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Abstract—A single antenna based virtual antenna array at the
receiver can be used to find direction of different incoming radio
signals impinging at the receiver. In this paper, we investigate
the performance of random 3D virtual antenna arrays for DoA
estimation. We have computed a Cramér-Rao Lower Bound
(CRLB) for DoA estimation if the true antenna positions are
not known, but these are estimated with an uncertainty. Position
displacement is estimated with an extended Kalman filter (EKF)
by using simulated data samples of acceleration and rotation rate
which are corrupted by stochastic errors, such as, white Gaussian
noise and bias drift. Furthermore, the effect of position estimation
error on the DoA estimation performance is evaluated using the
CRLB. The results show that the number of useful elements in
the antenna array is limited, because the standard deviation of
the position estimation error grows over time.

Index Terms—Virtual Antenna Array, Direction of Arrival,
Inertial Measurement Unit, Extended Kalman Filter, CRLB

I. INTRODUCTION

In this paper, we investigate the performance of random
3D antenna arrays for direction of arrival (DoA) estimation.
The array is formed using a single antenna element that
is moved to different locations to form a so-called virtual
antenna array. An inertial measurement unit (IMU) can be
used to track the antenna positions as shown in [1], [2],
where it has also been demonstrated that DoA estimation can
be performed using such virtual antenna arrays. Since the
antenna position is estimated from IMU measurements which
are corrupted by noise, the antenna positions are known with
an uncertainty associated with each antenna location. This
work will describe that using such random antenna arrays,
the number of useful antenna elements in the virtual antenna
array is limited; because, the standard deviation of the antenna
position estimation error grows over time. For a fixed antenna
array geometry and signal to noise ratio (SNR), the variance of
any unbiased DoA estimator can be lower bounded by a well
known bound known as Cramér-Rao Lower Bound (CRLB).
Different types of antenna arrays (linear arrays, 2D, and 3D
arrays) have been suggested in the literature for different
applications and their performance is evaluated with the help
of CRLB [3]. Similarly, Cramér-Rao Bound can be used to
have a lower bound on the performance of any unbiased
estimator in the presence of antenna location uncertainties [4].

The contribution of this paper is to determine the perfor-
mance limits of DoA estimation using low cost IMUs to make

random antenna arrays. In the first part, we have simulated a
six degrees of freedom (6DoF) navigation system performance
using an IMU for random movements in 3D space. Accelera-
tion and rotation rate data samples are simulated for a random
3D movement and the simulated data is then corrupted by
stochastic errors, such as, white Gaussian noise and bias drift.
Position displacement is estimated in the presence of these
stochastic errors using an extended Kalman filter (EKF). In the
second part, the effect of position errors on the DoA estimation
performance is evaluated and the results are shown in the form
of CRLB.

The paper is organized as follows. Firstly, a brief overview
of inertial measurement unit (IMU) is given in section II.
Section III describes the state space model to estimate the
position displacement from the IMU measurements using the
EKF. The Cramér-Rao lower bound on the DoA estimates is
given in section IV. Results and discussion on the results is
given in section V. Finally, conclusion is drawn in section VI.

II. INERTIAL MEASUREMENT UNITS

Inertial measurement units (IMUs) are often used as an
integral part of navigation systems. An IMU today usually has
orthogonal 3-axis accelerometers and 3-axis rate gyroscopes
and it can provide inertial measurements of acceleration and
rotation rate which are corrupted by noise. From the IMU
measurements, by performing so-called double integration of
the acceleration, also known as deadreckoning, the position
displacement can be estimated. However, the IMU measure-
ments should not directly be used for longer integration times
as the different noise sources present in the measurements
give rise to accumulated error upon integration. This requires
that the position errors should be corrected periodically after a
certain amount of integration time. Alternatively, the estimated
position can be used for small integration times for which the
uncertainty of the estimated position remains within a specified
limit.

The noise/error sources in IMU measurements can be cate-
gorized into two main categories. The first category covers
fixed or deterministic error sources and the second covers
random or stochastic error sources. The first type of errors,
such as cross-axis misalignment, scale factor, and non-linearity
errors, can be determined by calibration before using the IMU
for measurements, as suggested in [5]. Stochastic error sources



can be quantified by using a time domain analysis technique
called Allan variance (AV) or a frequency domain analysis
using power spectral decomposition (PSD) analysis [6], [7].

