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Executive summary 

In July 2011, the Swedish Government proposed developing a roadmap for attaining zero net 

emission of greenhouse gases by 2050. For most sectors in society, numerous visions for 

decarbonisation are available. However, visions for a complete decabonisation of the industry 

sector have been lacking in the policy debate so far. The aim of this report is to fill that gap and 

describe the potential technology systems necessary for a complete decarbonisation in a selected 

number of industries producing basic materials, including foremost the production of steel, 

cement, basic chemicals, aluminium, and pulp.  

The report reviews the results from current climate-economic modelling and complements this 

with a technology assessment of the long-term opportunities that are not included in climate-

economic models. The focus is on a complete decarbonisation.  From this analysis, the report 

discusses policy implications for the industry sector given the overall framework set by the on-

going international climate negotiations.  

Relying on current production systems and applying “end-of-pipe” solutions will be insufficient to 

reduce emissions completely. Most estimates produced by climate economic models result in a 

reduction between -70 to -85% of CO2 in 2050. Decarbonising the industry sector while 

maintaining production volumes requires a major effort to develop, introduce and invest in novel 

process designs that currently are not available on the market.  

To completely phase out greenhouse gas emission in the industrial sector by 2050 is very 

challenging. Regardless of the specific numbers (zero or – 80%), by 2050 there will certainly be a 

need to develop the capacity to be “zero emission technology ready”. By this, we mean that the 

technical systems necessary for a decarbonisation must be developed, demonstrated and 

commercially available for large-scale introduction in between 2040 to 2050. Once technical 

solutions are commercially available, it will still take many years before the technologies are 

widespread and common practice.  

The report outlines a technology strategy for industry that identifies a set of broad technology 

platforms and infrastructure needs such as electro-thermal processes (e.g.  electrowinning), black 

liquor gasification, bio-based chemicals, magnesium based cement, and application of industrial 

CCS. All are in need of targeted support.  From this, the report also outlines a policy strategy for 

managing the inherent risks and difficulties in steering towards a long-term and complete 

decarbonisation of industry. 

Our analysis points to the need for complementing the current main climate policy approach of 

pricing the emissions via the EU ETS with a stronger policy for technical change.  Overcoming the 

numerous barriers for radical future technologies in the industrial sector, while at the same time 

managing the inherent risk of carbon leakage embedded in the climate change convention, 

requires a comprehensive policy package for technical development. Our analyses suggest that 

targeted support for specific technologies is necessary. The support needs to include funding for 

RD&D but also for market development support in a broad sense. So far, this approach has 

worked well in the renewable energy sector through the use of various support schemes. 
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Sectoral roadmaps for creating a common vision between government, industry and civil society 

are an important first step. The overall purpose of a roadmap may be to establish priorities on 

RD&D, co-ordinate various actors create networks for knowledge sharing, and map future 

technology and policy pathways.  

Another important part of a long term policy strategy towards decarbonisation is to clarify the 

long term goal of the EU ETS and how to deal with the risk of loss of competitiveness and carbon 

leakage. Our analysis points to widening the necessity for widening the focus of long term climate 

policy to also include trade policy. 
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Background to study  

To support the long-term climate ambitions adopted by the European Union, the commission 

launched a roadmap in May 2011 to assess the impacts and the potentials for reducing 

greenhouse gas emissions within the EU with 80 % to 2050 (EU COM 2011a). This roadmap is 

comprehensive and aims at covering the whole economy of the union. Since then, the 

commission has further developed a detailed roadmap for each energy sector in the union (EU 

COM 2011b). The EU commission encouraged member states to develop their own national 

roadmaps complementing the EU wide roadmap.  

In July 2011, the Minister of Environment in Sweden took the initiative to develop a Swedish 

roadmap for attaining zero net emission for greenhouse gases by 2050.  The ministry gave the 

Swedish Environmental Protection Agency (SEPA) the assignment to, in co-operation with several 

other agencies, develop a suggestion and analysis of how this could be feasible for Sweden and 

report this to the ministry by December 2012. 

The EPA commissioned Lund University to write a report that would assess the potential for 

attaining zero emission in the Swedish industry sector with a special focus on the basic materials 

industry. The report will serve as a background for the SEPA and co-operating agencies (notably 

the Swedish Energy Administration) when developing their suggestions for the ministry. 

The study has been written by Max Åhman, Alexandra Nikoleris, Lars J Nilsson at the Department 

of Energy and Environmental System Studies (EESS) at Lund University. A reference group 

consisting of Eva Jernbäcker and Ulrika Svensson from the EPA and Annika Persson and Malin 

Lagerquist from the Energy Agency (STEM), has commented on drafts.  

The preliminary findings were presented on the 25th of May 2012 to industry representatives 

and the report has been finalised after taking into account their comments on the presented 

draft.  Anna Ekman at EESS at Lund University has also commented on drafts 
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1 Introduction 

The long-term aim of attaining zero emissions in Sweden is ambitious and challenging. Visions for 

a complete decarbonisation of the power, housing and transport sectors exist with numerous 

details of technologies and changes that need to take place (IPCC 2007, IPCC SREEN 2011). In the 

agricultural sector, it is well known that emissions can decline substantially with good practices 

but that zero emissions are unattainable (due to e.g.  methane and N2O leakage from food 

production). However, the prospects for attaining very low or even zero emission in the basic 

industry sector have, so far, not been studied as much.  

Assessments of the economically possible emission reductions in the industry sectors have 

indicated a potential reduction of 50 to 85% up to 2050. These reductions can be achieved with 

efficiency improvements combined with fuel shifts and adding carbon capture and sequestration 

(CCS) to the major exhaust stacks.  

The aim of this report is to go one step further and describe and assess the potential 

technologies and systems for a complete decarbonisation and also to look at the potential for 

negative emissions. The time horizon is set to 2050 which allows and necessitates the exploration 

of technologies that currently are not technically or commercially mature and thus not well-

represented in climate-economic models. From this analysis, the report discusses policy 

implications for the industry sector given the overall framework set by the on-going international 

climate negotiations.  

This report is based on publicly available scientific articles, industrial and academic reports, and 

on the previous work within the department of Energy and Environmental System Studies in 

Lund, specifically the work within the LETS2050 programme (www.lets2050.se). 

1.1 The UNFCCC and long-term targets for Sweden and the EU  

Since the late 1980s, the Intergovernmental Panel for Climate Change (IPCC) has had the 

responsibility for assessing the scientific basis of human induced climate change. The results have 

gained increased international recognition and acceptance among business, government and the 

general public that major efforts to curb the threat of climate change are both environmentally 

necessary and economically wise. 

The global policy response to the emerging scientific knowledge has been the establishment of 

the United Nations Framework Convention for Climate Change (UNFCCC). The UNFCCC was 

adopted in 1992 and states that the parties (195 national governments) should “prevent 

dangerous anthropogenic interference with the climate system“. At the time, the scientific 

understanding of climate change was still emerging and not clear enough for the parties to the 

convention to agree on any specific emissions or temperature level. 

1.1.1 Global targets 

However, science and the political understanding of climate science developed further and as a 

first step to fulfil the long-term objectives of the climate framework convention (UNFCCC), the 

parties adopted the “Kyoto protocol” in 1997. The Kyoto protocol is only the first step and has 

http://www.lets2050.se/
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the goal of halting the escalating growth of greenhouse gas emissions by putting an absolute cap 

on emission for industrialised countries. 

In 1996, the EU specified their climate goal by adopting a long-term target to limit the human 

induced global warming to 2 degrees above pre-industrial temperatures. Sweden adopted the 2-

degree target in 2008 (Regeringen 2009). In December 2011, the parties to the UNFCCC in 

Cancun eventually adopted the 2-degree target on a global level.  

Limiting human induced warming to 2 degrees is a very ambitious target and requires a long-term 

view on emissions reductions up to the year 2100 and beyond. According to the latest 

assessment of the IPCC (AR4), the 2 degree target implies that we need to reduce the global 

emissions of greenhouse gases by at least 50% to 2050 compared to the levels in 1990 and 

thereafter reduce the emissions to practically zero emission by 2100 (IPCC 2007)1.   

1.1.2 Mitigation targets for Sweden and the EU 

The United Nations Framework Convention on Climate Change (UNFCCC) also includes a burden 

sharing principle that all signatories have a “common but differentiated responsibility” for 

reducing emissions. The burden sharing implies that industrialised countries should take a 

greater share of future emission reductions and that developing countries should be allowed to 

grow with fewer restrictions on fossil energy use and emissions. 

In the Kyoto protocol, the burden sharing principle means that only industrialised countries are 

committed to decrease their total emissions and report this. Developing countries have no 

restrictions on their CO2 emissions and are only committed to report on emission levels in a 

transparent and verifiable manner.  

After 2012, when the Kyoto protocol ends, a new interpretation of the burden sharing principle 

has to be agreed upon. When and how much emission reductions fast developing and middle 

income countries (such as the BRICS2) should commit to after 2012 have been one of the primary 

obstacles for agreeing on a new climate treaty that could replace the Kyoto protocol. No 

conclusion has been reached yet. However, a decision was taken in 2011 in Durban to “adopt a 

universal legal agreement for climate change no later than 2015”.  

In the EU, the commission has interpreted the burden sharing principle in the convention that 

the EU needs to reduce its emissions by 80 to 95% by 20503 (EU COM 2011b). Some of these 

emission reductions could be purchased as “off-set” credits but the long-term availability of cost 

effective credits will be limited.  Based on a review of scientific literature (EU 2011b), the 

commission suggests that at least a 77 to 80% reduction is necessary domestically within the 

union by 2050 and the rest (3% – 18%) can bought as off-sets. A similar long-term target to 

reduce emissions by 80% to 2050 was proposed in the US, the Waxman-Markey bill, but failed to 

get enough political support in 2009. 

                                                           
1
  Later research has suggested that emissions need to decline even more rapidly as compared to 

the IPCC AR4, see e.g. UNEP Emissions gap report 
2
 BRICS; Brazil, India, China and South Africa 

3
  This implies that developing countries need to deviate 15-30 % from BAU in 2020 and start 

reducing their emission thereafter and return to slightly below their emission levels of 1990 (-5%) by 2050. 
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In Sweden, the government has proposed a long-term climate mitigation goal to achieve zero net 

emissions by 2050. However, the use of offset credits and carbon sinks (in Sweden mostly our 

growing forests) is not yet decided and could affect the domestic mitigation ambition 

substantially. Several other countries have also previously set similar or more ambitious long 

term targets for becoming carbon neutral, for example the UK, Germany and Denmark in the EU 

but also Costa Rica and Norway. 

To completely phase out greenhouse gas emission in the industrial sector by 2050 is very 

challenging. Regardless of the specific numbers (zero or – 80%), by 2050 there will certainly be a 

need to develop the capacity to be “zero emission technology ready”. By this, we mean that the 

technical systems necessary for a decarbonisation must be developed, demonstrated and 

commercially available for large-scale introduction in between 2040 to 2050. Once technical 

solutions are commercially available, it will still take many years before the technologies are 

widespread and common practice.  
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2 The Swedish basic materials industry 

Our study focuses on the heavy industry in Sweden including the production of iron and steel , 

aluminium, cement, platform chemicals from refinery by-products, nitric acid, and paper and 

pulp. Mining is only briefly covered in chapter 5.3.1 due to the fact that most CO2 emissions come 

from the large use of electricity (grinding, hoisting, pumps, ventilation, transport etc.), use of 

fossil transport fuels, heat for ventilation, etc. All these activities are deemed replaceable with 

renewable alternatives by 2050. 

These industries are energy intensive. Not all have high emissions of CO2 but all are sensitive to 

rising CO2 prices/restriction as an effect of climate policy. These industries have also been 

considered for various specific treatments due to the risk of carbon leakage, notably the free 

allocation of emission rights (EUAs) within the EU ETS but also the in the early discussions of 

introducing “sectoral approaches” and border tax adjustment in the international climate 

negotiations.  

Looking at the specific industrial sub-sectors assessed in this paper, they contribute roughly1,6 - 2 

% of the Swedish GDP and directly employ 50,000 to 70.000 people depending on which 

subsectors you include (SCB 2012). However, including also the industry sectors surrounding the 

production of basic materials, the sector as a whole contributes to 7-8 % of GDP and employs at 

least 100 000. The heavy industry in Sweden uses 150 TWh energy per year (27 % of the total 

supply) and emits approximately 16,9 Mton (1/3 of the total) greenhouse gases (STEM 2011). 

2.1 Trends and projections for emissions 

In Figure 1 below, the historical emissions of CO2 from selected industrial sectors in Sweden are 

given. The figure also includes the Swedish official forecast for emissions up to 2030. The forecast 

includes all measures for reducing Swedish emissions adopted up to June 2010.  

 
Figure 1 Emissions from Swedish basic materials industries. Source:  EPA/STEM 2012 
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As can be noted from Figure 1, the emissions in the selected industry sectors do not decrease in 

the future but increases slightly up to 2030. This can appear to be contradictory to the stated 

climate ambitions in Sweden. However, the official projections do not control if set emission 

reduction targets are met domestically. The influence of the EU ETS (the dominant climate policy 

instrument for industry) is modelled as a static price signal (16 EUR/ton) on the margin 

(accounting for free allocation) and not as a quota restriction in volume. This is logical as the 

target for the reduction within the EU ETS is set on an EU level and not on a national level. Thus, 

in order to fulfil the overall quota restriction set by the EU, Swedish industry is forecast to buy 

allowances from either other sectors in Sweden or import allowances from Europe and emission 

reduction certificates from the developing world (CDM or JI).  

Whether the predicted price of 16 EUR/ton CO2 is a reasonable up to 2030 is uncertain, but it is 

the same carbon price projected by the EU COM in their reference scenario. Current prices are 

far below (< 10 EUR/tonCO2). In the 2050 decarbonisation scenarios in the EU COM roadmap, the 

quota prices ranges from 25 EUR/ton in 2020 rising up to 104-370 EUR/ton in 2050 (EU COM 

2011a). 

2.2 Trends and projections for production 

The total mitigation potential in the heavy industry sector relates strongly to the expected 

production growth. Future projections of emission growth are based on either projections of 

physical production volumes or projections of future growth of value added measured in 

economic terms. Regardless of which, the projections are based on the interpretation of 

observed historical trends. 

2.2.1 Historic trends for production volumes 

In Table 1, the basic production trends, as observed the last 20 years, are presented. The 

production trends of basic materials do not grow at the same speed as the economy in Sweden.  

