
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Robust PID Design by Chance-Constrained Optimization

Mercader, Pedro; Soltesz, Kristian; Baños, Alfonso

Published in:
Journal of the Franklin Institute

DOI:
10.1016/j.jfranklin.2017.10.017

2017

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Mercader, P., Soltesz, K., & Baños, A. (2017). Robust PID Design by Chance-Constrained Optimization. Journal
of the Franklin Institute, 354(18), 8217-8231. https://doi.org/10.1016/j.jfranklin.2017.10.017

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1016/j.jfranklin.2017.10.017
https://portal.research.lu.se/en/publications/fc9dc96f-2a07-4a43-a06d-53994ae571c9
https://doi.org/10.1016/j.jfranklin.2017.10.017


Robust PID Design by Chance-Constrained Optimization

Pedro Mercader1,*, Kristian Soltesz2, and Alfonso Baños1

1Department of Computer and Systems Engineering, University of Murcia, Spain
2Department of Automatic Control, Lund University, Sweden

*Corresponding author: pedro.mercader@um.es

Abstract

A method for synthesizing proportional–integral–derivative (PID) controllers for process models with
probabilistic parametric uncertainty is presented. The proposed method constitutes a stochastic extension
to the well-studied maximization of integral gain optimization (MIGO) approach, i.e., maximization of
integral gain under constraints on the H∞-norm of relevant closed-loop transfer functions. The underlying
chance-constrained optimization problem is solved using a gradient-based algorithm once it has been
approximated by a deterministic optimization problem. The approximate solution is then probabilistically
verified using randomized algorithms (RAs). The proposed method is demonstrated through several
realistic synthesis examples.

1 Introduction

Designing a control system comprises a trade-off between achieving a good performance level and guaranteeing
adequate stability margins. Model uncertainty should be taken into account in the problem formulation, since
the parameters of the process are seldom known exactly during the modeling phase, or they usually change
as the environment or the operation point changes. When model uncertainty is explicitly incorporated into
the problem formulation, it impacts the achievable performance level. Most of the robust control literature
(e.g. QFT, H∞, interval methods, etc.) deals with deterministic uncertainty descriptions [1], resulting in
worst-case specifications for performance and robustness. It is well-known that a deterministic approach may
potentially lead to conservative designs, since the occurrence of the worst-case scenario may be very unlikely.

The robust design of PID controllers is usually stated as a constrained optimization problem (see [2, 3])

minimize
k

J(θ,k)

subject to ϕ(θ,k) ≤ 0,
(1)

where k is the design (controller) parameter vector, and θ is a deterministic vector of process model parame-
ters. The rationale of the problem (1) is that minimization of the objective J aims at maximizing performance
over k, while the constraint vector ϕ (with components ϕi, and ≤ corresponding to the component-wise in-
equality) is in place to ensure robustness (i.e. to guarantee adequate stability margins).

If the model parameter vector θ is instead assumed to be a random variable, the cost function J(θ,k) and
the constraints ϕ(θ,k) also become random variables. A possible extension of (1), taking this into account,
is formulated as the chance-constrained optimization problem

minimize
k

E[J(θ,k)]

subject to
∀i

Pr[ϕi(θ,k) ≤ 0] ≥ 1− αi.
(2)

where αi ≥ 0 specify permissible probabilities of constraint violation. The formulation (2) aims to minimize
the expected cost, subject to a fulfillment of the constraints with at least a predefined level of probability.
The use of a probabilistic uncertainty model enables computation of constraint violation probabilities; in
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Figure 1: Feedback control system, consisting of process P and controller K. Signals are: process output y,
controller output u, load disturbance d and output disturbance (noise) n.

this way, higher performance levels may be achieved while maintaining the probability of constraint violation
below a certain value – typically small, and predefined by the user.

