
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Adaptive Execution Assistance for Multiplexed Fault-Tolerant Chip Multiprocessors

Subramanyan, Pramod; Singh, Virendra; Saluja, Kewal; Larsson, Erik

Published in:
2011 IEEE 29th International Conference on Computer Design (ICCD)

DOI:
10.1109/ICCD.2011.6081432

2011

Link to publication

Citation for published version (APA):
Subramanyan, P., Singh, V., Saluja, K., & Larsson, E. (2011). Adaptive Execution Assistance for Multiplexed
Fault-Tolerant Chip Multiprocessors. In 2011 IEEE 29th International Conference on Computer Design (ICCD)
(pp. 419-426). IEEE - Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/ICCD.2011.6081432

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 18. May. 2025

https://doi.org/10.1109/ICCD.2011.6081432
https://portal.research.lu.se/en/publications/6634b31f-af0a-4a14-a1a2-948b2f64c2ab
https://doi.org/10.1109/ICCD.2011.6081432

Adaptive Execution Assistance for Multiplexed Fault-Tolerant Chip Multiprocessors

Pramod Subramanyan

Princeton University, Princeton, NJ
psubrama@princeton.edu

Kewal K. Saluja

University of Wisconsin-Madison, Madison, WI

saluja@ece.wisc.edu

Abstract-Relentless scaling of CMOS fabrication technology has made
contemporary integrated circuits increasingly susceptible to transient
faults, wearout-related permanent faults, intermittent faults and process
variations. Therefore, mechanisms to mitigate the effects of decreased
reliability are expected to become essential components of future general
purpose microprocessors.

In this paper, we introduce a new throughput-efficient architecture for
multiplexed fault-tolerant chip multiprocessors (CMPs). Our proposal
relies on the new technique of adaptive execution assistance, which
dynamically varies instruction outcomes forwarded from the leading core
to the trailing core based on measures of trailing core performance. We
identify policies and design low overhead hardware mechanisms to achieve
this. Our work also introduces a new priority-based thread-scheduling
algorithm for multiplexed architectures that improves multiplexed fault
tolerant CMP throughput by prioritizing stalled threads.

Through simulation-based evaluation, we find that our proposal delivers
17.2% higher throughput than perfect dual modular redundant (DMR)
execution and outperforms previous proposals for throughput-efficient
CMP architectures.

I. INTRODUCTION

CMOS technology scaling fuelled by Moore's law is expected to

continue for at least ten more years, continuing to provide us with

a bounty of smaller, faster and lower power transistors. In the past,

higher transistor counts were used to increase the performance of

individual processor cores. However, increasing complexity and power

dissipation of these cores forced architects to tum to chip mUltipro

cessors (CMPs), which deliver increased performance at manageable

levels of power and complexity. While technology scaling is enabling

the placement of billions of transistors on a single chip, it also poses

unique challenges. Integrated circuits are now increasingly susceptible

to soft errors [19, 27], wear-out related permanent faults and process

variations [3, 6]. As a result, engineers of the future will have to

tackle the problem of designing reliable integrated circuits using an

unreliable CMOS substrate.

Traditionally, fault-tolerant and high-availability systems have been

limited to the domain of mainframe computers or specially-designed

systems like the IBM zSeries and the Compaq NonStop®Advanced

Architecture (NSAA) [5, 8]. These systems spare no expense to pro

vide the highest possible level of reliability. While decreasing CMOS

reliability implies that fault tolerance is likely to become important for

the commodity market in the future [1], fault-tolerant systems for the

commodity market have different requirements from traditional high

availability systems. Most importantly, fault-tolerant systems for the

commodity market must have low performance overhead, low energy

overhead and low hardware cost.

Due to the trend of decreasing CMOS reliability, a number of

proposals have attempted to exploit the inherent coarse-grained re

dundancy afforded by chip multiprocessors (CMPs) to provide fault

tolerance [10, 11, 13, 18, 22, 28, 29, 32-35]. These proposals execute

a single logical thread on two cores of a chip multiprocessor. Typically,

978-1-4577-1954-7/11/$26.00 ©2011 IEEE 419

Virendra Singh

Indian Institute of Science, Bangalore, India

viren@serc.iisc.ernet.in

Erik Larsson

Linkoping University, Linkoping, Sweden

erik.larsson@liu.se

one of these cores is configured as the leading core, while the other is

configured as the trailing core. The leading core assists the execution

of the trailing core by forwarding selected results of its execution. The

results are used as predictions in the trailing core and help improve

its performance. Results produced by the two cores are compared to

detect errors.

The use of two cores to execute a single logical thread implies that

the throughput of a CMP is reduced by half. Due to this throughput

loss, a fault-tolerant system must have twice as many cores as an

equivalent non-redundant system in order to provide the same through

put. Consequently, fault-tolerant systems have higher procurement

costs, maintenance costs, cooling costs and energy costs. These high

costs are unacceptable for general-purpose microprocessors designed

for the commodity market.

This paper makes the two contributions to the state of the art.

Firstly, our proposal introduces the concept of adaptive execution

assistance. Our adaptive execution assistance mechanism dynamically

configures the instruction outcomes forwarded from the leading core

to the trailing core based on the characteristics of the workload being

executed. These micro architectural enhancements conserve power by

limiting the execution assistance provided to workloads that show suf

ficient speedup for small amounts of assistance while simultaneously

providing more assistance to workloads that need it. To the best of our

knowledge, ours is the first proposal to dynamically adjust execution

assistance based on workload behavior.