The Allan variance is a time domain technique originally
developed by David W. Allan in 1966 to investigate the
frequency stability of oscillators [8]. It has been successfully
applied to model the different measurement errors in rate
gyroscope and accelerometer measurements [6]. More details
about Allan variance can be found in [9], [10]. In this work we
will be using Allan variance analysis to quantify the stochastic
errors present in the IMU measurements as shown in section
III-C.

III. EXTENDED KALMAN FILTER

The Kalman filter has remained a popular choice for nav-
igation solutions since its inception in 1960 [11]. Over time,
various extensions have been proposed to the standard Kalman
filter for specific applications. In this work we are using
an extended Kalman filter, as the process dynamics and the
measurement relationship to the process that is to be estimated
is nonlinear. A brief overview of Kalman filters is given in
[12].

The state vector that is to be estimated using the extended
Kalman filter is given as:

x = [p,v,a,ab,q,wb]T , (1)

where p=[px, py, pz]
T is the position displacement estimated

in the world coordinate system. Similarly, v ∈ R3 and a ∈ R3

represent the three axis estimated velocity and acceleration in
the world coordinate system. q=[q0, q1, q2, q3]T is the unit
quaternion that represents the orientation of the device w.r.t.
the world coordinate system. Also, ab ∈ R3 and wb ∈ R3 are
used to estimate the acceleration and rotation rate bias in the
acceleration and rotation rate measurements, respectively.

A. State Update

The acceleration state in the world coordinate system is
here modeled as a first order Gauss-Markov process. Let
x̃=[p,v,a]T , then the process dynamics for the position, ve-
locity, and acceleration states defined in the world coordinate
system are given by [13]:

x̃k+1 = F̃x̃k + G̃νa,k, (2)

where F̃ and G̃ are defined as

F̃ =

I3 TsI3 (αTs − 1 + e−αTs)/α2I3

03 I3 (1− e−αTs)/αI3

03 03 e−αTsI3

 , (3)

G̃ =

(1− αTs + α2 T
2
s

2 − e
−αTs)/α3I3

(αTs − 1 + e−αTs)/α2I3

(1− e−αTs)/αI3

 , (4)

where Ts is the sample time, I3 is a 3×3 identity matrix, 03

is a 3×3 matrix of all zeros, α=1/τa is the inverse of the
time correlation of the acceleration, and νa is a zero mean
white Gaussian noise sequence, which drives the acceleration
process, with variance σ2

νa .

The state dynamics for the quaternion can be expressed as
[14], [15]

qk+1 = e
Ts
2 Sw(wtruek )qk, (5)

where wtrue is the actual rotation rate.The measured rotation
rate from the IMU is modeled as

wmeas = wtrue + wb + ew, (6)

where wmeas ∈ R3 is the measured rotation rate that is
the sum of actual rotation rate wtrue, bias in the sensor
measurement wb, and measurement noise ew. The latter is
modeled as zero mean white Gaussian noise with variance
σ2
w. Thus, the state dynamics for the quaternion is [14], [15]

qk+1 = e
Ts
2

Sw(wmeask )qk−
Ts

2
Sq(qk)wb,k−

Ts

2
Sq(qk)ew,k, (7)

The bias states for acceleration and rotation rates are mod-
eled as first order Gauss-Markov processes. In discrete-time
they can be modeled as

ab,k+1 = ad,aab,k + bd,aνab,k, (8)
wb,k+1 = ad,wwb,k + bd,wνwb,k, (9)

where ad,a = e
− Ts
τab and bd,a =

∫ Ts
0
e
− t
τab dt. τab is the time

constant for the acceleration bias drift process. Furthermore,
νab and νwb represent white noise processes with variances
σ2
νab

and σ2
νwb

, respectively. These white noise processes drive
the bias processes and their variances are given by

σ2
νab

=
1− a2

d,a

b2d,a
σ2
ab
, (10)

σ2
νwb

=
1− a2

d,w

b2d,w
σ2
wb
, (11)

where σ2
ab

and σ2
wb

represents the variances of the accelerom-
eter and rate gyroscope bias drift processes respectively.

B. Measurement Update

The acceleration state is related to the measurement through
a nonlinear function as

ameask = Rq(qk)(ak + g) + ab,k + ea,k, (12)

where ameas ∈ R3 is the measured acceleration in the body
coordinate system, Rq(q) is the rotation matrix to transform
the estimated acceleration that is in the world coordinate
system to the body coordinate system, and g is acceleration
in the world coordinate system due to gravity and is defined
as g=[0, 0, 9.82]T . Also, the measured acceleration contains
bias ab as modeled in (8) and white Gaussian noise ea with
variance σ2

a.

