a mandatory ingredient to understand the hybridization between
the InAs electrons states and the GaSb light hole states, all the results
discussed in terms of Fabry-Perot conditions as well as of linear
dispersions apply. The only ingredient that changes in Eq. (1) is the
definition of the effective masses mA and mB , which must account
for nonparabolicity effects [6].
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FIG. 1. (Color online) Barrier (LB ) versus well (LA) thickness
for the j = j ′ = 1 resonance condition (dashed line) and for the
j = 1, j ′ = 2 resonance condition (continuous line).

versus LA curve for j = j ′ = 1, and j = 1 and j ′ = 2 using
the material parameters mA = 0.07m0, mB = 0.076m0, Vb =
80 meV. These parameters correspond roughly to GaAs/Ga0.89

Al0.11As SL’s. A low barrier height will ensure that the
Dirac bands can be easily optically probed and will affect
significantly the carrier dynamics in the SL. In this work
we will show the results of the calculations for two Dirac
SL’s structures with the parameters indicated above and
either with LA = 7 nm and LB = 12.92 nm (satisfying the
resonance condition j = j ′ = 1), or with LA = 6.6 nm and
LB = 21.37 nm (satisfying the resonance condition j = 1,
j ′ = 2).

The very fact that both sines in Eq. (1) vanish when the
resonance conditions [Eq. (2)] are satisfied implies that close
to an energy εjj ′ the dispersion relations will be linear either
in the vicinity of q = 0 or q = π/d and degenerate in one of
these points. In fact letting ε = εjj ′ + η, with η very small,
for j + j ′ odd and q = π/d − Q, with Qd small and positive,
there is

η2 = Q2d2

Gjj ′
,

Gjj ′ = m2
BL4

B

�4j ′2π2
+ m2

AL4
A

�4j 2π2

+
(

jmBLB

j ′mALA

+ j ′mALA

jmBLB

)
mAmBL2

AL2
B

�4jj ′π2
(4)

On the other hand for j + j ′ even, in the vicinity of q = 0, we
find a similar formula:

η2 = q2d2

Gjj ′
, (5)

where Gjj ′ is the same as in Eq. (4). Hence, in contrast to
a widespread belief, the dispersion relations of binary SL’s
can be linear in q in the vicinity of either the Brillouin zone
center or the zone boundary provided the double Fabry-Perot
conditions are fulfilled. The effective velocity corresponding to
this linear dispersion close to qd = π is 4.6 × 105m/s for the
Dirac SL with j = 1,j ′ = 2 resonance. This average velocity
for a |p,q〉 SL state is equal to 〈p,q| pz

m0
|p,q〉 and coincides

numerically with 1
�

∂εp

∂q
in spite of the inapplicability of the

usual one-band approximation to this degenerate case.
Note that for an arbitrary superlattice it is known [8] that the

dispersion relations are the solution of the following equation:

cos(qd) = f (ε), (6)

where f (ε) is a function of the energy. Hence, to get Dirac
bands in an arbitrary superlattice, the function f (ε) must be
such that in the vicinity of εc = ε(q = 0) or εb = ε(q = π/d)
there is

f (ε) ≈ 1 − (ε − εc)2

δ2
c

or f (ε) ≈ −1 + (ε − εb)2

δ2
b

, (7)

where δc and δb are constants. It is difficult to be more specific
on general grounds since f (ε) is fixed by the potential profile
in the superlattice unit cell. However, we note that the function
f (ε) is usually larger or much larger than one when the electron
wave is evanescent, thereby preventing Eq. (7) to be realized. In
addition, we wish to point out that the existence of Dirac bands
in a given superlattice family [which differs by the strength of
the potential or by the period length as found, e.g., in the
cosine-shaped potential V (z) = Vb cos( 2πz

d
)] is by no means

guaranteed. Let us indeed consider the Dirac comb:

V (z) = V0L
∑

n

δ(z − nd), (8)

where L is a length and d the period. It is easily found that

cos(qd) = f (ε) = cos(kd) + m∗VbL

�2

sin(kd)

kd
,

k =
√

2m∗ε
�2

. (9)

It is still true that kd = mπ , with m an integer, ensures
f (εm) = (−1)m. However, at these energies it is impossible
to simultaneously ensure df

dε
(εm) = 0. Hence, in general, a

one-dimensional potential does not always admit Dirac bands.
For that reason in the present article we study only the specific
case of flat band binary superlattices.