This can partly be explained by a growing import of manufactured goods (embedded materials) 

and reliance on a less material intensive sector in the economy For some industries, a steady 

growth can be observed (notably the paper and pulp industry). The production volumes in the 

iron and steel and the cement industries follow different cycles in the economy. For the 

production of aluminium and ethane, the volumes have, or are set to, increase step wise due to 

new investments in capacity during the past few years. 
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Table 1. The trends in production volumes for basic materials in Sweden 

 Trends since 1990 

Cement Swedish production of cement has fluctuated around 2 to 2,8 Mton cement/year 

following international building cycles 

Primary aluminium Swedish production has remained stable around 100 000 ton/year (maximum 

output at Kubal/Rusal). However, new capacity has recently been added to 

increase production to 130 000 tons/year 

Iron and Steel The production of steel has fluctuated between 4 to 6 Mton steel/year and the 

production of iron between 2,5 to 3,5 Mton/year following economic cycles. 

Since 1990, the production has increased 30%. However, viewed in a longer-

term perspective, since 1970, the production has fluctuated. 

Nitric Acid The production of nitric acid for fertiliser has stopped in Sweden. Current 

production of 260 000 ton for use for technical nitrates has increased the last 3-4 

years by 10% . 

Ethene (cracker) Since a major refurbishment 6 years ago, the production has slowly and steadily 

increased to around 500 000 to >620 000 tons of ethene/year in the cracker. 

Maximum output is currently 620 000 ton at Stenugsund and the remaining part 

is imported. 

Paper and pulp Production has seen a steady increase from 10 to 12 Mton pulp/year  and from 8 

to 11,5 Mton paper/year since 1990 

Refineries Production has changed during the last 15 years due to environmental 

considerations resulting in lesser demand for heavy fractions and higher demand 

for low sulphur fuels. Also, a shift from petrol to diesel has increased during  the 

last 5 years. The domestic demand is stagnating but export of clean fuels is 

increasing.  

Mining Approximately 15 mines in Sweden are producing close to 50 Mton ore, of which 

50% is iron ore and the rest non-ferrous ores, mainly gold, zinc, silver, lead, and 

copper. The last 10 years have seen an increase in prospecting for non-ferrous 

metals previously deemed unprofitable. With the notion of increasing global 

scarcity linked with a long-term increasing global demand,  the mining industry 

sees a good potential for future growth  

Sources: SCB (2012) complemented with personal communication with Yara and Borealis, 

Länsstyrelsen in Sundsvall, Miljöredovisningar from Heidelberg Northern Cement and Borealis. 

2.2.3 Projections of production volumes 

In Figure 2 below, the future projected production volumes for some of the basic materials 

investigated here are given. Figure 2 shows projections assumed by McKinsey (2008), the ADAM 

project (2009) and by the IEA (2010).  
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Figure 2 Production volumes for the Swedish & “OECD Europe” industry up to 

2030/2050. Sources: McKinsey 2008, IEA 2010,  ADAM 2009 (2-degree scenario) 

However, as can be seen from Figure 2 above, the projections of McKinsey, the ADAM project 

and IEA differ substantially. The IEA assumes that production volumes in general will stagnate in 

EU and Sweden whereas McKinsey, based on trend extrapolation, assumes that production 

volumes in Sweden will continue to grow basically in line with the assumed GDP growth.  The 

ADAM projections show a declining production of steel and a short-term increase of cement and 

pulp that declines in the long term. 

The IEA projections are based on a general assumption, adopted by the OECD, that new 

production facilities will be located closer to the emerging markets. Production within the EU will 

concentrate on higher valued end products in the sectors facing global competition (as has been 

the case in Sweden for e.g. steel). Other sectors, such as cement, are assumed to follow the 

previous trends of regional/global cycles in the economy. The IEA further assumes that structural 

changes will make productions of primary materials grow less or not at all up to 2050 in the EU. 

The ADAM project assumes in their 2-degree scenario a strong push towards material efficiency 

resulting in less demand for basic materials (especially steel) in the future. 

In conclusion, there seems to be an agreement that basic materials will not only be needed but 

also produced in the EU in 2050. However, the growth in domestic physical production volumes 

will be limited for most basic materials (see also IEA 2012). The building materials industry is 

projected to follow building cycles which are assumed to be quite stable the coming 40 years in 

Europe (no growing population and less economic growth). The aluminium industry is already 

“foot loose” in that the product has a high value and does not cost much to transport. High 

future global demand for materials will increase the price of virgin materials will increase the 
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need and value for recycling4. Most projections also include an assumption of a growing reuse of 

materials in e.g. the steel industry, aluminium and basic plastics.  

The general development assumption is thus that greenfield investments, investments in 

completely new industrial sites, are steered towards the emerging markets such as China, India, 

and Brazil.  

2.2.4 Investment cycles for basic industry 

The basic industry has a huge capital stock in existing processes. As capital is a scare resource for 

companies, the basic industry normally changes only gradually over decades. This existing capital 

stock can, to large degree, be regarded as a sunk cost, which needs to be considered when 

addressing the economics of technical change. The current industrial facilities within the EU (e.g. 

cement, steel, power and refineries) have an age structure where normally more than 70% of the 

facilities were commissioned before 1980 (Rootzén 2012).  

Research on turnover rates for industrial capital stock reveals that, in general, there is no real 

fixed time limit for how long existing factories can run. New investments are typically done to 

increase production and to capture new markets and seldom are new facilities invested in with 

the sole purpose of increasing efficiency (Worrel and Biermans 2005). Existing investments will 

run until external pressure in to form of environmental legislation or excessive maintenance cost 

forces owners to close them down (Lempert et al 2002).  

The notion that the EU will see little greenfield investment will have repercussions on climate 

mitigation options as a greenfield investment usually offers an excellent opportunity for 

introducing the best available technology. This is the case in many steel mills built in e.g. China 

today. If the EU instead will see more of retrofits/refurbishment in industry or brownfield 

investments (investments in existing sites), there will be an increasing need for assessing and 

understanding the economics and technical potential as this will differ compared to the 

economics and rationales of greenfield investments.  

 

                                                           
4
 It is uncertain if the current (2010-2012) high prices of virgin materials will last. Following a possible 

economic restructuring of e.g the Chinese economy we might see more moderate prices in the future. 
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3 Industry in climate –economic models 

3.1 Top-down or bottom-up models 

For assessing the future opportunities for mitigating emissions in the industrial sector, several 

different climate economic models are used. The use and design of models is always linked to the 

aim of using the model, i.e. what questions do you want answered? Models can be classified 

either as bottom-up or as top-down models.  

Bottom-up models calculate the costs for individual technologies or technical systems based on 

what is known in terms of current and future costs and technical performances. These 

calculations can be done either with known technologies or with assumed future technologies. 

The term “cost” in bottom-up models usually refers to the direct technical cost for green 

investments or the incremental cost between a mitigation option and a fossil based option. 

Sometimes the term “societal cost” is used depicting a social discount rate, normally of 4%, has 

been used on the investment. The MARKAL model, developed and used by the International 

Energy Agency, is a good example of a bottom-up model. Other examples of a bottom up model 

are the McKinsey model for calculating a Marginal Abatement Cost curves (McKinsey 2008) and 

the Primes model used by the EU COM. 

A top-down model calculates the total cost for the whole economy to reach a specific emission 

target based on measured or assumed relationship between economic output and 

energy/emissions. The term “cost” here refers to the economic loss of GDP that is the 

consequence of adopting a carbon price in a general equilibrium model. A top-down model 

includes economic feedback in the economy; e.g. if we invest more in wind power, there will be 

less money for investing in bioenergy. The EMEC model is an example of a top-down model used 

by the Swedish government. The EU COM uses the GEM E3M model and the OECD has developed 

the OECD-ENV Linkages model.   

In the last ten to twenty years, several new energy-economic models have been developed 

specifically for assessing climate policy options. The most widely used models today are neither 

pure bottom-up nor top-down but rather hybrid models including both technical detail and a 

limited economic feedback. The largest and most complex use clusters of different types of 

models interactively combing top-down result to bottom-up sub-model for specific sectors. A 

typical example of the cluster approach is the models used by the EU Commission with PRIMES, 

POLES, GAINS and GEM E3M for assessing EU climate and energy polices and the ADAM project 

which uses a group of linked models including a detailed sub-model for industry. 

3.2 Industrial representation in some well-cited models 

The level of detail and ability to address specific industrial mitigation options differs between the 

models and also differs between the two basic types of models. Most long-term projections rely 

on bottom-up models/or sub-models. 

In the PRIMES model used by the EU commission, industry is divided into twelve basic sectors 

and several subsectors totalling 26 different subsectors using the twelve generic processes. This 
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gives Primes a very detailed technical description of industry compared to other models. 

However, despite the fact that Primes is usually regarded as a bottom up model, the key input is 

“added value” in economic terms5 and not physical production volumes. Structural changes 

within industrial sectors are price driven; e.g. higher energy prices due to carbon restrictions will 

lead to more scrap-based aluminium or less primary aluminium, etc.  

The IEA biannually presents the “Energy Technology Perspectives” (ETP) which contains detailed 

representation of industry and its emissions. The Energy Technology Perspectives is based on 

bottom–up modelling. Their model has extensive technical representation similar to the PRIMES 

model and uses endogenous assumptions regarding future physical production volumes and 

structural changes affecting in the heavy industry. Primes and ETP are similar in industrial and 

technology assumptions and resolution as they constantly exchange information and adapt to 

each other (EU COM 2011a). 

McKinsey published a well cited bottom-up model that builds on identifying existing and novel 

technologies that can be expected within the time frame to 2030 and then calculating the costs 

for replacing incumbent technologies. McKinsey used a social discount rate of 4 % and assumed 

no implementation costs, no costs for “learning by doing”, no legal barriers for e.g. co-

generation, and that agents have perfect information and foresights of future technologies. With 

these assumptions McKinsey developed a set of marginal abatement cost (MAC) curves that 

received much attention, especially since they pointed out that there were numerous low cost 

abilities to reduce emissions. In these kinds of models, the ability to include advanced 

technological systems/changes is only limited to the actual knowledge of unproven technologies.  

Top-down models such as EMEC and GEM E3M and OECD-ENV Linkages have far less technical 

representation of industry as they are driven by economic parameters derived from historical 

relationship between economic growth and energy use or emissions. However, top-down models 

can better simulate the economic structural changes between different industrial and other 

sectors of the economy, especially in the short and medium term, when one can assume that 

technical progress is less uncertain. Possibilities exist to adjust the historically derived emission 

intensities for accounting for assumed technical development. This is done for the Swedish 

official forecast where EMEC is complemented.  

3.2.1 The competitiveness of future technologies 

A key aspect is how to deal with the great uncertainty of future technology changes. Future 

technology costs are inherently difficult to predict with any accuracy but a number of methods 

have been used, e.g. the use of learning curves and long-term engineering cost estimates. 

Another very rough method has been to compare input cost of feedstock and energy and 

assuming that, in the long-term and with development, this makes up a similar share of total 

production costs.  

                                                           
5
  The macroeconomic data on economic development and larger structural changes comes as input 

from the other models in the cluster such as the E3MG model.  
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For the use of learning curves see Neij (2008) or IPCC SREEN (2011). For an example of the use of 

engineering cost estimates for 2nd generation biofuels see Hamelinck and Faaij (2002) and Åhman 

(2003) for using all above methods for assessing of future vehicle technologies.   

For the very scale dependent heavy industry, long-term estimates of emerging technologies are 

normally deemed too complex to give an acceptable estimate of (see e.g. Birat 2010, IEA 2011). 

However, within the ULCOS project, a cost tool assessment was made to categorise different 

solutions for strategic decision making. The general conclusion that can be drawn is that energy 

costs will be the major share of overall production costs regardless of route chosen (Birat and 

Lorrain 2006). 

All future technologies in this report have been assumed to have the potential to become 

competitive in the future. These assumptions rest upon that technical development is successful 

and that enough investments are made in research and development of technologies which 

could also include early market introduction support via e.g. investment subsidies. Eventually, 

changing energy prices and policy induced higher prices for emitting CO2 (mostly via CO2 price but 

also via regulation) can make radically novel technologies competitive. However, we must 

acknowledge that all long-term cost estimates are fraught with uncertainty and this should be 

taken into account explicitly when interpreting model results. 

3.3 Exploring future options with models and energy system analysis 

Models deliver reasonable answers to questions posed given a transparently set of assumptions. 

Bottom-up models are typically used for identifying cost-effective allocation of different 

mitigation technologies whereas top-down models are used to assess the macro economic effects 

in terms of GDP losses of proposed climate policies. 

Most models do fairly well at projecting for the short and medium term as the input variables 

(econometric relationship for top-down models or technology costs for bottom up models) can 

be assumed with decent accuracy. However, several aspects need to be considered when trying 

to assess climate policy and mitigation options in the long-term.  

For long-term planning purposes, we argue that bottom-up models have a greater chance of 

giving answers that are reasonable and usable compared to top-down models. However, 

bottom–up  models also suffer from the fact that in order to calculate a future cost effective 

allocation of different technologies, the model needs, as input, reasonable reliable data on 

technical performance and economics. This limits bottom-up models to calculating the 

introduction and deployment of relatively well-known technical systems. 

The focus of this report is on future technology shifts requiring systemic changes for a complete 

decarbonisation. This radical change cannot be represented in current climate-economic 

modelling. In this report, we complement existing model results with a long-term technology 

assessment approach. This allows us to describe and study more radical industrial and energy 

systems that could become carbon neutral or even carbon negative and provide technical 

insights into strategic development needs and specific barriers. Also, it can increase the 

knowledge of future modelling and better prepare anticipated but historical unaccounted effects 

such as relative price changes. 
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4 A review of model results in the medium and long-term 

4.1 Assessment of the Swedish potential up to 2020 and 2030 

Assessing reduction opportunities up to 2020 and 2030 is, in a climate change context, regarded 

as short to medium term reductions.  In the time frame up to 2020, it is reasonable to assume 

that the best available technologies currently will be phased in and that some of the technologies 

currently being researched and demonstrated will have begun, given successful development, to 

penetrate the market on a commercial basis. The major effects on emission reductions up to 

2020 will be the phase-in of the best currently available technologies. The potential emission 

reductions modelled with bottom-up models up to 2020 can thus be based on relatively strong 

assumptions.  