C. Simulation Parameters and Position Estimation

Using the Allan variance analysis, the stochastic error
sources present in the IMU measurements are determined by
recording static IMU data over a period of 8 hours. Fig. 1
shows the measured Allan deviation (AD) curve for x-axis
accelerometer and for x-axis rate gyroscope, where Allan
deviation is computed as the square root of the Allan variance.



For modeling the white noise and bias drift processes used
in the EKF, it is assumed that errors on the y-axis and z-
axis accelerometer are similar to the x-axis accelerometer.
The same is assumed for the rate gyroscope measurements.
Furthermore, it is also assumed that the deterministic errors
are completely removed by calibration while the effect of
stochastic errors is present on the position estimates.

From the Allan deviation plot of the accelerometer and rate
gyroscope data, we can identify that white Gaussian noise
and bias instability are the dominant error sources for short
averaging times. The standard deviation for the accelerometer
white noise is determined as σa=VRW/

√
Ts, where VRW

is defined as the velocity random walk parameter and its
numerical value can be obtained from the Allan deviation plot
when the averaging time equals to 1. The slope of the Allan
deviation plot equals to zero when the averaging time is 115 s.
This sets the time constant for the bias drift as τab=115 s and
the standard deviation for the process noise for bias drift is
found as σab=AD(τab)/0.664, where AD(τab) represents the
numerical value of the Allan deviation plot when the averaging
time equals to τab . Similarly, from the Allan deviation plot
of the gyroscope data, we can obtain the standard deviation
of the white noise process as well as the time constant for
the bias drift process and the standard deviation for the white
noise that drives the bias drift process. The sampling time (Ts)
is set as 20 ms and the numerical values for the noise pro-
cesses are obtained as: σa=4.15×10−3 m/s2, σw=0.115 ◦/s,
σab=2.85×10−4 m/s2, and σwb=7.5×10−3 ◦/s. Also, τwb is
estimated as 115 s.

To simulate a random antenna array in 3D, acceleration as
well as rotation rate data samples are generated using the
Singer model [13]. This model is a maneuver model often
used to model target maneuvering. As the antenna is moved
by holding it in a hand to follow any random trajectory,
the Singer model can be used to model such a movement.
The Singer model states that the acceleration or rotation rate
follows a first order Gauss-Markov process. In discrete time,
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Fig. 1. Measured Allan deviation (AD) plot for x-axis accelerometer and
x-axis rate gyroscope data. AD is measured in m/s2 for accelerometer data
and ◦/s for rate gyroscope.

it can be described as ak+1=adak + bdνak , where ad=e−
Ts
τa

and bd=
∫ Ts

0
e−

t
τa dt. τa is the maneuver time constant for the

accelerometer data. Also, νak
is a white noise sequence with

variance σ2
νa=

1−a2d
b2d

σ2
acc, where σ2

acc=
a2max

3 (1 + 4Pmax−P0).
amax is the maximum acceleration/deceleration during the
maneuver, whereas, Pmax and P0 models the probability of
having maximum acceleration/deceleration and zero accel-
eration during the maneuver [13]. We have used τa=2.5 s,
amax=1 m/s2, P0=0.99, and Pmax=0.01 for the acceleration
data samples. For rotation rate data, the parameter for max-
imum rotation rate is set to wmax=600 ◦/s, while the other
parameters are the same as for the acceleration. Acceleration
and rotation rate data samples are then added with noise
which is simulated using the values obtained from Allan
deviation plots as described above. Position displacement is
then estimated along-with the other states mentioned in (1)
using an EKF. Fig. 2 shows a typical plot for the position
estimation error standard deviation that is estimated using the
EKF. From Fig. 2, it can be noted that the standard deviation in
the estimated antenna position, as expected, grows over time.
Also, the uncertainty in the x- and y-axes is similar while
the z-axis has lower uncertainty as compared to the x- and y-
axes. For any small tilt error (ζ) in the device orientation, the
residual acceleration due to gravity on x- and y-axis would be
approximated by sin(ζ) and along z-axis it would be cos(ζ).
Using small angle approximation, sin(ζ) = ζ and cos(ζ) = 1.
Therefore, as the gravity acceleration is along the z-axis, the
residual acceleration after removing acceleration due to gravity
would be larger along the x- and y-axes as compared to the
z-axis.