Our second contribution is the detailed design of a throughput

efficient fault-tolerant microarchitecture for future CMPs. Our design

multiplexes [34] multiple trailing threads on a single trailing core

using the technique of coarse-grained multithreading. This improves

fault-tolerant CMP throughput at low hardware cost. We show how

adaptive execution assistance is essential for the design of this

microarchitecture and introduce a priority-based thread scheduling

algorithm that further improves its throughput. As will be shown in

our simulation-based evaluation, in the context of an network-on-chip

like interconnect, our design provides 17.2% higher throughput than

perfect dual modular redundant (OMR) execution and outperforms all

the previous proposals for fault-tolerant CMPs that we examine.

A. Overview

Figure 1 shows a high-level overview of a multiplexed fault-tolerant

CMP. Sixteen cores are connected by mesh interconnect with four

memory and 1/0 channels. We show three types of cores in the figure.

One set of cores are shaded dark gray. These cores execute the leading

threads of applications that require fault tolerance. The cores shaded

light gray execute the trailing threads of applications that require fault

tolerance, while the white cores execute non-redundant applications.

Unlike previous fault-tolerant CMP proposals, a key difference is that

the pool of leading cores is bigger than the pool of trailing cores.

Memory and I/O interface

Memory and I/O interface

'"
u �
'"

.5

Fig. i: High level overview of a Multiplexed Fault-Tolerant CMP.

leading core 2

trailing core I

leading core I

Fig. 2: Conceptual block diagram of 2-way multiplexing.

This is because trailing threads are multiplexed on a single trailing

core through coarse-grained multithreading.

While many static and dynamic multiplexing configurations are

possible, in this paper we explore a simple static 2-way multiplexing

configuration with each trailing core multiplexing two threads.

Execution of a program begins with in the leading core. The leading

core first executes a chunk of instructions and sends a request to the

trailing core to redundantly execute the corresponding chunk. These

requests are enqueued in the trailing core in a structure known as

the Run Request Queue (RRQ). The trailing core picks entries from

the RRQ and executes the chunk corresponding to the picked request.

Two-way multiplexing is pictorially depicted in Figure 2

II. ADAPTIVE EXECUTION ASSISTANCE

The objective of adaptive execution assistance is to tailor the

assistance provided by the leading core to the trailing core based

on the current phase of the workload that is being executed. Adaptive

execution assistance has two important advantages over static schemes

for execution assistance.

1) Adaptive schemes change andior increase the execution as

sistance provided by the leading core to the trailing core

for challenging workloads (i.e., workloads that do not benefit

from a particular static scheme). As our results in §IV-D will

show, different workloads perform well with different types of

assistance. Hence, a static scheme does not scale to a diverse

set of workloads.

2) Some workloads require more execution assistance (i.e., more

instruction results to be forwarded) to achieve good perfor

mance. A static scheme would have to provide this higher

420

amount to all workloads. This wastes interconnect power, core

power, core-to-core bandwidth and chip area. In contrast, adap

tive execution assistance only provides higher assistance to

workloads that need it, increasing hardware efficiency.

A. Design Options for Adaptive Execution Assistance

Dynamic configuration of the execution assistance mechanism is

possible in a number of ways. One option is for the microprocessor

to expose a set of performance monitoring counters which quantify the

gain due to execution assistance. These counters can be periodically

read by the as or compiler generated code. Execution assistance

policy decisions can be made based on these values by setting

configuration registers of the microprocessor. The advantage of this

approach is that software has fine-grained control over the execution

assistance mechanism. The chief disadvantage of the approach is that

software will have to be rewritten andior recompiled to take advantage

of these hardware features.

This paper explores a hardware-only mechanism for adaptive exe

cution assistance. Our proposal evaluates the benefit due to assistance

through simple and low-cost hardware mechanisms and applies fine

grained policy changes that are completely transparent to software.

This approach presents two design challenges:

I) The hardware mechanism has to identify, at runtime, phases

of programs that can benefit from a change to the execution

assistance mechanism.

2) Once a bottleneck has been identified, the execution assistance

mechanism has to supply the right kind of additional assistance

that can improve performance of the current workload.

The following subsections describe our solution to these design

challenges.

B. Baseline Execution Assistance Mechanism

Our proposal uses critical value forwarding (CVF) as the baseline

execution assistance mechanism [35]. Critical value forwarding iden

tifies instructions on the critical path of execution and forwards the

result of these from the leading to the trailing core.

Instructions on the critical path are identified using the fanout2

heuristic. According to this heuristic, an instruction which produces a

value consumed by two other inftight instructions is considered to be

on the critical path and the result of such instructions are forwarded

from the leading to the trailing core. Critical value forwarding breaks

data-dependence chains in the trailing core, increasing opportunities

to exploit instruction level parallelism (ILP), leading to higher instruc

tions per clock (IPC).

Critical value forwarding special-cases branchljump instructions.

These instructions do not produce values to be consumed (i.e., have

fanoutO) but are nevertheless very important for performance. Branch,

jump and call instructions that are mispredicted are treated as being

on the critical path and the results of these instructions are forwarded

from the leading to the trailing core. In the trailing core, these branch

outcomes are used instead of branch predictions.

In this paper we introduce two adaptive enhancements to critical

value forwarding: adaptive branch forwarding and adaptive critical

value forwarding. The details of these enhancements are presented in

the following subsections.

C. Adaptive Branch Forwarding

The baseline execution assistance mechanism forwards the out

comes of mispredicted branches from the leading core to the trailing

core. For many workloads this execution assistance is sufficient to

ensure good performance in the trailing core. However, some of

ABF Level Branch Outcomes Forwarded

I mispredicted only
2 mispredicted + every 8th branch
3 mispredicted + every 4th branch
4 mispredicted + every 2nd branch
5 all branches

TABLE I: Levels for adaptive branch forwarding.

the workloads that we examine, such as mesa_crafty, gzip_mcJ and

gapJrafty, lose performance a due to a dispatch bottleneck caused

by unresolved branches in the trailing core.