Assessing the potential up to 2030 allows for assuming successful development of currently 

demonstrated/early market technologies, i.e. technologies that still can relatively clearly be 

defined in terms of future costs and potential to reach market maturity. Up to 2030, emerging 

technologies currently in the demonstration phase could have a substantial impact if the 

introduction to the market begins before 2020. In Table 3, we present two bottom-up studies for 

identifying which technologies that are assumed and evaluated, the “Kontrollstation 2008” (SEPA 

2007) and the McKinsey study for Sweden (McKinsey 2008).  

Table 3. Abatement technologies and the potential reductions up to 2020/2030 

 Iron and steel (incl. 

mining of ore) 

Cement and lime Paper and Pulp Refineries and 

petrochemicals 

Abatement 

technologies 

assessed to 2020 

Fuel shift coal/oil to n-gas 

for mining 

Replace coke with coal in 

steel BOF furnace 

Cont. efficiency via heat 

integration,  pre-heating of 

scrap, process 

optimisation  

Replacing oil with 

biomass in furnace 

Cont. energy efficiency 

improvements (fuel) 

Reducing clinker content 

by using ore e.g. slags, 

ash. 

Replacing oil with 

various qualities of solid 

and liquid biomass.  

Efficiency and heat 

integration which could 

lead to export of 

electricity 

Not assessed by SEPA in detail 

Heat recuperation 

Process optimisation 

Internal power production 

Abatement 

technologies 

assessed up to 

2030 

 CCS assessed by McKinsey 

at cost of 400 SEK/ton 

CCS assessed by 

McKinsey at cost of 400 

SEK/ton 

Impulse drying 

McKinsey identifies 1, 54 

Mton red. but at costs 

between 1000-2000 

SEK/ton 

Feedstock integration 

refineries/petrochemicals. 

CCS assessed by McKinsey at 

400 SEK/ton  

Reduction 

compared to BAU  

6 - 8%        2020 

< 45% (max) 2030  

2- 10 %     2020 

< 20%          2030  

16 - 30%       2020 

16 - 60%      2030 

< 2,4%           2020 

< 80%            2030 

Sources: McKinsey 2008 and SEPA 2007. No separate estimate on reductions potentials for 

mining of non-ferrous metals and aluminium were made. 
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SEPA (2007) assessed the economically potential up to 2020. The mitigation options often came 

at a price below 100 SEK/ton CO2 but also included some opportunities up to 400 SEK/ton as 

optional. McKinsey (2008) assessed opportunities up to 2030 and at a marginal lower than 500 

SEK/tonCO2. 

In the iron and steel industry there are no major shifts in technology, up to 2020 or 2030, that are 

deemed possible. Thus, the mitigation potential is relatively small. In the cement sector, the 

reductions are of similar magnitude and a result of mainly energy efficiency improvements and 

the reduction of clinker content in the cement. Paper and pulp are assumed to have a higher 

potential for reducing their emission despite the fact that they have already relatively fossil free. 

The opportunities come from phasing put parts of the remaining oil used for heating and for 

continued heat integration resulting in less heat demand. Refineries are not assessed in detail by 

SEPA , but McKinsey sees small opportunities in the short term and substantial opportunities in 

the medium term with the introduction of CCS. 

CCS is not seen as a possible mitigation option before 2020. McKinsey uses a breaking point of 

500 SEK/ton CO2 abated when assessing opportunities. In their opinion, this leaves out CCS 

before 2020, as the costs will be between 590 – 780 SEK/ton CO2 by then. However, by 2030 

McKinsey assumes that the cost for integrating CCS into current processes in cement, steel, and 

refineries will have decreased to 400 SEK/ton CO2 and thus be implemented where possible. 

In general, the technologies assessed in Table 3 above are all well-known or predictable. The total 

mitigation potential is limited only by assuming the introduction of new technologies where they 

are easily integrated into existing industrial production processes.  

4.2 Mitigation in the long term – model results for 2050 

Relatively few models have assessed the mitigation potential and the related economics for 

attaining very low emission levels in the long-term (2050).  

On the international level, the biannual IEA publication “Energy Technology Perspectives” (ETP) is 

one of the most well-known models with both industrial and technological details and a long-

term view (2050). On the EU level, the detailed bottom-up modelling with the Primes-model, 

which also has details on a national level, is used by the commission for formulating policy 

proposals, e.g. the EU low carbon roadmap. The EU funded ADAM-project built a cluster of 

models including an industry specific sub-model that contains results on both national and on an 

EU level. On a Swedish level, IVL (2010) and Åkerman et al (2007) have, with varying details on 

the industrial sector, shown what a low carbon society might look like in 2050. 

In Table 4, an overview of these long-term assessments is given. The technical details are, given 

the long time frame; presented on a general level and not per industrial subsector. This level of 

detail would only be possible with the ETP and the ADAM project. 
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Table 4.  Reduction potential and basic technologies used for a selection of models 

 Reduction in industrial sector compared to 

1990 

Technologies 

ETP 2010  

(OECD 

Europe) 

Reduction in all sectors:  70-80% 

Reduction in industry: 66% 

Efficiency and recycling (42%of red.), Biomass replacing 

fossil fuels where possible (18%). CCS the major contributor 

for reduction in heavy industry (40% of red.). 

EU COM 

(EU27) 

Reduction in all sectors: 80% 

Reduction in industry: 83- 87% 

Efficiency, Biomass, CCS the major contributor in the long 

term. low introduction of bioplastics, etc. 

ADAM 2C 

scenario  

(EU 27) 

Reduction in all sectors: 78%  

Reduction in industry:  65% 

Efficiency, CCS in steel and cement, solar heating + general 

dematerialization resulting in less production 

IVL  

(Sweden) 

Reduction in all sectors:79% w CCS, 72% w/o CCS  

Reduction in industry: 53% w. CCS, 36% w/o CCS 

Efficiency (3,45% per year red.) Biomass replacing all fossil 

fuels except for propane. CCS for easy accessible process 

emissions in steel and cement 

FMS /SU 

(Sweden) 

Reduction in all sectors : 85%  

Reduction in industry: unclear. Some fossil energy 

left for steel processes. 

Efficiency( 25-35% less energy demand by 2050), Biomass in 

industry (50% of energy), limited availability of CCS for 

process emissions assumed 

Sources: ETP (IEA 2010), IVL (IVL 2010), FMS/SU (Åkerman et. al 2007), EU (EU COM 2011), ADAM 

(2009). 

All the long-term assessments come to the conclusion that an overall reduction of 70 to 85 % is 

possible to 2050 with technologies that currently can be assessed and at a reasonable cost. For 

the industry sector, most models calculate a slightly lesser decarbonisation between 55 to 66 % 

to 2050. All these assessment have in common that they assume approximately the same 

technologies as mentioned in the assessments for 2020 to 2030 in Table 3 but with higher 

introduction rates. The technologies used at larger scale in 2050 are the technologies being 

demonstrated today and that are deemed possible to predict future cost and technical 

performance.  

General efficiency gains are a major contributor to mitigation also in the 2050 scenarios. All 

studies identify an “efficiency gap” that will help keep total energy use at the same or lesser level 

as compared with today by 2050. As an example, current Best Available Technologies will 

probably be completely phased in by 2050 resulting in up to 28 % reductions according to ETP 

(IEA 2010). The potential efficiency gain is also linked to increased recycling of materials (e.g. 

steel, and plastics) to keep energy use down. 

Biomass offers CO2-low energy supply options in all sectors. The extensive use of biomass is given 

a major role as it is assumed to directly replace a substantial share of fossil energy. Biomass is 

expected to replace most oil and coal and eventually natural gas in industry for heating. Some 

cases (IVL 2010) also assumed bio-coke to utilised as reduction agent in steel making  

CCS is included in the models and is seen as a major contributor for reducing emissions after 

2030 by most models. For ETP (IEA 2010), up to 40% of the reductions are attributable to CCS. 
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McKinsey (2008) assumes a major introduction of CCS by after 2020 at a cost of only 400 

SEK/tonCO2. The EU COM also assumes an introduction of CCS after 2025 at the cost around 30 

EUR/tonCO2.  However, CCS is generally modelled as an “end-of pipe solution” targeting only the 

easy accessible CO2 exhaust gas streams from high purity industrial sources like hydrogen 

production in refineries, natural gas sweetening, or by applying post-combustion capture 

technologies for mitigating a share of the total emitted CO2 from blast furnaces or cement kilns.  

Novel technologies, such as heating with electricity or various hydrogen pathways, which would 

require either major development efforts or redesigning of new industrial processes concepts, 

are described only in the ETP 2010 and more in ETP 2012 (IEA 2010, 2012) but not deemed 

possible to asses in the model. However, ETP 2012 stresses the need for a set of core 

technologies such as electrowinning in the steel sector, novel low-carbon cements and hydrogen 

in the chemical sector as to be developed in order to attain near zero emission by 2075 (IEA 

2012). 
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5 Decarbonising industry - general technologies  

Changes in current technology systems will not always suffice to decarbonise industry and reduce 

energy or process related emissions completely, as seen above in Table 4. Systemic changes in 

the production processes of basic materials are needed for a complete decarbonisation of these 

industries. These types of radical changes have not been represented well in climate-economic 

models.  

Below, we analyse emerging technology options with a focus on what is necessary for a complete 

decarbonisation of industry. Some presented technologies presented are deviating substantially 

from current production systems whereas other technologies are already being used in industry. 

However, together these technologies could make Swedish basic industry completely 

decarbonised  

In chapter 5, we present general technology systems that will be required for most of the 

suggested solutions to a decarbonised industry. In chapter 6, we address specific opportunities 

for each industrial category. 

5.1 Industrial heating 

 In Sweden approximately 37 TWh of fossil energy is currently used in industry (STEM 2011). 

Approximately 18 TWh is coal and coke that is used mostly in the iron and steel industry along 

with pelletising in the mining industry. The remaining 19 TWh is oil products, propane and 

natural gas that are mostly used for heating purposes and to some extent as internal transport 

fuels.   

The most obvious way of reducing CO2 emission from fossil fuel combustion for heat production 

is to replace fossil energy with biomass. The replacement of oil and coal to biomass is the 

common suggestion in climate-economic mitigation studies in Sweden (see. e.g. IVL 2010, 

McKinsey 2008, SEPA 2007). As an example, IVL 2010 suggests that almost all-fossil energy use in 

industry could be replaced with biomass. The IVL 2010 scenario retains only some propane gas 

used for cutting in the industry and coke for iron ore reduction.  

Bioenergy for heating purposes is technically relatively easy to use either as solid biomass in 

adapted furnaces or as methane gas injected into the natural gas grid. However, for several 

applications in e.g. lime or cement kilns and for blast furnaces, there is a need for pre-treating 

the biomass into a more homogeneous and energy dense energy carrier. Development is needed 

and underway for different variants of e.g. biochars, biocrude or bio-oils produced via pyrolysis, 

hydrothermal upgrading (HTU) or flash pyrolysis. Supplying bioenergy in the form of biomethane 

is an option for replacing natural gas. 

The supply of sustainable grown biomass will be limited in the future but at what level is still 

heavily debated. There will be many sectors competing for biomass resources. The “non-

biomass” options for decarbonising industrial heating are either direct solar heating or to use 

electricity for heating. CO2 free electricity can be used for decarbonised heating via direct 

resistance heating, via heat pumps or via a range of electrothermal technologies.  
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Solar heating via solar collectors is globally a major opportunity for industries with low 

temperature process heating needs such as the food and tobacco industries, textiles and leather 

industry, etc.  Today, solar heating systems provide industrial heat up to 120 °C. Technically, 

industrial systems are being refined and developed to provide solar heating up to 250°C. By using 

concentrated solar collectors (CSP) it is technically possible in the future to produce steam at 

temperatures above 1400 °C. However, solar heating have so far has not managed to penetrate 

the Scandinavian market in industrial applications due to cost and technical considerations. 

Heat pumps are already used in industrial applications in Sweden, open systems for steam pumps 

(ångkompressorer) in the paper and pulp industry and closed loop heat pumps in some 

applications as well for low temperatures (below 130 oC) (Wallin and Berntsson 1994). Current 

use of heat pumps for higher temperatures has been limited by the lack of suitable refrigerants. 

However, development is underway and high temperature heat pumps are currently tested for 

temperatures of up to 300 C (IEA Heat pump center 2012).  

Electrothermal technologies that generate electromagnetic radiation, e.g. heating via 

microwaves, infrared radiation, radio waves, ultra violet light, induction, and electron beams, are 

currently being used where there is a specific need for exact and well controlled temperatures 

and temperature gradients. Electrothermal technologies have the potential of being efficient as 

they can heat a very specific area without heating the surrounding material as is the case with 

conventional convection heating. Some electrothermal technologies heat only the surface (such 

as infrared radiation) whereas others specifically penetrate the materials and heat the volume 

(such as microwave and radio frequencies). Induction heating has the potential to heat just the 

connected material. Examples of current use of electrothermal technologies for heating are in 

the food industry for drying and in the automotive industry for coating, curing paints, etc.  

Plasma technology is also an electrothermal technology that has since long been used for steel 

production from scrap (electric arc furnaces). Paper drying is also an area where the use of 

electricity in infrared dryers could increase and replace gas fired dryers and electric impulse 

drying could increase overall efficiency. EPRI (2009) gives a comprehensive overview over future 

potential applications for electrothermal technologies. 

5.1.2 Heat profile in industry 

The selection of different technologies for decarbonised heat in industry is dependent on the 

temperatures used. Process heat is commonly divided into low temperature heat below 100 °C, 

medium temperatures between 100 and 400 °C, and high temperatures between 400 up to over 

1400 °C (e.g. steel making, cement calcination).  

Comprehensive numbers on heat demand in Swedish industry divided upon temperature ranges 

do not exist so any detailed assessment of the potential cannot be made. However, Figure 3 gives 

the estimated temperature ranges for the heat demand in Swedish industry. The calculations are 

based on a German in-depth study which was extended and adapted to Swedish conditions for 

producing the estimate. 
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Figure 3 Estimate of temperature demands in Swedish industries 2003. Source: (Werner 2012)  

For temperatures below 100 C, both heat pumps and solar heating have the technical potential 

to supply heat. However, most industries in Sweden have a surplus of low temperature heat 

(spillvärme) which has resulted in a growing export of heat for district heating systems (currently 

5,9 TWh).  

The future potential for heat pumps and direct solar heating in industry can be found in the 

temperature range between 100 to 400 °C. Development of efficient closed loop heat pumps that 

can deliver these temperatures are under way (e.g. development of refrigerants). On the basis of 

the original heat profile in the German study, Rainer (2010) found that 16% of current heat 

demand in Germany could be met by heat pumps 6.  

