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Abstract—In this paper, we propose a design frame-
work for distributed embedded control systems that
ensures reliable execution and high quality of con-
trol even if some computation nodes fail. When a
node fails, the configuration of the underlying dis-
tributed system changes and the system must adapt
to this new situation by activating tasks at opera-
tional nodes. The task mapping as well as schedules
and control laws that are customized for the new
configuration influence the control quality and must,
therefore, be optimized. The number of possible con-
figurations due to faults is exponential in the number
of nodes in the system. This design-space complexity
leads to unaffordable design time and large memory
requirements to store information related to map-
pings, schedules, and controllers. We demonstrate
that it is sufficient to synthesize solutions for a small
number of base and minimal configurations to achieve
fault tolerance with an inherent minimum level of
control quality. We also propose an algorithm to
further improve control quality with a priority-based
search of the set of configurations and trade-offs
between task migration and replication.

I. Introduction and Related Work

Today, many control applications are implemented on
distributed embedded systems comprising multiple com-
putation nodes that communicate over a bus. Automo-
tive and avionic applications are two of the most promi-
nent examples of such systems. The aggressive shrinking
of transistor sizes and the environmental factors of such
systems make embedded electronic devices increasingly
prone to faults [1], [2]. Faults can occur due to aging,
wear out, design defects, or manufacturing defects [3].

Analysis and synthesis of embedded control applica-
tions under the influence of transient and intermittent
faults have been presented in literature recently [4], [5],
[6]. Permanent faults, however, sustain for much longer
time intervals than transient or intermittent faults, or—
in the worst case—for the remaining lifetime of the
system. In case a computation node fails due to a perma-
nent fault, the configuration (i.e., the set of operational
computation nodes) of the underlying platform changes,
meaning that applications that are controlled by tasks
running on this node will potentially become unstable.
To avoid such situations, these tasks that were running
on failed nodes must now be activated and executed
on other nodes. This is achieved by implementing ap-
propriate mechanisms for fault detection, adaptation,

and reconfiguration [2], [3]. It is thus important to
construct systems that are resilient to node failures and,
in addition, provide as high control quality as possible
with the available computation and communication re-
sources during operation. Related approaches for em-
bedded systems design and permanent faults, relying on
task remapping by replication and migration, have been
proposed recently [7], [8]. These methods are restricted
to a predefined set of fault scenarios to be handled at
runtime with no requirements on system performance.

To adapt to a new configuration, the system must
switch to a solution that is customized for this new
situation. A solution for a configuration comprises a
mapping of tasks to the computation nodes of that
configuration, a schedule (or priorities) for execution
and communication, and controller parameters. Unfor-
tunately, the total number of configurations (i.e., fault
scenarios) to be considered at design time is exponential
in the number of computation nodes of the platform.
This complexity leads to unaffordable design time to
synthesize solutions for all configurations of the system.
In addition, the amount of required memory needed to
store information related to all solutions is excessive
and unaffordable. Towards solving these problems, we
propose a framework with two main design steps.

First, we demonstrate that it is sufficient to generate
solutions for a set of base and minimal configurations,
which are typically few in number (Sections V and VI).
These solutions can be used to operate the system in any
fault scenario given by the fault-tolerance requirements,
which we derive directly based on the inherent design
constraints for distributed embedded control systems.
The first design step comprises identification of base and
minimal configurations, as well as synthesis of solutions
for those configurations. This results in an implementa-
tion that satisfies the fault-tolerance requirements and,
in addition, provides a certain level of control quality.

The second design step (Section IX) explores the
design space judiciously to improve control quality in
an incremental manner, relative to the minimum quality
level provided by the first step. The generated design
solutions in this second optimization step are realized
based on task replication and migration as reconfigura-
tion mechanisms. An integer linear program is solved at
design time to find optimal trade-offs between migration
time and memory usage of the platform.
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Figure 1. (a) A set of feedback-control applications running on a
(b) distributed execution platform. Several periodic tasks execute
on the computation nodes to read sensors, compute control signals,
and write to actuators.

II. System Model

A. Feedback-Control Applications

We consider given a set of plants P, indexed by IP,
where each plant Pi ∈ P (i ∈ IP) is modeled as
a continuous-time linear system [9]. Specifically, the
dynamical behavior of a plant Pi is given by a system of
linear differential equations

ẋi(t) = Aixi(t) + Biui(t) + vi(t), (1)
where the vector functions of time xi and ui are the
plant state and controlled input, respectively. The vec-
tor vi models plant disturbance as a white-noise stochas-
tic process. The matrices Ai and Bi model how the
plant state evolves in time depending on the current
plant state and provided control input, respectively. The
measured plant outputs are modeled as

yi(t) = Cixi(t) + ei(t), (2)
where ei is an additive measurement noise. The
continuous-time output yi is measured and sampled pe-
riodically and is an input to the computation and update
of the control signal ui. The control law that describes
the mapping from yi to ui is a design parameter. The
Ci matrix, which often is diagonal, thus indicates those
plant states that can be measured by available physical
sensors of the platform (Ci is the identity matrix if all
plant states can be measured). The control signal is
actuated at discrete time-instants and is held constant
between two updates by a hold circuit in the actuator [9].

As an example, let us consider a set of two in-
verted pendulums P = {P1, P2}. Each pendulum Pi

(i ∈ IP = {1, 2}) is modeled according to Equations 1

and 2, with Ai =
[

0 1
g/li 0

]
, Bi =

[
0 g/li

]T,

and Ci =
[

1 0
]
, where g ≈ 9.81 m/s2 and li are

the gravitational constant and length of pendulum Pi,
respectively (l1 = 0.2 m and l2 = 0.1 m). The two states
are the pendulum position and speed, respectively. The
inverted pendulum model appears often in literature as
an example of control problems for unstable processes.

