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Abstract

MAX IV and SOLARIS are two synchrotron light sources located in Lund
and in Krakow, respectively. A stripline is a standard multi-purpose compo-
nent that is used in many accelerators and consists of one or multiple elec-
trodes. The currents that are induced by the Lorentz contracted fields of the
electron beam at the electrodes can be used for beam diagnostics, or one can
excite the electrodes in order to manipulate the properties of the beam. The
design and initial measurements of the MAX IV/SOLARIS striplines are pre-
sented in this report. Different design considerations and possible applications
for the striplines are also presented.

Contents
1 Introduction 2

2 Applications for the Stripline 3
2.1 Tune measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Transverse Beam Dynamics in a Circular Accelerator . . . . . 4
2.1.2 Obtaining the Tunes . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Pick-up Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Feedback Kicker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Stripline Geometry 8

4 Field and Transmission Line Analysis 10
4.1 Impedance Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Field Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Kick Efficiency 14
5.1 Shunt Impedance and Kick Angle . . . . . . . . . . . . . . . . . . . . 14

6 Pick-up Characteristics 15
6.1 Longitudinal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 Transverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7 Collective Effects 19
7.1 Wake Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.2 Bunch Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.3 Longitudinal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.3.1 Time Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3.2 Frequency Domain . . . . . . . . . . . . . . . . . . . . . . . . 28

7.4 Transverse Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.4.1 Time Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.4.2 Frequency Domain . . . . . . . . . . . . . . . . . . . . . . . . 32



2

8 Stripline S-parameter Measurements 33

9 RF Distribution 37
9.1 Feeding Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.2 Receiving Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

10 Initial Beam Measurements in MAX IV 42

11 Conclusions 44

A The Scalar Potential in the Stripline 46

B Stripline S-parameter Measurement 50

C Feeding Network S-parameter Measurements 53

D Receiving Network S-parameter Measurements 56

1 Introduction
The MAX IV facility is a national Swedish research facility located in Brunnshög
outside Lund [12]. The facility consists of two electron storage rings that are op-
erated at 3 GeV and 1.5 GeV [20], respectively, where the former is optimized for
production of high-brilliance hard X-ray synchrotron light, and the latter will pro-
duce light in the IR to the soft X-ray spectral range. The rings will be operated
with top-up injections where the electron losses are compensated by injections at
short intervals. The full-energy injector consists of a 39 S-band LINAC structures
[21], and will also operate as a driver for a Short Pulse Facility (SPF) where X-ray
pulses with durations down to tens of fs are produced. The LINAC might also be
the driver for a future Free Electron Laser (FEL) [3], and in this case it is likely that
more LINAC structures are added in order to reach higher energies. The 3 GeV ring
has recently started delivering light to the first users, while the 1.5 ring is under
beam commissioning.

The SOLARIS Synchrotron is a national Polish research facility located in Krakow,
and consists of an injector and a storage ring [19]. The storage ring is basically a
replica of the MAX IV 1.5 GeV ring. One key difference compared to MAX IV is
that the SOLARIS injector has an energy gain of 550 MeV, and the electrons are
therefore injected and stored at this energy before the beam energy is increased by
the accelerating cavities, and by synchronously increasing the magnetic fields. This
process is known as ramp-up.

The design parameters of the MAX IV and SOLARIS storage rings are listed in
Table 1, and these parameters will be further explained in the following sections.
However, the focus in this report is on the design and measurements of the stripline,
and its related RF components, that are installed in the MAX IV 3 GeV ring.

Several diagnostic devices are needed for the operation of an electron storage
ring. In this paper we describe a stripline can be used for two different types of
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Parameter 3 GeV Ring 1.5 GeV Ring
(MAX IV) (MAX IV / SOLARIS)

Beam energy 3.0 GeV 1.5 GeV
Maximum beam current 500 mA 500 mA
RMS bunch length 56 mm 56 mm
Main radio frequency 99.931 MHz 99.931 MHz
Harmonic number 176 32
Ring circumference 528 m 96 m
Betatron tune (horizontal/vertical) 42.20/16.28 11.22/3.15
BPM pick-up frequency 500 MHz 500 MHz

Table 1: The design parameters of the MAX IV and SOLARIS storage rings.

beam diagnostics. It can act as a passive device that monitors the longitudinal
and transverse motion of the beam. It can also be an active device that excites the
beam and by that makes it possible to measure several parameters of the accelerator.
Aside from being used as a purely diagnostic device, a stripline can also be used to
excite the beam in a way that gives it properties that some users would benefit from
or to damp unwanted beam oscillations that are driven by instabilities.

In Section 2, different applications for the stripline are listed. Here, a brief
review of the transverse beam dynamics in a circular accelerator is also given. The
geometry and manufacturing method of the stripline vacuum chamber is presented
in Section 3. An analysis of the transmission line properties and the electromagnetic
fields inside the chamber are presented in Section 4. The ability of the stripline to
kick the beam and to monitor the motion of the beam are discussed in Section 5
and 6, respectively. When a charged beam propagates inside a vacuum chamber it
induces mirror currents on the walls of the chamber. These mirror current generate
electromagnetic fields which act back on the beam itself. Such phenomena are
known as collective effects and are further described in Section 7. In Section 8 the
scattering parameters of the manufactured stripline are presented. The design and
measurements of an RF distribution network that is feeding the stripline, and an
RF receiving network that is monitoring the beam motion are presented in Section
9. Finally, some initial measurements from the commissioning of the MAX IV 3
GeV ring are presented in Section 10 where the beam is excited using the stripline.

2 Applications for the Stripline
A stripline is a multi-purpose tool that can both excite and monitor the electron
beam. In this section three possible applications of the stripline are listed.

2.1 Tune measurements

The main purpose of the stripline is to excite the beam during measurements of
the betatron tunes. Here, a brief review is given on transverse beam dynamics in
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a circular accelerator, and it is shown why monitoring the transverse beam motion
provides valuable information about the status of the accelerator.

2.1.1 Transverse Beam Dynamics in a Circular Accelerator

In order to understand the concept tune measurements, one has to understand the
basic principles of transverse beam dynamics. In this report, only a brief review is
given on the subject. For further reading, [22] and [23] are recommended.

The ideal orbit of a particle with a nominal energy in a circular accelerator is
defined by the magnet layout (the lattice). The trajectory of a single particle that
moves in the vicinity of the orbit can be described by using a co-moving cartesian
coordinate system K(x, y, s) whose origin moves along the orbit with the longitu-
dinal position s. x(s) and y(s) are the horizontal and vertical displacement at the
longitudinal position s, respectively. For a particle with nominal energy x(s) satisfies
Hill’s differential equation

d2x(s)

ds2
+ k(s)x(s) = 0 (2.1)

where k(s) is an L periodic focusing function determined mainly by the quadrupole
magnets, and L is the circumference of the ring. The solution to (2.1) is the hori-
zontal oscillating function around the ideal orbit known as the betatron oscillation

x(s) =
√
εxβx(s) cos(ψx(s) + ϕx) (2.2)

ψx(s) =

s∫
0

ds′

βx(s′)
(2.3)

where εx is the emittance, βx(s) is the beta function, ψx(s) is the phase advance
function, and ϕx is a constant. Analogously, the vertical displacement from the
ideal orbit is given by y(s) =

√
εyβy(s) cos(ψy(s) + ϕy). The number of (horizon-

tal/vertical) betatron oscillations performed by a particle travelling once around the
ring is called the betatron tune, Qx/y, and is given by

Qx/y =
1

2π

s+L∫
s

ds′

βx/y(s′)
(2.4)

There is a chance of resonance growth of the betatron oscillations if Qx or Qy

are integers or simple fractions. These instabilities are known as optical resonances,
and they may even result in beam loss. However, it is not sufficient to choose Qx

and Qy individually so that they are not integers or simple fractions since the field
strength in one plane depends on the displacement in the other plane for multipole
fields of higher order. A coupled optical resonance has the order |m|+ |n|, with the
resonance condition mQx + nQy = p, {m,n, p} ∈ Z. Generally, the strength of an
optical resonance decreases with its order. As seen in Table 1, the optical resonances
of the operation points have the order 5 (m = ±5, n = 0) in the 3 GeV ring, and
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order 11 (m = ±5, n = ±6) in the two 1.5 GeV rings. This pair of values for Qx

and Qy is called the working point of the machine.
The amplitude function

√
εxβx(s) in (2.2) is called the horizontal beam envelope.