At higher temperatures above 400 °C the already existing electric arc furnace and alumina 

smelting can be decarbonised if electricity supply is CO2-neutral. In the future, plasma, induction 

technology and also concentrated solar power (CSP) can produce heat above 1000 – 1400 °C. 

In Sweden, the major industrial users of heat are the paper and pulp industry and the steel 

industry. The iron and steel industry needs temperatures of 400 - 1400 °C and the paper and pulp 

industries has a surplus of low grade heat that could partly be upgraded to higher temperatures 

                                                           
6
  In the same range, solar heating also has potential. Solar heating has begun to find niche markets in 

Northern Africa and Southern Europe where solar radiation make this technology economic viable  in contrast to 

Northern Europe. A study estimated the potential that 3-4% of industrial heat demand could be supplied by solar 

heating in central Europe (Rainer 2010).  
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with by heat pumps (see Bengtsson and Berntsson 2002). Other industries that might be 

appropriate for heat pumps or solar heating in Sweden are the food, brewery and tobacco 

industries which consume 0,7 TWh of oil and 1,5 TWh of fossil gas, mainly for heating purposes. A 

major part of this industry is located close to the natural gas pipelines in Sweden, which explains 

the high use of fossil gas and could act as a barrier for introducing other heating systems.   

5.2 Industrial Carbon Capture and Storage (CCS) 

Carbon capture and storage (CCS) of emitted CO2 has, during the past ten years, been seen as the 

major contributor to radical reductions in the long-term. CCS systems are currently operating in 

industrial applications such as gas desulphurisation, e.g. in Norway and  Algeria. 

The analytical focus has mostly been on understanding how to capture CO2 from the flue gases of 

the power sector, see e.g. IPCC (2005). Less analytical attention has been directed towards CCS in 

industrial applications. UNIDO and IEA have recently begun to explore and assess the applicability 

of CCS into industrial facilities (UNIDO 2011).  

5.2.1 Capture of CO2 and integration in industrial applications 

The cost and potential for applying CCS in industry depends on the concentration of the gas 

stream(s) and on the ability to integrate capture technologies in the process. In current climate-

economic modelling, CCS is projected be introduced and retrofitted to current industrial 

applications some time beyond 2025. Some industrial processes are very suitable for capture as 

the gas leaving is almost 100% pure CO2, such as ammonia production and natural gas processing 

(so-called high purity sources). High concentration is a major benefit as you only need to clean 

and compress the gas to pipeline specification for further transport.  

The current systems for CO2-capture from low concentration flue process gases are chemical 

absorption, physical separation in membranes, cryogenic separation or pressure swing 

absorption. These capture systems only capture between 85 to 90% of the CO2 in the diluted flue 

gas (IPCC 2005)7. To capture close to 100% of the CO2, the industry needs to produce a close to 

pure CO2 stream in the process. This can be achieved either with oxy-fired streams or pre-process 

removal.  It can also be called in-process CCS. In oxy-fired processes, pure oxygen is used instead 

of air in the combustion process. Thus, the flue gas is not diluted with the inert nitrogen from the 

air. In pre-process capture or in-process removal, the CO2 is separated as a part of the process, 

e.g. in gasification of biomass/coal or in gas desulphurisation. These novel technologies have the 

potential to increase the capture close to 100% of the CO2 (UNIDO 2011).  

Some industrial applications represent the “low hanging fruits” of CCS, as is the case with natural 

gas desulphurisation in Norway and Algeria or enhanced oil recovery (EOR) in the US, where the 

CO2 can be captured in a relatively pure form directly from the process or has an added value 

(e.g. EOR). In most industrial applications however, integrating CCS will be far more complicated 

                                                           
7
  Coupled with the increased energy demand for regeneration of the absorbent, the life cycle 

emission reductions are typically around 80-85% (IPCC 2005). 



 

26 

 

where major process changes will be necessary in order to capture a substantial part of the 

emission (UNIDO 2011). 

For major industrial emitters like steel and cement, the concentration of CO2 in the flue gas 

stream can be relatively high (between 20 to 40%) as compared to power production (3-14%). 

However, in industrial applications there are usually several point sources of CO2 emissions 

within the same site with varying concentrations and flows. As an example, an integrated 

steelwork often emits CO2 from ten different smokestacks with differing concentration (Birat 

2010). Capture system also require energy for either regeneration of the absorbent, for 

pressurising, cooling or for oxygen production. Some industrial applications might have the 

benefit of excess low-grade heat that can be used directly, or via heat pumps, to regenerate the 

absorbents if chemical absorption is the preferred capture solution.  

Targeting full capture of all emissions using advanced oxy-process or pre-process removal designs 

requires substantial changes to the whole industrial process in respective industries. Several 

options for redesigning the process and integrating CCS as a part of the new process exist for 

both the cement and the iron and steel industry. In the cement industry, manufacturing cement 

with pure oxygen in the process has been suggested and is currently being researched. However, 

the few CCS-demonstration projects under way in the cement sector are all based on standard 

post-combustion technologies (Mott McDonald 2010). In the steel sector, ULCOS presents several 

options that include partial or full capture of CO2 integrated into new process designs. One 

concept that enables retrofitting the existing blast furnaces, is the ULCOS TGR-BF concept8, with 

the potential to capture 65 to 75 % of CO2.  This has been tested in Luleå. ULCOS have also 

another concept that requires a complete new greenfield facility, the Hlsarna concept, which can 

capture over 80% of total emissions (Tata 2012). This concept will soon be tested in small scale in 

the Netherlands.  

In the paper and pulp process, there is a good opportunity to use CCS in combination with future 

black liquor gasification. As the CO2 would be separated in the gasification process the capture of 

CO2 would be relatively easy. If the black liquor is based on biomass, the net emissions would be 

negative. How negative depends upon whether black liquor gasification result in hydrogen or F-T 

diesel/methanol as a fuel. 

5.2.2. Transport and storage 

Transport of CO2 is well proven and normally seen as unproblematic. Transport represents only a 

minor part of the total cost of installing a CCS system. In an example from West Sweden, the 

calculated transport cost is around 12-14 EUR/tonCO2 (CCS in the Skagerack/Kattegat 2012).  

Storage is also tested in a smaller scale and exploration of future possible storage sites has been 

given much attention within the EU and Sweden. In Sweden, this responsibility lies with the SGU 

(Swedish Geological Survey). Two projects have been conducted to study the potential of storing 

                                                           
8
 TGR-BF: Top Gas Recycling – Blast Furnance. A “breakthrough technology” developed within the ULCOS 

consortium 
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CO2 in the Baltic, Östersjöprojektet (VTT 2010) and in the Skagerack-Kattegatt region (ccs-

skagerackkattegatt.eu).  

In general, there seems to be suitable potential storage capacity in the south of the Baltic and in 

the Skagerack region. They are all within a reasonable distance from major emitters (cement in 

Gotland, steel in Oxelösund on the East coast and the refineries and the chemical cluster in 

Stenungsund on the West coast). For the steel manufacturing plant in Luleå or the pulp and 

paper mills along the Northern Swedish coast, the distance to suitable storage capacity is longer 

and might require transport by ship. However, further testing is needed before these storage 

sites can be approved. Outside Norway, there are major fields that currently have been tested 

and deemed suitable and is currently used for CO2 storage.  

5.2.3 Energy demand and costs for CCS 

Applying CCS could increase the energy demand. In power production, the use of current 

available capture technologies, chemical absorption, will result in a 10 to 40% loss of overall 

efficiency accounting for the extra heat and electricity need (IPCC 2005). The energy losses come 

mostly from the extra heat needed for regeneration of the absorbent but energy is also needed 

for compression of the CO2 to enable transportation and injection into storage. 

For currently used methods of chemical absorption and regeneration there is a heat demand for 

2,7 to 3,3 GJ/tCO2 captured and an electricity demand of 0,06 to 0,11 GJ/tonCO2. A further 0,4 

GJ/tCO2 compressed to 110 bars for transport is needed (IPCC 2005). However, the low-grade 

heat needed for regenerating the sorbent can in some cases be found as excess heat within the 

facility. As an example, retrofitting CCS to a craft pulp mill would only need 1,45 GJ/tonCO2 

additional as the rest can be utilised from excess low grade heat within the facility (Carbo 2011). 

In an integrated paper and pulp mill there would be less excess heat available (ibid.).   

New capture technologies will change the extra energy demand needed. Oxy-fuel capture 

requires energy for oxygen separation and compression and will require 200-204 kWh electricity 

per ton CO2 captured and substantially less heat compared to chemical absorption (UNIDO 2011). 

For cement production, the extra energy demand for oxy-fuel capture is estimated to 90 to 100 

MJ of low-grade heat/ton and 110 to 115 kWh/ton of clinker produced (Mott McDonald 2011). 

For pre-combustion, the CO2 is usually separated as a part of the process and thus allocation of 

this energy is not straightforward. However, there will still be CCS specific energy needs in the 

form of compression and transport of the CO2. 

The introduction of “normal” CCS is assumed to cost between 50 to up to 150 USD/ton CO2 

avoided in year 2025 to 2030 (UNIDO 2011, McKinsey 2009) depending on which industries and 

successful development. Closer examination in the CCS-Skagerack consortium ended up with 

figures around 67 to 86 EUR/ton (CCS-SkagerackKattegatt 2012). The costs of redesigning the 

process and capture “in process” CO2, such as Hlsarna, are varying and deemed too unreliable to 

be included in any climate-economic modelling (Birat 2010, Mott McDonald 2011). 

CCS can play an important role in the future low carbon society in Sweden. However, in order to 

attain really deep emission cuts down to zero emission or negative, the CCS alternative requires 

substantial redesign of industrial processes and this requires development and will take time.  
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Retrofitting CCS to industrial applications means that (i) capture will be done only at the major 

smoke stacks at the industrial site and (ii) that current mature post-combustion technologies 

such as chemical absorption or future membranes are used. Applying CCS in this way could 

reduce emissions up to 65 to 85 % for steel and cement plants (Birat 2010, Mott McDonald 

2010). Adopting CCS to industrial applications does not seem to be the same kind “end of pipe“ 

solution as for power production. Costs for industrial CCS are also generally regarded as higher 

compared to CCS in the power sector if you exclude the low hanging fruits of high purity sources. 

On the other hand, if processes are redesigned anyway, this represents an opportunity, e.g. 

introducing black liquor gasification, where the additional costs for introducing CCS could be less.  

5.3 Industrial electrification 

In this report, we have assumed that the power sector is totally decarbonised by 2050. The 

versatility and efficiency of electricity as energy carrier motivate the increased use of electricity in 

industry. The path forward to attaining a zero or close to zero emissions in the power sector is 

relatively well known and includes several different supply options. The mostly domestic power 

sector also faces less political challenges in terms of competitiveness compared to the global 

industry sector. It is well accepted that there is a major opportunity for several emerging zero 

emission power technologies, such as solar photovoltaic, concentrated solar power, on- and off-

shore wind power, biopower etc., to become cost competitive within the next eight to fifteen 

years (IPCC SRREN 2011). The EU energy roadmap (EU COM 2011) decarbonises the power sector 

almost completely and the IEA shows in their perspectives the same opportunity (IEA 2010).     

Current power prices in the Nordic electricity market are low compared to central Europe. 

However, with increased integration of power system across Europe, the prices of electricity will 

become more like the prices of electricity in Europe (i.e. higher). In a decarbonisation scenario, 

industrial producers relying on grid based electricity will pay the cost of long term marginal CO2 

free production. An upper limit of this average long-term cost could be the cost of large-scale 

introduction of solar cells. Current long-term estimates give a possible production cost of 0,2 to 

0,5 SEK/kWh in 2050 (IPCC SREEN 2011, IEA 2012) which indicates that future renewable 

electricity prices need not be substantially higher compared to today. The Swedish conditions 

make it more probable to be in the higher price range. However, medium term estimate usually 

shows substantially higher prices for large scale introduction of renewable power and substantial 

early investments via e.g. feed-in tariffs, certificates, CO2 prices etc. are needed for gaining 

experiences and reducing production cost in line with the assumed learning curve.    

The way the introduction of renewable electricity is supported and the way the electricity market 

is regulated has a strong effect on the price, the price volatility and ultimately on the 

competitiveness of electricity intensive industries. With current marginal pricing of power, the 

extra cost of the EU ETS emission quota is seen directly on the electricity bill for industry. Within 

the EU there is, however, a possibility for the member states to compensate electricity intensive 

industries for this price increase. In the support mechanism for renewable electricity in Sweden 

(the quota-based “certificate” system), the industry is exempted and the incremental cost (the 

certificate price) is only paid by household consumers.  The balance between decarbonising the 

power sector with a high CO2-price or via targeted subsidies for renewables will thus have a great 

effect on the basic industry. 
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5.3.1 Industrial sectors reliant on electricity 

The production of aluminium is today very electricity intensive and sensitive to the power 

market. The global aluminium industry is already regarded as “footloose” industry seeking new 

investments where they can find low cost electricity. This usually means either oil producing 

states with regulated and/or subsidised markets or developing countries with poor transmission 

lines and large amounts of “stranded energy” e.g. hydropower or remote gas.  

The mining industry is also very dependent on the power sector. The total electricity use for 

extracting non-ferrous metals was 0,8 TWh in Sweden in 2004 (ÅF 2007)9. The non-ferrous metals 

mining sector uses electricity for hauling, hoisting, pumping, air circulation fans, and 

transportation. Apart from the large use of electricity, the mining of non-ferrous metals also 

needs liquid fuels, diesel, for trucks and heat that is either supplied via e.g. oil furnaces or 

sometimes purchased. Replacing diesel and heat with renewable alternatives cannot be regarded 

as technically challenging in the longer term. Continued electrification of transport and heat 

demand via e.g. transporters and heat pumps, is seen as strategic for a number of reasons in the 

mining industry (health, productivity etc.). However, this will increase the mining sector’s 

dependence on the power market. As the mining associations usually point out, the price of 

power is a major share of production cost, often in the range of 15 to 20% of total costs, and 

fluctuates more than the price of their end products. The mining sector in Sweden has developed 

a vision for 2030 and beyond in which they integrate the aim for reduced emissions and future 

energy use with workers safety, better materials use and automation (Rock Tech Centre 2011). 