Adaptive branch forwarding mitigates this bottleneck by forwarding

more branch outcomes from the leading to the trailing core. Note that

branches outcomes forwarded from the leading core to the trailing core

are correct unless affected by an error. Since an error in a forwarded

branch will be detected at the next fingerprint comparison (see III-A),

forwarded branches can be treated as resolved at the time of dispatch.

Operation of Trailing Core: Control of the adaptive branch

forwarding mechanism is through a counter that tracks dispatch stalls

in the trailing core. The counter is incremented when dispatch is

stalled due to unresolved branches. It is decremented when dispatch is

stalled due to any other reason. If the value of the counter is above a

threshold, indicating that unresolved branches are the main bottleneck,

at the time of next synchronization between the leading and trailing

cores, the trailing core requests the leading core to increase the level

of adaptive branch forwarding. If the value is below the threshold,

the trailing core requests the leading to decrease the level of adaptive

branch forwarding.

Operation of Leading Core: Depending on the current level

of adaptive branch forwarding, the leading core either forwards

just mispredicted branches or mispredicted branches and every Nth

branch. Levels used in our implementation are shown in Table I. Note

that with each message received from the trailing core, the level is

either increased or decreased, i.e., the system automatically relearns

the level for each new program phase.

D. Adaptive Critical Value Forwarding

Adaptive critical value forwarding attempts to increase execution

assistance for workloads by monitoring retirement stalls in the leading

core. Instructions results forwarded from the leading core to the

trailing core are buffered in the instruction result queue (IRQ) in the

trailing core (see §II-F). When the trailing core is unable to keep

up with the leading core, the IRQ becomes full; eventually stalling

retirement in the leading core.

Adaptive critical value forwarding attempts to mitigate these stalls

by providing additional execution assistance to help the trailing core

exploit more instruction-level parallelism. The default mechanism uses

the Janout2 heuristic to identify instructions on the critical path. When

the leading encounters IRQ-full retirement stalls, it also uses the ROB

stall heuristic. The ROB-stall heuristic marks instructions which reach

the head of the reorder buffer (ROB) without being executed (i.e.,

instructions stalling retirement) as critical.

When instruction retirement is stalled due to an IRQ-full stall, a

counter is incremented. When instruction retirement is stalled due to

any other type of stall, the counter is decremented. If the value of the

counter is greater than the threshold, the ROB-stall heuristic is used

along with the Janout2 heuristic. Thus the result of an instruction that

reached the reorder buffer head without being executed (i.e., a ROB

stalling instruction) or any instruction with two in-flight consumers

(i.e., a Janout2 instruction) is forwarded to the trailing core.

421

Increasing execution assistance from the leading core to the trailing

core has two effects. First, there is greater contention for IRQ-entries

in the trailing core. This can potentially reduce performance. Second,

the availability of results for more instructions improves performance

by breaking a greater number of data-dependence chains in the trailing

core. Our results in §IV-D show that the second effect dominates the

first for the workloads that we study.

E. Priority-Based Thread Selection

The order in which execution requests are processed by the trailing

core has significant effect on performance. This section presents a

priority-based scheduling algorithm that assigns a higher priority to

trailing core threads that are stalled in the leading core. This algorithm

is implemented in hardware and determines which thread drives the

fetch engine of the processor.

Input: currentThread, otherThread
Input: threadStalled[O], threadStalled[l]
Input: currentRunLength, maxRunLength

Output: selectedThread

if threadStalled[O] and threadStalled[1] then
2 selectedThread � currentThread
3 else
4 if threadStalled[O] and (not threadStalled[1]) then
5 selectedThread � 0
6 else if threadStalled[l] and (not threadStalled[OJ) then
7 selectedThread � I
8 else
9 if currentRunLength < maxRunLength then

10 selectedThread � currentThread
11 else
12 selectedThread � otherThread
13 end
14 end
15 update currentRunLength
16 update currentThread
17 end

Algorithm 1: Priority-Based Thread Selection Algorithm

Algorithm 1 shows priority-based thread scheduling. The algorithm

attempts to schedule the thread that is stalled in the leading core first.

If both leading core threads are stalled, or if no threads are stalled,

the algorithm prioritizes the currently executing thread to minimize

the costs of context switching. The maxRunLength parameter

ensures fairness by forcing thread switching after a certain number

of selections.

As will be shown in §IV-D, the priority-based scheduling algorithm

improves performance over the round robin scheduling algorithm

proposed in MRE [34] by 2.2% on average. The highest gains of

8.2% and 5.7% respectively are seen in the challenging workloads

crafty_sixtrack and gap_crafty.

F. Putting It All Together

Figure 3 shows a block diagram of a processor that supports multi

plexing with adaptive execution assistance. Blocks which are shaded

are our additions to a conventional out-of-order superscalar core.

Blocks in blue are used in the trailing core, while the critical value

identification heuristic is used only in the leading core. Fingerprinting

circuitry (see §I1I-A) is used in both cores.

The branch outcome queue (BOQ) [23] holds branch outcomes and

corresponding instruction tags received from the leading core. The

BOQ is examined in parallel with the branch predictor. If an outcome

is available in the BOQ, it is used instead of the prediction.

to trailing
core

u

�
'L:
:::J

�=:c:��------------�I�
�
u
�
C
Q)

"0

Q)
:::J

� Retire 1<--------1

;=�==� �
8

Fig. 3: Block digram of a multiplexed fault-tolerant core.

The instruction result queue (IRQ) [35] holds instruction results and

their corresponding tags received from the leading core. The IRQ is

examined at the time of instruction dispatch. If a value is available in

the IRQ, it is written immediately to the destination physical register

allowing dependent instructions to begin execution. Note that when

this instruction eventually executes in the trailing core, it writes its

computed value into the destination physical register for a second

time.