For each plant Pi, we have a control application
Λi = (Ti,Γi) that implements a feedback-control loop.
Application Λi is modeled as a directed acyclic graph in
which the vertices Ti represent computation tasks and

the edges Γi ⊆ Ti × Ti represent messages and data
dependencies between tasks. Let us denote the set of
control applications by Λ and index it with the index
set IP of P. Thus, for each i ∈ IP, the pair Λi and Pi

form a closed-loop control system. We also introduce the
set of all tasks in the system as

TΛ =
⋃

i∈IP

Ti.

Tasks are released for execution periodically. The
period of each task is a design parameter and is decided
mainly based on the dynamics of the control plant, the
available computation and communication bandwidth,
and trade-offs with the period of other applications.
Figure 1(a) shows a set of control loops comprising
n plants P with index set IP = {1, . . . , n} and, for
each plant Pi, a control application Λi with three tasks
Ti = {τis, τic, τia}. The edges indicate the data depen-
dencies between tasks, as well as input–output interfaces
to sensors and actuators.

B. Distributed Platform
The distributed execution platform, on which the con-
trol applications run, comprises a set of computation
nodes N, indexed by IN, which are connected to a
bus. For the platform in Figure 1(b), we have N =
{NA, NB , NC , ND} (IN = {A,B,C,D}). We consider
given a function Π : TΛ −→ 2N that, for each task
τ ∈ TΛ in the system, gives the set of computation nodes
Π(τ) ⊆ N that task τ can be mapped to. For example,
tasks that read sensors or write to actuators can only
be mapped to computation nodes that provide input–
output interfaces to the needed sensors and actuators.
Also, some tasks may require specialized instructions or
hardware accelerators that are not available on all nodes.
The function Π thus models mapping constraints. In
Figure 1, tasks τ1s and τ1a may be mapped to the nodes
indicated by the dotted line. Thus, we have Π(τ1s) =
{NA, NC} and Π(τ1a) = {NC , ND}. We consider that
task τ1c can be mapped to any of the four nodes in the
platform (i.e., Π(τ1c) = N); we have omitted the many
dashed lines for task τ1c to obtain a clear illustration. For
each task τ ∈ TΛ and each computation node N ∈ Π(τ),
we consider that the best-case and worst-case execution
times are given when task τ executes on node N .

At any moment in time, the system has a set of
computation nodes X ⊆ N that are available. The
remaining nodes N \X have failed and are not available
for computation. We shall refer to X as a configuration
of the distributed platform. The complete set of config-
urations is the power set X = 2N of N and is a partially
ordered set under the subset relation. The partial order
of configurations is shown in Figure 2 as a Hasse diagram
of configurations for our example with four computation
nodes in Figure 1 (note that we have excluded the empty
configuration ∅ because it is of no interest to consider
the scenario where all nodes have failed). For example,
the configuration {NA, NB , NC} indicates that ND has
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Figure 2. Hasse diagram of configurations for a system with four
nodes. The set of possible configurations due to faults is partially
ordered under the subset relation.

failed and only the other three nodes are operational and
available for computation. For the communication, we
consider that the communication protocol of the system
ensures fault-tolerance for messages by different means
of redundancy [10], [2].

The platform has appropriate mechanisms for fault
detection. The failure of a node must be detected and
all remaining operational nodes must know about such
failures [2]. In addition, when a node has been repaired
it is detected by the other nodes in the system. This
allows each operational node to know about the current
configuration. Adaptation due to failed or repaired nodes
involves switching schedules and control algorithms that
are optimized for the available resources in the new
configuration (Section IX). This information is stored
in the nodes of the platform [11], [2]. Another phase
during system reconfiguration is task migration [8] that
takes place when tasks running on failed nodes must be
activated at other nodes in the system. The system has
the ability to migrate tasks to other nodes in the plat-
form [8]. Each node stores information regarding those
tasks that it must migrate on the bus when the system
is adapting to a new configuration. This information is
generated at design time (Section IX-B).

III. Control Quality and Design Optimization

A. Metric for Control Quality

Considering one of the controlled plants Pi in isolation,
the goal is to control the plant states in the presence
of the plant disturbance vi and measurement error ei.
We use a quadratic control cost [9] as a quality and per-
formance metric for control applications. This includes
a cost for the error in the plant state and the cost
of changing the control signals (the latter cost can be
related to the amount of energy spent by the actuators).
Specifically, the quality of a controller for plant Pi is
given by the quadratic cost

Ji = lim
T→∞

1
T

E

{∫ T

0

[
xi

ui

]T

Qi

[
xi

ui

]
dt

}
. (3)

A small cost indicates high control quality, and vice
versa. The weight matrix Qi is used to model weights
of individual components of the state and input vectors,
as well as to indicate the importance relative to other

control applications in the system. An infinite cost indi-
cates an unstable closed-loop system.

The cost in Equation 3 is a common quality metric for
control systems [9]. It is a function of the sampling period
of the controller, the control law, and the characteristics
of the delay between sampling and actuation. This delay
is complex and is induced by the schedule and mapping
of the tasks on the distributed platform [12], [13]. We
use the Jitterbug toolbox [12] to compute the control
cost Ji by providing as inputs the controller and the
characteristics of the sampling–actuation delay.