A single particle might have different displacement from its ideal orbit when passing
the same longitudinal position in a storage ring. However, the magnitude of this
displacement is never greater than the beam envelope, as seen in (2.2). The beta
function is determined by the lattice. In (2.2), εx is a single particle constant of
motion, and πεx is the area of the ellipse of particle motion in the x-x′ phase space,
where x′ = dx/ ds. However, a beam consists of many particles oscillating with
different amplitudes. One can show that the transverse distributions of an electron
beam in a storage ring are nearly Gaussian distributions with rms beam sizes σx
and σy. It is therefore more customary to define εx as the emittance corresponding
to the emittance of electrons travelling at exactly one STD, σx, from the ideal
orbit. By doing so, the amplitude function

√
εxβx(s) = σx(s) can be referred to as

the horizontal rms beam size at the longitudinal position s. εx can be seen as the
horizontal "temperature" of the beam.

2.1.2 Obtaining the Tunes

When operating the machine, it is vital to monitor its betatron tunes and to confirm
that it is operating far away from any strong optical resonances. Deviations from
the working point might imply misaligned magnets or drift in the magnet power
supplies.

Consider a single particle with charge q that is propagating with velocity v on
the design orbit in a circular machine. The charge density λ(t) of the particle can
be described as a Fourier series of the revolution frequency ω0

λ(t) =
q

v

∞∑
n=−∞

δ(t− nT0) =
q

L

∞∑
n=−∞

cos(nω0t) (2.5)

where T0 is the revolution period. The transverse dipole moment d(t) of the particle
is defined as the product of its charge and its transverse displacement from the
orbit, thus the horizontal displacement becomes d(t) = q · x(t). From here on, the
horizontal/vertical indices of the parameters listed above are dropped since it should
be obvious from the content which index to use. The horizontal displacement of the
particle is x(t) = x0 + x̂ cos(Qω0t), where x0 is a constant offset due to a closed orbit
distortion. Here, a smooth approximation is applied on the phase advance function
in (2.3) where ψ(s) ≈ 2πQ

L
s. One can measure the displacement at a single point in

the machine with, for example, a standard button BPM by combining the signals
from two opposite located buttons with a 180◦ hybrid combiner (see Figure 1). By
using this set-up, the obtained signal is proportional to the dipole moment of the
particle (higher multipole components are discarded in the analysis). Note that a
misalignment of the BPM device results in an additional component to the offset of
the measured signal, similar to x0. However, the measured offset can be rejected by
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calibration, and by dropping this term the dipole density becomes

d(t) =
qx̂

L

∞∑
n=−∞

cos((n+Q)ω0t) =
qx̂

L

(
cos(Qfω0t) +

∞∑
n=1

cos((n±Qf )ω0t)

)
(2.6)

where Qf is the fractional part of Q. Apart from the first term in (2.6) at Qfω0, the
spectrum consist of frequency components separated ±Qfω0 from each harmonic of
ω0. The integer part of Q in the measured signal is however lost which is known
as the stroboscope effect. One method of measuring the integer part is to perform a
position measurement along the machine with the offsets at each BPM rejected by
calibration. A small dipole field is then applied somewhere in the machine which
results in a a small closed orbit distortion, and the number of betatron oscillations
per turn can then be counted by taking the difference between the new orbit and
the calibrated orbit.

A particle in a circular machine also performs a longitudinal oscillation, or a
synchrotron oscillation, due to the gradient of the fields in the accelerating cavities
when the particle is accelerated off-crest. This is known as phase focusing, and the
oscillation occurs around the nominal phase (relative to the phase of the acceler-
ating fields) of an ideal particle known as the the synchronous phase. Due to the
synchrotron oscillation, the particle receives a different momentum gain every turn
when it passes the accelerating cavities. Note that the momentum gain per turn
is equal to the momentum loss per turn when the phase of the particle is equal to
the synchronous phase. The momentum deviation from the nominal momentum p0

results in a deviations from the nominal revolution period T0 = 2π/ω0 which relation
is

dT

T0

= ηc
dp

p0

(2.7)

where ηc is the phase slip factor. The momentum deviation also causes a shift in
the betatron tune since the L-periodic focusing function k(s) in (2.1) has a differ-
ent magnitude for a particle with an non-nominal momentum. This tune shift is
described by the chromaticity of the lattice, and given by

ξ =
dQ/Q0

dp/p0

(2.8)

where Q0 is the nominal betatron tune.
When including the phase focusing into the transverse spectrum, the dipole

moment of a single particle can be written as in (2.9), where Jm is the Bessel
function of the first kind with indexm, Ωs is the angular frequency of the synchrotron
oscillation, ϕ is a phase constant, and τs is the maximum amplitude of the oscillation
of the revolution time [18].

d(t) =
qx̂

L

∞∑
n=−∞

∞∑
m=−∞

j−mJm

((
n+Q− ξQ

ηc

)
ω0τs

)
ejmϕej((n+Q)ω0+mΩs)t (2.9)
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As seen in (2.9), there is an infinite number of synchrotron satellites at ±mΩs

around the betatron lines that were found in (2.6). All these spectral lines are also
amplitude and phase modulated. There will be a momentum spread among the
electrons in the beam which results in a spread in their betatron tunes and their
revolution frequencies. The spectral lines in (2.9) are therefore smeared out in a
signal from a real electron beam. Transverse wakefields (see Section 7) result in
a shift of the betatron tunes, which means that the position of the spectral lines
also depends on the total stored current. Measurements of the beam spectrum are
presented in Section 10.

Since the individual electrons also oscillate with different phases, they all per-
form betatron oscillations around the ideal orbit incoherently. Therefore, in order
to measure the betatron tunes one has to excite the beam so that the electrons per-
form transverse oscillations coherently. This excitation can be made by applying an
external driving force to the beam (via for example the stripline), or the beam can
be excited by itself due to an instability. The latter case is undesired, and will not
be considered in this report. In the 3 GeV ring, three different methods of exciting
transverse oscillations and measuring the betatron tunes are implemented.

The first method includes the stripline which excites the beam when it is swept
with a sinusoidal signal. The transverse beam position is then monitored by a button
BPM where the differential signals between opposite located buttons are measured.
Figure 1 shows a simplified illustration of the measurement set-up. A more detailed
overview of the RF distribution in the measurement set-up is presented in Section
9. The frequency of the exciting signal is generated by the tracking generator of a
spectrum analyzer, and the differential signal at the BPM is monitored by the same
instrument. Coherent transverse oscillations are excited when the frequency of the
tracking generator is close to the frequency components of the Fourier series in (2.9),
and are therefore displayed as spectrum lines by the spectrum analyzer.

In the second method, the beam is excited by a fast transverse kick which has
a duration that is less than the revolution period of a bunch. For this purpose,
fast pinger magnets are installed in the rings that can kick the beam both in the
horizontal and vertical plane. The beam position is then measured at the positions
of the button BPMs along the ring. This method is not as accurate as the first
method.

A third method is to use the bunch-by-bunch feedback system. Here, an external
excitation signal is swept in the vicinity of the betatron frequency (just as in the
first method), and the beam spectrum is then obtained as an FFT of the signal from
a single button BPM. The bunch-by-bunch feedback system is described in [16].

2.2 Pick-up Device

The stripline will intercept fractions of the mirror current induced by the electron
beam. This results in induced signals at the stipline ports which can be used for
estimating the total charge, the transverse and longitudinal motion, and the charge
distribution of each ring bucket. Even though the storage ring already has several
diagnostics tools such as capacitive buttons (button BPMs), current transformers,
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Figure 1: A simplified block diagram that shows the set-up of the betatron tune
measurements in FD.

and diagnostic beam lines for these type measurements, the stripline can be used
as a complementary pick-up device. The pick-up characteristics of the stripline is
investigated in Section 6.

2.3 Feedback Kicker

There are bunch-by-bunch feedback systems installed in both MAX IV storage rings
[16]. At the moment, there are no dedicated feedback kickers installed in the 1.5 GeV
ring. The stripline that is installed in this ring will therefore operate as a temporary
feedback kicker in all three planes when the commissioning of the feedback system
starts in this ring during the autumn of 2017.

3 Stripline Geometry
The stripline vacuum chamber consists of a main body, four stripline electrodes, 8
coaxial feedthroughs, and connectors needed for water cooling. A 3D CAD model
of the stripline can be seen in Figure 2, and Figure 4 shows the strips and the inner
boundaries of the main body in the xy-plane.