C. Hardware Cost

The primary area cost due to our proposals are the 512-entry IRQ

and BOQ structures. Using CACTI 5.3 [37] we estimate the area

of these structures to be about 0.05mm2: less than 1 % the area of

a single processor core in 32nm technology, and about 0.015% of

the area of the entire chip. Besides these two queues, the RRQ, two

counters and fingerprinting circuitry also consume a small amount

of additional area. The priority-based scheduling algorithm can be

implemented with a small number of flops, gates and a counter to track

the currentRunLength. Therefore, we expect that these hardware

overheads will be negligible.

Since the microarchitectural structures introduced for multiplexed

fault tolerance can be dynamically turned off, all cores can be used for

non-redundant execution without any power or performance penalty.

III. FUNCTIONAL DESCRIPTION OF FAULT TOLERANCE
MECHANISMS

This section discusses four important issues that need to be ad

dressed for any fault-tolerant system: fault detection, fault isolation,

fault recovery and fault coverage.

A. Fault Detection

Faults are detected by comparing fingerprints of execution generated

independently by the two cores. A fingerprint is a CRC-based hash

of register file updates, load/store addresses, store values and branch

targets [28]. It is computed at the time of instruction retirement and

is a deterministic function of the code and input for a single-threaded

program. For multithreaded programs, our proposal for partial load

replication (PLR) [35] causes both leading and trailing threads resolve

data races in an identical manner ensuring deterministic fingerprinting.

Since a fingerprint compresses the execution history of a program

into a single checksum value, there is a possibility that errors may

be undetected due to fingerprint aliasing. Fingerprint aliasing occurs

422

when two different execution histories result in the same fingerprint,

leading to errors going undetected. However, a number of previous

studies have concluded that the probability of fingerprint aliasing is

minuscule [13, 28, 34] for errors rates that are likely to be observed

currently and in the near future.

Detecting Errors In Forwarded Values: If the leading core for

wards an erroneous value to the trailing core, the error will be detected

during fingerprint comparison. To see why this is true, assume that

an instruction In in the leading core forwards an erroneous value to

the corresponding instruction tn in the trailing core. Assume without

loss of generality that In is the earliest instruction that forwards an

erroneous value. Therefore, under a single-error assumption, when tn
executes in the trailing core, it will compute the correct result because

all of its input operands will be correct. Since In and tn will compute

different results, the fingerprints computed in the two cores will be

different, detecting the error.

B. Fault Isolation

A fault can occur at any point during execution, but it is detected

only when fingerprints are compared. Fault isolation ensures that fault

does not propagate outside the cores to 1/0 devices or main memory.

For this, the state bits stored with each L1 cache line are augmented

by two bits. One bit tracks unverified cache lines. A cache line

is marked as unverified each time it is written to. All unverified

bits are flash cleared when a fingerprint comparison succeeds. The

cache replacement algorithm does not victimize unverified lines. This

ensures fault isolation because freshly-updated data does not leave the

L1 caches before verification.

A second bit, called the C2C bit, tracks lines obtained through

cache to cache transfers. Loads which execute from unverified and

C2C lines are not re-executed in the trailing core. For such loads, the

leading core supplies the value of the load to the trailing core where it

is used without verification ensuring deterministic fingerprinting even

in the presence of data races [31, 35].

C. Fault Recovery

Recovering from a fault essentially means restoring register and

memory values to their state at the time of the previous check

point. Restoration of register state is easily done through register

checkpointing mechanisms. Such mechanisms are already present in

contemporary microprocessors for two reasons: (1) to recover from

soft errors during execution and (2) to save the state of idle cores

being put to sleep for power reasons[15].

Our proposal saves and restores memory state from the L2 cache

of the microprocessor. This is possible because all the lines that have

been written to (i.e., modified) since the last checkpoint are contained

in the L1 cache. These lines are also marked unverified. Thus, flash

invalidating all unverified lines is sufficient to restore memory state.

A subtle implementation detail here is that each time a verified line is

marked as unverified, the verified version of the line must be written

to the L2 cache.

D. Fault Coverage

Our proposal provides full fault coverage for errors that occur inside

the processor cores with the exception of some parts of the memory

accesses logic. The reduction in coverage of memory access logic is

because the trailing core does not fully re-execute load instructions

that are involved in data races. Our experiments with the SPLASH2

[38] suite of programs showed that more than 92% of load instructions

are fully re-executed in the trailing core, bounding the loss in fault

coverage of memory-access circuitry to only 8% on average. We

assume that L1 and L2 caches are protected by error correcting codes.

Configuration # of Comments
Cores

CRT-4 4 This configuration is based on chip-level
redundantly threaded (CRT) [18] processors
proposed by Mukherjee et al. It uses four
cores to execute two logical threads redun-
dantly.

CRT-3 3 This asymmetric configuration, which is a
modification of CRT, uses only three cores
to execute two logical threads. Of these
cores, the lone redundant core uses simul-
taneous multithreading (SMT) to multiplex
two trailing threads for execution.

MRE-3 3 This is the multiplexed redundant execution
(MRE) proposal from [34] which also uses
three cores to execute two logical threads.
However, the third core uses coarse-grained
multiplexing rather than simultaneous mul-
tithreading, reducing hardware cost.

MuxCYF-3 3 This proposal improves MRE by replac-
ing its execution assistance mechanism with
critical value forwarding (CYF) [35]. CYF
identifies instructions on the critical path of
execution and forwards the results of these
from the leading core to the trailing core.
On average, it provides higher speedup and
requires lower communication bandwidth
than MRE's policy of forwarding all load
values and branch outcomes.