We show in Fig. 2 the flat band binary SL dispersion
relations εp(q) calculated for a j = j ′ = 1 resonance and for a
j = 1, j ′ = 2 resonance (the parameters for each structure are
indicated above). As expected from the analytical calculation
[Eq. (4) and Eq. (5)] we find sub-bands with linear dispersions
and degenerate at q = 0 or q = π/d. Specifically, for the SL
with j = j ′ = 1 resonance the second and third sub-bands
are degenerate at q = 0 and show linear dispersions close to
the zone center. Conversely, for the SL with j = 1, j ′ = 2
resonance the third and fourth sub-bands are degenerate at
q = π/d and are Dirac-like close to the zone boundary. In
both cases there is a single sub-band bound in the well that
exhibits very little dispersion (less than 1 meV). The other
sub-bands are regular SL sub-bands.

III. WANNIER FUNCTIONS AT THE DIRAC POINT

Moreover, the realization of a resonance condition in a
SL influences dramatically the symmetry properties of the SL
eigenstates and of their associated Wannier functions. Wannier
functions can be constructed from the Bloch states, for SL’s

235301-2
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π π

FIG. 2. Dispersion relations for a GaAs/Ga(Al)As SL verifying the resonance condition (a) j = j ′ = 1 (Vb = 80 meV, LA = 7 nm,
LB = 12.92 nm) and (b) j = 1,j ′ = 2 (Vb = 80 meV, LA = 6.6 nm, LB = 21.37 nm). Notice that in both cases the first sub-band is bound
and is almost dispersionless. In (a) the second and third sub-bands are Dirac-like, while in (b) the third and fourth sub-bands are Dirac-like.

see, e.g., Refs. [9,10], where the optimization of their spatial
localization was addressed. We show in Fig. 3 a comparison
between the Wannier functions of a Dirac SL (j = j ′ = 1)
and those of SL’s with nearby layer thicknesses, the SL period
being kept the same. On general grounds [9,10], the Wannier
functions for a superlattice with inversion symmetry should
be symmetric or antisymmetric with respect to one of the
symmetry points (center of well or center of barrier). While
the Wannier function of the bound sub-band is about the same
in the three SL’s, being symmetrical with respect to the center
of the well, the symmetry property of sub-bands with energy
larger than Vb are interchanged in the sequence of SL’s. In the
case of the wider well (LA = 8 nm), the Wannier function of
the second sub-band is antisymmetric with respect to the center
of the well, and the Wannier function of the third sub-band is
symmetric with respect to the center of the barrier. Reducing
the well width (and increasing the barrier width) increases
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FIG. 3. (Color online) Wannier functions calculated according to
the procedure of Ref. [10] for a sequence of superlattices, where the
middle one with LA = 7 nm, LB = 12.92 nm satisfies the Dirac
condition.

the energy of the well-like state and decreases the energy
of the barrierlike state, so that the sequence is opposite at
LA = 6.5 nm. In between (for the Dirac SL at LA = 7 nm)
the symmetries of these Wannier functions are becoming ill
defined. Furthermore, the Wannier functions for the Dirac SL
(evaluated by the procedure of Ref. [10]) are badly localized
and we cannot observe an exponential decay numerically. This
is a direct consequence of the fact that the localization of
Wannier states is related to the width of the band gap [9]. Thus
general calculation schemes, such as the one given in Ref. [10],
are only valid for isolated bands.