Four stripline electrodes are needed since the design target is to construct a
device that is able to excite the beam in both transverse planes independently of
each other. The stripline electrodes are hereby referred to as "strips", and the
complete component is referred to as the "stripline" in this report. The main body
and the strips are made of 316LN and 316L, respectively, that are two stainless steel
alloys. As seen in Figure 4, tracks are milled in the main body, and the strips are
placed inside the cavities. The reason for doing so is to minimize the discontinuity
of the inner chamber walls since a beam that passes such discontinuities induces EM
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fields that act back on the beam itself which might result in instabilities. More on
that in Section 7. The strips are rotated 45 degrees relative to the two transverse
planes in order to protect them from synchrotron radiation that is emitted from an
upstream dipole magnet. If the synchrotron radiation would hit one of the strips, it
becomes heated, and since it is a thin component that is difficult to cool, it might
become damaged. Bursts of radiation that hit the strip would also induce noise in
the measured signal if the stripline is used as a pick-up device. With the rotation
of 45 degrees, the synchrotron radiation hits the main body instead which is the
reason why it is cooled by water (see Figure 2). The coaxial feedthroughs that
provide the electrical contact between the external feeding network and the strips
have N-type connectors and ceramic vacuum insulators. The outer connectors of
the feedthroughs are welded to the main body, and the inner conductors are welded
to the strips. In order to connect the stripline to the neighboring vacuum chambers,
two CF flanges are attached to the upstream and downstream ends of the main
body.

In Figure 4, a = 14.00 mm, ag = 19.04 mm, φs = 45.00 degrees, and φg = 8.19
degrees. The length of each strip L is 150 mm (measured between its two welding
points to the feedthroughs). The total length of the stripline is 250 mm (flange-
to-flange). The dimensions chosen for the stripline are further explained in the
following sections.

A total number of four striplines are manufactured; one for each ring in MAX IV
and SOLARIS, and one unit is kept as a spare part. One of the completed striplines
is shown in Figure 3.

(a) (b)

Figure 2: The CAD model of the stripline, where (a) shows the complete model
and (b) shows a cut through in the yz-plane. Note the water cooling channel at the
bottom of the main body in (b).
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Figure 3: One of the four manufactured striplines.

4 Field and Transmission Line Analysis
The main purpose of the stripline is to excite the beam in the transverse plane. One
should be able perform these transverse excitations in the horizontal and vertical
planes independently of each other, but also in both planes simultaneously (in the
"diagonal plane"). For the beam excitation described above, one needs to operate
the stripline in the three different modes that are listed in Table 2. Here, Un is the
applied RF potential to the n:th strip (see Figure 4), where a negative potential is
due to a phase shift of 180 degrees compared to the strip with positive potential.
The sum mode is not for beam excitation, but describes the potential distribution
when a beam that is centered in the beam pipe excites the four strips. This is further
explained in Section 6.1. The RF signals are applied to the feedthroughs that are
located downstream relative to the electron beam. This is due to the directional
properties of a stripline which are explained more in detail in Section 5.1.

4.1 Impedance Matching

Each strip forms a coaxial waveguide, and transmission line theory can therefore be
applied in order to obtain the signal along the strip [10]. The analysis is here limited
to a transverse cross section of the stripline far away from the feedthroughs. In FD,
the voltage propagating along a strip, U(z), is the solution to the transmission line
equation

d2U(z)

dz2
− γ2U(z) = 0 (4.1)
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Figure 4: The 2D cross section of the
stripline kicker.

Mode of
operation U1 U2 U3 U4 Zs[Ω]
Diagonal (d) V0 0 −V0 0 50.0
Horizontal (h) V0 −V0 −V0 V0 50.0
Vertical (v) V0 V0 −V0 −V0 50.0
Sum (Σ) V0 V0 V0 V0 53.4

Table 2: The modes of operation and their charac-
teristic impedances.

where γ =
√

(R + jωL)(G+ jωC) is the propagation constant. R, G, L, and C
are the resistance, conductance, inductance and capacitance per unit length, re-
spectively. The analysis is simplified by assuming that the strips are lossfree, thus
R = G = 0, and phenomena such as attenuation and distortion are therefore not
taken into account. Anyway, the losses in the 15 cm strips due to R and G are
insignificant below 10 GHz, especially when comparing to the losses introduced by
the ceramic vacuum insulators in the feedthroughs. For a lossfree transmission line
in vacuum, the phase velocity is vp = 1/

√
LC = c0. Hence, the propagation constant

can now be written as γ = jω/c0 = jkz, where kz is the longitudinal wave number.
The voltage V (z) and current I(z) that are propagating along the strip are

U(z) = V0e
jkzz (4.2)

I(z) =
V0

Zs
ejkzz (4.3)

since the signal of excitation is travelling in the direction opposite to the electrons
(in negative z direction). V0 is a constant and Zs =

√
L/C is the characteristic

impedance of the strip.
It is necessary that the strips have 50 Ω impedance to minimize mismatch to the

feeding system. Since c0 = 1/
√
LC and Zs =

√
L/C, the characteristic impedance

of each strip can be obtained as Zs = (c0C)−1.
The electric field for the fundamental TEM mode in a coaxial transmission line

is obtained by solving the electrostatic field over a transverse cross section (more
on that in Section 4.2). C for a strip is given by the electrostatic definition of a
capacitor

C =
Qtot

U
=

1

U

∮
Γ

n̂ ·D(r) dl (4.4)

where Qtot and D(r) are the total charge per unit length and the electric flux
density, respectively. In (4.4), the closed line integration is performed on the curve
Γ which is defined by the transverse boundaries of the strip, and n̂ is the normal
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vector that is directed outward from the strip. Note that Zs of an individual strip
depends on the charge distribution in the surrounding structure, and thereby on
the excitation of the other strips. Zs is obtained numerically in the electrostatic
solver in COMSOL Multiphysics for the different modes, and can be seen in Table
2. As seen, there is a slight mismatch in sum mode. COMSOL is a software which
can perform numerical simulations within several different disciplines in electrical,
mechanical, fluid, and chemical physics [2]. It is also able to solve coupled physics
phenomena of different disciplines simultaneously, i.e., pure multiphysics. Besides
from using the electrostatic solver in COMSOL, the Frequency Domain solver is
used to obtain the S-parameters and the eigenmodes in this report.

Figure 5 shows S11 and S21 for one strip obtained for the diagonal mode of
operation in COMSOL. Even though the strips and the coaxial feedthroughs have
impedances close to 50 Ω, there will still be a mismatch in the region where the
feedthroughs are welded to the strip. This mismatch becomes more distinctive at
higher frequencies as seen from Figure 5. One way to improve the matching is to
taper the strips to make the transit region more smooth, but since the main purpose
of the stripline is beam excitation and monitoring at frequencies below 1 GHz, this
was not implemented. A tapered structure would also complicate the manufacturing
process.

4.2 Field Analysis

Solving E(r) in Helmholtz equation for the propagating TEM modes is equivalent to
solving E⊥(ρ, φ) in a two dimensional electrostatic problem. One can therefore ana-
lytically obtain the electric scalar potential, Φ(ρ, φ), of the (first) propagating TEM
modes by solving Laplace equation over a cross section of the stripline. E⊥(ρ, φ)
is then obtained as −∇Φ(ρ, φ). The analysis is here limited to the region where
0 ≤ ρ ≤ a, and requires that the stripline is evaluated far away from its end gaps.
Between the excited strips and the ground at ρ = a the electric field is approximated
by E(a, φ) = ± V0

Rφg
φ̂. By applying the conditions of full azimuthal periodicity, finite

Φ(ρ = 0), and the potential at ρ = a described above and in Table 2, one obtains
Φ(ρ, φ) as the Fourier series in (4.5). The complete expansion of Φ(ρ, φ) is presented
in Appendix A.

Φ(ρ, φ) =
4∑

m=1

Um
π

(
φs+φg

2
+ 4

φg

∞∑
n=1

(
ρ
a

)n sin
(
n
φg
2

)
sin

(
n
φs+φg

2

)
n2 cos

(
n
(
φ− mπ

2
+ π

4

)))
(4.5)

Figure 6 shows Φ(ρ, φ) in the diagonal, vertical, and sum mode obtained in
(4.5) (upper figure) together with electrostatic simulations of the same modes in
COMSOL (lower figure).

For the modes of operation, it is convenient to define a transverse geometry factor
g⊥ = a|E(ρ = 0)|/V0 in order to compare different designs. Thus, a higher value of
g⊥ means a stronger electric field at the origin for a given radius a. The longitudinal
geometry factor in sum mode is defined as g|| = Φ(ρ = 0)/V0. Here, the definitions
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Figure 5: The S-parameters for one strip obtained for the diagonal mode of operation
in COMSOL. Note that the vertical scale is linear.