B. Task Mapping for Configurations
Let us define the mapping of the task set TΛ onto a
configuration X as a function mapX : TΛ −→ X. For
each task τ ∈ TΛ, mapX(τ) is the computation node that
executes task τ when the system configuration is X. It
is required that the mapping constraints are considered,
meaning that mapX(τ) ∈ Π(τ) for each τ ∈ TΛ.
The mapping affects the delay characteristics indirectly
through task and message scheduling, thus affecting the
control quality of the running applications. It is thus of
great importance to optimize task mapping, schedules,
and control laws to obtain a customized solution with
high control quality in a given configuration.

For a given configuration X ∈ X , we use our de-
sign tool [13], [14] for integrated control, scheduling,
and mapping of distributed embedded systems. The
synthesized design solution comprises a task mapping
mapX : TΛ −→ X, an execution and communication
schedule (task and message priorities if the scheduling
policy of the platform is based on fixed priorities), and
controllers (periods and control laws). The optimization
objective is to minimize the overall control cost

JX =
∑
i∈IP

Ji, (4)

which indicates maximization of the total control quality
of the system, under the consideration that only the
nodes in X are operational, and that the other nodes
N \ X in the system have failed.

We denote with memX
d the amount of memory1 re-

quired on node Nd (d ∈ IN) to store information related
to the mapping, schedule, periods, and control laws
that are optimized for configuration X. This memory
consumption is given as an output of our design tool and
is considered when formulating the memory constraints
in Section IX-B.

IV. Classification of Configurations

A. Example of Configurations
Let us consider our example in Figure 1. Task τ1s reads
sensors and τ1a writes to actuators. Task τ1c does not
perform input–output operations and can be executed

1We model the memory consumption as an integer representing
the number of units of physical memory that are required to store
the design solution.



on any node in the platform. Sensors can be read by
nodes NA and NC , whereas actuation can be performed
by nodes NC and ND. The mapping constraints for the
tasks are thus given by Π(τ1s) = {NA, NC}, Π(τ1c) = N,
and Π(τ1a) = {NC , ND}. The same mapping constraints
and discussion hold for the other control applications Λi

(i = 2, . . . , n). Thus, in the remainder of this example,
we shall restrict the discussion to application Λ1.

First, let us consider the initial scenario in which all
computation nodes are operational and are executing
one or several tasks each. The system is thus in config-
uration N = {NA, NB , NC , ND} (see Figure 2) and we
assume that the actuator task τ1a executes on node NC

in this configuration. Consider now that NC fails and the
system reaches configuration XABD = {NA, NB , ND}.
Task τ1a must now execute on ND in this new configura-
tion, because actuation can only be performed by nodes
NC and ND. According to the mapping constraints given
by Π, there exists a possible mapping for each task in
configuration XABD, because XABD∩Π(τ) �= ∅ for each
task τ ∈ TΛ. We refer to such configurations as feasible
configurations. In feasible configuration, there is at least
one node that can execute a given task (without violation
of the imposed mapping constraints).

If the system is in configuration XABD and node NA

fails, a new configuration XBD = {NB , ND} is reached.
Because task τ1s cannot be mapped to any node in the
new configuration, we say that XBD is an infeasible
configuration (i.e., we have Π(τ1s) ∩ XBD = ∅). If, on
the other hand, node NB fails in configuration XABD,
the system reaches configuration XAD = {NA, ND}.
In this configuration, tasks τ1s and τ1a must execute
on NA and ND, respectively. Task τ1c may run on
either NA or ND. Thus, XAD is a feasible configuration,
because it is possible to map each task to a node that
is both operational and allowed according to the given
mapping restrictions. We observe that if either of the
nodes in XAD fails, the system reaches an infeasible
configuration. We shall refer to configurations like XAD

as base configurations. Note that any configuration that
is a superset of the base configuration XAD is a feasible
configuration. By considering the mapping constraints,
we observe that the only other base configuration in this
example is {NC} (node NC may execute any task). The
set of base configurations for our example system is thus

X base = {{NA, ND}, {NC}}.
Let us consider that design solutions are generated

for the two base configurations in X base. Considering
Figure 2 again, we note that the mapping for base con-
figuration {NA, ND}, including the produced schedule,
task periods, and control laws, can be used to operate the
system in the feasible configurations {NA, NB , NC , ND},
{NA, NB , ND}, and {NA, NC , ND}. This is done by
merely using the two nodes in the base configuration
(i.e., NA and ND), even though more nodes are oper-
ational in the mentioned feasible configurations. Simi-

larly, base configuration {NC} covers another subset of
the feasible configurations. By studying Figure 2 again,
note that the two base configurations cover all feasible
configurations together (there is a path to any feasible
configuration, starting from a base configuration).

By generating a mapping (as well as customized sched-
ules, periods, and control laws) for each base configura-
tion, and considering that tasks are stored in the memory
of the corresponding computation nodes to realize the
base configuration mappings, the system can tolerate
any sequence of node failures that lead the system to any
feasible configuration. Thus, a necessary and sufficient
step in the design phase (in terms of fault tolerance) is
to identify the set of base configurations and to generate
design solutions for them. It can be the case that the
computation capacity is insufficient in some base con-
figurations, because of the small number of operational
nodes. We shall discuss this issue in Section VI.

B. Formal Definitions
We consider that the mapping constraint Π : TΛ −→ 2N

is given, meaning that Π(τ) defines the set of compu-
tation nodes that task τ ∈ TΛ may execute on. A
configuration X ∈ X is defined as a feasible configuration
if X∩Π(τ) �= ∅ for each task τ ∈ TΛ. The set of feasible
configurations is denoted X feas.