The main motivation of the present work has been to obtain a probabilistic extension of to the well-studied
maximization of integral gain optimization (MIGO) approach [2]. Focus lies on presenting a numerically
efficient approach. Early work focusing on robustness constrained IE minimization was presented in [2].
Efficient convex-optimization-based algorithms for solving the same problem were recently presented in [4],
and extended to design problems involving QFT specifications in [5]. Robustness constrained minimization
of IAE has been investigated in [6]. Efficient gradient-based algorithms for the same problem were proposed
[7]. Simultaneous synthesis of PID controllers and measurement filter was addressed in [8]. It is worth to
notice that stability constraints used in the MIGO approach are not convex [8], hence all these methods
calculate a local optimum. The method presented here faces the same limitation.

Related prior works that combine PID and probabilistic modeling are briefly presented below: In [9],
a Taylor series approximation was used to deal with the expectation integrals. Test-points methods were
proposed in [10] to approximate these integrals in the context of PID control and integrated into an autotuner
method in [11]. In [12], a polynomial chaos approach was applied to optimize temporal responses. The work
[13] considers the design of decentralized (multivariable) PID controllers with probabilistic robustness via
Monte Carlo (MC) simulations and genetic algorithms (GAs). Finally, other applications of stochastic meth-
ods to the design of PID controllers, not necessarily for process models with probabilistic parameterization,
have been reported, for example, in [14, 15, 16].

This work is organized as follows: The problem formulation is given in Section 2. An approach to approx-
imately solve the resulting chance-constrained optimization problem is presented in Section 3. Randomized
algorithms for numerical verification are presented in Section 4. Examples are given in Section 5, and finally,
a summary and conclusions are presented in Section 6.

2 Problem statement

We consider the feedback control system shown in Fig. 1, with process P and controller K. The process
model is given by the arbitrary-order time-delayed transfer function

P (s,θ) =
bBs

B + bB−1s
B−1 + · · ·+ b0

aAs
A + aA−1s

A−1 + · · ·+ a0

e−hs, (3)

where A and B are known constants satisfying B ≤ A, and

θ = [bB , bB−1, . . . , b0, aA, aA−1, . . . , a0, h]> (4)

is the stochastic process model parameter vector. The joint PDF of θ will be denoted f(θ) : Rn 7→ R,
where n = A + B + 3. A multivariate uniform PDF is assumed, being the probabilistic counterpart of the
(unknown-but-bounded) interval parametric uncertainty. A rigorous justification for the use of the uniform
PDF in this setting is done in [17].

The controller considered in this work is a filtered PID with the following structure

K(s,k) =
kp +

ki
s

+ kds

1 + sTf + s2T 2
f /2

, (5)
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where k = [kp, ki, kd, Tf ]> is a deterministic vector of its parameters.
The control design problem is formulated as a constrained optimization problem, in the spirit of the

chance-constrained optimization problem (2). Load disturbance attenuation is optimized subject to robust-
ness constraints. (Tracking could be improved by using a two-degrees-of-freedom (2-DOF) control structure,
with a reference pre-filter [3].) Two well-known ways of achieving disturbance rejection, are the minimization
of either the integrated error (IE)

IE(θ,k) =

∫ ∞
0

e(t,θ,k)dt, (6)

or the integrated absolute error (IAE)

IAE(θ,k) =

∫ ∞
0

|e(t,θ,k)| dt. (7)

The error e in both (6) and (7) is caused by a unit load disturbance step d, applied with the control system
in an equilibrium state, see Fig. 1.

These two performance measures are very similar for well-damped closed-loop systems. It is important
to note that enforcing robust stability ensures well-damped closed-loop system. A decisive factor to consider
minimization of IE in favor of IAE is that that minimization of IE is equivalent to maximization of ki in (5)
(for processes with positive steady-state gain) [2]. That is, IE minimization results in a convex objective,
that, in addition, does not depend on process parameters, and thus takes a deterministic value. Unfortunately
this is not the case for the IAE. Nevertheless, the same approach presented here could be applied when using
the IAE as objective, see [10].