Electricity has again become a much more strategic issue for industry compared to the last 

fifteen years of selling industry-owned power production facilities as an effect of the 

deregulation of the power sector. Already, we see a shift in attitude again, in e.g. the paper and 

pulp industry in Sweden, towards reversing this trend and integrating power production as a core 

business (Ericsson et al 2011). The access to and demand for future decarbonised electricity will 

become a much more strategic issue for basic energy intensive industry such as the mining 

industry, aluminium industry and the steel industry as future consumers and e.g. the paper and 

pulp industry as future producers.  As an example, future steel production could become one of 

the single biggest consumers of electricity if they move away from reduction with coke towards 

electrowinning which we examine in the next chapter. 

                                                           
9
  More specific statistics on the non-ferrous mining industry are not available in the official 

statistics. 
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6 Decarbonising industry - specific technologies  

The industry sector has several unique processes that represent major sources of emissions and 

cannot be analysed from a general view. Below follows our chapter describing some of the 

opportunities and challenges that exist for the major industrial processes in Sweden, e.g. steel, 

cement, paper and pulp, aluminium, petrochemicals and fertilisers. 

6.1 Steel: new reduction agents 

About two thirds of the steel production in Sweden is ore based10, primary steel production, in 

which iron ore is first reduced to iron in order to make steel. The reduction of iron ore into iron 

accounts for about 80% of the carbon dioxide emissions from primary steel production. Apart 

from increasing the percentage of scrap-based production, finding new reduction agents is, 

therefore, the most important step towards decarbonising the steel industry. Three alternatives 

exist; to use hydrogen as a reduction agent, to reduce iron ore in electrolysis or to use biochar 

instead of coke. Hydrogen reduction and electrolysis has the advantage over biochar that the 

primary energy can come from any renewable resource which may prove to be important in a 

low-carbon future where biomass is wanted for production of both energy and materials. In 

direct reduction (DRI), natural gas could also be replaced by biomethane. The biomass options do 

not differ technically from existing systems which is why only electrolysis and hydrogen as 

reduction agents are explained in more detail below.  

Hydrogen as a reduction agent can be used in existing direct reduction shafts but new furnace 

designs may be beneficial if hydrogen is to be used on a large scale to avoid unwanted side-

effects such as sticking (Sohn, 2008). New reduction techniques, such as suspension reduction, 

being developed at the University of Utah, also have the advantage that the iron ore does not 

have to be sintered or pelleted which will reduce the energy use in steel making compared to 

current technology (Sohn, 2008). The reduction process is much faster with hydrogen than with 

coke but is endothermic as opposed to the latter, which is why heat must be added (Choi, 2010; 

Ranzani da Costa, 2009). The extra heat can be supplied by burning excess hydrogen or using 

electricity (e.g. microwave technology), the latter option being more energy efficient. Only about 

60% of the hydrogen can be utilised in the process, so the gas must be recirculated. The amount 

needed depends largely on the temperature and required speed of the reduction, which is why 

lower amounts of excess hydrogen will be needed in a mature technology. The flue gas from 

reduction with hydrogen will be mainly water vapour which could be used for new hydrogen 

production to increase the energy efficiency in water electrolysis. About 3.45-3.95 MWh of 

electricity would be needed to produce hydrogen for reduction of 1 tonne of steel using an 

electrolyser with 80-70% efficiency LHV. Electrolysis of iron ore to produce iron is also possible. 

This process is known as electrowinning. The iron ore can be solved or suspended in an acid or 

alkaline solution to enable the process. It can also be melted in a saline solution for high 

temperature electrolysis (above 1600 °C).  If the iron is not melted the electrolysis, it can be 

performed at 110 °C. The studies show that 2.8-3.2 MWh/ton sponge iron is needed for the 

                                                           
10

 1/3 is based on melting scrap iron in electric arc furnaces. This requires high use of electricity but 

reduces CO2 emissions substantially as there is no need to reducing iron ore with coke or pelletisation. 
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electrowinning process (Cox and Fray, 2008; Allanore et. al., 2010). With electricity for melting 

included this would be approximately 3,7 MWh/ton steel. 

To reach near zero carbon emissions, however, measures of reduction must be carried out also in 

other processes at the steel plant. If electrowinning in an acid or alkaline solution or hydrogen 

reduction is used, the iron ore is reduced in solid state, creating sponge iron which must be 

melted afterwards for alloying purposes. EPRI (2009) suggests using advanced plasma or 

induction ovens for smelting. The key benefits besides lower emissions will be higher thermal 

efficiency and fewer waste products. Gasified biomass could be used for substitution of oil and 

propane in heat and heat treating furnaces; with a new technologies for gasification that reduce 

the tar content of the gas while creating a gas with higher heating value, compared to similar 

technologies (Ponzio, 2008).  

New reduction methods offer some advantages to current production apart from lowering 

emissions of carbon dioxide. Coke contains sulphur which must be removed from the steel. 

Approximately 100 Nm³ of oxygen is needed in order to reduce the concentration of carbon in 

steel production today. As requirements on low sulphur and carbon content in some speciality 

steels grow, using reduction methods free from carbon may reduce costs. To make a 

breakthrough in the use of new reduction methods in steel industry this must be recognised as a 

long-term strategy since the plant life times are long and infrastructure investments large. The 

use of hydrogen as a reduction agent could also be utilised as a means of energy storage and load 

smoothing in the electricity grid. This possibility must be investigated further.  

6.2. Cement: alternative heat and new materials 

Emissions of greenhouse gases in cement production are caused by two factors; burning of fossil 

fuels for heat (40%) and in the calcination of limestone to chemically reactive calcium oxide 

(60%). By deploying a new oxy-fired process with CCS, cement production can in the long-term 

reach near-zero emissions. If the oxy-fuelled process is fuelled with a substantial share of 

sustainably grown biomass the emission can potentially even be carbon negative.  

The cement industry uses between 3 to 4 GJ heat /ton of clinker produced (Åhman 2004). The 

heat is supplied at the temperature of 1500 °C degrees in the rotating kiln. This high temperature 

has made the cement industry a good candidate for burning waste materials with high heating 

value such as used tyres. The cement industry in Europe/Sweden supplies approximately 30% of 

its input energy for heat from alternative sources. However much of the alternative energy used, 

in form of heat, is still of fossil origin (e.g. used tyres). It is technically possible to replace this 

energy with sustainably produced biomass in the long-term, however there will be a need for 

pre-treatment of the biofuel to ensure the high combustion temperature needed in the process. 

Torrefaction of biomass (wood and waste) to produce “green coal” as a suitable replacement for 

fossil coal is being studied in the cement sector. Globally 8% of fuels used for calcination is 

biomass (ECRA 2009), mostly sewage sludge, meat and bone meal, waste wood, and sawdust. 

An alternative to build cement on calcium carbonates and thus avoid the process emission from 

the calcination process is to use another basic material. Readily available materials for cement 

production are CaCO3, SiO2, Fe2O3 and Al2O3 (Schneider et al. 2011). A number of suggested 

alternative materials that can replace Portland cement have been suggested, with more or less 
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promises of reducing carbon dioxide emissions. See Juenger et al. (2011) and Gartner and 

Macphee (2011) for an overview. 

Magnesium-based cements are one prominent alternative. The idea is not new but many of the 

alternatives are too water sensitive for outdoor use and suffer from high cost why a widespread 

use is not possible. Novacem in the UK has developed magnesium-based cement that can utilise 

captured CO2 and thus have the potential to become a carbon negative building material if 

carbon free energy is used during manufacturing. The Novacem cement is a mix of magnesium 

oxide (MgO) and hydrated magnesium carbonate (xMgCO3·yMg (OH)2·zH2O). The main benefit for 

the Novacem cement compared to other magnesium-based cements is that the MgO can be 

extracted from common magnesium silicate rocks, which are very abundant (Gartner and 

Macphee 2011). It is the magnesium carbonate that absorbs carbon dioxide when it is produced 

in the reactor (Fagerlund, 2011). Magnesium silicates is heated to a temperature of 170 °C, reacts 

with carbon dioxide, water, and some additives to form MgCO3. The magnesium carbonate is 

heated to 700 °C to form MgO, releasing CO2. This CO2 is recycled to the first part of the process, 

and reacted with the hydrated magnesium carbonate. This latter product is mixed with the MgO 

to form cement (Gartner and Macphee 2011).  

In California the company Calera is using CO2-rich flue gases that react with Ca (or Mg) in waste 

water streams, ponds or seawater to form vaterite, imitating the formation of coral reefs. 

Vaterite is an unstable form of CaCO3 which stabilise into calcite or aragonite in contact with 

water (the stable state depends on the temperature conditions) (Pattersson, June 2011). Crushed 

and dry vaterite can be used as cement. Depending on the carbon dioxide source and the energy 

used in the process, the Calera cement can be carbon negative. Little public data on the 

technology is available why a more thorough assessment is not possible. 

A third alternative is to produce cement completely from industrial waste. Cenin in Great Britain 

has reduced the emissions emanating from production with 95% compared to standard Portland 

cement. The industrial waste is thermally treated to be made reactive. Energy is saved since the 

material does not have to be quarried. If the energy used in the manufacturing process were 

substituted by renewable energy sources the resulting cement could be near-carbon neutral. 

Production started in 2008 and products are tested following European standards (cenin.co.uk, 

March 2012). The company CeraTech in the US is also producing cement from waste materials 

and other scientific studies have confirmed that industrial waste can successfully be used as 

cement (Yen et al. 2011).  

The introduction of a novel cement type is no easy task. The cement manufacturing industry is 

tightly linked to the users in the building industry and the market strongly depends on trust and 

several decades of development of standards and building codes adapted to the specific needs 

and technical features of standard Portland cement. A new type of cement needs careful and 

long-term testing before it could be applicable in the building sector at any large rates since, for 

example, hardening properties could be different and are most crucial (Fagerlund 2011). Another 

crucial factor for successful implementation on a large scale is the corrosion protection of steel in 

reinforced concrete, which constitutes the major part of concrete for construction purposes. 

Ordinary Portland-cement is highly alkaline, while new cementitious materials are less so, which 

may make them less suitable for long-lasting constructions such as buildings or bridges since the 
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durability of reinforced concrete largely depends on the corrosion of steel rather than the 

concrete itself (Gartner and Macphee 2011). Alternative cements will most likely have to start in 

niche applications to prove economic viability and to gain experiences on the long term durability 

and strength.   

6.3 Chemical paper and pulp : blackliquor gasification and CCS 

Chemical pulp mills are today the major users of biomass for energy in Sweden and represents 70 

% of total pulp production in Sweden11. With a large total energy demand but relatively small 

GHG emissions due to the large share of biomass use, an important role of the paper and pulp 

industry in a future carbon constrained world will be that of a supplier of renewable fuels and/or 

electricity and carbon negative emissions.  

Current chemical paper and pulp mills still use some fossil fuels, mainly oil, for heating purposes 

in the lime kiln, and import electricity from the grid. However, modern and new mill designs with 

substantially increased energy efficiency and less heat demand will allow for pulp mills to 

become self-sufficient in energy. The inflow of the embodied energy in the biomass to the pulp 

mill will be sufficient for producing the pulp and also for exporting heat (KAM 2003). For an 

integrated paper and pulp mill that uses more steam, even with currently best available 

technology there will still be a small need for importing energy (FRAM 2005, Pettersson 2011). 

A future potential for the paper and pulp mills is to develop and introduce black liquor 

gasification (BLG). The black liquor, a process intermediate that consist of lignin, hemicelluloses 

and cooking chemicals, is today used internally in a recovery boiler (RB) to produce heat (steam) 

and for regenerating the cooking chemicals. The idea with gasifiying the black liquor, instead of 

combusting it in a recovery boiler is to increase the quality of the embodied energy in the black 

liquor. This will enable a wider use and value of the energy for either electricity production or as 

transport fuels or even as basic chemicals. Black liquor gasification will however result in a steam 

deficit even for modern mills based on BAT. This energy must be compensated by combusting 

imported low grade biomass such as bark fellings (Pettersson 2011).  

The black liquor gasification process result in a syngas (HC and CO) that, after cleaning, can be 

further processed to hydrogen, methanol of Fisher-Tropsch diesel, or for combustion in a CHP. 

Combining black liquor gasification with increased energy efficiency can thus result in a pulp mill 

producing pulp and electricity and/or motor fuels with that embodied in the inflowing biomass12. 

Another key advantage with black liquor gasification is that you separate the CO2 in the process, 

thus making the incremental cost of applying CCS substantially lower compared to the 

incremental cost for applying CCS at the recovery boiler. 

Black liquor gasification has been studied for several years and several different gasification 

technologies have been proposed. Today, two main systems remain in development, entrained 

pressurised oxygen blown gasification and fluidised bed gasification (Modig 2005). Pressurised 
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  The remaining 30% of production is mechanical pulping. We do not address mechanical pulping 

further in this paper. 
12

  However, the amount of input biomass will increase as the out-put energy also increases 

(power/motor fuels) 
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oxygen blown gasification is developed by Chemrec in Sweden and has been tested in Piteå. The 

financial and technical risks of developing commercial black liquor gasification should not be 

underestimated, see e.g. (Modig 2005). For gasification in general, there is still some technical 

problems with cleaning the syngas from tars that will foul the up-stream processes or turbine. 

Syngas cleaning is under development and is demonstrated in several configurations. However, it 

remains to be proven whether it is reliable in large-scale configurations. There is also for black 

liquor gasification the problem with introducing a new concept that requires substantial up front 

funding and has so far a relatively uncertain market (e.g. the market for alternative fuels such as 

DME or the price of electricity). However, a pilot scale production plant with a combined motor 

fuel production for approximately 2000 trucks is under construction in Piteå.  

Other future routes for increasing the out-put of usable products from the inflowing biomass in a 

paper and pulp mill is to keep the recovery boiler and extract lignin for producing base chemicals 

(Pettersson and Harvey 2012) and extracting cellulose for producing ethanol (Fornell et al 2010). 

However, producing DME/Methanol from BLG is in most future scenarios regarded as the most 

profitable (see e.g. Pettersson and Harvey 2012) 

6.4. Petrochemicals and refineries: replacing petroleum with biomass 

Refineries and the production of petrochemicals are built around using petroleum as feedstock 

for producing fuels and chemicals resulting both in direct process related emissions and down-

stream emission at the end-of-life for the products (plastics and transport fuels). In a carbon-

constrained world, these down-stream emissions will also be regulated and this could have large 

repercussion for the petrochemical sector. 

The emissions originating from the part of the feedstock that is combusted for producing heat 

and electricity for processing needs can be reduced, at least partly, with CCS focusing on the 

major exhaust stacks. The cost of applying CCS will increase substantially and require major 

refurbishment if all emissions sources within the refinery/chemical sites are to be captured (DNV 

2011).  