For an infeasible configuration X ∈ X \ X feas, there
exists at least one task that due to the given mapping
constraints cannot execute on any computation node in
X (i.e., X ∩ Π(τ) = ∅ for some τ ∈ TΛ).

A base configuration X is a feasible configuration for
which the failure of any computation node N ∈ X results
in an infeasible configuration X \ {N}. The set of base
configurations is thus defined as
X base = {X ∈ X feas : X \ {N} /∈ X feas for each N ∈ X}.
The set of configurations X = 2N is thus partitioned
into disjoint sets of feasible and infeasible configurations.
Some of the feasible configurations form a set of base
configurations, which represents the boundary between
the set of feasible and infeasible configurations.

In the next section, we shall discuss an approach
to identify the set of base configurations. In the ideal
case, solutions for base configurations are synthesized,
enabling the system to operate in any feasible configu-
ration. If not all base configurations allow for acceptable
solutions to be synthesized, we construct solutions for a
set of minimal configurations in Section VI to cover as
many feasible configurations as possible. Such situations
occur if the computation capacity is too restricted to
achieve stability in certain base configurations.

V. Identification of Base Configurations

We shall present an algorithm that constructs the set of
base configurations X base directly based on the mapping
constraint Π : TΛ −→ 2N. Without loss of generality,
we shall assume that the function Π is injective (i.e.,
Π(τi) �= Π(τj) for τi �= τj). If this is not the case, then,



for the purpose of finding the set of base configurations,
it is an equivalent problem to study an injective function
Π′ : T′

Λ −→ 2N as a mapping constraint, where T′
Λ ⊂

TΛ. Further in that case, it is required that, for each
τ ∈ TΛ \T′

Λ, there exists exactly one τ ′ ∈ T′
Λ for which

Π(τ) = Π′(τ ′). Finally, in the following discussion, T′
Λ

and Π′ replace TΛ and Π, respectively.
We construct the set of base configurations starting

from the tasks that have the most restrictive mapping
constraints. Towards this, let us consider a bijection

σ : {1, . . . , |TΛ|} −→ TΛ,
where |Π(σ(k))| � |Π(σ(k + 1))| for 1 � k < |TΛ|. This
order of the tasks is considered during the construction
of the set of base configurations X base. The construction
is based on a function

construct : {1, . . . , |TΛ|} −→ 2X ,
where construct(k) returns a set of configurations that
include the base configurations of the system when
considering the mapping constraints for only tasks
σ(1), . . . , σ(k). We shall give a recursive definition of the
function construct. For the base case, we define

construct(1) =
⋃

N∈Π(σ(1))

{N}.

Before we define construct(k) for 1 < k � |TΛ|, let us
define a function

feasible : X × {1, . . . , |TΛ|} −→ 2X

as
feasible(X, k) = {X} (5)

if X∩Π(σ(k)) �= ∅ (i.e., configuration X already includes
an allowed computation node for task σ(k)) and

feasible(X, k) =
⋃

N∈Π(σ(k))

X ∪ {N} (6)

otherwise. If X contains a computation node that task
σ(k) can execute on, then feasible(X, k) does not add
additional nodes to X (Equation 5). If not, however, then
feasible(X, k) extends X in several directions given by
the set of nodes Π(σ(k)) that task σ(k) may execute on
(Equation 6). Now, we define recursively

construct(k) =
⋃

X∈construct(k−1)

feasible(X, k)

for 1 < k � |TΛ|. The set construct(k) thus comprises
configurations for which it is possible to execute the tasks
{σ(1), . . . , σ(k)} according to the mapping constraints
induced by Π.

We know by construction that X base ⊆
construct(|TΛ|). We also know that construct(|TΛ|)
does not contain infeasible configurations. A pruning of
the set construct(|TΛ|) must be performed to identify
feasible configurations construct(|TΛ|) \ X base that are
not base configurations.

VI. Minimal Configurations

By definition, it is not possible to operate the system
in infeasible configurations, because at least one task
cannot be executed in such situations. In this section,
we shall discuss the synthesis of mandatory solutions

that are required to achieve system operation in feasi-
ble configurations. The first approach is to synthesize
solutions for each base configuration of the system.
It can be the case, however, that no solution can be
found for some base configurations; the control cost in
Equation 4 is infinite in such cases, indicating that at
least one control loop is unstable. If a solution cannot
be found for a certain configuration, this means that
the computation capacity of the system is insufficient in
that configuration. In such cases, we shall progressively
synthesize solutions for configurations with additional
computation nodes.

We first synthesize a solution for each base configura-
tion X ∈ X base. If a solution could be found—the control
cost JX is finite—then that solution can be used to op-
erate the system in any feasible configuration X′ ∈ X feas

for which X ⊆ X′. If a solution cannot be found for base
configuration X, we proceed by synthesizing solutions
for configurations with one additional computation node.
This process is repeated as long as solutions cannot be
found. Let us now outline such an approach.

During the construction of solutions to configurations,
we shall maintain two sets Xmin and X ∗ with initial
values Xmin = ∅ and X ∗ = X base. The set Xmin shall
contain the configurations that have been synthesized
successfully: Their design solutions have finite control
cost and stability is guaranteed. The set X ∗ contains
configurations that are yet to be synthesized. The fol-
lowing steps are repeated as long as X ∗ �= ∅.
1) Select any configuration X ∈ X ∗.
2) Synthesize a solution for X. This results in the

control cost JX.
3) If JX < ∞, update Xmin according to

Xmin ←− Xmin ∪ {X}, (7)
otherwise update X ∗ as

X ∗ ←− X ∗ ∪
⋃

N∈N\X
(X ∪ {N}) . (8)

4) Remove X from X ∗ by the update
X ∗ ←− X ∗ \ {X}.