MuxCYF+ABF-3 3 Adaptive branch forwarding (ABF) (see
§II-C) improves MuxCYF by adapting the
number of branches forwarded from the
leading core to the trailing core based on
the characteristics of the workload.

MuxAEA-3 3 Adaptive Execution Assistance (AEA) (see
§II-D) improves MuxCYF by incorporating
adaptive branch forwarding and adaptive
critical value forwarding. These techniques
dynamically vary the execution assistance
supplied by the leading core to the trailing
core at runtime based on identified execu-
tion bottlenecks.

MuxAEA+PP-3 3 The priority pick (PP) scheme improves
MuxAEA throughput by prioritizing threads
stalled in the leading core.

TABLE II: List of Evaluated Configurations

IV. EVALUATION

In this section, we present a simulation-based evaluation of our

proposal. To gain an understanding of the performance impact of

our proposals and further put our results in context, we evaluate the

configurations listed in Table II. We present both single-threaded and

multiprogrammed evaluation results.

A. Methodology

Our evaluation is conducted using a modified version of the SESC

[24] execution-driven simulator. The simulator models an out-of-order

superscalar microprocessor in a detailed manner and fully executes

"wrong-path" instructions. All the micro architectural structures re

quired for multiplexed execution including unverified bits in the L l

data cache are simulated. Details of the CMP configuration are shown

in Table III.

For single-thread performance evaluation, we use twenty bench

marks from the SPEC CPU 2000 suite. For each benchmark we

execute a single SimPoint [26] of length one billion instructions.

For the multi-threaded results, we constructed a suite of thirteen 2-

program workloads from the SPEC CPU 2000 suite that provide a

423

representative sampling of speedup behaviour due to critical value

forwarding [31]. Each thread in these workloads is fast-forwarded

by three billion instructions. A total of one billion instructions are

executed.

B. Interconnect Model

We simulate an interconnect that is an approximation of future

network-on-chip based multiprocessors. We assume messages from

one of the cores redundantly executing a thread reach the other

core after exactly three hops. Each hop results in random delay that

uniformly varies between four and eight cycles. Although we do not

show detailed results here due to a lack of space, we found that

increasing the number of hops and changing hop latency had minimal

impact.

Previous proposals like Slipstream [36], CRT [18] and Reunion

[29] have assumed the existence of a dedicated interconnect between

the two cores performing redundant execution. These proposals also

optimistically assume that the interconnect latency is only a few

cycles. Although these latencies may be achievable for future chip

multiprocessors if adjacent cores are used for redundant execution,

this may not always be possible for the following reasons:

1) If redundant execution is turned-on dynamically, it may not be

possible to allocate adjacent cores because one of the cores of

a pair may already be executing an application that cannot be

rescheduled.

2) Software may explicitly "pin" threads to cores using processor

affinity system calls [7, 17].

3) In chips affected by intra-die variation, it may be necessary

to use "slow" cores for redundant execution [31]. In such a

scenario, the trailing core has to be chosen among a subset of

available cores, increasing the likelihood that adjacent cores are

not used for redundant execution.

C. Evaluation Metrics

To determine the slowdown when compared to non-redundant

execution, we use the weighted speedup metric proposed by Snavely

and Tullsen [30]. Weighted speedup is nothing but the average of the

slowdown suffered by each thread due to fault-tolerant execution.

WTSP= 1
Nthreads

Nthreads

L I PCn on - fault-tole rant (i)
I PC f ault-tole rant (i)

i=l

To evaluate the CMP throughput increase due to our proposals we

use the normalized throughput per core (NTPC) metric from [34].

NTPC is defined as the ratio of the sum of normalized slowdown

of each thread due to fault-tolerant execution to the number of cores

executing the workload.

1
Nthreads IPC (

.
) NT PC = --- L

-::-::::-:::--,f:...a_ u_ lt_- _t _o_le _r _an_t-,-Z :....,.,.,.
Neores i=l

I PCn on - fault-tolerant (i)
Note that NTPC is just the WTSP metric scaled by the number

cores. For an ideal DMR system, the NTPC is 0.5 because the number

of cores is double the number of threads and there is no slowdown

due to redundant execution.

D. Multiplexing Performance

Figure 4 compares the weighted speedup of the workloads for each

of the configurations shown in Table II. CRT-4 has mean slowdown

of 14.7%, CRT-3 has a mean slowdown of 21.2% and MRE-3

experiences a mean slowdown of 19.2%. MuxAEA+PP-3 is the best

TABLE III: CMP configuration

Fetch/issue/retire 4/4/4 MemllntlFP units 4/6/4 Branch predictor hybridlI6k116k116k
ROB size 128 instructions I-cache 32k164B/4-way/2 cycles BTB 4k entrieS/4-way
IntegerIFP window 64/32 instructions D-cache 64k164B/4-way12 cycles RAS 32 entries
Loadlstore queue 32 instructions Private L2 cache 2 MB/64B/8-way/24 cycles IRQILYQ size 512
Interconnect latency 48 cycles Memory 400 cycles BOQ size 512

Checkpointing interval 50k instructions DYFS update interval I !-,S DYFS update latency 100 ns
DYFS voltage levels 0.5 - 1.0 Y DYFS frequency levels 1.5-3.0 GHz # of DYFS levels 6

Fig. 4: Weighted Speedup (WTSP) for multiplexing configurations and CRT-4.

Fig. 5: Normalized Throughput Per Core (NTPC) for multiplexed configurations and CRT-4.

performing proposal, and it has mean slowdown of 12.1 %. Note that

this configuration uses only 3 cores to execute two logical threads but

outperforms CRT-4 which uses four cores.