However, the major part of the carbon (80 - 90%) is locked in the products produced 

(petrol/diesel/chemicals). The emissions originating from this carbon will be accounted for either 

at the combustion source in e.g. transport or power sector or end up in the waste emission 

statistics (e.g. a majority of plastics). For refineries, the embedded emissions are the major 

impacts on climate change. This is a major reason as to why the number of refineries will 

decrease substantially in a carbon constrained world as the demand for the products (fossil 

based fuels) will diminish. The Swedish refinery sector has managed a declining domestic 

demand by increasing the exports of fossil fuels with high environmental quality (low sulphur 

fuels). The export market today constitutes a major share of Swedish refinery market (>60%).  

The refinery sector is tightly linked to the petrochemical sector that uses products13 (mainly 

naphtha) from refineries as feedstock and converts this to a range of petrochemicals. With the 

long-term climate policy induced decrease in demand for fossil fuels, the supply market for 
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  Approximately 5% of the incoming petroleum feedstock goes to the petrochemical industry 



 

35 

 

naphtha will change, as the whole refinery industry will need to restructure substantially. With 

potentially no domestic demand for fossil fuels by 2050, the remaining fossil-based refineries will 

have targeted a most likely very limited export market in developing countries.  

A main option from a climate change perspective to face these challenges is a transition from 

petroleum based chemicals to biomass based chemicals14. This transition has already started in 

the transport sector with the 1st and 2nd generation of biofuels. Also in the chemical sector 

increasing shares of bio-based chemicals have been seen the last 10 years. In the long-term, this 

can enable new bio refineries that, like paper and pulp mills would only need to use the 

embodied energy in the incoming biomass to produce fuels and platform chemicals. The are 

several proposed routes for producing a number of suitable chemical feedstock from biomass 

including the currently deployed feedstock stemming from ethanol production or extraction of 

fatty acid esters from vegetable oil. However, the largest biomass resource is lignocellulosic 

biomass stemming from wood (including energy crops), agricultural waste and household waste. 

In order to replace the huge volume of petrochemicals, focus in the future will need to be on 

utilising woody biomass as feedstock instead of sugar and starch based biomass.  This is due to 

higher output per hectare, less input energy needed and less potential conflicts with alternative 

uses (e.g. food) (van Haveren et al 2007, Ren et al 2009).  

Several routes exist that technically could transform various types of biomass to useful chemicals. 

One strategy is to use the naturally complex structure of the biomass and process it to usable 

platform chemicals. A good example is the current use of starch based chemicals in special cases 

(Brehmer et al 2008). The other routes are to separate, with varying degrees, the biomass into 

either fermentable sugar via hydrolysis (the biochemical route) or into syngas via gasification (the 

thermo-chemical route). 

The main thermochemical conversion route is to gasify everything into syngas and from there to 

methanol or ethanol, see e.g. Larson et al (2010). Other thermochemical routes that can 

contribute to specific chemicals are pyrolysis, flash pyrolysis or hydrothermal upgrading (HTU). 

These methods result in varying types of “biocrude” that resemble naphtha and can be converted 

into ethylene etc. with minimal development in the synthesis step. 

With gasification, the biomass is split into CO and HC (syngas) that later can be rebuilt 

(synthesised) to (at least theoretically) any kind of polymer or fuel you want. Gasification 

transforms all the biomass including the lignin. Gasification is a strategic technology that 

eventually is beginning to emerge on the market. So far mostly as large pilot plants such as the 

now decided Gobigas project in Gothenburg (Gobigas 2012). Gasification of biomass produces 

tars (contrary to gasification of coal) and cleaning of the biobased syngas is still an issue that 

needs further development to become commercial. Gasification uses mainly pre-prepared woody 

biomass but development will make possible for practically any carbonaceous feedstock to be 

used including waste. The main barriers for commercialisation today are to gain experiences and 

knowledge in building and integrating large-scale gasification systems. The market is still 
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  A transition away from oil is also explored in China. However, here the Chinese also look at 

gasifying coal and use this as a feedstock for both fuels and chemicals. This will substantially increase 

emission compared to fossil fuels and chemicals. 
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uncertain for private investors and there are some technical issues with cost-effective gas 

cleaning, etc, that will have to be resolved with further development (Åhman 2009).  

For the biochemical route, the three parts (hemicelloluse, cellulose, and lignin) needs first to be 

separated. Then the hemicelluloses and the cellulose can hydrolysed into sugars that can be 

fermented to ethanol. Lignin could either be depolymerised or further processed to aromatics or 

used as energy (both heat and electricity possible). Converting cellulose is the most difficult part 

today that is in need for further development of cellulases for enzymatic hydrolysis 

(hemicelluloses can be effectively hydrolysed using “standard” acid hydrolysis. Depolymerising 

lignin does also require scientific development before competitive. 

Replacing all relevant chemicals with lignocellulosic biomass feedstock is estimated to require 18 

to 40 EJ of biomass every year (Cherubini and Strömman 2011). Currently the use of biomass for 

energy purposes is 50 to 55 EJ/year15 and the future potential of modern bioenergy supply varies 

greatly between 170 to 250 EJ/year (Börjesson et al 2008). Replacing the currently produced 620 

000 ton of ethylene and 200 000 tons of propylene in Sweden would require 3 to 3,5 Mtonnes of 

woody biomass components (based on Cherubini and Strömman 2011, note that this would also 

result in 1 Mton lignin). Biomass-based chemicals are currently growing but most in segment 

where the specific biomass has advantages over petrochemicals based routes or where there is a 

strong consumer demand for bioplastics. However the increasing volatility and insecurity of the 

basic petroleum feedstock has increased interest substantially the last years for also producing 

basic platform chemicals such as olefins and aromatics from biomass. In Sweden, the 

petrochemical cluster in Stenugnsund has embarked on an ambitious vision to become 

sustainable by 2030 relying only on biomass based feedstock 

(www.kemiindustrinistenugnsund.se 2012). 

6.5 Primary aluminium: inert anodes 

The production of primary aluminium has from the beginning relied on the Hall-Heroult process 

using electrolysis for separating pure aluminium from alumina (aluminium-oxide). Primary 

aluminium production is thus a very electricity intensive industry. Assuming carbon free 

electricity and carbon free upstream mining practices (mainly heat and transport fuels for 

separating alumina from bauxite) the remaining emission to be mitigated are from inefficient 

process resulting in the emission of PFCs (the anode effect) and the depletion of carbon at the 

anodes when melting the alumina. The “anode effect” and the associated emission of PFCs can 

be further optimised and have already decreased by 80% in the OECD area the last 15 years on a 

voluntary basis. However, when smelting the bauxite, the carbon cathodes are eventually 

depleted resulting in CO2 emissions of approximately 1, 4-tonCO2/ton aluminium produced.  

Research for developing inert anodes that do not deplete when used has been on-going for 

several decades. Inert anodes will not only diminish both the PFCs and the CO2 emissions but also 

reduced the energy demand substantially. Thus this research is also motivated for pure economic 

reasons for companies. Currently, several inert anodes are being demonstrated and tested for 

viability and are hoped to enter the market within 10 to 15 years, see e.g. IEA 2011. 
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 However, the majority of this  (40 to 45 EJ) is traditional (e.g. not traded ) biomass in developing 

countries 

http://www.kemiindustrinistenugnsund.se/
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Aluminium has the advantage of being possible to recyclable indefinitely and the energy use and 

emission are substantially lower for secondary aluminium compared to primary aluminium. 

6.6 Fertilisers (nitric acid): improved catalyst 

The production of fertilisers is a major source of emissions globally but this production has 

decreased substantially in Sweden the last years. The nitric acid used for fertilisers in Sweden is 

imported and the only production of nitric acid in Sweden is used for industrial explosive (Yara 

2012).  

However, when producing nitric acid, the process emits N2O in the flue gas and of course CO2 

emission on the process requiring heat and electricity. The emissions of N2O are today reduced 

substantially in Sweden.  The introduction of catalytic converters have reduced emission with 

>90% the last 10 years. No other alternative technology is currently being investigated as 

catalysts are assumed to will probably be improved even further in the future. 
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7 Options for decarbonising – a technical summary 

It appears technically possible to develop technologies to decarbonise industry completely and 

even to achieve negative emissions. A continued strong focus on energy efficiency and the wider 

introduction of bioenergy and CCS is both anticipated and necessary. However, for a complete 

decarbonisation, most zero-emission solutions for the industry depend on novel process designs 

that so far only exist in research laboratories or in small-scale demonstration projects.  Below we 

summarise the development necessary for decarbonising the basic material production in 

Sweden. 

7.1 The production of steel 

For decarbonising the steel sector, substantial changes to the processes of steel making need to 

be implemented. Continued efficiency is important but most steel mills today operate close to 

theoretical limits in their existing core processes (Birat 2010).  

For a complete decarbonisation that would make iron-ore based steel production inherently 

carbon free the introduction of electrowinning or hydrogen as a reduction agent is necessary. 

These methods are yet only being researched at lab-scale and need substantial and long-term 

support for moving towards demonstration scale. First then is it possible to assess fully the future 

potential for market competitiveness. Both hydrogen and electrowinning would substitute 

coke/or biochar with carbon free electricity and thus increase the demand for carbon free 

electricity. As an example, replacing the current iron ore based production of steel in Sweden 

with electrowinning would roughly replace the currently used 17 TWh coke16 with a similar 

amount of electricity (numbers are rough as the technology is only on a lab scale) and reduce 

emissions with 7 MtonCO2/year. Electrowinning would decarbonise the steel sector without the 

need (and possibility) for CCS. Roughly the same figures would be valid for hydrogen as a 

reduction agent. It is noteworthy that a typical integrated steelwork would become the largest 

single power consumer if hydrogen or electrowinning were introduced. Other options for 

decarbonising steel production include the extensive use of CCS coupled with the replacement of 

fossil-coke with bio-coke. 

The introduction of CCS for steel production is complicated and requires substantial redesign of 

several key processes. CCS with TGR-BF is the main option to retrofit capture technologies to 

existing blast furnaces. However, this alternative still requires technical development and will 

only capture between 35 to 75% of the total CO2 emissions depending on whether other major 

emission sources within the mill (e.g. sintering) are included (UNIDO 2011).  

The major emission source (the reduction of iron ore with coke) can theoretically be mitigated by 

replacing fossil coke with bio coke (pre-treated biomass) in blast furnaces. For direct reducing 

iron (DRI) production it is technically possible to replace natural gas with biomethane. A 
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 Roughly 10 to 12 TWh would be needed for the reduction and the rest for other needs that now uses the 

spare heat from the coke 
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combination with the use pre-treated biomass (“biocoke”)17 as a reduction agent and carbon 

capture on the major flows of CO2 could probably make steel production CO2 –neutral. 

7.2 The production of cement 

For a complete and inherent decarbonisation of cement manufacturing it is theoretically possible 

to develop and replace current clinker with other material. The options of changing the basic 

materials used for avoiding “process emissions” in cement manufacturing is being developed and 

look promising (e.g. magnesium based cement or cement made form sewage sludge). Hopefully 

these alternatives will soon find a suitable market niche from where they can grow and the 

technical properties and economic costs will become more known. However, the long-term 

challenges of substituting Portland cement as the basic building material should not be 

underestimated. And even if we assume that “classic” cement will still be the main material for 

construction in 2050 there are still technical solutions at hand. 

CCS and the introduction of pre-treated biomass can reduce emission substantially. However, for 

capturing all CO2 emissions, the cement production needs to introduce oxy-fuel processing. This 

could potentially capture all CO2 created in the process of cement manufacturing including the 

process-related emission. Oxy-fuel processing first needs to be tested and demonstrated for 

proving technical performance on the clinker and the economics. 

 Another option is to rely on post-process capture with relatively well-known technologies 

(chemical absorption). This will not capture all emission but together with the increased use of 

pre-treated biomass for combustion the facility as such could become carbon neutral.  The full 

capture of all CO2 emissions with oxy-fuel could result in negative emissions if the heating in the 

cement kiln is partly or fully based on pre-treated biomass (approximately 40% of total emissions 

form a cement plants comes from heating).  

As an example, if we assume 2,4 Mton of CO2 emissions from future cement factories in Sweden 

(based on IVL 2050 scenario), then approximately 1,6 Mton of these CO2 emissions could be of 

biological origin and thus result in negative emissions if captured and stored. The use of CCS will 

increase the demand for low-grade heat for capturing.  This includes the production of oxygen, 

compression, etc.   Capture 2,4 MtonCO2 in a oxy-fuel process will roughly demand 0,07 TWh of 

extra heat and 0,25- 0,30 TWh of extra electricity (calculation based on numbers from Mott 

McDonald 2011).      

7.3 The production of paper and pulp 

Few analysts doubt the ability of the paper and pulp sector in Sweden to become carbon neutral. 

The remaining and limited fossil energy use in the paper and pulp sector is technically possible to 

replace in the given time frame. The paper could play that a major role and pulp sector in a 

climate restricted world would be to also become a supplier for renewable energy and chemicals 

in biorefineries and, together with CCS, a future source of negative emissions.  

                                                           
17

  The use of biocoke in smaller steel mills exist in Brazil 
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An interesting future route for the pulp and paper industry is to gasify the black liquor and 

produce syngas from which several fuels/chemicals or electricity can be produced. Increased 

energy efficiency as a result of new brownfield investments is a key strategic priority for enabling 

the pulp industry to transition towards “biorefinery concepts”. Reducing the steam demand for 

the pulping process and for the paper production will enable the industry to transform a greater 

share of the incoming energy embodied in the biomass into electricity, fuels and chemicals.   

The second major effort for reducing emissions in the scenario is the application of CCS to the 

major flows of biogenic CO2 stemming from the chemical paper and pulp mills. The paper and 

pulp sector in Sweden currently emits approximately 22 Mton of CO2 from biological origin18 (VTT 

2010). This is approximately equal to the amount of fossil CO2 emitted in the whole Swedish 

industrial sector. With CCS from the major recovery boilers would be technically possible to 

capture a major share of these biogenic CO2 emissions. 

If electricity or hydrogen is produced then potentially all biogenic CO2 could be captured. The 

potential to carbon negative emissions will decrease if a carbon based fuels are produced and 

exported, e.g. methanol. With methanol, approximately 50% of the CO2 will leave the factory 

embedded in the fuel and not available for CCS. Retrofitting CCS to current recovery boilers 

without increased efficiency is doable but less economically attractive (ECN 2011).  