5) If X ∗ �= ∅, go back to Step 1.
In the first two steps, configurations can be chosen for
synthesis in any order from X ∗. In Step 3, we observe
that the set X ∗ becomes smaller as long as solutions can
be synthesized with finite control cost (Equation 7). If a
solution for a certain configuration cannot be synthesized
(i.e., the synthesis framework returns an infinite control
cost, indicating an unstable control system), we consider
configurations with one additional computation node to
increase the possibility to find solutions (Equation 8).
In the last two steps, the synthesized configuration is
removed from the set X ∗ and the synthesis is repeated
for another configuration in X ∗.

The configurations for which solutions could be syn-
thesized form a set of minimal feasible configurations.
The set of minimal configurations Xmin is thus defined



by Steps 1–5. A configuration X ∈ Xmin is minimal
in the sense that it is either a base configuration or
it is a feasible configuration with minimal number of
nodes that include the nodes in a base configuration that
could not be synthesized due to insufficient computation
capacity of the platform. For each minimal configuration
X ∈ Xmin, we consider that each node N ∈ X stores
all tasks τ ∈ TΛ for which mapX(τ) = N ; that is,
we consider that tasks are stored permanently on nodes
to realize mappings for minimal configurations. Further,
we consider that all information (e.g., periods, control
laws, and schedules) that is needed to switch to solutions
for minimal configurations at runtime is stored in the
memory of computation nodes.

The set of feasible configurations for which the system
is operational with our solution is

X oper =
⋃

X∈Xmin

{X′ ∈ X feas : X ⊆ X′} (9)

and it includes the minimal configurations Xmin, as well
as feasible configurations that are covered by a minimal
configuration. The system is not able to operate in the
feasible configurations X feas \ X oper—this set represents
the border between base and minimal configurations—
because of insufficient computation capacity of the plat-
form. A direct consequence of the imposed mapping
constraints is that the system cannot operate when it
is in any infeasible configuration in X \ X feas. Infeasible
configurations, as well as feasible configurations not
covered by minimal configurations, are identified by our
approach. To tolerate particular fault scenarios that lead
the system to configurations in(X \ X feas

) ∪ (X feas \ X oper
)
,

the problem of insufficient computation capacity has to
be solved by considering complementary fault-tolerance
techniques (e.g., hardware replication). The system re-
mains operational in all other configurations X oper by
using the solutions generated for minimal configurations.
As a special case, we have Xmin = X base if solutions
to all base configurations could be synthesized. In that
case, we have X oper = X feas, meaning that the system is
operational in all feasible configurations.

VII. Motivational Example for Optimization

The synthesis of a set of minimal configurations Xmin

in the previous section results in a solution that covers
all fault scenarios that lead the system to a configura-
tion in X oper (Equation 9). The synthesis of minimal
configurations provides not only fault tolerance for the
configurations X oper but also stability and a certain level
of control quality. We shall in this section illustrate and
motivate additional improvements in control quality.

A. Improved Solutions for Feasible Configurations
Let us resume our example in Section IV-A by consider-
ing synthesis of additional configurations than the min-
imal configurations. We have considered three control
applications for three inverted pendulums (i.e., n = 3 in

Table I
Control costs for several configurations.

Configuration X Control cost JX

{NA, ND} 5.2
{NC} 7.4

{NA, NB , NC , ND} 3.1
{NA, NB , NC} 4.3

Table II
Mapping for two configurations and three applications.

Configuration NA NB NC ND

{NA, NB , NC} τ1s, τ2s, τ3s τ1c, τ2c, τ3c τ1a, τ2a, τ3a –

τ1s, τ1c, τ1a,
{NC} – – τ2s, τ2c, τ2a, –

τ3s, τ3c, τ3a

Figure 1). Let us consider the set of base configurations
X base = {{NA, ND}, {NC}}. Considering that solutions
for the two base configurations have been synthesized,
and that these solutions have finite control costs, we note
that the set of minimal configurations is Xmin = X base.
We thus have X oper = X feas, meaning that the system
can operate in any feasible configuration with the so-
lutions for minimal configurations. Let us also consider
that a customized solution (mapping, schedule, and
controllers) has been synthesized for the configuration
in which all nodes are operational. This solution exploits
the full computation capacity of the platform to achieve
as high control quality as possible. Note that all feasible
configurations are handled with solutions for the two
base configurations.

We shall now improve control quality by additional
synthesis of configurations. Towards this, we have syn-
thesized solutions for the two minimal configurations,
as well as configuration {NA, NB , NC}. Table I shows
the obtained control costs defined by Equation 4.
Considering that a solution for {NA, NB , NC} would
not have been generated, then in that configuration the
system can only run with the solution for the minimal
configuration {NC} with a cost of 7.4. By generating
a customized solution, however, we can achieve a better
control quality in that configuration according to the ob-
tained cost 4.3—a cost improvement of 3.1 (the control
quality is improved by 41.4 percent). By synthesizing ad-
ditional feasible configurations, we can obtain additional
control-quality improvements—however, at the expense
of the total synthesis time of all solutions.