In this work we combine (2) with the IE objective (6) expressed as maximization of ki and H∞-constraints
on S(s,θ,k) = (1 + P (s,θ)K(s,k))−1 and T (s,θ,k) = 1 − S(s,θ,k), arriving at the chance-constrained
optimization problem

minimize
k=[kp,ki,kd,Tf ]>

− ki

subject to Pr[‖S(θ,k)‖∞ −MS ≤ 0] ≥ 1− αS ,
Pr[‖T (θ,k)‖∞ −MT ≤ 0] ≥ 1− αT ,

(8)

where MS and MT are greater than 1, and αS and αT are nonnegative and less than 1. Under this setting,
these specifications have an impact on the loop bandwidth. This should be accounted for when implementing
a digital controller, since it is advisable to work with a sampling frequency at 10−20 times the loop bandwidth.

3 Chance-constrained optimization problem

Our aim is to solve the probabilistic optimization problem (8) in an efficient way, using a gradient-based
algorithm, such as sequential quadratic programming (SQP) or interior point methods [18]. This approach
relies on numerous evaluations of the objective and constraints, calling for efficient approximations of the mul-
tidimensional expectation integrals resulting from the constraint (Section 3.1). The indicator function, used
to obtain probability values, has to be approximated by a differentiable function in order to obtain reliable
gradient information by numerical differences (Section 3.2). Finally, guidelines to obtain good initialization
candidates to be used in the optimization algorithm need to be established (Section 3.3).

3.1 Constraints evaluation

Constraints evaluation implies the calculation of expectation integrals. For example, the probability value of
satisfaction for the first constraint of (8) is

Pr[‖S(θ,k)‖∞ −MS ≤ 0] = E [I[‖S(θ,k)‖∞ −MS ]] , (9)

where I[·] is the indicator function, given by

I[x] =

{
1, if x ≤ 0,
0, if x > 0.

(10)
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In this section, we introduce a function g(θ,k), which takes on the role of the argument of the expectation
operator. The expectation of g(θ,k) is defined by the multivariate integral

E [g] =

∫
∆

g(θ,k)f(θ)dθ, (11)

where ∆ is the support of f(θ), i.e., the set of values for which θ is nonzero. In general, analytical solution
to this type of integral does not exist for non-linear g(θ,k). Henceforward, the dependence with respect
to k will be omitted, whenever possible, to simplify the notation. Several numerical approaches have been
presented in the literature to obtain approximate values of expectation integrals, among others, linearization
of the integrand, Monte-Carlo methods, and quadrature rules [19]. In this work, the expectation integral
(11) is approximated by a quadrature rule

I [g] ≡
N∑
i=1

wig(θi), (12)

comprising nodes θi and weights wi, i = 1, . . . , N . An important feature of (12) is that nodes and weights
depend solely on f . Hence they can be obtained for a given f , and subsequently used for an arbitrary g.

A quadrature rule, such as (12), is said to have degree of polynomial exactness D, if it delivers exact integral
values, I[g] = E[g], for any polynomial g of total order at most D1. This issue is of utmost importance when
using a quadrature rule, since high degree of polynomial exactness translates to good integral approximations
whenever g is approximable by polynomial functions (through e.g. Taylor expansion).

We will start presenting the univariate case, and then extend it to its multivariate counterpart.

3.1.1 Univariate quadrature

Consider first the one-dimensional case, i.e., n = 1. A sequence of quadrature rules defines, for every ν ∈ N
(accuracy level), a set of Nν nodes θν,i and weights wν,i, i = 1, . . . , Nν , which are used to approximate the
expectation integral (11) as the following weighted sum

Iν [g] ≡
Nν∑
i=1

wν,ig(θν,i). (13)

Here, the degree of polynomial exactness is denoted Dν , since it depends on the accuracy level ν. A well-
known example is the sequence of Gauss-Legendre (GL) quadrature rules. It comprises Nν = ν nodes and
achieves the maximum possible degree of polynomial exactness, Dν = 2ν − 1 [19]. An interesting class of
sequences of quadrature rules is the class of nested quadrature rules. For these, the set of nodes used for a
given accuracy is a subset of the nodes used for any higher accuracy. These sequences are of interest when
extending to the multivariate case. Herein, the delayed sequence of the Kronrod-Patterson (dKP) nested
quadrature rules will be used, see [20].