Figure 6: Φ(ρ, φ) obtained analytically in (4.5) (upper) and numerically in COMSOL
(lower). Here, (from the left) the diagonal, vertical, and sum mode are shown.

of g⊥ and g|| described in [6] are used. g for diagonal (d), horizontal/vertical (h/v),
and sum mode (Σ) can be derived from (4.5), and are listed in (4.6)-(4.8). For this
geometry, g⊥,d = 0.57 and g||,Σ = 0.59. The geometry factors obtained in COMSOL
are identical to those obtained analytically when using an accuracy of two decimals.
As seen, gΣ and g⊥ are obtained from the monopole term of Φ(ρ, φ) and from the
dipole term of E⊥(ρ, φ), respectively. Since the beam propagates very close to the
z-axis, it is often sufficient to describe the fields in the vicinity of the beam without
including any higher order multipole terms in the analysis.

g⊥,d =
8

φgπ
sin

(
φg
2

)
sin

(
φs + φg

2

)
(4.6)

g⊥,h/v =
√

2g⊥,d (4.7)
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g||,Σ = 2
φs + φg
π

(4.8)

The electric and magnetic fields have the same z dependence as the voltages and
currents in (4.2) and (4.3). E(ρ = 0, φ, z) and H(ρ = 0, φ, z) when the strips are
diagonally excited can therefore be written as in (4.9) and (4.10), where the latter
is obtained by using Ampere’s law .

E(ρ = 0, φ, z) =
V0g⊥,d
a

ejkzz
(
− x̂+ ŷ√

2

)
(4.9)

H(ρ = 0, φ, z) =
j

µ0ω
∇×E(ρ = 0, φ, z) =

V0g⊥,d
µ0c0a

ejkzz
(
−x̂+ ŷ√

2

)
(4.10)

For the horizontal (vertical) mode of operation, E(ρ = 0, φ, z) andH(ρ = 0, φ, z)
have the normal vectors −x̂ (ŷ) and −ŷ (−x̂), respectively. The magnitude of the
fields are also a factor

√
2 stronger compared to the diagonal mode of operation due

to (4.7).

5 Kick Efficiency
Here, the electromagnetic fields obtained in the previous chapter are used to study
how the excited strips affect the beam motion. It will be shown that the deflection
of the beam is a function of both the power and frequency of the exciting signals.

5.1 Shunt Impedance and Kick Angle

If the stripline is operating in diagonal mode and the coaxial ports of two opposite
strips are excited with voltage signals ±V0e

jωt, the voltage along each strip becomes
U(z, t) = ±V0e

j(kzz+ωt+ϕ), where ϕ is an arbitrary phase. An ultrarelativistic elec-
tron with the velocity v ≈ c0ẑ that propagates inside the excited stripline will obtain
a transverse voltage gain V⊥ that is given by (5.1). Here, E(z) and B(z) are the
on-axis EM fields obtained in (4.9) - (4.10), and k = ω/|v| ≈ kz is the wavenumber
of the beam. Note that V⊥ is not a real voltages strictly speaking, but the transverse
work per unit charge since some of the force is a result of the magnetic field. In
(5.1), one makes the approximation that E(z) and B(z) only exist in the spatial
range of the strips, −L/2 ≤ z ≤ L/2, and have constant magnitudes (but different
phases) on that interval. This is not true since there are fringing fields at the ends of
the strips, but it gives a good approximation of V⊥. A straight-line approximation
is also made. Thus, the deflection provided by the stripline is small. Also note
that since v = c0ẑ, E(z) = v × B(z). On the other hand, if v = −c0ẑ, then
E(z) = −v ×B(z), and the particle would obtain no voltage gain. This explains



15

the directional properties of a stripline.

V⊥ =

(∫ L/2

−L/2
(E(z) + v ×B(z))ej(kz+ϕ) dz

)
⊥

≈ 2V0g⊥,dc0

a
ejϕ
(

sin(ωL/c0)

ω

)
(5.1)

A figure of merit of a stripline is the transverse shunt impedance R⊥ which
measures its effectiveness to produce a transverse voltage gain for a given input
power, Prms . When operating in diagonal mode, two strips are excited and the
total rms power becomes Prms = 2 · V 2

0 /2Zs. R⊥ is then given by

R⊥ =
V⊥V⊥

∗

2Prms
≈ 2Zs

(g⊥,dc0

a

)2
(

sin(ωL/c0)

ω

)2

(5.2)

where V⊥∗ is the complex conjugate of V⊥. Note that V⊥ depends on the phase
ϕ of the applied RF signal (or equivalent, of the time of arrival of the particle).
The product V⊥V⊥∗ is real and independent of ϕ. In vertical and horizontal mode
of operation, the magnitude of V⊥ becomes a factor

√
2 greater compared to the

diagonal excitation. However, R⊥ is unchanged since horizontal and vertical mode
of operation have four excited strips instead of two, and the required power for the
excitation in Table 2 is therefore twice as high. In Figure 7 values obtained from
(5.2) are compared to values obtained from COMSOL. At the excitation frequency
of 500 MHz, the analytical and numerical values of R⊥ are 1509 Ω and 1457 Ω,
respectively. Note that dielectric and ohmic losses in the complete system are not
included in the analysis above. As seen from (5.2), R⊥ is maximized if the length of
the strips is L = λ/4. At our BPM monitoring frequency f = 500 MHz, L = 15 cm
is optimum.

Instead of terminating the upstream ports, one can recirculate the RF signal
through several strips, as in [17]. That decreases the required power since it increases
R⊥. However, this solution is not chosen since it would also make the feeding network
(see Section 9.1) more complicated due to the requirements of being able to kick the
beam in several transverse planes.

When an electron passes the excited stripline, the transverse voltage gain results
in a deflection with a kick angle Θ. For small deflections (Θ � 1), the maximum
kick angle is given by

Θmax ≈
|eV⊥|
W

=
|e|
√

2R⊥Prms

W
(5.3)

where W and e are the energy and charge of the electron, respectively.

6 Pick-up Characteristics
As mention above, the stripline can be used for monitoring several properties of
the beam, and the pick-up characteristics are presented in this section. Both the
transient response in TD and the response in FD are studied.
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Figure 7: R⊥ obtained from (5.2), and numerically in COMSOL.

6.1 Longitudinal

An electron bunch that propagates inside a vacuum chamber induces image cur-
rents on the chamber walls. Due to relativistic effects the EM field of an ultra-
relativistic particle is confined to a sector in the transverse direction with angle
γ−1 =

√
1− (v/c0)2. The longitudinal distribution of the image currents is there-

fore approximately the same as for the bunch itself. When a bunch with the current
distribution ib(t) reaches the upstream gap of the stripline at t = 0, current pulses
are induced on the strips. The intercepted mirror current at each strip is ib(t)g||,Σ/4,
and it sees an impedance of Zs/2 since the strip consists of two parallel port termi-
nations of Zs. Hence, the current pulse splits into two equal parts, where the first
part propagates to the upstream port, and the second part propagates along the
strip where it reaches the downstream port at t = L/c0. When the bunch reaches
the downstream end of the stripline at t = L/c0, a negative current pulse is induced.
This pulse also splits into two equal parts that propagate in two different directions
toward the two terminations. However, the new pulse that propagates to the down-
stream termination cancels the pulse that was induced at the upstream port at t = 0
since they have different polarities. The second half of the new pulse reaches the
upstream port at t = 2L/c0. Hence, an ideal stripline BPM is a directional device,
where a bi-polar pulse whose two lobes are separated by t = 2L/c0 are induced at
the upstream port, and where no signal is induced at the downstream port. Figure 8
shows a circuit model of a strip. The induced voltage, uport(t), at a single upstream
port is given by (6.1). Note that this circuit model is an approximation and requires
that the strips are perfectly matched to the external loads. We will therefore from
here on assume that Zs = ZL in the analysis. This approximation is quite accurate
in the lower frequency region. For higher frequencies the characteristic impedance
Zs of the strips may deviate from ZL, depending on the how the strips are excited.
The circuit model approximation is also not valid when reaching the first trapped
eigenmodes of the structure itself.
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In storage rings, it is often more convenient to express the pick-up characteristics
of a device in terms of a transfer impedance in FD. Thus, one set the beam current
to ib(t) = Ibe

jωt and defines the longitudinal transfer impedance Zp(ω) as the ratio
of the induced voltage to the beam current. (6.2) shows Zp(ω) where the induced
voltage is obtained from the combined signal of the four upstream ports (note that
Zp(ω) can also be defined from the voltage at a single upstream port and is then a
factor 2 lower).