If all the biogenic emissions from the current volume of chemical paper and pulp mills would be 

captured this would result in approximately 15 MtonCO2/year of negative emissions. Capturing 

15 Mton CO2/year from recovery boilers with chemical absorption would increase heat demand 

with 12 -13 TWh  of heat and 2- 2,2 TWh of electricity for compression. 

7.4 The production of fuels and chemicals 

Future fuel factories in Sweden could be based on biorefinery concepts replacing current petrol 

and diesel production in existing petroleum refineries. A biorefinery can not only become carbon 

neutral (relying solely on the incoming energy in the biomass) but could potentially also become 

future sources for negative emission if the process-generated biogenic CO2 emissions are 

captured. Biogenic emissions from future biorefineries producing transport fuels will be an 

opportunity to capture biogenic CO2 emissions with low economic and energy costs as part of the 

inflowing carbon is separated as CO2 during the process (Lindfeldt and Westermark 2009). 

Future fuel factories could be a source of both carbon neutral fuels and negative emissions. The 

amount depends both on how much biofuel will eventually be produced in Sweden and the 

choice of feedstock (agricultural or wood). For future gasification, the potential is relatively clear 

and advantageous but there exist also an opportunity for capturing biogenic CO2 from process 

heating in wheat based ethanol production (Carbo 2011). As an example, if Sweden would 

produce 50 TWh19 of methanol/DME via gasification this could give a possibility to capture 

roughly 9 Mton of biogenic CO2 emissions20. 

                                                           
18

  The total emission of biogenic CO2 is 29 Mton according to VTT 2010 including e.g. CHP in district 

heating and power production 
19

  Current energy use in the transport sector is 90 TWh but the potential for energy efficiency is 

great. 
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The production of basic chemicals (ethene and propylene) in Sweden is primarily based on 

ethane derived from refineries close by. In order for the petrochemical industry to become 

carbon neutral and avoid both direct emissions at the plants and down-stream emission from the 

combustion of degradation of the plastics products at the end of their life time the 

petrochemicals industry will need to shift to biobased feedstock. The future market for refineries 

will change substantially the coming 20 to 30 years in climate restricted world. This transition has 

already begun in small scale and which direction more exactly it will take in the future is difficult 

to predict. For the major flows, most analysts see a large role for both gasification and various 

types of biochemical conversion routes in future biorefineries for producing biobased bulk 

chemicals.  

With a transition towards biobased petrochemicals, the demand for biomass will increase. As an 

example, replacing the current production of ethene and propylene in Sweden would need an 

extra of 3-4 Mton dry wood/year, representing roughly 15 TWh/year.  

                                                                                                                                                                               
20

 Calculation roughly based on Lindfeldt and Westermark (2009) and their “high efficiency” case. 
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8 The context for climate policies and technical change 

Decarbonising the industrial sector while maintaining production volumes requires a major effort 

to develop, introduce and replace existing technologies with advanced lean-carbon technologies. 

Relying on current technical production systems and applying “end-of-pipe” solutions can reduce 

emissions substantially but will be insufficient for reaching zero emissions. In most cases it is thus 

necessary to introduce completely novel core process designs for attaining zero emissions. 

Most industrial facilities in Sweden and the EU have been commissioned before 1980 (Rootzén 

2012) and it is likely that most of them will be completely rehauled or replaced in the time frame 

up to 2050. An effective long-term policy targeting zero emission must aim for making the 

industrial sector “zero emissions technology ready” in this time frame. Being “zero-emission 

techniology ready” means having the technical know-how, the experience and the financial 

ability to invest in future zero emission process technologies. This requires thus a substantial 

amount of research, development and large scale demonstration and deployment efforts for 

proving technical and economic feasibility. Zero emission technology systems need to be both 

technically and economically within reach for the industry at the time when the next major 

investment decisions will be made. 

Governments have a key role in setting the playing field to enable industries to act in the interest 

of global environment and invest sufficiently in a transformation towards zero emissions.  

However, the role that national climate policy can play is influenced strongly by the global policy 

frameworks for both climate and e.g. trade regulations, by the climate policy frameworks 

adopted on an EU level and also by competing domestic policy objectives (regional growth, 

fairness, distribution, other environmental objectives, etc.). An optimal policy mix for supporting 

technical development and cost-efficient mitigation needs to consider all limitations in choice of 

policy instrument that comes from global burden sharing principles, free trade, public acceptance 

etc.  

Below in chapter 8.1 we first outline the current dominating policy frameworks influencing long 

term industrial mitigation (the EU ETS and the UNFCCC). We assume that the EU ETS and the 

basic principles of the UNFCCC will continue to set the framework for Swedish climate policy in 

the long-term. In the following chapter 8.2 we briefly review some of the theoretical ideas on 

technical change and public policy that is appropriate and applicable to our perspective in this 

report.  

8.1 The EU ETS, burden sharing principles and carbon leakage 

The primary climate policy instrument affecting the industry in Sweden today is the EU ETS that 

puts a cap on emissions for the EU industry and power sectors. The cap results in a price for the 

emission allowances. Since the introduction in 2005, the prices for emissions rights rose to up to 

30 EUR/tonCO2 at it’s highest (just before the financial crisis) but have since then hovered around 

6 to 10 EUR/tonCO2. As a contrast, the long-term projections for emissions in Sweden assume, in 

line with the EU commission calculations, that the prices within the EU ETS will average around 
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16 EUR/ton CO2 up to 2020. A low price in a cap-and trade system is not a problem if the cap is 

set properly according to set long-term political ambitions (2-degree target implying -85% by 

2050). However, the current cap within the EU ETS system is only regulated until 2025 and with 

an ambition (-1,74%/year) that is not consistent with the long-term EU target of -85% by 2050. 

The price in the EU ETS does thus not currently reflect the costs of a long-term decarbonisation 

strategy21. This is a major problem since a cap-and-trade system does not only put a cap but also 

a floor on future emissions. Furthermore, a low carbon price that does not correctly reflect the 

long-term ambitions will not lead to level of increased strategic development (e.g. research and 

innovation) either. 

8.1.1 Pricing carbon and leakage 

Priced based system (taxes or trading schemes) could work well for guiding emission reductions 

in mainly domestic sectors such as the EU power sector or the road transport sector22. Industry is, 

contrary to the power sector, often (not always) competing on a global market with industries 

from countries that are not subject to any climate polices.  Thus, for industries with a high share 

of trade and a CO2-intense production, there is an obvious risk of carbon leakage. The risk of 

carbon leakage limits the effectiveness and acceptability for forcing future emission reduction 

with a tighter cap/higher price. However, the risk for carbon leakage is also inherent in the basic 

burden sharing principle of the original global framework convention for climate change 

(UNFCCC). Several proposals have been put forward for dealing with carbon leakage.  

Japan proposed to separate the CO2-intensive industrial sectors from future country-based 

commitments and treating industrial sector separately with common global commitments in a 

“sectoral approach”. This proposal was forcefully rejected by developing countries in the 

negotiations on the basis that it broke with the key principle of “common but differentiated 

responsibilities” in the convention.  

Several academics have suggested using various versions of border tax adjustments23 for energy 

intensive products entering the EU from countries without any binding climate commitments, see 

e.g. Frankel (2008). This possibility was also included in the earlier US climate policy proposals 

(e.g the Waxman-Markey bill) and has also been proposed in the EU by France.  Border tax 

adjustments are not currently pursued by any party in the convention, largely due to the risk of 

infringing on free trade policies and also for breaking the burden sharing principle. However, the 

unilateral decision by the EU to mandate all international air carriers landing in the EU to buy 

emission rights or to demonstrate that they are subject to similar climate policies domestically 

can be viewed as a light version of the carbon border tax adjustment idea. This unilateral decision 

has so far been strongly rejected by e.g. China and also the US and challenged in court and it is 

still unclear whether it will be accepted internationally. 

                                                           
21

  Several other effects such as the unexpected down turn in 2008-2009 that created a “surplus 

bubble” in the system, the possible restructuring of some major emitters, etc. and a general uncertainty 

regarding the future of the global climate regime and how that will affect the EU climate regulation has 

also put a downward pressure on the EU ETS allowances. 
22

  However, even so, governments within the EU have introduced several specific policies for 

reaching specific renewable energy targets (e.g. the green certificate scheme in Sweden) 
23

 Sometimes also called Border Carbon Adjustments 
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Instead, the currently used method by the EU for minimising carbon leakage is to allocate the 

initial emission rights for free. With free allocation the company only suffers from an extra 

emission cost on the margin24 and the free allocation can be regarded as a subsidy for 

maintaining production levels. Free allocation was the general principle in the two first phases of 

the EU ETS (from 2005 to 2012). So far, econometric studies suggest that the strategy of free 

allocation has worked in avoiding measurable carbon leakage from EU industry (Reinaud 2008, 

Grubb and Neuhoff 2006). However, as also noted by several academics, during the two first 

periods of the EU ETS, economic growth was very strong in the EU area potentially masking some 

of the carbon leakage.  

In the third period, the allocation of free emission rights will still be used in the EU for industries 

at risk of carbon leakage. However, the allocation will be less compared to the 2 first trading 

periods and will roughly correspond to 90% of overall industrial emissions according to 

predefined benchmarks.  Also, the emission cap within the trading system is further tightened 

and the price is expected to increase in the long term. In the long term, it is reasonable to expect 

that the real risk of carbon leakage will increase despite free allocation. Future carbon leakage is 

likely to foremost manifest itself as a discouragement of new investments within the EU.  Here, it 

will be difficult to separate the effects of the EU ETS and the effects of normal market dynamics 

with increasing share of investments seeking opportunities closer to emerging markets. 

The burden sharing principle in the UNFCCC does not mean that transitional countries could 

continue without restrictions on CO2-emission indefinitely (the current Kyoto-framing). The 

intention in the UNFCCC is that transitional countries should eventually accept future restrictions 

on CO2 emissions. The timing and size of these restrictions are contested. Decarbonising the last 

20 to 40% of CO2-emisison in society beyond 2030 will come at a high marginal cost (such as the 

industrial process emissions covered in this report but also parts of the transport sector and 

aviation). Without phasing in CO2 -restrictions resulting in similar “carbon costs” in transitional 

countries, domestic compensation or border carbon adjustments will become necessary for 

maintaining basic materials production within the EU in the long-term.  

The future risk of carbon leakage should also be seen in the light of current existing trade 

restrictions and slow progress on free trade negotiations where several countries in practice 

maintains the right to discourage foreign market access and protect domestic industries following 

national policy goals. Widening the focus, possible policy responses to the threat of carbon 

leakage could thus also include increased emphasis on fair trade, less market distorting industrial 

policies, fewer subsidies for inputs like electricity and coal/natural gas and greater access to 

markets. This is especially valid for the fast growing economies that no longer are in need of 

international support for poverty eradication (China, Brazil, India, South Africa, Vietnam, etc.) but 

where focus has shifted towards bilateral co-operation. The question of carbon leakage points to 

the fact that global climate policy is today more and more interlinked with general global policy 

issues as a response of globalisation.  
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  Economic theory would suggest that free allocation should not influence marginal production 

decisions in industry assuming that business take full account for the alternative income of selling the 

excess emission rights. However, industry practice as observed in general deviates from this “theoretical” 

behavior (Carbon Trust 2008) 
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The risk of carbon leakage highlights the difficulties of relying too much on the carbon price as a 

driving force for emission reduction in a world where we need to accept different carbon prices 

as a consequence of the burden sharing principle. 

 In the long-term, global trade policy and climate policy are likely to merge. The use, or threat of 

using, trade policy measures such as border carbon adjustments have been suggested as a tool 

for implementing a global treaty (see e.g. Barret 2011, Helm et al 2012). 

8.2 Policies for reducing emissions and supporting technical change 

The safest long-term policy response to minimise both global emissions, carbon leakage and at 

the same time enhance EU industrial competitiveness is to enable the development and 

introduction of competitive carbon lean technologies. 

To put a price on the emissions of greenhouse gases and internalise the negative externalities is 

generally put forward as the major policy instrument for achieving emission reductions cost 

efficiently. The principal rationale is that a price will provide the actors with the highest degree of 

flexibility for achieving a target and thus enabling societal cost efficient mitigation. A second 

often highlighted rationale is also that a price on emissions will induce more long-term private 

investments into research and development for new carbon lean technologies. Most economists 

generally also concludes that relying only on a price on the emissions for driving long-term 

systemic technical change is insufficient for achieving cost-effective mitigation (Fisher and Newell 

2008, Popp 2010, Hanemann 2010, IPCC SREEN 2011) as technology development yields many 

positive externalities.  

However, how broadly one should interpret the term “technical development” and exactly how 

and, not the least, how technology specific and how much market creating support should be 

given is debated among academics (see e.g. Azar and Sanden 2011; Fisher et al 2012).  

From a mitigation perspective, what is important is not the inventions or innovations as such but 

the broad use of novel carbon lean technologies. Thus, we thus use the term “technical change” 

for analysing the process from the first ideas all the way to the technology becoming the 

dominating design on the market. 

8.2.1 Supporting long-term technical change 

The research field of innovation and technical change is large and covers several different 

academic perspectives25. However, common features of these studies in what influences and 

drives technical change is the embeddedness of technology into a wider institutional and 

economic context and that technical change is inherently uncertain, cumulative and will create 

new and unanticipated solutions by combinations.  
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  See e.g. studies on Innovation systems (Lundvall 1992, Rosenberg 1982, Jacobsson and Begek 

2004), on sociology (Bijker 1995; Callon 1980), on technical regimes and niche market management (Dosi 

1982, Kemp 1997), and policy studies (Norberg-Bohm 1999, Wallace 1995) for mentioning just a few. 
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The institutional context includes legal frameworks, standards, education systems, research 

funding agencies, consumer and engineering habits, and networks of both public and private 

actors. The economic context includes economies of scale, sunk cost, and increasing returns of 

adoption from decades of learning for incumbent technologies. Thus, both the institutional and 

economic context strongly influences the speed and direction of technical changes in society and 

also effectively acts like barriers for new alternative technologies.  