3.1.2 Multivariate quadrature

The extension from univariate to multivariate quadrature can be achieved using the tensor product

(Iν1 ⊗ · · · ⊗ Iνn) [g] ≡
Nν1∑
i1=1

· · ·
Nνn∑
in=1

wν1,i1 · · ·wνn,ing
(

[θν1,i1 , . . . , θνn,in ]
>
)
. (14)

This is referred to as full grid, as opposed to sparse grid, which will be presented later. The degree of
exactness of (14) is the same as the minimum degree of exactness of the underlying univariate quadratures.
The main drawback is that it exhibits an exponential growth of nodes with respect to the dimension n (it

1The total order of a polynomial is defined as the maximum total order of its monomials, and the total order of a monomial
is defined as the sum of orders with respect to the individual variables. For example, a 2-dimensional polynomial of total order
2 may contain terms as θ1, θ2, θ21 , θ22 , and θ1θ2.
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suffers from a curse of dimensionality). This is due to the quadrature rule not being exact in a class of
polynomials of a bounded total order, but for a tensor product of univariate polynomials [21]2.

An alternative to the full grid is available through Smolyak’s product [22]. The Smolyak product rule of
accuracy level q, for n-dimensional integration, was formulated in [23] as

Sq,n [g] =
∑

q+1≤‖ν‖1≤q+n
(−1)q+n−‖ν‖1

(
n− 1

‖ν‖1 − ν − 1

)
(Iν1 ⊗ · · · ⊗ Iνn) [g] , (15)

where ν = [ν1, . . . , νn]>. This rule consists of a weighted sum of product rules of accuracy levels defined by
ν. Bounds on ‖ν‖1 imply that if a high level of accuracy is used in one dimension, relatively low accuracy
levels are used in the others.

Two important properties of the Smolyak’s product rule regarding degree of polynomial exactness and
dimensional complexity are stated below (see [19] for a more detailed exposition):

• Assume that the sequence of univariate quadrature rules Iν , with ν ∈ N, is exact for all univariate
polynomials of order 2ν − 1. Then, the Smolyak product rule Sq,n is exact for n-variate polynomials of
total order 2q − 1 or less.

• The number of nodes grows polynomially with respect to the dimension n, as opposed to the exponential
growth of the full grid (14).

Both sequences of univariate quadrature rules presented here, GL and dKP, satisfy the previous assumption
on polynomial exactness degree.

Nested quadrature rules (such as dKP), which are usually less efficient in the univariate case, become
attractive when combined with Smolyak’s product, since the nested quadrature rules make the union of the
tensor products in (15) a much smaller set than when using a non-nested quadrature rule.

3.2 Constraint gradient evaluation

Gradient-based algorithms use the objective and constraint gradients with respect to the controller parameter
vector, to find a (local) minimum to the optimization problem (8). The gradient of the objective function is
trivial; on the other hand, the gradient of the constraints requires more attention. An analytic expression
for the constraint gradients is generally not available. They may be approximated by finite differences, but
the combination of the (non-smooth) indicator function with the quadrature rule does not provide reliable
gradient information. Several differentiable functions have been suggested as smooth approximations of the
indicator function, including the sigmoid

σa(x) =
1

1 + eax
, (16)

where a ≥ 0. This is a smooth and tight approximation (it tightens as a increases), used in several other
applications [24]. The use of approximations (quadrature rule and sigmoid function) calls for verification of
numeric results. This is the topic of Section 4.

3.3 Selection of initial points

To solve the chance-constrained optimization problem (8), a feasible initial point has to be provided to the
gradient-based algorithm. Controller parameters with the three first components equal to zero and a stable
filter (i.e. k = [kp, ki, kd, Tf ]> = [0, 0, 0, Tf ]> where Tf ≥ 0) satisfy the constraints for any asymptotically
stable process. Otherwise, a stabilizing and feasible initial controller candidate has to be found [4].