IV. CRAMÉR RAO LOWER BOUND FOR DOA ESTIMATION

In this section we will determine the CRLB for an antenna
array where the antenna elements are defined in 3D space
using Cartesian coordinates. Two different scenarios are con-
sidered to compute the CRLB. In section IV-A, the CRLB is
computed when true antenna positions are known and section
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Fig. 2. Position estimation error standard deviation from the EKF, x- and y-
axes have similar position estimation error std. deviation vs time while z-axis
has smaller std. deviation values as compared to the x- and y-axes.



IV-A provides the derivation of the CRLB when the antenna
positions are estimated with an uncertainty associated with
each antenna position.

A. CRLB with Known Antenna Positions

An incoming radio signal received from a narrowband far-
field source at an antenna array comprising of N isotropic
antenna elements can be defined as:

yr = αrs(φ, θ) + er, (13)

where yr ∈ CN×1 is the received signal vector, αr=aejb is
the complex amplitude of the received radio signal (where a is
the amplitude and b is the phase), er ∈ CN×1 is the complex
Gaussian white noise having covariance matrix Rr=σ

2
rI, and

s(φ, θ) is the array response vector and is given by:

s(φ, θ) = ejk(x cos(φ) sin(θ)+y sin(φ) sin(θ)+z cos(θ)), (14)

where x, y, and z are position coordinate vectors defining
the antenna elements in 3D space. Also, φ is the DoA of the
incoming radio signal in the azimuth whereas θ is the DoA in
the elevation, and k=2πλ .

The probability density function of the received signal can
be expressed as [3]

p(yr; Θ) =
1

πNdet(Rr)
e−(yr−αrs(φ,θ))HR−1

r (yr−αrs(φ,θ)),

(15)
where Θ=[a, b, φ, θ] are the unknown parameters. The Fisher
information matrix I(Θ) can then be found as:

I(Θ)ij = −Eyr [
∂2 ln p(yr; Θ)

∂Θi∂Θj
], (16)

where I(Θ)ij represents the (i, j)th element of the 4×4 Fisher
information matrix and i, j ∈ [a, b, φ, θ]. The expressions for
the different entries in the Fisher information matrix I(Θ) are
determined as shown in (17)-(23):

−Eyr [
∂2 ln p(yr; Θ)

∂a2
] =

2N

σ2
r

, (17)

−Eyr [
∂2 ln p(yr; Θ)

∂b2
] =

2Na2

σ2
r

, (18)

−Eyr [
∂2 ln p(yr; Θ)

∂φ2
] =

2a2

σ2
r

k2
N∑
n=1

A2
n, (19)

−Eyr [
∂2 ln p(yr; Θ)

∂θ2
] =

2a2

σ2
r

k2
N∑
n=1

B2
n, (20)

−Eyr [
∂2 ln p(yr; Θ)

∂b∂φ
] = −2a2

σ2
r

k

N∑
n=1

An, (21)

−Eyr [
∂2 ln p(yr; Θ)

∂b∂θ
] =

2a2

σ2
r

k

N∑
n=1

Bn, (22)

−Eyr [
∂2 ln p(yr; Θ)

∂φ∂θ
] = −2a2

σ2
r

k2
N∑
n=1

AnBn, (23)

where

An = (xn sin(φ)− yn cos(φ)) sin(θ), (24)
Bn = (xn cos(φ) + yn sin(φ)) cos(θ)− zn sin(θ).(25)

The remaining elements of the Fisher information matrix are
computed to be zero. The CRLB can then be obtained as the
inverse of the Fisher information matrix.

B. CRLB with Estimated Antenna Positions

If the true antenna positions are not known but we have
an estimate of the antenna position, e.g., for the nth antenna
element where n=1, 2, · · · , N , let’s assume (xn, yn, zn) cor-
responds to the true antenna position represented in the 3D
space and ∆xn,∆yn,∆zn are the position errors along the x-,
y-, and z-axis respectively. Then, the estimated position coor-
dinates can be represented as (xn+∆xn, yn+∆yn, zn+∆zn).
Furthermore, the position errors for the nth antenna element
are modeled as independent zero mean white Gaussian noise
processes with variances σ2

xn , σ2
yn , and σ2

zn , for the x-, y-,
and z-axis, respectively. In this case, the unknown parameters
would become 4 + 3N , and are shown in (26)

Θ = [a, b, φ, θ,

∆x1,∆y1,∆z1,∆x2,∆y2,∆z2, · · · ,∆xN ,∆yN ,∆zN ]
(26)

Therefore, we will have deterministic unknown parameters as
well as random unknown parameters. With random unknown
parameters, the Fisher information matrix is defined as [4]