Figure 8: Circuit model of a strip.

uport(t) =
1

2
Zs
g||,Σ

4
(ib(t)− ib(t− 2L/c0)) (6.1)

Zp(ω) =
Zsg||,Σ

2
ej(π/2−ωL/c0) sin

(
ωL

c0

)
(6.2)

6.2 Transverse

The induced voltage at an upstream port due to a beam with a offset relative to the
z-axis can also be calculated. If the offset is diagonal (xoffset = yoffset), an additional
dipole field is induced in the structure as in Figure 6 (left). Of course, other higher
order fields are also induced, but they can be neglected in a first order approximation
for small beam offsets. The induced voltage at the upstream ports of two opposite
strips that are located in the same plane as the beam displacement can now be
written as

uport(t) =
1

2
Zs

(g||,Σ
4
± g⊥,d

2a
∆r
)

(ib(t)− ib(t− 2L/c0)) (6.3)

where ∆r is the magnitude of the diagonal beam displacement. Note that for a small
offset, the induced voltage in the two strips that are orthogonal to the beam dis-
placement are still approximately given by (6.1). The transverse transfer impedance
Z ′p(ω) can now be written as in (6.4) and defines the sensitivity of the BPM to
transverse beam displacements. In this definition, the voltage in the numerator is
obtained as the signal difference between the two ports [6]. The unit of Z ′p(ω) is
Ω/m.

Z ′p(ω) =
Zsg⊥,d

a
√

2
ej(π/2−ωL/c0) sin

(
ωL

c0

)
(6.4)
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6.3 Simulations

Figure 9: The stripline boundaries in the GdfidL environment when 1/4 of the model
is simulated.
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Figure 10: The induced voltage u(t) at an upstream and downstream port obtained
in GdfidL. The current source is a Gaussian charge distribution of length σz = 20
mm.

The port response from the electron beam is simulated in GdfidL which is
an FDTD based 3D electromagnetic code written in FORTRAN, and developed
by Warner Bruns [4]. In these simulations, the source of excitation is an ultra-
relativistic Gaussian charge distribution that is propagating through the beam pipe,
with and without a transverse displacement. The same simulations are also used to
obtain the wake function and the beam impedance in Section 7. GdfidL is also ca-
pable of simulating the S-parameters of the ports in TD, and the eigenmodes in FD.
However, in this report, COMSOL is used for those simulations. Figure 9 shows the
stripline boundaries in the GdfidL environment when 1/4 of the model is simulated.
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Figure 11: (a) Zp(ω) obtained in GdfidL and in (6.2), (b) Z ′p(ω) obtained in GdfidL
and in (6.4). Note the impact of the trapped eigenmodes in Z ′p(ω).

Note that only 1/4 of the volume has to be simulated when obtaining Zp(ω) since
the xz and yz-planes are planes of symmetry where n̂×H = 0.

To illustrate the directional properties of the stripline, the induced voltage in
TD at the upstream and downstream ports are plotted in Figure 10. Here, the
source of excitation is a Gaussian bunch with σz = 20 mm, and a bi-polar pulse
can be seen at the upstream port, while the signal is (almost) cancelled out at the
downstream port. As seen, there are some reflected signals at the upstream port
around 1 ns after the second lobe arrives. These reflections are caused by mismatch
in the regions between the strip and its feedthroughs.

The absolute values of the simulated transfer impedances |Zp(ω)| and |Z ′p(ω)|
defined in (6.2) and (6.4) are shown in Figure 11 together with the analytical results.
At 500 MHz, which is the operating frequency of the BPM electronics, |Zp| = 15.0 Ω
and |Z ′p| = 1458 Ωm−1. As expected, the simulated transfer impedances in Figure
11 agree better with the analytical approximations at lower frequencies. The spikes
seen above 4 GHz in |Z ′p(ω)| are caused by trapped transverse eigenmodes. These
transverse eigenmodes are investigated further in Section 7.4.2.

7 Collective Effects
In this section, it is studied how the induced mirror currents on the stripline chamber
walls act back on the beam itself. Such collective effects are very important to study
in an accelerator since they might result in various instabilities.

7.1 Wake Fields

In this section, the particles are assumed to be ultra-relativistic. Such a particle
induces wake fields in the vacuum structure. Due to causality these fields only exist
in a wake behind the exciting particle. It is important to consider the wake fields
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in the design of a storage ring. The wake fields can give rise to beam instabilities
and unacceptable heating of sensitive components. It might make the storage ring
operational only at beam currents levels below the design specifications.

It is often more convenient to study the integrated effect of the wake fields in
a structure than the excited EM fields at each point in time and space inside the
boundaries of the structure. The integrated effect of the wake field is given by the
wake function. Consider two test charges q1 and q travelling parallel to the axis of
a vacuum chamber. Both charges have velocity v, their transverse displacements
from the axis are r1 and r. Charge q1 is the leading charge and is a time τ ahead
of q2. The longitudinal wake function G||(r, r1, τ) is defined as the energy lost by
the trailing charge per unit of both charges q1 and q as a function of r, r1, and τ .
Thus, a positive value of G|| means a decelerating integrated electric field, and the
energy gain of the charge is therefore ∆W (τ) = −qq1G||(τ). Here, it is assumed
that only the kinetic energy of the charges, and not their trajectories and velocities
are altered due to the wake fields excited by the test charge. The wake function has
the units V/C.

G||(r, r1, τ) = − 1

q1

∞∫
−∞

Ez(r, r1, z,
z

v
+ τ) dz (7.1)

Figure 12: The test and trailing charges with their corresponding coordinates.

Consequently, one can define the transverse wake function G⊥(r, τ) as in (7.2)
which is the integrated transverse force along a straight path at the time τ after
the test charge divided by q1. From here on, it is assumed that the test and the
trailing charge have the same offset r1 = r. This is often a valid approximation in
most storage rings since the transverse envelope of the beam is much smaller than
the cross section of the vacuum chambers.

G⊥(r, τ) = − 1

q1

∞∫
−∞

(E⊥(r, z, τ) + v ×B⊥(r, z, τ)) dz (7.2)
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One can find different definitions of the transverse wake function in the literature,
we prefer (7.2) since it is valid for all structures, with and without any symmetry
planes. However, many vacuum structures have symmetry in the xz and in the yz
planes. For such structures, G⊥(r, τ) is zero at the origin, and the most dominant
deflecting force is the dipole component of G⊥(r, τ) which is proportional to the
beam displacement. It is therefore common to define the dipole transverse wake
function G′⊥(τ) as (7.2) divided by the displacement, thus G′⊥(τ) = G⊥(r, τ)/r.
The unit of G′⊥(τ) is [V/Cm].

The wake functions defined in (7.1) and (7.2) are Green functions where the fields
are excited by a single point charge. One can also define the wake function, W (τ),
excited by the normalized longitudinal current distribution λ(t) of the bunch, where∫
λ(t) dt = 1. The characteristics of λ(t) in the storage rings are further discussed in

Section 7.2. W (τ) is then defined as the convolution of G(τ) and λ(τ), and is given
by (7.3) and (7.4). Sometimes in the literature, W||(τ) and W ′

⊥(τ) are referred to
as the longitudinal and the (dipole) transverse wake potential, respectively. Note
that W (τ)→ G(τ) when λ(t)→ δ(t), where δ(t) is the Dirac delta distribution.

W||(τ) =

∞∫
0

G||(τ
′)λ(τ − τ ′) dτ ′ (7.3)

W ′
⊥(τ) =

∞∫
0

G′⊥(τ ′)λ(τ − τ ′) dτ ′ (7.4)

One can obtain the wake function W (τ) for any arbitrary bunch distribution
λ(t) once G(τ) is known. However, most vacuum structures are quite complex, so
the wake function has to be obtained numerically. Since the bunch length of the
exciting bunch must be a multiple of the mesh size, it is not possible to use δ(t) as the
source of excitation. The wake function is therefore often obtained in a simulation
code for a very short charge distribution, and G(τ) is then approximated asW (τ).
Of course, this limits the accuracy, especially when studying G(τ) close to the the
origin (τ ≈ 0+) [24].