B. Mapping Realization

Once a solution for a configuration—not a minimal
configuration—has been synthesized, it must be verified
whether it is possible for the system to adapt to this
solution at runtime. Thus, for the additional mapping
of configuration {NA, NB , NC} in our example, we must
check whether the mapping can be realized if the system
is in configuration {NA, NB , NC , ND} and node ND fails.
In Table II, we show the mapping for this configuration,
as well as the mapping of its corresponding minimal
configuration {NC}. For the minimal configurations, we
consider that the tasks are stored on the corresponding



computation nodes. For example, the tasks in the column
for NC , corresponding to the minimal configuration, are
stored on node NC . Let us consider the mapping of the
tasks to the configuration {NA, NB , NC}. We note that
all tasks that are needed to realize the mapping for node
NC are already stored on that node. Nodes NA and NB ,
however, do not store the tasks that are needed to realize
the mapping for configuration {NA, NB , NC}. When
switching to the solution for this configuration—from
configuration {NA, NB , NC , ND}—the tasks for nodes
NA and NB need to be migrated2 from node NC .

Because any feasible configuration in X oper is covered
by a minimal configuration, which realizes its mapping
by storing tasks in memory of the operational nodes,
there is always at least one operational node that stores
a certain task for a given feasible configuration. The
migration time cannot exceed specified bounds, in order
to guarantee stability. Hence, for our example, if the
migration time for tasks τ1s, τ2s, τ3s, τ1c, τ2c, and τ3c

satisfies the specified bound, the system can realize the
solution for configuration {NA, NB , NC} at runtime.

If the time required to migrate the required tasks at
runtime exceeds the given bounds, then the solution for
the minimal configuration {NC} is used at runtime with
control cost 7.4. In that case, the operational nodes NA

and NB are not utilized. Alternatively, more memory can
be used to store additional tasks on nodes NA and NB ,
in order to realize the mapping at runtime without or
with reduced task migration. In this way, we avoid the
excessive amount of migration time and we can realize
the mapping, although at the cost of larger required
memory space to achieve the better control cost of 4.3 in
configuration {NA, NB , NC}. We shall in the remainder
of this paper study the trade-off among control quality,
memory cost, and synthesis time.

VIII. Problem Formulation

Given is a distributed platform with computation nodes
N, a set of plants P, and their control applications Λ.
We consider that a task mapping mapX : TΛ −→ X,
as well as corresponding schedules and controllers, have
been generated for each minimal configuration X ∈ Xmin

as discussed in Section VI. We consider that tasks are
stored permanently on appropriate computation nodes
to realize the task mappings for the minimal configu-
rations (i.e., no task migration is needed at runtime to
adapt to solutions for minimal configurations). Thus, to
realize the mappings for minimal configurations, each
task τ ∈ TΛ is stored on nodes⋃

X∈Xmin

{mapX(τ)}.

2During task migration, the program state does not need to be
transferred (because of the feedback mechanism of control applica-
tions, the state is automatically restored when task migration has
completed).

The set of tasks that are stored on node Nd ∈ N is
T(d) =

⋃
X∈Xmin

{τ ∈ TΛ : mapX(τ) = Nd} . (10)

In addition, the inputs specific to the optimization step
discussed in this section are

• the time µ(τ) required to migrate task τ from a node
to any other node in the platform;

• the maximum amount of migration time µmax
i for

plant Pi (this constraint is based on the maximum
amount of time that a plant Pi can stay in open loop
without leading to instability [15] or degradation of
control quality below a specified threshold, as well
as the actual time to detect faults [2], [3]);

• the memory space memd(τ) required to store task
τ ∈ TΛ on node Nd (d ∈ IN);

• the additional available memory memmax
d of each

node Nd in the platform (note that this does not
include the memory consumed for the minimal con-
figurations, as these are mandatory to implement
and sufficient dedicated memory is assumed to be
provided); and

• the failure probability p(N) per time unit for each
node N ∈ N.

The failure probability p(N) depends on the mean time
to failure (MTTF) of the computation node. The MTTF
is decided by the technology of the production process,
the ambient temperature of the components, and voltage
or physical shocks that the components may suffer in the
operational environment of the system [3].

The decision variables of the optimization problem
are a subset of configurations X impl ⊆ X oper \ Xmin

and a mapping mapX, schedule, and controllers for each
X ∈ X impl. Thus, in addition to the minimal config-
urations, we generate mappings for the other feasible
configurations X impl. We require that N ∈ X impl, which
means that it is mandatory to generate solutions for the
case when all nodes in the system are operational.

Let us now define the cost that characterizes the
overall control quality of the system in any feasible con-
figuration based on the solutions (mappings, schedules,
and controllers) for the selected set of configurations. We
shall associate a cost JX for each feasible configuration
X ∈ X oper. If X ∈ Xmin ∪X impl, a customized mapping
for that configuration has been generated with a cost
JX given by Equation 4. If X /∈ Xmin ∪ X impl and
X ∈ X oper, then at runtime the system uses the mapping
of a configuration X′ for which X′ ∈ Xmin ∪ X impl and
X′ ⊂ X. It is guaranteed that such a configuration X′

can be found in the set of minimal configurations Xmin

(Equation 9). If such a configuration is also included
in X impl, then the control quality is better than in the
corresponding minimal configuration because of better
utilization of the operational computation nodes. Thus,
for the case X ∈ X oper \ (Xmin ∪ X impl), the cost of the



feasible configuration X is
JX = min

X′ ∈ Xmin ∪ X impl

X′ ⊂ X

JX′
, (11)

which means that the best functionally correct
solution—in terms of control quality—is used to operate
the system in configuration X. The cost to minimize
when selecting the set of additional feasible configura-
tions X impl ⊆ X oper \Xmin \{N} to synthesize is defined

J =
∑

X∈X oper\Xmin\{N}
pXJX, (12)

where pX is the probability of node failures that lead the
system to configuration X (we shall discuss the compu-
tation of this probability in Equation 13). Towards this,
we shall consider the given failure probability p(N) of
each computation node N ∈ N.