I(Θ)ij = I1(Θ)ij + I2(Θ)ij , (27)

where i, j ∈ Θ, set of unknown parameters as shown in (26),
and the two different elements of the Fisher information matrix
are expressed as

I1(Θ)ij = −Eyr,Θ[
∂2 ln p(yr; Θ)

∂Θi∂Θj
] (28)

I2(Θ)ij = −EΘ[
∂2 ln p(Θ)

∂Θi∂Θj
]. (29)

The elements of the Fisher information matrix in I1(Θ) can
be found as shown in (30)-(51), where l,m=1, 2, 3, · · · , N .
Also, A1= cos(φ) sin(θ), A2= sin(φ) sin(θ), and A3= cos(θ).

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂a2
] =

2N

σ2
r

(30)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂b2
] =

2Na2

σ2
r

(31)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂b∂φ
] = −2a2

σ2
r

k

N∑
n=1

An (34)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂b∂θ
] =

2a2

σ2
r

k

N∑
n=1

Bn (35)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂∆xl∂∆xm
] =


2a2

σ2
r

k2A2
1 if l = m,

0 if l 6= m.
(37)



−Eyr,Θ[
∂2 ln p(yr; Θ)

∂φ2
] =

2a2

σ2
r

k2
N∑
n=1

[(x2
n + σ2

xn) sin2(φ) + (y2
n + σ2

yn) cos2(φ)− 2xnyn sin(φ) cos(φ)] sin2(θ) (32)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂θ2
] =

2a2

σ2
r

k2
N∑
n=1

[((x2
n + σ2

xn) cos2(φ) + (y2
n + σ2

yn) sin2(φ)) cos2(θ) + (z2
n + σ2

zn) sin2(θ)

+2(xnyn cos(φ) sin(φ) cos(θ)− ynzn sin(φ) sin(θ)− xnzn cos(φ) sin(θ)) cos(θ)] (33)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂φ∂θ
] = −2a2

σ2
r

k2
N∑
n=1

[((x2
n + σ2

xn)− (y2
n + σ2

yn)) sin(φ) cos(φ) sin(θ) cos(θ)

+xnyn(sin2(φ)− cos2(φ)) sin(θ) cos(θ)− zn(xn sin(φ)− yn cos(φ)) sin2(θ)] (36)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂∆yl∂∆ym
] =


2a2

σ2
r

k2A2
2 if l = m,

0 if l 6= m.
(38)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂∆zl∂∆zm
] =


2a2

σ2
r

k2A2
3 if l = m,

0 if l 6= m.
(39)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂∆xl∂∆ym
] =


2a2

σ2
r

k2A1A2 if l = m,

0 if l 6= m.
(40)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂∆xl∂∆zm
] =


2a2

σ2
r

k2A1A3 if l = m,

0 if l 6= m.
(41)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂∆yl∂∆zm
] =


2a2

σ2
r

k2A2A3 if l = m,

0 if l 6= m.
(42)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂b∂∆xn
] =

2a2

σ2
r

kA1 (43)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂b∂∆yn
] =

2a2

σ2
r

kA2 (44)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂b∂∆zn
] =

2a2

σ2
r

kA3 (45)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂φ∂∆xn
] = −2a2

σ2
r

k2A1An (46)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂φ∂∆yn
] = −2a2

σ2
r

k2A2An (47)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂φ∂∆zn
] = −2a2

σ2
r

k2A3An (48)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂θ∂∆xn
] =

2a2

σ2
r

k2A1Bn (49)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂θ∂∆yn
] =

2a2

σ2
r

k2A2Bn (50)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂θ∂∆zn
] =

2a2

σ2
r

k2A3Bn (51)

The remaining elements of I1(Θ) are found to be zero. The
other part of the Fisher information matrix, i.e., I2(Θ) can be
found as shown in (52), where the position errors are modeled
as independent zero mean white Gaussian noise processes at
each antenna location and also for the x-, y-, and z-axes as
well.

I2(Θ) =

[
04×4 04×3N

03N×4 Σ−1
3N×3N

]
(52)

where 04×4 is a 4×4 matrix of all zeros for the
deterministic unknown parameters and Σ3N×3N is
a diagonal matrix representing the variance of the
position errors along its diagonal and is defined as
Σ3N×3N=diag(σ2

x1
, σ2
y1 , σ

2
z1 , · · · , σ

2
xN , σ

2
yN , σ

2
zN ), where

the first three diagonal elements represent the position error
variance of the first antenna element and the last three
elements define the position error variance of the last antenna
element, for x-, y-, and z-axis respectively.