IV. ABSORPTION SPECTRUM

Linear dispersions imply a number of distinctive features.
For instance, the inter-sub-band absorption line shape will be
drastically modified compared to the usual divergences at sub-
band extrema q = 0 or q = π/d expected for a 1D free particle
with quadratic dispersion relation [11]. In the following, we
discuss the inter-sub-band absorption starting from the ground
sub-band of the superlattice. We assume a strong magnetic field
has been applied parallel to the growth axis in order to Landau
quantize the in-plane motion (ωc ≈ 16.4 meV at B = 10 T
for GaAs). Under such circumstances, the electronic motion
is free only along the growth axis. The optical selection rules
are that the electric vector of the wave has to be parallel to
the growth axis and that the Landau quantum numbers are
conserved for the in-plane motion and that the transitions are
vertical in the reciprocal space.

We show in Fig. 4 the q dependence of the modulus of
the inter-sub-band pz matrix element (from ground sub-band
to higher-energy sub-bands) for the 6.6 nm/21.37 nm SL
satisfying the j = 1, j ′ = 2 resonance condition [see Fig. 2(b)
for the dispersion relation]. In this superlattice there exists an
almost dispersionless bound sub-band E1 at about 34 meV. The
first continuum sub-band E2 is regular; hence the dispersions
are parabolic in the vicinity of both q = 0 and q = π/d

and there is no degeneracy. Thus, at q = 0 (q = π/d) the
superlattice wave functions should have the same (opposite)
parities with respect to the centers of the layers [12]. As a
result the pz inter-sub-band matrix elements vanish at q = 0.
This reasoning also applies to the other regular sub-bands. For

235301-3
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FIG. 4. (Color online) Squared dipole matrix element (pz) be-
tween the ground bound sub-band E1 and the continuum sub-bands
E2, E3, E4, E5. The Dirac sub-bands are E3 and E4. The calculations
are done for the SL satisfying j = 1, j ′ = 2 resonance condition.

the Dirac sub-bands with linear dispersions near q = π/d,
we have found no such cancellations. Instead we find the
same matrix elements at q = π/d as if sub-band 4 were the
continuation of sub-band 3.

The inter-sub-band absorption line shape for the 6.6 nm/

21.37 nm SL is shown in Fig. 5. This absorption spectrum
is numerically calculated by replacing the delta function
expressing the energy conservation by a Lorentzian function
with a broadening parameter of 0.2 meV. This choice of
broadening parameter is kept through all the paper. In Fig. 5
the first peak corresponds to E1 → E2 optical transitions
around q = π/d. The transition E1 → E2 at q = 0 is parity
forbidden and thus the associated absorption line is absent.
The second peak corresponds to the E1 → E3 transition at
q = 0. It extends up to 129.1 meV, which is the E1 → E4

transition at q = 0. There is no hint of any feature around
89.2 meV, which would correspond to the transitions E1 → E3

and E1 → E4 at q = π/d. Indeed, it can be readily checked
that in the vicinity of this energy the absorption line shape is a
plateau (with the same amplitude before and after the critical
energy). Finally, the E1 → E5 transition starts smoothly at
q = 0 (Fig. 4) because it is parity forbidden at the zone center
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FIG. 5. Absorption spectrum from ground sub-band towards
higher energy sub-bands for the 6.6 nm /21.37 nm SL (j = 1, j ′ = 2).

and ends up with a small singularity in the absorption spectrum
at 184.7 meV, because the dipole matrix elements of E1 → E5

is very small for any q. A similar analysis could be made
for the absorption spectrum of the superlattice satisfying the
j = j ′ = 1 resonance condition.

It is interesting to compare what happens to the optical
spectra when the layer thicknesses are changed slightly around
those that realize a Dirac SL. Figure 6 shows the inter-sub-band
absorption for the Dirac SL with well thickness LA = 7 nm
and for two other SL’s having the same period length 19.92 nm
but well thickness of respectively 6.5 nm and 8 nm (where

FIG. 6. Comparison between the absorption coefficient of three
SL’s with the same period d = 19.92 nm. The Dirac SL corresponds
to j = j ′ = 1 and LA = 7 nm.
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π