The cost in Equation 12 characterizes the control qual-
ity of the system as a function of the additional feasible
configurations for which solutions have been synthesized.
If solutions are available only for the set of minimal
configurations, the system tolerates all node failures that
lead the system to a configuration in X oper—however,
at a large cost J in Equation 12. This is because other
feasible configurations operate at runtime with solutions
of minimal configurations. In those situations, not all
operational computation nodes are utilized, at the cost of
reduced overall control quality. By synthesizing solutions
for additional feasible configurations in X oper \ Xmin \
{N}, the cost in Equation 12 is reduced (i.e., the overall
control quality is improved) due to the cost reduction in
the terms related to the selected set of configurations.

IX. Optimization Approach

Figure 3 shows an overview of our proposed design
approach. The first component, which we discussed
in Sections V and VI, is the identification of base
configurations and synthesis of minimal configurations
(labeled as “fault-tolerant design” in the figure). The
second component (labeled as “optimization”) is the
topic of this section and is our proposed solution to
the problem in Section VIII. The selection and synthesis
of additional feasible configurations is described in Sec-
tion IX-A. For each synthesized feasible configuration,
it must be checked whether the solution can be realized
with regard to the memory consumption in the platform
and the amount of task migration required at runtime.
Memory and migration trade-offs, as well as memory-
space and migration-time constraints, are presented in
Section IX-B.

A. Exploration of the Set of Configurations
Our optimization heuristic aims to minimize the cost
in Equation 12 and is based on a priority-based search
of the Hasse diagram of configurations. The priorities
are computed iteratively as a step of the optimization
process based on probabilities for the system to reach
the different configurations. The heuristic belongs to

Select next configuration

Feasible configuration

schedules, and controllers
Synthesize mappings,

Mapping, schedule,
and controllers

Mapping realization

Migration and memory
trade−off

Identify base configurations

Set of base configurations

schedules, and controllers
and synthesize mappings,

Identify minimal configurations

Fault−tolerant solution

Fault−tolerant design

Optimization

Figure 3. Overview of the design framework. In the first step, we
synthesize solutions for base and minimal configurations to achieve
fault tolerance and stability (with some inherent level of control
quality). In the second step, the system is further optimized for
additional configurations.

the class of anytime algorithms, meaning that it can
be stopped at any point in time and return a feasible
solution. This is due to that minimal configurations
already have been synthesized and fault tolerance is
achieved. The overall quality of the system is improved
as more optimization time is invested.

Initially, as a mandatory step, we synthesize a map-
ping for the configuration N, in order to support the
execution of the control system for the case when all
computation nodes are operational. During the explo-
ration process, a priority queue with configurations is
maintained. Whenever a mapping mapX : TΛ −→ X
has been synthesized for a certain feasible configura-
tion X ∈ X oper (note that N is the first synthesized
configuration), each feasible configuration X′ ⊂ X with
|X′| = |X|−1 is added to the priority queue with priority
equal to the probability

pX′
= pXp(N), (13)

where {N} = X\X′. For the initial configuration N, we
consider pN = 1.

Subsequently, for configuration X, we check whether
it is possible to realize the generated mapping mapX :
TΛ −→ X at runtime with task migration and the
available additional memory to store tasks. This step is
described in detail in the next subsection (Section IX-B).
If this step succeeds, it means that the mapping can
be realized at runtime and we thus add X to the set
X impl (this set is initially empty). Further in that case,
for each node Nd, the set of tasks T(d) stored on Nd

and the amount of additional consumed memory memd

are updated. The set of tasks T(d) that are stored on
node Nd is initialized according to Equation 10. If the
mapping realization does not succeed, the generated
solution for configuration X is excluded. This means
that a solution for a minimal configuration must be
used at runtime to operate the system in the feasible
configuration X. Independently of whether the mapping
realization of X succeeds, the exploration continues by
generating a solution for the next configuration in the
maintained priority queue of configurations. The explo-



ration terminates when the additional memory space on
all computation nodes has been consumed, or when a
specified design time has passed (e.g., the designer stops
the exploration process).

B. Mapping Realization

For each configuration X ∈ X oper \ Xmin that is con-
sidered in the exploration process, a mapping mapX :
TΛ −→ X is constructed (along with customized sched-
ules and controllers). We shall now focus on whether and
how this mapping can be realized at runtime in case the
system reaches configuration X. We first check whether
there is sufficient memory to store information related to
the solution (mapping, schedules, and controllers) for the
configuration. The required memory for this information
is denoted memX

d and is an output of the mapping and
synthesis step for configuration X (Section III-B). Let
us denote with memd the amount of additional memory
that is already consumed on Nd for other configurations
in X impl ⊂ X oper \ Xmin. If

memd + memX
d > memmax

d

for some d ∈ IN, it means that the information related to
the mapping, schedules, and controllers for configuration
X cannot be stored on the computation platform. For
such cases, we declare that the mapping mapX cannot
be realized (we remind that solutions for minimal con-
figurations, however, can be used to operate the system
in configuration X).

If the solution for X can be stored within the given
memory limit, we check whether migration of tasks that
are needed to realize the mapping can be done within
the maximum allowed migration time

µmax = min
i∈IP

µmax
i .