Just like the pick-up characteristics, it is sometimes more convenient to express
the wake properties in the FD since it relates the induced beam voltage to the
spectrum of the beam current. The beam impedance, Z(ω), is defined as the Fourier
transform of the wake function, and its longitudinal and the transverse (dipole)
components are given by (7.5) and (7.6), respectively. Unlike the wake function,
which is real, the beam impedance is a complex function, where Re(Z||(ω)) and
Im(Z ′⊥(ω)) are even, and Im(Z||(ω)) and Re(Z ′⊥(ω)) are odd functions of ω. The
resistive part of the beam impedance relates to the beam voltage that is in phase with
the oscillations of the source of excitation, I(ω), while the reactive part is related
to the voltage that is in quadrature with I(ω). This is the reason for including the
imaginary unit j in (7.6). The numerical errors when approximating G(τ) asW (τ)
in a simulation code does also reduce the accuracy of Z(ω), which becomes more
profound at higher frequencies. Z||(ω) and Z ′⊥(ω) have the units [Ω] and [Ω/m],
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respectively.

Z||(ω) =

∞∫
0

G||(τ)e−jωτ dτ (7.5)

Z ′⊥(ω) = j

∞∫
0

G′⊥(τ)e−jωτ dτ (7.6)

The beam impedance that is analysed below is the geometrical impedance which
only depends on the geometry of structures. Hence, material parameters such as
finite conductivity of different materials are not included the analysis. There are
definitions of other beam related impedances such as the resistive wall impedance,
which describes the decelerating field seen by the beam due to the finite conductivity
of the structure walls, the space charge impedance, which describes the impact of
the deflecting forces between the charges in the bunches, and the synchrotron radi-
ation impedance, which describes the losses when the bunches move along a curved
trajectory. However, these impedances are not treated in this report.

As mentioned, the energy loss of a single trailing charge q is ∆W (τ) = −qq1G||(τ).
The energy lost for a charge distribution with the total charge q can be written as
∆W = −q2κ|| where κ|| is called the (longitudinal) loss factor and is defined in (7.7).
As seen κ|| depends on the bunch shape and can be defined for a single vacuum com-
ponent or for the whole accelerator. κ|| has the unit [V/C]. The power lost in the
structure, Ploss, is given by (7.8), where I0 is the total stored current, and fRF is the
RF frequency of the accelerating cavities. Note that (7.8) requires that the buckets
in the storage ring are uniformly filled, otherwise the expression has to modified.
Other "exotic" filling patterns have been discussed for the MAX IV rings, but it is
assumed in the calculation below that the buckets are uniformly filled. This power
loss has to be compensated by the voltage in the accelerating cavities. However,
the majority of the power loss in a storage ring is due to synchrotron radiation in
the optics and in the insertion devices (undulators/wigglers). Since the bunch loses
energy, some of its energy is transformed to currents and lost in the resistive walls of
the structure, and some energy propagates as EM waves to the surrounding struc-
tures if the frequency is above or close to the cut-off frequency of the beam pipe.
However, it will be shown that in the stripline, almost all of the lost power leaves
the structure via the coaxial feedthroughs and dissipates in the 50 Ω terminations.

κ|| =
1

π

∞∫
0

Re(Z||(ω))λ(ω)λ∗(ω) dω (7.7)

Ploss =
I2

0

fRF
κ|| (7.8)

In a similar way, one can define the (dipole) kick factor (also called the transverse
loss factor in the literature), κ′⊥, as the transverse voltage gain over the total charge
in the bunch and the beam displacement which is given by (7.9). Hence, κ′⊥ has the
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units [V/Cm]. The bunch then obtains a transverse kick Θ per displacement each
time it passes the component. Θ is given by (7.10). Θ has the unit [rad/m].

κ′⊥ =
1

π

∞∫
0

Im(Z ′⊥(ω))λ∗(ω) dωλ(ω) (7.9)

Θ =
eI0

fRFW
|κ′⊥| (7.10)

The wakefields are simulated in TD for different beam offsets, and the trapped
eigenmodes are obtained in FD simulations. The TD simulations are performed
in GdfidL, where the wakelength is set to, smax = 20 m, the length of the charge
distribution to σz = 4 mm, and the mesh size to 0.2 mm. As mentioned above, a
shorter bunch length results in a wake function that is closer to the ideal Green’s
function, but it increases the computation time and the memory usage. A longer
wakelength improves the accuracy of the beam impedance, since it increases the
integration span in (7.5) and (7.6). This is most notable in larger structures with
many trapped eigenmodes where the excited electromagnetic energy in the structure
has a slower decay rate. Note that in [15], the TD simulations were performed in
CST Particle Studio. The eigenmode simulations in FD are performed in COMSOL
with proper material parameters. Here, the ports can not be terminated with 50
Ω as in the TD simulations, so they must be shorted. Therefore, eigenmodes that
couple to the coaxial structure at the ports or to the ends of the beam pipe are
unphysical and are therefore discarded.

7.2 Bunch Structure

The MAX IV and SOLARIS storage rings have third harmonic (Landau) cavities
installed [1]. Unlike the 100 MHz main accelerating cavities, the Landau cavities
operate at 300 MHz and are passive. Thus, their accelerating fields are induced by
the electron beam itself by wakefields. The accelerating voltage for one revolution
in the rings is given by the superposition of the fields in the main and the Landau
cavities, and the result is that the accelerating voltage gradient seen by the beam
is flattened out when the fields from the Landau cavities are added. This causes a
longitudinal bunch lengthening, which decreases the charge density in the bunches.
The current distribution, i(s), within each bunch in a storage ring with third order
harmonic cavities has a quartic distribution when operating with a flat potential,
and is given by

i(s) =
4π
√

2π√
2Γ2(1/4)

RI0

hσz
e−

2π2

Γ(1/4)(
s
σz

)
4

(7.11)

where Γ is the gamma function, and s = τ/c0 is the distance behind the bunch center
[8]. R, I0, h, and σz are the radius of the ring, the average ring current, the harmonic
number, and the rms bunch length after the bunch lengthening, respectively (see
Table 1). Without the Landau cavities installed, the bunch shape would be close to
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Gaussian with σz = 12 mm instead of quartic with σz = 56 mm. Figure 13 shows
the current distribution λ in TD and in FD, with and without the Landau cavities
in operation. The main advantages of the bunch lengthening are; reduced Touschek
scattering, reduced intrabeam scattering, increased longitudinal tune spread, and
that it decouples the bunch spectrum from the high-frequency part of the impedance
spectrum of the machine.
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Figure 13: The normalized current distribution λ in TD (a) and in FD (b), with
and without the Landau cavities in operation.

As mentioned in Section 2.1.1, the beam performs transverse betatron oscilla-
tions around a closed ideal orbit, which is described by (2.2). When two electrons
collide, their transverse momenta can be transformed into longitudinal momenta.
If the electrons after the collision have longitudinal momenta that are outside the
window of the longitudinal momentum acceptance in the RF-bucket, they are lost.
This is called the Touschek scattering and is the limiting factor of the stored elec-
tron beam life time in modern storage ring. While Touschek scattering describes a
process of collisions that result in an immediate beam loss, there are other collisions
where the exchange of momenta is too small to result in beam loss. This is called
intrabeam scattering (IBS). Longitudinal collisions can also result in a transforma-
tion of longitudinal momenta into transverse momenta. The result is IBS since the
ratio of the longitudinal momenta of the synchrotron motion to the transverse mo-
mentum acceptance is too small for beam loss. IBS is a rather slow process and
results in higher equilibrium emittance [22]. The increase in emittance due to IBS
can be significant for ultra-low emittance storage rings such as the MAX IV 3 GeV
ring [20]. By lengthening the bunches, their charge density decrease, and thereby
the effects of Touschek and intrabeam scattering.

The spread of the synchrotron tune among the electrons within each bunch in-
creases when the bunches are elongated. This tune spread increases with the non-
linearity of the total RF voltage seen by the bunches. The tune spread has a damping
effect on coupled-bunch mode instabilities that are explained more in detail in [16].
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As seen in Figure 13 (b), the quartic distribution has a more narrow frequency spec-
trum compared to the Gaussian one. This shows another advantage of implementing
Landau cavities since according to (7.7)-(7.10), only the low frequency part of the
impedance spectrum gives a significant contribution to the heat load and kick factor
introduced by the vacuum chambers. Hence, the high-frequency part of the machine
impedance spectrum, Z(ω), has little effect on the beam.

7.3 Longitudinal Impedance

7.3.1 Time Domain

As explained in Section 6.1, only a fraction g||,Σ/4 of the mirror current sees the
(geometrical) impedance of each strip if the bunch is propagating on-axis. The
result is an induced voltage Uport(ω) at the upstream gap of the strip which is given
by (6.1). This voltage acts back on the beam which sees a potential of Ub(ω) =
(g||,Σ/4)Uport(ω). The total longitudinal beam impedance Z||(ω) for the four strips
is therefore 4Ub(ω)/Ib(ω) and can be written as

Z||(ω) =
Zsg

2
||,Σ

8

(
2 sin2

(
ωL

c0

)
+ j sin

(
2ωL

c0

))
(7.12)
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Figure 14: Re(Z||) obtained in GdfidL.