We can also see that critical value forwarding (MuxCYF) improves

performance over MRE by 2.1 %. Adaptive branch forwarding further

improves performance by 2.5%. Adaptive critical value forwarding

adds 0.3% of performance to adaptive branch forwarding. Finally,

2.2% performance is gained through priority-based thread selection.

Figure 5 shows the NTPC metric for the same configurations. As

expected, CRT-4 has the lowest throughput because it uses four cores

to execute two logical threads while all the other configurations use

three cores to execute the same number threads. NTPC of MuxAEA

with priority-based thread selection is 0.586, showing that NTPC

delivers 17.2% higher throughput than perfect dual modular redundant

system.

When three cores are used to execute two logical threads redun

dantly, the highest achievable NTPC is 0.67. A number of work

loads such as bzip2_applu, vortex_mgrid, ammp_ vpr, swim_equake,

gzip_mcf and twolCparser approach this limit.

E. Bandwidth Requirements

Figure 6 shows the bandwidth requirements for the configurations.

Clearly, CRT-4, CRT-3 and MRE have the highest bandwidth require

ments. This is because these proposals transmit each load value and

branch outcome from the leading to the trailing core. In contrast,

critical value forwarding and adaptive execution assistance transmit

the values of instructions on the critical path of execution. As a result,

these configurations require only half the bandwidth of CRT and MRE.

Furthermore, adaptive execution assistance is able to increase

performance over critical value forwarding at only a small additional

bandwidth cost. A related observation here is that adaptive execution

424

assistance pays a bandwidth cost only for workloads that need it,

thereby optimizing interconnect power.

F. Single-Threaded Application Performance

Figure 7 shows the normalized IPC for the four different proposals

that are evaluated in this paper. Normalized IPC is defined as the ratio

of the instructions per clock (IPC) of fault-tolerant execution to the

IPC of a non-fault-tolerant baseline. On average both MuxCYF and

MuxAEA have a mean slowdown of only 0.5%. MRE has a mean

slowdown of 11.3% while CRT has a mean slowdown of 5.6%.

For this configuration there is no difference between MuxCYF and

MuxAEA because AEA is an adaptive scheme that increases the

execution assistance provided by the leading core when the trailing

core is unable to execute as fast as the leading core. For the single

threaded workloads, the trailing core is easily able to keep pace

with the leading core, so none of the features of adaptive execution

assistance are dynamically activated.

The negligible performance loss due to single-threaded execution is

an important result and demonstrates that for challenging workloads

which do not perform well under multiplexing, performance can

be regained through non-multiplexed execution. We envision the

implementation of an operating system mechanism that dynamically

deconfigures multiplexing based on performance-counter measure

ments in MuxAEA CMPs.

G. Discussion of Results

Our proposal provides higher throughput than CRT-4, CRT-3 and

MRE; which are the previous proposals for throughput-efficient

fault-tolerant CMPs incorporating execution assistance. This higher

throughput comes along with the advantage of lower bandwidth

requirement. Core-to-core bandwidth is likely to be a bottleneck in

QI
U »
U
QI Q.

�
.�
c:

�
� 0.1
::>

�

Fig. 6: Bandwidth requirements for multiplexing configurations and CRT-3.

1.2 . · . · . . · . . · . . · . . · . . 1 _
CRT MRE c:::J MuxCVF c:::J MuxAEA 1

������������������� J � 1.0 .

� 0.8
N

'iii 0.6
E <; 0.4
z

0.2

0.0 N
c.

·N
.c

u
u '"

c.
·N '"

0;
I"
'"
c.

)(
�
o
>

c.
>

c.

E
�

t
'"

.�
c.
'"

::: QI E
"0

.�
E

E

.�
c:
'" QI

�
Fig. 7: Normalized IPC for SPEC CPU 2000 benchmarks.

future CMPs [12]. Hence our proposal is better suited for the NoC

like interconnects in CMPs of the future.

Although we do not show the results here, we found that our

proposal's energy consumption is similar to that of previous proposals

like CRT and MRE. We leave a detailed examination of energy

consumption issues to future work.

Our proposal uses coarse-grained multithreading to multiplex

threads. Compared to simultaneous multithreading (SMT), coarse

grained multithreading has lower hardware cost. A study by Lee and

Brooks [14] investigating the power-performance efficiency of SMT

processors found that SMT processors require a wide (e.g. S-way) and

deep superscalar pipelines to achieve optimality, while CMPs are able

to achieve this for narrower issue widths and shallower pipelines. The

requirement for a wide superscalar with deep pipelines significantly

increases design complexity and leads to large layout blocks and

additional circuit delays [20]. Therefore, an important advantage of

our design is that it alleviates the need for SMT for throughput

efficient fault tolerance without compromising on performance.

V. RELATED WORK

The concept of execution assistance was first explored in AR

SMT [25], DIVA [4] and Simultaneous Redundantly Threaded (SRT)

processors [23]. AR-SMT and DIVA forwarded all values from the

leading to the trailing thread while SRT forwards the result of all load

and branch instructions. In contrast, critical value forwarding, focuses

on the few instructions that are on the critical path of execution.

Critical value forwarding achieves most of the speedup obtained by

forwarding all instructions at a fraction of the bandwidth cost. Our

proposal also distinguishes itself from these mechanisms by adaptively

determining the instruction results to be forwarded.

A class of proposals like Slipstream [36], Pace line [11], and

Performance-Correctness Decoupled Architectures [9] attempt to ex

ploit the idea of execution assistance to improve the performance

of multi core microprocessors. These mechanisms use some form of

speculation in the leading core and use the trailing core to recover from

mis-speculation. Our proposal differs from this body of work in two

ways. Firstly, we do not target the problem of multicore performance

improvement, eliding the need for these speculative mechanisms in

425

the leading core. Secondly, these proposals all use a static algorithms

for execution assistance, unlike our adaptive execution assistance

mechanism which tailors the execution assistance provided based on

the workload.