If the migration-time constraint cannot be met, we aim
to reduce the migration time below the threshold µmax

by storing tasks in memory. The main idea is to store
as few tasks as possible to satisfy the migration-time
constraint. Towards this, let us consider the set of tasks

Ψd(X) =
{

τ ∈ TΛ \ T(d) : mapX(τ) = Nd

}
that need to be migrated to node Nd at runtime in order
to realize the mapping mapX, given that T(d) is the set of
tasks that are already stored on node Nd. The objective
is to find a set of tasks Sd ⊆ Ψd(X) to store on each node
Nd ∈ N such that the memory consumption is minimized
and the maximum allowed migration time is considered.
We formulate this problem as an integer linear program
(ILP) by introducing a binary variable bτ

d for each node
Nd ∈ N and each task τ ∈ Ψd(X). Task τ ∈ Ψd(X)
is stored on Nd if bτ

d = 1, and migrated if bτ
d = 0. The

memory constraint is thus formulated as
memd + memX

d +
∑

τ∈Ψd(X)

bτ
dmemd(τ) � memmax

d , (14)

which models that the memory consumption memX
d of

the solution together with the memory needed to store
the selected tasks do not exceed the memory limitations.

The migration-time constraint is formulated similarly as∑
d∈IN


 ∑

τ∈Ψd(X)

(1 − bτ
d)µ(τ)


 � µmax. (15)

The memory cost to minimize in the selection of Sd ⊆
Ψd(X) is given by∑

d∈IN


 ∑

τ∈Ψd(X)

bτ
dmemd(τ)


 . (16)

If a solution to the ILP formulation cannot be found,
then the mapping cannot be realized. If a solution is
found, we have Sd = {τ ∈ Ψd(X) : bτ

d = 1}. In that
case, we update the set T(d) to T(d)∪Sd and the memory
consumption memd to memd + memX

d +
∑

τ∈Sd
memd(τ).

Even for large systems, the ILP given by Equations 16,
14, and 15 can be solved optimally and efficiently with
modern solvers. We have used the eplex library for
ILP in ECLiPSe [16], and it incurred negligible time
overhead—less than one second—in our experiments.

X. Experimental Results

To evaluate our proposed design framework, we con-
structed a set of test cases with inverted pendulums,
ball and beam processes, DC servos, and harmonic os-
cillators [9]. The test cases vary in size between 5 and 9
computation nodes with 4 to 6 control applications. All
experiments were performed on a PC with a quad-core
CPU at 2.2 GHz, 8 GB of RAM, and running Linux.

As a baseline of comparison, we considered a straight-
forward design approach for which we synthesize so-
lutions for all minimal configurations and the initial
configuration N. This constitutes the mandatory set
of solutions to achieve fault tolerance in any feasible
configuration, as well as an optimized solution for the
case when all nodes are operational. We computed a cost
Jmin according to Equation 12, considering that solu-
tions have been synthesized for minimal configurations
and the initial configuration, and that all other feasi-
ble configurations run with the corresponding minimal
configuration with the minimum level of control quality
given by Equation 11. The cost Jmin indicates the overall
control quality of the fault-tolerant control system with
only the mandatory solutions synthesized.

Subsequently, we used our optimization heuristic to
select and synthesize additional configurations. For each
feasible configuration that is synthesized, individual cost
terms in Equation 12 are decreased (control quality is
improved compared to what is provided by minimal
configurations). The optimization phase was conducted
for varying amounts of design time. For each additional
configuration that was synthesized, the total cost in
Equation 12 was updated. We are interested in the
control-cost improvement

(
Jmin − J

)
/Jmin relative to

the control cost Jmin that is obtained when only con-
sidering the mandatory configurations.

Figure 4 shows the design time on the horizontal
axis and the corresponding relative improvement on the
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Figure 4. Relative cost improvements and runtimes of the pro-
posed design approach. The time offset on the horizontal axis shows
the synthesis time for the mandatory configurations.

vertical axis. The design time corresponding to the case
of zero improvement refers to the mandatory design
step to identify and synthesize solutions for minimal
configurations, which requires around 10 minutes of
design time. After this step, we have a solution that
covers all fault scenarios and provides a certain minimum
level of control quality in any feasible configuration. Any
additional design time that is invested leads to improved
control quality compared to the already synthesized
solution. For example, we can achieve an improvement of
around 30 percent already after 20 minutes for systems
with 5 and 7 computation nodes. We did not run the
heuristic for the case of 5 nodes for more than 23
minutes, because at that time it has already synthe-
sized all feasible configurations. For the other cases,
the problem size is too large to afford an exhaustive
exploration of all configurations. Note that the quality
improvement is relatively small at large design times.
For those cases, the heuristic typically evaluates and
optimizes control quality for configurations with many
failed nodes. These quality improvements do not con-
tribute significantly to the overall quality (Equation 12),
because the probability of many nodes failing is very
small (Equation 13). Our heuristic allows the designer
to stop the optimization process when the improvement
at each step is no longer considered significant. For the
case of 7 computation nodes, the optimization process
can be stopped after 30 minutes.

XI. Conclusions

We proposed a design framework for distributed em-
bedded control applications with support for execution
even if some computation nodes in the system fail. We
presented an algorithm to identify base configurations
and construct mappings for minimal configurations of
the distributed system to achieve fault-tolerant opera-
tion. To improve the overall control quality relative to
the minimum level of quality provided by the minimal
configurations, we construct additional design solutions.
Task replication and migration are mechanisms that are
used to implement adaptation and reconfiguration of the
system in case nodes fail at runtime. The alternative to
our software-based fault-tolerance approach is hardware
replication, which can be very costly in some application

domains; for example, the design of many applications
in the automotive domain is highly cost constrained.
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