FIG. 7. Absorption spectrum (left) and pz matrix element (right) for the optical transition from the lowest energy Dirac band to the higher
energy one of the 7 nm /12.92 nm SL.

no resonance condition is satisfied). As shown in Fig. 2(a)
the Dirac SL satisfying the j = j ′ = 1 resonance condition
has sub-bands E2 and E3 degenerate at q = 0 and located
77.8 meV above the ground sub-band. The three SL’s share
common optical features that are associated with the E1 →
E2 and E1 → E3 optical absorption at q = π/d (peaks at
about 51 meV and 131 meV). Near 77 meV the SL’s with
LA = 6.5 nm and 8 nm show a transparency window. The
6.5 nm SL has a parity forbidden transition E1 → E2 at q = 0
at the beginning of the transparency region while this q = 0
transition is allowed for the next absorption band (peak at
80 meV). The reverse situation takes place for the SL with
LA = 8 nm, the q = 0 optical transition being allowed (peak
at 72.8 meV) then forbidden on each sides of the transparency
region. The Dirac SL with LA = 7 nm resolves this parity
change by showing no particular optical features (in particular
no transparency region) at about 77 meV where the E1 → E2

absorption ends and the E1 → E3 absorption starts.
Optical transitions between the Dirac sub-bands are allowed

but weak as shown in the left panel of Fig. 7 for the j = j ′ = 1
SL. The corresponding pz matrix element is shown in the
right panel of Fig. 7 and vanishes both at q = 0, because the
degeneracy point is shown at the zone center, and at q = π/d

for parity reasons.

V. DISCUSSION

A. Stability against varying in-plane wave vector

An interesting question is to examine whether the sub-band
edge persists at nonzero in-plane wave vector [7]. Although
the effective mass mismatch is small in the material we have
chosen, the existence of degenerate bands either at q = 0
or q = π/d may invalidate the usual perturbative treatments.
When there is a position-dependent effective mass (piecewise
constant), we need to find the eigenstates of the following
Hamiltonian in presence of a magnetic field:

H = pz

(
1

2m(z)

)
pz + Vb(z) + 1

2m(z)

[
p2

x + (py + eBx)2
]
.

(10)

Sensu stricto, H is not separable in z and (x,y). However,
one feels that if the effective masses are not too different this
nonseparability is not so important. Let us indeed split H into
a separable H0 and a term supposed to be small. We let

1

m(z)
=

〈
1

m

〉
+

(
1

m(z)
−

〈
1

m

〉)
, (11)

where 〈 1
m

〉 is not yet defined. The difference inside parentheses
is expected to be small. Under such a circumstance we get:

H = H0 + δH,

H0 = pz

(
1

2m(z)

)
pz + Vb(z) + 1

2

〈
1

m

〉[
p2

x + (py + eBx)2],
δH = 1

2

(
1

m(z)
−

〈
1

m

〉)[
p2

x + (py + eBx)2
]
. (12)

The eigenstates and eigenvalues of H0 are known:

〈−→r |n,ky,p,q〉 = 1√
Ly

exp(ikyy)φn(x + λ2ky)χp,q(z),

ε0
n,ky ,p,q = εp(q) + (n + 1/2)�〈ω〉, (13)

where 〈ω〉 = eB〈 1
m

〉 and λ =
√

�

eB
. Now, in order to make

the effects associated with δH to be as small as possible, we
impose that the first-order correction to ε0

n,ky ,p,q vanishes:

〈n,ky,p,q| δH | |n,ky,p,q〉

=
(

n + 1

2

)
�eB 〈p,q|

(
1

m(z)
−

〈
1

m

〉)
|p,q〉

=
(

n + 1

2

)
�〈ω〉

(
〈p,q| 1

m(z)〈 1
m

〉 |p,q〉 − 1

)
= 0. (14)