The solution of the deterministic counterpart of the considered probabilistic design problem is an appealing
alternative to the zero controller. In addition to being feasible, the corresponding controller is associated
with a lower objective. This translates to a faster convergence of the method using to solve the optimization
problem.

2For example, considering n = 2 and D = 2, in addition to the polynomials θ1, θ2, θ1θ2, θ21 , and θ22 , it is also exact for
polynomials involving the higher-order terms θ21θ2, θ1θ22 , and θ21θ

2
2 .
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4 Probabilistic verification

It is of particular interest to investigate how the approximations involved in solving (8) affect the result.
Tools from the randomized algorithms (RAs) for control analysis framework (see [1] and references therein)
can be used to evaluate the obtained (approximate) solutions. Let us denote the probability of constraint
fulfillment for the first constraint in (8) by

p = Pr [‖S(θ,k)‖∞ −MS ≤ 0] . (17)

The same approach presented here could be applied to any other probabilistic constraint. The RA framework
provides estimates p̂ of p, lying within an a priori specified accuracy ε ∈ (0, 1), with probability 1− δ. This
is formally stated as

Pr [|p− p̂| ≤ ε] ≥ 1− δ. (18)

A simple RA for constraint verification can be obtained through the MC method [1]. The constraint fulfillment
probability estimates p̂ are defined as

p̂ =
1

N

N∑
i=1

I
[
‖S(θ(i),k)‖∞ −MS

]
, (19)

where the samples θ(1), . . . ,θ(N) are generated by the PDF f(θ). A lower bound on the number of samples
required to meet (18) is given by the Chernoff bound [1]

1

2ε2
log

2

δ
≤ N. (20)

A related analysis problem is to assess the worst-case constraint violation. That is, for a given δ and p∗, to
obtain with probability 1− δ, a level γ̂ such that

Pr [‖S(θ,k)‖∞ ≤ γ̂] ≥ p∗. (21)

A simple RA for obtaining γ̂ of (21) is

γ̂ = max
i=1,...,N

‖S(θ(i),k)‖∞, (22)

where θ(1), . . . ,θ(N) are, again, generated by the PDF f(θ) with a minimum number of samples given by

log δ

log p∗
≤ N. (23)

It is remarkable that the previous lower bounds are independent of the dimension of the random variable θ.
On the other hand, the number of samples becomes prohibitively high for obtaining very accurate estimates.
That is why, we propose these techniques for analysis, but not for synthesis.

5 Examples

This section presents examples, illustrating the proposed method. The examples were obtained with the aid
of a software package [21] to generate nodes and weights for the quadrature rules. Expectation integrals have
been computed by using a sparse grid with dKP as underlying univariate quadrature. Estimates of constraint
fulfillment probability p̂ and worst-case constraint violation γ̂ presented in the previous section are based on
ε = δ = 0.005 for p̂, and δ = 10−4 and p∗ = 1− δ for γ̂.
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Figure 2: Optimal value of ki according to (25) as function of α for for the processes P1 (top), P2 (middle),
and P3 (bottom).

5.1 Processes with different normalized time delay

This example considers three uncertain first-order time-delay (FOTD) processes: one lag dominant, one
balanced, and one delay dominant:

P1(s) =
k

s
e−hs, P2(s) =

k

τs+ 1
e−hs, P3(s) = ke−hs, (24)

where k ∈ [0.5, 1.5], τ ∈ [0.5, 1.5], and h ∈ [0.5, 1.5]. The controller (5) is considered for each of these
uncertain processes. The time constant of the filter has been fixed to 0.1 s. (In practice the choice of the time
constant of the filter will depend on the frequency content of the measurement noise.) The control design
problem is formalized as follows:

minimize
k=[kp,ki,kd,0.1]>

− ki

subject to Pr[‖S(θ,k)‖∞ ≤ 1.4] ≥ 1− αS ,
Pr[‖T (θ,k)‖∞ ≤ 1.4] ≥ 1− αT .