A related proposal is Necromancer [2] which uses faulty cores to

provide execution assistance to fully-functional cores. Even though

faulty cores cannot execute applications on their own, the execution

assistance they can provide significantly speeds up the trailing core.

This technique is especially effective when the faulty core is a "big"

core (an out-of-order superscalar core) while the non-faulty core is

an in-order core. Rashid, Saluja and Ramanathan [21] propose an

architecture where the majority of the functional units of a superscalar

are used to execute the leading thread, with the trailing thread using

the remaining units. This proposal amortizes the cost of redundant

execution over the multiple functional units that are inherent to out

of-order superscalar microprocessors.

Using the core-level redundancy inherent in chip mUltiprocessors

for fault tolerance is a well studied idea [2, 10, 13, 16, IS, 22, 29, 32-

35]. Chip-level Redundantly Threaded processors (CRT) execute the

leading and trailing threads on different cores for transient and perma

nent fault tolerance. The leading core supplies execution assistance to

the trailing core by forwarding all load values and branch instructions.

Store instruction results are forwarded from the trailing core to the

leading core where they are compared to detect errors. CRT can

only detect faults, it cannot recover from them. CRTR enables fault

recovery as well as fault detection [10].

RECVF [35] introduced the technique of critical value forwarding

and showed how it could be exploited for energy-efficient redundant

execution. This paper improves critical value forwarding by introduc

ing a dynamic execution assistance mechanisms that adapts to the

characteristics of the workload. A second difference is that we use

the execution assistance mechanism to improve fault-tolerant CMP

throughput, while the proposal in [35] uses critical value forwarding

to improve energy-efficiency of fault-tolerant CMPs. As our results

in §JV-D showed, the techniques proposed in this paper improve

performance over critical value forwarding by 5.0%.

The technique of multiplexing was introduced in multiplexed re

dundant execution (MRE) [34]. This work uses the techniques of

adaptive execution assistance and priority-based thread selection to

improve over MRE's performance by 7.1% (see §IV-D).

V I. CONCLUSION

Decreasing CMOS reliability in future technology nodes has re

sulted in a pressing need for low-cost fault-tolerant general-purpose

chip multiprocessors (CMPs). In this paper, we presented the design of

a throughput-efficient fault-tolerant CMP. An enabling technique for

this design is our proposal of adaptive execution assistance. Adaptive

execution assistance tailors the instruction results forwarded from the

leading core to the trailing core based on the program phase of the

workload that is being executed. We also introduced a new priority

based thread scheduling algorithm that further increases fault-tolerant

CMP throughput. Our evaluation showed that in the context of an

NoC-like interconnect, our design provides 17.2% higher throughput

than perfect dual modular redundant execution. Our proposal provided

higher performance at a lower bandwidth cost than all previous fault

tolerant CMP proposals that we examined.

REFERENCES

[1] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith. Configurable
Isolation: Building High Availability Systems With Commodity Multi
core Processors. In Proc. of the 34th Int'l Symp. on Compo Arch., pages
470-481, 2007.

[2] Amin Ansari, Shuguang Feng, Shantanu Gupta, and Scott Mahlke.
Necromancer: Enhancing system throughput by animating dead cores. In
Proc. of the 37th Annual Int'l Symp. on Compo Arch., ISCA '10, 2010.

[3] T. Austin, V. Bertacco, S. Mahlke, and Yu Cao. Reliable Systems on
Unreliable Fabrics. IEEE Design and Test, 25(4):322-332, 2008.

[4] Todd Austin. DIVA: A Reliable Substrate For Deep Submicron Microar
chitecture. Design. In Proc. of the 32nd Int'l Symp. on Microarchitecture.,
pages 196-207, 1999.

[5] D. Bernick, B. Brockert, P. D. Vigna, D. Garcia, R. Jardine, J. Klecka,
and J. Smullen. NonStop@ Advanced Architecture. In Proc. of 35th
Int'l Con! on Dependable Systems and Networks, pages 12-21, 2005.

[6] S. Y. Borkar. Designing Reliable Systems from Unreliable Components:
The Challenges of Transistor Variability and Degradation. IEEE Micro,
25(6):10-16, 2005.

[7] Microsoft Corp. SetThreadAffinityMask Function. MSDN Libary., 2011.
[8] M.L. Fair, C.R. Conklin, S. B. Swaney, P. J. Meaney, W. J. Clarke, L. C.

Alves, I. N. Modi, F. Freier, W. Fischer, and N. E. Weber. Reliability,
Availability, and Serviceability (RAS) of the IBM eServer z990. IBM
Journal of Research and Development, 2004.

[9] A. Garg and M. Huang. A Performance Correctness Explicitly-Decoupled
Architecture. Proc. of the 38th Int'I Symp. on Compo Arch., pages 306-
317,2008.

[10] M. Gomma, C. Scarbrough, T. N. Vijaykumar, and I. Pomeranz.
Transient-Fault Recovery for Chip Multiprocessors. Proc. of the 30th
Int'l Symp. on Compo Arch., pages 98-109, 2003.

[11] B. Greskamp and J. Torrellas. Paceline: Improving Single-Thread
Performance in Nanoscale CMPs through Core Overclocking. In Proc.
of the 16th Int'I Con! on Parallel Arch. and Compilation Techniques,
pages 213-224, 2007.

[12] Rakesh Kumar, Victor Zyuban, and Dean M. Tullsen. Interconnections
in Multi-Core Architectures: Understanding Mechanisms, Overheads and
Scaling. In Proc. of the 32nd Int'I Symp. on Compo Arch., 2005.