Hence, the unknown 〈 1
m

〉 should be chosen such that 〈 1
m

〉 =
〈p,q| 1

m
|p,q〉 if one wants the lack of separation between

z and (x,y) motion to be minimized. In practice, it is
enough to ensure the equality in one elementary cell since
the perturbation will collect all the cells’ responses but also
since the eigenstates are Bloch states. Implicit in the previous
reasoning is the nondegeneracy of the state |p,q〉. This is the
case for most of the SL eigenstates except for the Dirac states.
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In the latter case we shall a priori define a 〈 1
m

〉 = LA

mA
+ LB

mB
and

study the effect of δH between two degenerate Dirac states.
For the sake of definiteness, we shall study the effect of δH

at q = π/d for a j = 1, j ′ = 2 resonance of the unperturbed
Hamiltonian. Due to the twofold degeneracy, there is some
room to define the two eigenfunctions where to project δH .
These are

χ
(1)
π/d = M

{− sin πu
LA

−LA

2 � u � LA

2

+ cos 2πv
LB

−LB

2 � v � LB

2

,

(15)

χ
(2)
π/d = M

{− cos πu
LA

−LA

2 � u � LA

2

+ξ sin 2πv
LB

−LB

2 � v � LB

2

,

where u and v refer to the position of the electron in layer
A and B respectively and measured from the centers of the
layers. M and N are constants obtained by normalizing the
states in a SL period. With these wave functions one finds
readily that δH has the following matrix elements:

〈χ (1)| δH |χ (1)〉
= 〈χ (1)| δH |χ (2)〉 = 0, 〈χ (2)| δH |χ (2)〉

=
(

n + 1

2

)
�〈ω〉〈

1
m

〉 LALB

LA + LB

(
1

mA

− 1

mB

)
1 − ξ 2

LA + ξ 2LB

(16)

with mA = 0.07m0, mB = 0.077m0, where m0 is the free
electron mass, LA = 6.6 nm, LB = 21.3 nm there is ξ = 1.752
and 〈χ (2)| δH |χ (2)〉 = A(n + 1

2 )�〈ω〉 with A = 1.41 × 10−2.
At B = 10T and for n = 2 there is:(n + 1

2 )�〈ω〉 = 38.3 meV.
Hence the shift is −0.5 meV. This value is indeed very small
(actually much smaller than a typical broadening). Thus, for
the material parameters considered here the stability of Dirac
feature against the in-plane wave vector is ensured. Note that
the conclusion may have to be reconsidered if the effective
mass mismatch is more severe like in Ga(In)As/Al(In)As

B. Impact on Bloch oscillations

The shape of the Dirac bands suggests in a semiclassical
scenario of the Bloch oscillations (�dq/dt = −eF , with F the
electric field) that Dirac bands should be associated with an
angular Bloch frequency of eFd/2�. This is half the common

value, as the carrier need to transverse two times the Brillioun
zone, before the origin is reached again. However, it is not at
all obvious that a semiclassical analysis applies to a situation
where there is no gap between the two bands [13,14]. In order
to observe Bloch oscillations, a sufficiently large electric field
is needed, so that the Bloch frequency surpasses the scattering
rate. This would lead to large Zener tunneling [15] for the small
gaps in the superlattices considered and thus makes the obser-
vation difficult in actual semiconductor superlattices. Optical
lattices [16] with their absence of scattering may render the
observation of Wannier quantization in Dirac SL’s much easier.

C. Dirac bands and inversion symmetry

It is worth pointing out that the existence of Dirac bands
in a binary SL is not related to the fact that the SL potential
energy is centrosymmetric with respect to the center of one or
the other layer that build the SL unit cell. Actually, we have
found Dirac bands in the case of a polytype (ternary ABC
superlattice) where the SL potential is noncentrosymmetric.
In quaternary superlattices, one may even find a Dirac band
between the first two bands, as indicated by numerical findings
in Fig. 5 of Ref. [17].

VI. CONCLUSION

Previous works proved the existence of one-dimensional
gapless Dirac bands in semiconductor superlattices provided
multiple Fabry-Perot conditions are fulfilled. In the present
work we show that the dispersion relations close to the
crossing point are linear. These Dirac SL’s lay at the boundary
of the SL parameters where the symmetry of the Wannier
function changes. The existence of gapless Dirac bands implies
interesting optical features that partly result from density of
states considerations but more importantly reflect the change
in the symmetry properties of the SL states. We also discussed
the stability of the properties of Dirac SL’s against varying
in-plane wave vector.
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Physique, Les Ulis, 1988).