(25)

Fig. 2 shows the optimal value of ki according to the design problem (25) as function of α = αS = αT for
the uncertain processes presented in (24). These figures illustrate how allowing for a higher probability of
constraint violation (by increasing the value of α) can significantly improve the level of performance in terms
of maximizing ki.

5.2 Comparison with alternative stochastic optimization design

This example contains a comparison with alternative stochastic design. It considers the following uncertain
FOTD process model

P (s,θ) =
1

τs+ 1
e−hs (26)

where θ = [τ, h]> with τ ∈ [0.5, 1.5] and h ∈ [0, 0.5]. This uncertain plant was considered in [12], where a
PID controller was designed by solving the stochastic optimization problem:

minimize
k=[kp,ki,kd,0]>

E[IAE(θ,k)]

subject to max
0≤t≤T

V[y(t,θ,k)] ≤ Dy,
(27)

7



Table 1: Comparison of controllers for the uncertain process model (26).

Method kp ki kd IE E[IAE]

[12] 1.957 2.012 0.320 0.497 0.512
Proposed 0.807 1.150 0.132 0.870 0.955

Table 2: Probabilistic verification of controllers shown in Table 1.

Method 1− p̂S γ̂S 1− p̂T γ̂T
[12] 0.76 6.72 0.12 5.75

Proposed 0.05 1.54 0.00 1.24

where V[·] denotes variance, and the value of Dy is a design specification. The solution was obtained
by approximating the stochastic temporal response using polynomial chaos. The obtained controller, for
Dy = 0.01 is shown in Table 1. We compare this controller with the one resulting from the following
optimization problem

minimize
k=[kp,ki,kd,0]>

− ki

subject to Pr[‖S(θ,k)‖∞ ≤ 1.4] ≥ 0.95,

Pr[‖T (θ,k)‖∞ ≤ 1.4] ≥ 0.95.

(28)

The controller parameters obtained as solution to (28) are shown in Table 1, where the IE and average
IAE values, the estimated probability of constraint violation of ‖S‖∞ ≤ 1.4, and the estimated worst-case
constraint violation of ‖S‖∞ ≤ 1.4, are shown in Table 2. Load step responses are shown in Fig. 3.

The solution proposed in [12], in spite of considering uncertainty in the design stage, yields a very low
level of robustness. Note that the worst cases of ‖S‖∞ and ‖T‖∞ are larger than 5 and acceptable values
are in the interval 1.2 − 2 [2]. Furthermore, the specification used in the problem (27) is not very intuitive.
Although this constraint implicitly guarantees closed-loop stability in a probabilistic sense, it is difficult to
associate values of Dy with values of any known stability margin.

5.3 Plant with large number of uncertain coefficients

This example illustrates that the proposed method is applicable in cases with more general parameter depen-
dencies than intervals of transfer function coefficients, as in (3), and in cases with a large number of uncertain
coefficients. The uncertain elastic two-mass system defined by the following transfer functions is considered
(see Fig. 4):

P (s,θ) =
css+ ks
d(s,θ)

, (29)

Pd(s,θ) = −Jms
2 + (cm + cs)s+ ks

d(s,θ)
, (30)

where

d(s,θ) =JmJls
3 + (Jl(cm + cs) + Jm(cm + cs))s

2 (31)

+ ((Jl + Jm)ks + cmcl + cmcs + clcs)s+ (cm + cl)ks. (32)

Here, θ = [Jm, cm, Jl, cl, ks, cs]
> denotes the vector of plant parameters. These two transfer functions repre-

sent the paths from plant input and disturbance, respectively, to plant output. The reader is referred to [25]
for a more detailed description of this model. The following numerical values, taken from [25], are used in
this example:

Jm = 0.4 kg m2, cm ∈ [0, 0.1] Nm/(rad/s),

Jl ∈ [5.5, 6.0] kg m2, cl ∈ [0, 1] Nm/(rad/s),

ks ∈ [3000, 4000] Nm/rad, cs ∈ [1, 20] Nm/(rad/s).

(33)
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Table 3: Solution to the design (35) for different values of α.