[13] C. LaFrieda, E. Ipek, 1. F. Martinez, and R. Manohar. Utilizing
Dynamically Coupled Cores to Form a Resilient Chip Multiprocessor.
In Proc. of the 37th Int'l Con! on Dependable Systems and Networks,
2007.

[14] B. Lee and B. Brooks. Effects of Pipeline Complexity on SMT/CMP
Power-Perf. Efficiency. Workshop on Complexity Effective Design in
conjunction with 32nd 1nt'1 Symp. on Compo Arch., 2005.

[15] M. Mack, W. Sauer, S. Swaney, and B. Mealey. IBM Power6 Reliability.
In IBM Journal of R&D, 51(6), 2007.

[16] N. Madan and R. Balasubramonian. Power-efficient Approaches to Re
dundant Multithreading. IEEE Transactions on Parallel and Distributed
Systems, pages 1066-1079, 2007.

[17] Linux System Calls Manual. sched_setaffinity Function, 2011.

426

[18] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed Design and
Evaluation of Redundant Multithreading Alternatives. Proc. of the 29th
1nt'1 Symp. on Compo Arch., pages 99-110, 2002.

[19] S. S. Mukherjee, J. Emer, and S. K. Reinhardt. The Soft Error Problem:
An Architectural Perspective. In Proc. of the 11th Int'I Symp. on High
Perf Compo Arch., pages 243-247, 2005.

[20] K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The
Case for a Single-Chip Multiprocessor. Proc. of the 7th Int'I Con! on
Arch. Support for Programming Languages and Operating Systems, 1996.

[21] Faisal Rashid, Kewal K. Saluja, and Parameswaran Ramanathan. Fault
Tolerance through Re-Execution in Multiscalar Architecture. In Proceed
ings of the 2000 Int'l Con! on Dependable Systems and Networks, DSN
'00, pages 482-491, 2000.

[22] M. W. Rashid, E. J. Tan, M. C. Huang, and D. H. Albonesi. Exploiting
Coarse-Grain Verification Parallelism for Power-Efficient Fault Tolerance.
In Proc. of the 14th Int'l Con! on Parallel Architectures and Compilation
Techniques, pages 315-328, 2005.

[23] S. K. Reinhardt and S. S. Mukherjee. Transient Fault Detection via
Simultaneous Multithreading. Proc. of the 29th Int'l Symp. on Compo
Arch., pages 25-36, 2002.

[24] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos. SESC Simulator.
http://sese.soureeforge . net/, 2005.

[25] E. Rotenberg. AR-SMT: A Microarchitecture Approach to Fault Toler
ance in a Microprocessor. Proc. of 29th Int'I Symp. on Fault-Tolerant
Computing, pages 84-91, 1999.

[26] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
Characterizing Large Scale Program Behavior. Proc. of the 10th Int'I
Con! on Arch. Support for Programming Languages and Operating
Systems, pages 45-57, 2002.

[27] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi. Modeling
the Effect of Technology Trends on the Soft Error Rate of Combinational
Logic. Proc. of the 32nd Int'I Con! on Dependable Systems and
Networks, pages 389-398, 2002.

[28] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C. Hoe, and A. G.
Nowatzyk. Fingerprinting: Bounding Soft Error Detection Latency and
Bandwidth. Proc. of the 9th Int'l Con! on Arch. Support for Programming
Languages and Operating Systems, pages 224-234, 2004.

[29] J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe. Reunion:
Complexity-Effective Multicore Redundancy. Proc. of the 39th Int'I
Symp. on Microarchitecture., pages 223-234, 2006.

[30] Allan Snavely and Dean M. Tullsen. Symbiotic Jobscheduling for a
Simultaneous Multithreaded Processor. In Proc. of 8th Int'I Con! on
Arch. Support for Programming Languages and Operating Systems, 2000.

[31] Pramod Subramanyan. Efficient Fault Tolerance in Chip Multiprocessors
Using Critical Value Forwarding. M.Sc (Engg.) Thesis, Indian Institute
of Science, 2011.

[32] Pramod Subramanyan, Virendra Singh, Kewal K. Saluja, and Erik Lars
son. Power-Efficient Redundant Execution for Chip Multiprocessors.
Proc. of 3rd Workshop on Dependable and Secure Nanocomputing held
in conjunction with DSN 2009, 2009.

[33] Pramod Subramanyan, Virendra Singh, Kewal K. Saluja, and Erik Lars
son. Energy-Efficient Redundant Execution for Chip Multiprocessors.
Proc. of 20th ACM Great Lakes Symp. on VLSI, 2010.

[34] Pramod Subramanyan, Virendra Singh, Kewal K. Saluja, and Erik Lars
son. Multiplexed Redundant Execution: A Technique for Efficient Fault
Tolerance in Chip Multiprocessors. Proc. of Design Automation and Test
in Europe, 2010.

[35] Pramod Subramanyan, Virendra Singh, Kewal K. Saluja, and Erik Lars
son. Energy-Efficient Fault Tolerance in Chip Multiprocessors Using
Critical Value Forwarding. Proc. of 40th Int'l Con! on Dependable
Systems and Networks, 2010.

[36] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream Processors:
Improving Both Performance and Fault Tolerance. In Proc. of the 9th
Int'l Con! on Arch. Support for Programming Languages and Operating
Systems, pages 257-268, 2000.

[37] S. Thoziyoor, N. Muralimanohar, Jung Ho Ahn, and Norman P. Jouppi.
CACTI 5.1. Technical Report HPL-2008-20, HP Labs, 2008.

[38] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. The SPLASH-2 Programs: Characterization
And Methodological Considerations. In Proc. Of The 22nd Int'I Symp.
on Compo Arch., 1995.