V. RESULTS AND DISCUSSION

In this section, using the position estimation error standard
deviation values as shown in Fig. 2, we have computed two
CRLB plots for the two cases mentioned in section IV, i.e.,
when the antenna positions are known and when the antenna
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Fig. 3. An antenna array in 3D where different points in the plot represent
the antenna positions. The array is used to analyze the performance of DoA
estimation with known and estimated antenna positions through CRLB plots.



positions are estimated with an uncertainty. Radio signal centre
frequency is set as fc=2.4 GHz, and signal to noise ratio at
the receiving antenna elements is assumed to be 0 dB. An
antenna array geometry as shown in Fig. 3 is defined in 3D
where the origin is at the center of gravity of the array. The
CRLB plots are then obtained and are shown in Fig. 4 for
a given DoA(30◦, 30◦). In the CRLB plots, x-axis represents
the number of antenna elements that span the antenna array
for different movement times. The sampling time is used as
20 ms to simulate the IMU as well as radio samples. The given
sampling rate provides 50 antenna positions after 1 second
of the movement time and so on. In order to analyze the
effect of growing standard deviation of the position estimation
error onto the DoA estimation accuracy, different movement
times are used such that each movement covers the same
trajectory but with different time by changing the speed of the
movement. Thus, the number of antenna elements that span
the whole trajectory are varied but the array shape is kept the
same. The CRLB values are then calculated corresponding
to different movement times. From the plot when antenna
positions are known it can be seen that as time increases,
i.e., more antenna elements are used to represent the antenna
array, then the CRLB decreases because with the increase
of antenna elements the SNR is improved and the array
resolution is enhanced as well. Thus, the DoA estimation could
be performed with better accuracy. However, if the antenna
positions are not known and are estimated with an uncertainty
whose standard deviation is also growing, then, in this case the
CRLB first decreases with increasing antennas. But, as time
goes more than 3 second, we can observe that the CRLB plot
starts to deviate from the plot where the antenna positions are
known and the difference between the two CRLB plots grows
over time. The growing standard deviation of the antenna
position estimation error plays a significant role in limiting the
performance of the DoA estimation as we observe for the case
when antenna positions are known. The standard deviation of
the position estimation error is relatively small in the beginning
or for short integration times, but the standard deviation grows
over time and we can observe that the gap between the two
CRLB plots also grows over time as well. Therefore, it is
found that an optimal time limit should be determined in
order to make the virtual antenna array where the antenna
positions are obtained with relatively small position estimation
errors. For the given standard deviation of the antenna position
estimation errors, as shown in Fig. 2, the optimal time in terms
of DoA estimation performance is found to be approximately
3-4 seconds, and after this time limit we can see significant
difference of the DoA estimation accuracy between the two
CRLB plots. Similar results can be seen when the SNR is set
as 10 dB.

As described above, similar analysis can be performed to
estimate the performance of any random 3D antenna array
if the antenna positions are known with an uncertainty. Fig.
5 shows an example of a random 3D antenna array and in
Fig. 6 CRLB plots are shown. The two examples of 3D
antenna arrays illustrate the usefulness of the given framework

to compute the CRLB with known and estimated antenna
positions. More detailed analysis of the results in terms of
DoA estimation accuracy w.r.t. the different array shapes will
be treated in our future work.
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−100

−50

0

50

−20

0

20

40
−60

−40

−20

0

20

40

X−axis [cm]Y−axis [cm]

Z
−

a
x
is

 [
c
m

]

Fig. 5. Example of a random 3D antenna array.
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VI. CONCLUSION

In this paper, we have shown that the performance of virtual
antenna arrays using inertial measurement units is limited by
the growing standard deviation of the antenna position esti-
mation errors. The effect of stochastic error sources, such as,
white Gaussian noise and bias drift in the IMU measurements
is investigated using EKF, which shows that the standard
deviation of the position estimation error grows over time.
Furthermore, we have computed Cramér-Rao lower bound
(CRLB) if the antenna positions are known and if the antenna
positions are estimated with an uncertainty. Using these two
CRLB values, it has been shown that after a specific integra-
tion time, the increase in the standard deviation of the position
estimation error plays a significant role and the increase in
the number of antenna elements does not provide significant
improvement in the performance of DoA estimation. For a low
cost MEMS based IMU making a typical 3D movement, the
optimal integration/movement time in terms of DoA estimation
performance has been found to be approximately 3-4 seconds.
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