α kp ki 1− p̂S γ̂S 1− p̂T γ̂T
0.00 5.881 7.507 0.000 1.60 0.000 1.60
0.01 8.959 17.981 0.010 2.29 0.005 1.61
0.02 10.448 24.634 0.020 2.98 0.013 1.99

Although the disturbance acts on the output through Pd, minimization of the corresponding IE is equiv-
alent to maximization of ki:

IE =

∫ ∞
0

e(τ,θ,k)dτ = lim
s→0

s
Pd(s)

1 + P (s)K(s)

1

s2
= − 1

ki
. (34)

A PI is often used for these kind of system, in particular, when actuator dynamic (including delays) is
relatively slow, since it limits the advantage of high bandwidth controllers [25]. This motivates the problem
formulation:

minimize
k=[kp,ki,0,0]>

− ki

subject to Pr[‖S(θ,k)‖∞ − 1.6 ≤ 0] ≥ 1− αS ,
Pr[‖T (θ,k)‖∞ − 1.6 ≤ 0] ≥ 1− αT .

(35)

Table 3 shows the solution to (35) for different values of α = αS = αT . Estimates of the probability of
constraint violation and worst-case specification are also shown. In this example, the level of performance
increases considerably even for small (e.g. 1− 2 %) probabilities of constraint violation. The estimated PDF
of ‖S‖∞ and ‖T‖∞ are shown in Fig. 5 and 6.

Finally, it is worth mentioning that, in this example, the computational time required by using sparse
grid with dKP is shorter, by a factor of 10, than the one required by full grid with GL. This fact makes the
full grid approach impractical for high-dimensional problems.

6 Discussion

6.1 Summary

This paper has presented an approach for cost, constraint and associated gradient computations, arising
when solving robust PID synthesis problems, of the type (2), for plants with parametric uncertainties. The
actual optimization is assumed to be handled by a solver, utilizing these computations.

Evaluating the mentioned cost, constraints and associated gradients, relies on the evaluation of multi-
variate expectation integrals, of the form (11). In general, they cannot be exactly evaluated, introducing the
need of numerical approximation methods. We study a class of such methods for the univariate case, known
as nested quadrature rules, which enables an extension to the multivariate case using Smolyak’s product,
without the exponential complexity associated with the naive (full-grid) approach.

The effectiveness of the proposed approach is demonstrated through realistic PID synthesis examples.
These examples show that a slight relaxation of constraint fulfillment probability, can serve to increase
performance significantly. I.e., considering only the worst case is often conservative.

The approximations associated with sparse grid quadrature and sigmoid approximation of the indicator
function are verified to be sound, by means of the randomized algorithms (RAs) framework.

6.2 Conclusions

The main conclusion is that the use of sparse-grid methods, based on combining Smolyak’s product with
nested univariate quadrature rules, constitutes a feasible approach to evaluating the integrals necessary
for solving robust controller synthesis problems for plants with parametric uncertainties. This has been
demonstrated through examples, for which the introduced approximations were demonstrated to be sound,
using randomized algorithms.
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Figure 5: Probability density functions of ‖S(θ,k)‖∞ and ‖T (θ,k)‖∞ for the controllers presented in Table 3.
Top, middle, and bottom correspond to α = 0.00, 0.01, and 0.02, respectively.
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Figure 6: Details of the probability density functions shown in Fig. 5. Top, middle, and bottom correspond
to α = 0.00, 0.01, and 0.02, respectively.
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Relatedly, it can be noted that significant performance gains can be made, if probabilities α > 0 for
constraint violations are permitted. For instance, the last example shows how performance can be tripled
by allowing for constraint violation with a probability of 2 %. The approach of probabilistically relaxing
constraint satisfaction comes even more natural when uncertainties are described by distributions with infinite
tails, for which there exist no worst case. This is true for instance when the parameter vector follows a
multivariate Gaussian distribution, as was studied in [11].

The two main limitation of the proposed approach, which are rather properties of local optimization
methods than the suggested quadrature approximation, are the need of a feasible initial point and the lack
of guarantees to attain a global minimum.
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