Technical change can also be analysed from a multi-level perspective, which is one of the newest 

academic perspectives on innovation and technical change. The “multi levels” refers to the three 

different levels in society; niches, regimes and landscapes, for studying change (Hofman and 

Elzen 2010, Smith et al 2010, Geels, 2011). New technologies usually start to develop in niches 

where specific advantages makes them competitive (e.g. solar PV on sailing boats or in remote 

off-grid areas). The dominating technical regimes (e.g. technical systems used in industrial 

sectors) are regarded as very robust due to institutional, social and economic lock-in but can 

change under pressure either from emerging niche market technologies or from pressure from 

changes at the landscape level. Changes at the landscape level can be manifested as long-term 

changing market conditions or changing due to external demands and policy (environmental 

regulations, energy prices etc.).  

The previous 150 years of fossil energy exploitation for developing and powering the industrial 

expansion can be described as having created a “carbon lock-in” into fossil-energy regimes(Unruh 

2000, Foxon and Pearson 2008). Thus, enabling systemic technical change and escaping the 

current ”carbon lock-in” requires not only increased public funding for basic and applied research 

but also market incentives for creating an enabling institutional environment and overcoming the 

economic disadvantages and change consumer behaviour (OECD, 2011). The key point here is 

that barriers for innovation go beyond the mere limitations in technical and economic 

performances and must be addressed in a systemic way.   

With these theoretical frameworks, the role of governments for supporting technical change is 

widened from pricing the externalities and funding basic R&D (orthodox economic frame) 

towards a role where the government is allowed to act more as a system enabler. Here, the 

government will act not only a the landscape level by getting the prices right, but also by actively 

supporting niche market development of targeted technologies via e.g. market support for new 

technologies (feed-in tariffs, portfolio standards etc.). Governments can also enable regime shifts 

by actively building or supporting vital infrastructure such as smart grids, CCS-pipelines, etc. 

If the government takes upon a more active role in driving a transition, it must be kept in mind 

that other actors other than the incumbent firms (e.g. producers of new types of cement, forest 

industries engaging in biorefineries) have historically been important for enabling long-term 

radical change. The role of external actors enables a change in current views on what possible 

futures and pathways may look like. However, it is also recognised that changes can occur at 

regime level before niche-markets or niche-technologies exist, e.g. through sustainability goals or 

the recognition of corporate responsibility within incumbent firms (Geels and Schot, 2007). A 

multi-level perspective analysis on radical change in the basic industry have noticed that for the 

steel industry there are yet no external actor that could drive technical change (Nikoleris et al 

2012). 
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There are good examples for policy induced technical change in the field of climate change 

technologies and arguments for the need of technology-specific interventions for further 

technological change. The so far successful global development in renewable energy technologies 

demonstrates both the necessity and the ability for directed technology policies for fostering 

technical change. Several renewable and fossil free energy technologies have reduced their cost 

substantially the last 10 years and are within reach of becoming price competitive with fossil 

alternatives on a broad base26 within the coming 8 to 15 years (IPCC SREEN 2011). This 

development of renewables have been enabled by more than 30 years of targeted basic and 

applied research, demonstration programs and, not the least, targeted early market incentives in 

the form of feed-in tariffs, tax incentives, renewable energy portfolios, etc., all implemented 

within comprehensive climate technology policy frameworks (Wilson and Grubler 2011).   
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  Several fossil free technologies are already competitive in niche markets, e.g. wind power in good 

locations, off-grid solar power, ethanol from sugar in Brazil, etc. 
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9 Governing a long-term transition for a decarbonised industry 

Reducing emissions to zero by 2050 or soon thereafter may seem like a daunting task. However, 

major technology shifts and transitions in industry have occurred before. Examples include the 

shift from open hearth to basic oxygen furnaces in the iron and steel industry, and from batch 

digesters to continuous cooking in pulp mills, or the conversion to chlorine-free bleaching. Cost 

reductions, productivity and quality improvements, but also regulation and consumer demand 

have been important drivers behind such changes. In addition, economies of scale have driven 

some of the structural change towards fewer and larger plants and mills. Competition has been a 

driver of specialisation into speciality steels or other high quality segments in some industries. 

Although the capital intensity of basic industries may lead us to assume that change and emission 

reductions is difficult in this sector, history shows that it is constantly evolving.  

Now, industry must evolve towards zero emissions and the question is how a transition to 

decarbonised basic industry may unfold and how it can be governed. Technology development, 

market changes and other factors will continue to shape the development in industry, only now it 

must evolve under very strict environmental constraints. Governing the decarbonisation of 

industry is a different task than regulating and providing incentives for pollution control and 

reducing air and water emissions. Decarbonisation of industry will affect the core processes in a 

sector that is at the same time exposed to fierce global competition.  

Any purposeful steering of industry emissions requires direction, which in turn requires a long-

term vision, despite the inherent uncertainties in technology, market and other developments. 

From a long-term vision of “decarbonising industry by 2050”, both a strategy for technology 

development and a strategy for policy development should be outlined. In chapter 9.1 we outline 

a technology strategy and in the section that follows (9.2) we discuss some basic governance and 

policy strategy implications, given the limitations set by global, regional and national frameworks 

for fostering such a technical transformation. 

9.1 A technology strategy for decarbonising industry 

A technology strategy aims at identifying ways of combining new technical systems, identifying 

possible multi-purposes technology areas and infrastructure needs and other barriers for future 

deployment. More comprehensive and in-depth roadmaps for specific technologies in different 

subsectors (see e.g. IEA ETP 2012) are necessary in order to arrive at a clearer picture of potential 

transition paths.   

A technology strategy for the industry needs to consider the development (i) at the energy 

system level such a decarbonised power and supply of sustainable biomass, (ii) the needs for  

basic infrastructure such as CCS, hydrogen and smart grids, and (iii) the development of several 

targeted technologies. Changes at the energy system level also include future integration of the 

industry into the energy system (IPCC SRREN 2011). 

The high-energy intensity of basic industries, and thus the need to purchase large amounts of 

energy, means that decarbonisation will have to rely on the availability of energy carriers from 

carbon neutral sources (e.g., renewable or nuclear energy). The power system is generally 
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expected to be the backbone of future sustainable energy systems. The versatility of electricity, 

and that this energy carrier in itself does not contain carbon, implies that electrification will be an 

important strategy. The basic characteristics of some industrial processes and the limited range 

of energy sources and carriers available means that the technology options in most cases can be 

narrowed down to only a few ones.  

There are some changes in the energy systems that need consistent and continued support. 

Decarbonisation relies on electrification of some industrial processes and this is dependent on a 

major supply of CO2 free electricity. In Sweden, this is within reach given the already high share 

of renewable electricity and by the host of renewable power technologies expected to enter the 

market within a decade or two. The higher variability of renewable sources, notably wind in the 

future Nordic system, means that industry may deploy a mix of electricity and “stored electricity” 

as hydrogen or other fuels. Such storage options, as well as other approaches to load 

management, are likely to become more important in industry. The second energy system level 

“leg” in a decarbonised system is the use of sustainably harvested biomass. Due to the 

complexity and diversity of biomass resources, it is very difficult to devise clear strategies in this 

area, e.g. concerning which biomass fractions to use where and for what purpose or combination 

of purposes: power, heat, biofuels, chemicals, materials, etc. Sweden is relatively well endowed 

with biomass resources, the basis for a large forestry industry, and must take care that this 

resource is used sustainably and wisely.  

Industry can be expected to become a much more integral part of future energy systems. Options 

for more flexible demand have been mentioned above, making industry an important actor in 

future ‘smart grids’. One major industrial facility can offer more load management capability than 

many thousands of households. Industry is already an important power producer and may look 

for ways of becoming a more flexible producer in the future, whether in biorefineries or other 

types of plants. Industry is also an important source of low-grade heat for district heating system. 

Industry could, in the future, become an important actor in the development of hydrogen 

infrastructures. 

For CCS to play a role, first of all the legal situation and development and reliability of CCS itself 

needs to be proven and accepted. Transport of CO2 needs to be resolved and supported, which 

means the legal and economic framework for pipeline transport needs to be clarified. Also, legal 

responsibility and scientific knowledge regarding potential storage sites needs to be developed. 

The basic industry, however, is likely to be a follower rather than a leader in the development of 

CCS.  

There are several general technologies that would benefit many industries. The need for 

continued development of energy efficient processes and technologies, e.g., efficient motor 

drives, fans, and pumps, is widely recognised. Our analysis indicates that the development of 

several other general purpose or multipurpose technologies would also benefit industry, as well 

as society at large. Electro-thermal technologies and electrolytic processes can perform a wide 

range of tasks in industry based on potentially carbon neutral electricity. Co-electrolysis of CO2 

and H2O is a potential source of carbon neutral hydrocarbons (perhaps expensive compared to 

direct use of electricity, but very useful in some applications). Thermo-chemical conversion of 

biomass (thermal gasification) is another technology that could benefit the decarbonisation of 
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several industries and the energy system as a whole. The development of biochemical conversion 

routes via enzymatic hydrolysis, fermentation, and various biocatalytic processes would yield 

benefit to several industries. Electrowinning for the steel industry and the development of inert 

anodes for the aluminium industry are other important technologies as they target major 

emission sources with few other zero emission alternatives.  

Whereas governments are generally wary of “picking winners”, the specifics of basic industry 

conversion processes (e.g., reducing iron ore) and the characteristics of energy supply and energy 

carriers, means that a relatively limited menu of technology options is clearly identifiable. 

Assuming that zero emissions are indeed the target, these options should be vigorously pursued.  

9.2 A policy strategy for decarbonisation 

Policy and governance strategies are difficult to devise in any detail due to numerous 

uncertainties ranging from technological progress to the development of international climate 

policy regimes and carbon pricing.  

The aim of developing a policy strategy is to agree on a broader concept of governance and to 

outline the role that is appropriate for government to take in a transition towards decarbonising 

industry. Several policy challenges needs to be dealt with. For example, if government chooses a 

more proactive role, the conflict between maintaining integrity versus co-operating with business 

with the risk of regulatory capture needs to be acknowledged and addressed. Further, supporting 

transitions highlights that policies should not be analysed as single actions but embedded in a 

broader policy package. In an uncertain future, governments support specific technology systems 

needs to balance between being adaptable and predictable.  Although roadmaps and RD&D-

strategies can be developed and implemented in the short term, wide scale deployment of new 

basic industry process technologies is likely to require high carbon prices (through taxes or 

trading schemes). In the absence of such conditions, policy strategies must consider other 

options such as regulatory approaches and permitting procedures, investment grants and 

subsidies, border adjustment taxes, and sectoral agreements. 

A shared vision of decarbonising industry is a first step for discussion. In contrast to other sectors, 

one observation is that there are yet no shared visions of how innovative technological solutions 

can contribute to a transition in basic industries (Nilsson et al 2011). Studies on the power sector 

have shown that long-term emission reduction target may have a more important role in spurring 

innovation than market-based policies although a carbon price may function as a basic demand-

pull (Rogge and Hoffman 2010; Schmidt et al 2012). A shared vision need not to focus solely on 

decarbonisation but should also be aligned with long term ambitions for competitiveness and 

business opportunities. 

Based on a long-term vision for decarbonising industry, a first step towards thereafter unfolding 

an industrial transition policy is to develop roadmaps for each subsector, engaging the actors 

identified above in this process. It may also give input for long-term investment strategies as well 

as identifying short-term R&D priorities and other joint undertakings that can be shared by public 

and private funding. The overall purpose of a roadmap is to establish priorities on RD&D, co-

ordinate various actors create networks and institutions for knowledge sharing, and map out 

possible technology and policy pathways. This aims at building confidence and reducing the risk 
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for all actors involved. Roadmaps need to be developed for each subsector due to the differences 

in technology characteristics as well as the structure of the socio-technical systems at large. Such 

differences imply a need for R&D, innovation and industrial policies that are adapted to the 

different technology characteristics, as well as the specific conditions of the subsectors. There are 

also crosscutting technologies and inter-linkages between industries that could motivate efforts 

with a broad scope. Due to uncertainty, changing conditions and the unpredictable nature of 

technology development, the roadmap should not be a static document but rather an on-going 

process and a process open to new actors. In line with the more general policy discussion above 

we can make some first observations and suggestion on improved policies below. 

One approach to reduce the political and technical risk of making large-scale investments in 

demonstrations and new plants may be “long-term development agreements” between 

government and industry.  Policy strategies need to consider also the scale of support and 

different geographical scopes. As an example, for steel industry, a continued EU wide program 

for ULCOS but with a renewed focus also on the truly zero emitting options would be a good 

start. In the EU, state aid rules must be adjusted to allow for motivated investment support. The 

development of inert anodes for the aluminium sector seems suitable to pursue on a global level. 

From a Swedish and Nordic perspective, the development of technologies for bio-resources may 

motivate a stronger focus on national or regional co-operation and support schemes. 

Investments in new technologies that change the core process of manufacturing basic materials 

are capital intensive and involve considerable risks for industry. Extensive public-private 

collaboration on research, development and demonstration is therefore needed. Due to the scale 

of investments in basic industry, such a system may be modelled on the European Union NER300 

scheme where revenues from the EU ETS will be used to fund, for example, CCS and large scale 

renewable energy demonstration projects. Similar financing mechanisms, in EU-wide or global 

agreements, may be needed for large-scale demonstrations of new basic industry processes. 

Intensified R&D efforts, perhaps including such efforts undertaken through the EU EIT KIC 

(Knowledge and Innovation Community) scheme in other areas, are also important.  

Our analyses suggest that targeted support for specific technologies is necessary. The support 

needs to include funding for RD&D but also for market development support in a broad sense. So 

far, this approach has worked well in the renewable energy sector through the use of various 

support schemes (e.g., feed-in tariffs, quota systems, and adaptation of legal structures). The 

development of renewable energy technologies has succeeded partly due to the long-term 

stability of the rationales for supporting these technologies (oil crises and energy independence, 

air pollution and now climate change and energy security again). The renewable technologies 

that have developed successfully so far are modular technologies that can be demonstrated and 

deployed in relatively small scale (e.g., PV modules, wind power and ground source heat pumps).  

A transition to a decarbonised industry will increase energy and process costs substantially 

compared to fossil and CO2 intensive alternatives. A relatively high price on CO2 will thus be 

necessary in 2050 for ensuring the transition. A clarification of how the EU ETS will develop up to 

2050 and how the EU will ease the effects or avoid carbon leakage would benefit the 

development. Free allocation helps but we have previously pointed to the possibility of 

broadening the scope and look at policy responses on the trading arena. Also, a clear message 
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from the on-going climate negotiations on the future interpretation of the burden sharing 

principle would help (although not likely the coming years). However, regardless of these 

possible improvements on the global and regional policy level, there is still room for policy 

initiatives on the national level. 
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