[5] C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, Appl. Phys.
Lett. 64, 2982 (1994).

[6] G. Bastard, Phys. Rev. B 24, 5693 (1981); ,25, 7584 (1982).

[7] G. Bastard, J. Brum, and R. Ferreira, in Semiconductor Het-
erostructures and Nanostructures, Solid State Physics, Vol. 44,
edited by H. Ehrenreich and D. Turnbull (Academic Press, New
York, 1991), pp. 229–415.

[8] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt,
Rinehart and Winston, New York, 1976).

[9] W. Kohn, Phys. Rev. 115, 809 (1959).
[10] A. Bruno-Alfonso and D. R. Nacbar, Phys. Rev. B 75, 115428

(2007).
[11] M. Helm, W. Hilber, T. Fromherz, F. M. Peeters, K. Alavi, and

R. N. Pathak, Phys. Rev. B 48, 1601 (1993).
[12] P. Voisin, G. Bastard, and M. Voos, Phys. Rev. B 29, 935 (1984).

235301-6

http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1088/0268-1242/25/6/063001
http://dx.doi.org/10.1088/0268-1242/25/6/063001
http://dx.doi.org/10.1088/0268-1242/25/6/063001
http://dx.doi.org/10.1088/0268-1242/25/6/063001
http://dx.doi.org/10.1147/rd.141.0061
http://dx.doi.org/10.1147/rd.141.0061
http://dx.doi.org/10.1147/rd.141.0061
http://dx.doi.org/10.1147/rd.141.0061
http://dx.doi.org/10.1063/1.111378
http://dx.doi.org/10.1063/1.111378
http://dx.doi.org/10.1063/1.111378
http://dx.doi.org/10.1063/1.111378
http://dx.doi.org/10.1103/PhysRevB.24.5693
http://dx.doi.org/10.1103/PhysRevB.24.5693
http://dx.doi.org/10.1103/PhysRevB.24.5693
http://dx.doi.org/10.1103/PhysRevB.24.5693
http://dx.doi.org/10.1103/PhysRevB.25.7584
http://dx.doi.org/10.1103/PhysRevB.25.7584
http://dx.doi.org/10.1103/PhysRevB.25.7584
http://dx.doi.org/10.1103/PhysRev.115.809
http://dx.doi.org/10.1103/PhysRev.115.809
http://dx.doi.org/10.1103/PhysRev.115.809
http://dx.doi.org/10.1103/PhysRev.115.809
http://dx.doi.org/10.1103/PhysRevB.75.115428
http://dx.doi.org/10.1103/PhysRevB.75.115428
http://dx.doi.org/10.1103/PhysRevB.75.115428
http://dx.doi.org/10.1103/PhysRevB.75.115428
http://dx.doi.org/10.1103/PhysRevB.48.1601
http://dx.doi.org/10.1103/PhysRevB.48.1601
http://dx.doi.org/10.1103/PhysRevB.48.1601
http://dx.doi.org/10.1103/PhysRevB.48.1601
http://dx.doi.org/10.1103/PhysRevB.29.935
http://dx.doi.org/10.1103/PhysRevB.29.935
http://dx.doi.org/10.1103/PhysRevB.29.935
http://dx.doi.org/10.1103/PhysRevB.29.935


ONE-DIMENSIONAL MASSLESS DIRAC BANDS IN . . . PHYSICAL REVIEW B 89, 235301 (2014)

[13] G. Bastard, R. Ferreira, S. Chelles, and P. Voisin, Phys. Rev. B
50, 4445 (1994).

[14] A. M. Bouchard and M. Luban, Phys. Rev. B 52, 5105 (1995).
[15] S. Glutsch, Phys. Rev. B 69, 235317 (2004).

[16] E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, and
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