Figure 14 and 15 show Re(Z||) and Im(Z||) up to 30 GHz obtained in GdfidL,
and Figure 16 shows the impedance obtained in (7.12) together with the simulation
results up to 4 GHz. Here, we also see that the theoretical circuit model has a
better agreement with the simulations at low frequencies. When examining Figure
14 and 15, one can distinguish three different regions in the spectrum. In the first
region, where f . 8 GHz, the impedance behaves as in the circuit model with
a more significant mismatch at higher frequencies. In the second region, where 8
GHz . f . 18 GHz, the resonance peaks of trapped and semi propagating modes
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Figure 15: Im(Z||) obtained in GdfidL.

dominate the spectrum. The spectrum in the third region, where f & 18 GHz, is
called the broad-band impedance region. In this region, the higher order resonance
modes of the structure get denser which results in a smeared out spectrum. Since all
these overlapping modes are well above the cut-off frequency of the beam pipe, many
of them radiate their power into the surrounding structures which is the explanation
to why no significant resonance peaks are found in this region.

By performing an inverted Fourier transform on (7.12), the longitudinal wake
function G||(τ) can be written as in (7.13), where δ(τ) is the Dirac delta distribution.
Figure 17 shows G||(s) obtained in (7.13) and W||(s) obtained in GdfidL where the
4 mm Gaussian bunch is the source of excitation. Here, the mismatch at higher
frequencies is quite notable in form of oscillations, and shows the limitations of
the simplified circuit model. One can also see that the second pulse appears at a
distance slightly longer than s = 2L. This is because L is defined as the distance
between the origins of the two coaxial inner conductors that are attached to each
strip. Therefore, the "effective length" of each strip is actually somewhat longer.
The phenomenon can also be seen in Figure 11 and 16 where the analytical transfer
and beam impedances have longer periods in the spectrum compared to when they
are obtained in simulations.

G||(τ) =
ZLg

2
||,Σ

8
(δ(τ)− δ(τ − 2L/c0)) (7.13)

The loss factors in (7.7) and dissipated power in (7.8) for the 12 mm Gaussian
and for the 56 mm quartic distributions are listed in Table 3. As seen, the bunch
lengthening that is enabled by the Landau cavities, decreases the power loss by
more than a factor 5. Note that when using Re(Z||) from (7.12) to calculate the
dissipated power we get Ploss = 8.42 W for the 56 mm quartic distribution. When
comparing to the other ring components, the dissipated power is quite high for a
non-cavity shaped structure. However, most of the power will dissipate in the 50 Ω
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Figure 16: Re(Z||) and Im(Z||) obtained in GdfidL and in (7.12).
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Figure 17: G||(s) obtained in (7.13) and W||(s) obtained in GdfidL. The charge
distribution, λ(s), normalized to max(W||(s)), is the source of the excitation, and
can also be seen.

terminations that are connected to the feedthroughs, and not in the structure itself.
Since the longitudinal transfer impedance Zp(ω) is known, one can obtain the power
lost in the ports Pport as

Pport =
I2

0

fbπ

∞∫
0

Z2
p(ω)

ZL
λ(ω)λ∗(ω) dω (7.14)

By using Zp(ω) obtained in GdfidL (see Section 6.1) with the quartic 56 mm
distribution, Pport = 8.14 W. Thus, the power that is lost in the structure or prop-
agating as EM waves to the surrounding structures is approximately Ploss − Pport =
10 mW, assuming that the ports are perfectly matched to 50 Ω. Note that in the
ideal circuit model presented above, Ploss = Pport.
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Guassian σz = 12 mm Quartic σz = 56 mm
κ|| [mV/pC] Ploss [W] κ|| [mV/pC] Ploss [W]
18.33 45.86 3.26 8.15

Table 3: The loss factor and dissipated power obtained in GdfidL.

7.3.2 Frequency Domain

As seen in Figure 14, there exist several trapped eigenmodes in the structure. If
one uses the parallel RLC-circuit model of the the cavity, one can obtain the lon-
gitudinal beam impedance Z||,n of the n:th eigenmode as in (7.15) [24], where Q0,n

is the unloaded quality factor of that mode. Rs,n is the longitudinal modal shunt
impedance and is defined as (7.16), where Vn is the voltage obtained by integrating
the longitudinal electric field seen by the beam, Vn =

∫
Ez(z)ejkz dz, and V ∗n its

complex conjugate. Pwall is the power lost in the cavity walls of the corresponding
electric field distribution. Since there exist an infinite number of eigenmodes in a
cavity, (7.15) is of course only valid in a region close to the particular mode, and
requires that the mode is sufficiently separated in frequency from the neighbouring
modes. The modal loss factor κ||,n can then be obtained by using (7.7) and (7.15),
and if Q0,n is large, it can be approximated as (7.17). The total loss factor is then
obtained as κ|| = Σnκ||,n. In the stripline where almost all of the power dissipates
in the port terminations, κ|| can of course not be obtained as the sum of the modal
loss factors. However, for a component with many eigenmodes that have high shunt
impedances that are located below the cut-off frequency off the beam pipe, κ|| ob-
tained in TD and FD are approximately the same. The main and Landau cavities
are good examples of such components.

Z||,n(ω) =
Rs,n

1 + jQ0,n(ω/ω0,n − ω0,n/ω)
(7.15)

Rs,n =
VnV

∗
n

2Pwall,n
(7.16)

κ||,n =
ω0,n

2

(
Rs

Q0

)
n

λ(ω0,n)λ∗(ω0,n) (7.17)

Even though Q0,n and Rs,n depend on the conductivity of the cavity walls (both
terms are inversely proportional to Pwall,n), the factor (Rs/Q)n does not. Thus,
(7.17) is independent of the material properties, and we are therefore still dealing
with the geometrical impedance. In fact, (Rs/Q)n depends only on the shape of the
cavity, and is therefore often called the geometrical factor of the cavity.

In the eigenmode simulations, the first trapped longitudinal mode is the TM010-
like mode that is found at 8.069 GHz. This mode can also be seen in the TD
simulations as the sharp peak at the same frequency in Figure 14. Figure 18 shows
|Ez(r)| of the mode in the COMSOL environment, and |Ez(z)| in the pipe center of
the corresponding mode. As seen, there are two lobes in |Ez| caused by the potential
difference between the end gaps of the strips and the surrounding structure. Only
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Figure 18: (a) |Ez(r)| of the first longitudinal eigenmode in the COMSOL environ-
ment, and (b) |Ez(x = 0, y = 0, z)| of the same mode.

f0 [GHz] Q0 Rs [Ω] κ|| [mV/pC] Ploss [W]
FD 8.069 939 269 3.84 · 10−9 9.61 · 10−9

TD 8.071 - - 4.05 · 10−9 10.13 · 10−9

Table 4: Results obtained for the TM010-like mode in FD and in TD for the 56 mm
quartic distribution.

1/4 of the volume is simulated since the boundary conditions of n×H = 0 is true for
the mode in the xz and yz planes. Note that it would also be possible to implement
a boundary condition of n × E = 0 in the xy plane (at z = 0) for this mode and
thereby only simulate 1/8 of the volume. Table 4 shows the properties of the mode
obtained in FD together with a comparison of the loss factor and dissipated power
obtained in TD. In the latter case, κ||,n is obtained by integrating Re(Z||(ω))in the
spectrum close to the resonance frequency f0. As seen, the power lost by the first
longitudinal mode is insignificant compared to the power lost in the feedthroughs.
The longitudinal mode analysis does not extend further up in frequency since there
are many higher-order modes that are semi-propagating and therefore difficult to
isolate. Besides, since the other eigenmodes are located even higher up in frequency
their contribution to the total power loss is negligible due to the narrow frequency
spectrum of λ(ω).
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Figure 19: Re(Z ′⊥) obtained in GdfidL.

7.4 Transverse Impedance

7.4.1 Time Domain

The transverse dipole impedance, Z ′⊥(ω) is obtained analytically in [14]1. For a
diagonal displacement, Z ′⊥(ω) becomes

Z ′⊥(ω) =
c0Zsg

2
⊥,d

4a2

1

ω

(
2 sin2

(
ωL

c0

)
+ j sin

(
2ωL

c0

))
ê⊥ (7.18)

where ê⊥ is the diagonal unit vector.
Figure 19 and 20 show Re(Z⊥) and Im(Z⊥) obtained in GdfidL, and Figure 21

shows the analytical impedance obtained in (7.18) together with the simulated one
up to 5 GHz. Figure 21 is yet another example on how the accuracy of the circuit
model decreases at higher frequencies.
Z ′⊥(ω) in (7.18) is obtained for a displacement in the diagonal plane. However,

in a storage ring, it is often more convenient to express the transverse impedance
as Z ′x and Z ′y. If one consider a vertical displacement, ê⊥ = ŷ, the induced vertical
electric potential is similar to the one in Figure 6 (middle). However, if one compare
with the potential induced due to a diagonal displacement in Figure 6 (left), the
induced potential at the two upper strips in Figure 6 (middle) is only a factor 1/

√
2

compared to the upper right strip in Figure 6 (left) assuming that the magnitude
of the horizontal and diagonal displacements are the same. Since the vertical and
diagonal geometry factors, g⊥,v and g⊥,d, in (4.6)-(4.7) are defined when the strips
are held at positive and negative unit potentials, the magnitude of the deflecting
electric field in the origin, |E⊥|, is identical for a vertical and for diagonal beam
displacement because (1/

√
2)g⊥,v = g⊥,d. Hence, the transverse impedance |Z ′⊥(ω)|

1In [14], the transverse geometry factor is approximated as g⊥,d = (4/π) sin(φs/2).
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Figure 20: Im(Z ′⊥) obtained in GdfidL.

Guassian σz = 12 mm Quartic σz = 56 mm
κ⊥ [mV/pCm] Θ [µrad/m] κ⊥ [mV/pCm] θ [µrad/m]

(1.5 GeV / 3 GeV) (1.5 GeV / 3 GeV)
4542 15.15 / 7.575 3288 10.97 / 5.483

Table 5: Kick factor κ⊥ and kick angles Θ for the 12 mm Gaussian and 56 mm Quar-
tic distributions obtained from the transverse simulations. Θ is listed for energies
of 3 GeV and 1.5 GeV.

is identical for a vertical (or horizontal) and a diagonal displacement. Simulations
confirm this.

The transverse dipole wake function G′⊥(τ) is given by (7.19) and can be obtained
by performing an inverted Fourier transform on (7.18) and by using the integral
representation of the Heaviside step function θ(τ).

G′⊥(τ) = −
c0Zsg

2
⊥,d

4a2

(
θ(τ)− θ

(
τ − 2L

c0

))
(7.19)

Figure 22 shows G′⊥(s) obtained analytically in (7.19), and W ′
⊥(s) obtained in

GdfidL, where the source of excitation in the latter is the 4 mm Gaussian test bunch.
Note the oscillations around s = 0.3 m in W ′

⊥(τ) due to the mismatch explained
above.

Table 5 shows the kick factors and kick angles obtained in the TD simulations.
Here, Θ is calculated for a uniform filling pattern and Itot = 0.5 A. Note that κ⊥
= 3054 mV/pCm for the 56 mm quartic distribution when using the transverse
impedance in (7.18).
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Figure 21: Re(Z ′⊥) and Im(Z ′⊥) obtained in GdfidL and in (7.18).

7.4.2 Frequency Domain

There are several trapped TE modes in the structure. These are very similar to
those found in a cavity magnetron, and for this reason we adopt the same notation
as in [5]. The TE modes have longitudinal magnetic field components in the cavity
volumes between the strips and the main chamber. The phase difference of Hz in
such a cavity to Hz in one of its neighbouring cavities determines the name of the
transverse mode. The π/2, π, and 0 modes are the fist TE modes that are found
in a 2D cross section, and these have indices m = 1, 2, 3, respectively. Figure 23
shows Hz(r) and E⊥(r) of the mentioned 2D modes in the COMSOL environment,
and Table 6 lists their resonance frequencies f⊥,m. Note that the π/2 mode is a
degenerate mode, and there are therefore two π/2 modes with the the same resonance
frequency whose transverse electric field are orthogonal to each other.

f⊥,m [GHz] Index ID
4.250 m = 1 π/2 (x2)
5.064 m = 2 π
6.479 m = 3 0

Table 6: The resonance frequencies, f⊥,m, of the first three transverse eigenmodes
found in a 2D cross section of the stripline.

Since H · n̂ = 0 at the metallic surfaces in the cavities, we can obtain an ap-
proximation of the corresponding 3D modes as

fm,n ≈

√
f 2
⊥,m +

(
nc0

2Lc

)2

, (m,n) ∈ Z+ (7.20)

where f⊥,m is the resonance frequency of the m:th transverse mode found in the
2D cross section. Table 7 lists the 3D modes obtained in COMSOL, and Figure
24 shows Hz(r) of the TE21 mode (the first π-mode). Note that π/2-modes where
n > 4 are not listed since their frequencies are above the cut-off frequency of the
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Figure 22: G′⊥(s) obtained in (7.19) and W ′
⊥(s) obtained in GdfidL. The charge

distribution, λ(s), normalized to max(W ′
⊥(s)), which is the source of excitation in

the simulation is also included.

Figure 23: (from left to right) the π/2, π, and 0 mode in a 2D cross section of the
stripline. The color scale shows Hz(r), and the red arrows show E⊥(r).

TE11 mode of the pipe. Also note that the TE11, TE12, and TE13 modes are visible
as glitches in Figure 21.

8 Stripline S-parameter Measurements
The purpose of these measurements is to study the impedance matching and to
confirm that no severe mismatches exist. The input port of a strip is matched to 50
Ω when the input port of the opposite located strip is excited with a signal that has
the same potential but is phase shifted 180◦ as described in Table 2 and Figure 6
(left). Therefore, it is relevant to produce the same distribution of signal potentials
during the measurements. This can be done with a differential-mode measurement
using a 4-port Vector Network Analyzer (VNA).

The most common way of transmitting a signal in transmission lines is by us-
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fm,n [GHz] Q0 Index ID
4.336 660 m = 1, n = 1 π/2 (x2)
4.595 612 m = 1, n = 2 π/2 (x2)
4.981 697 m = 1, n = 3 π/2 (x2)
5.136 624 m = 2, n = 1 π
5.366 612 m = 2, n = 2 π
5.473 736 m = 1, n = 4 π/2 (x2)
5.729 601 m = 2, n = 3 π
6.202 594 m = 2, n = 4 π
6.529 994 m = 3, n = 1 0
6.707 937 m = 3, n = 2 0
6.760 595 m = 2, n = 5 π
6.996 869 m = 3, n = 3 0

Table 7: fc, Q0, and indices of the trapped transverse eigenmodes up to 7 GHz
obtained in COMSOL.

ing single-ended or unbalanced transmission lines such as coaxial, microstrip, and
coplanar lines. In single-ended transmission lines, the signal is represented as the
voltage between the signal conductor and ground. The drawback is that the ground
potential might vary along the transmission line due to currents in the ground plane
that might interfere with the measured signal. These current can be caused by the
external interferences or by the signal itself, and result in potential differences be-
cause of the finite conductivity and parasitic inductances in the conductors. Besides
from interfering with the signal itself, a single-ended transmission line might also
act as an antenna and can therefore interfere other electrical system.

One way of reducing the interference caused by ground currents is to use a
balanced transmission line with two symmetrical conductors that are separated from
ground. The signal in a balanced transmission line in differential-mode is represented
as the voltage between the two conductors without using ground as a signal reference.
In theory, the potential of the surrounding ground becomes irrelevant for a balanced
transmission line. The stripline excited in diagonal mode in Figure 6 (left) is a good
example of a balanced transmission line in differential-mode.

Besides from differential-mode signals, common-mode signals where the two con-
ductors have the same potentials and phases can also propagate along a balanced
transmission line. Common-mode signals are often unwanted, but in an ideal bal-
anced transmission line, a common mode interference would not degrade the signal
quality since it is easy to distinguish it from the differential mode signal. However,
cross-mode conversion between common-mode and differential-mode signals (and
vice verse) might exist, which results in interference. This can happen if the sym-
metry of the two conductors is not perfect. Differential and common-mode are also
known as odd and even mode, respectively.

A 4-port VNA can perform mixed-mode measurements where the differential,
common, and cross-mode S-parameters of a balanced transmission line are obtained
by using modal decomposition [7]. Here, the four physical VNA ports are represented
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Figure 24: Hz(r) (color scale) of the first π-mode (m = 2, n = 1) in the COMSOL
environment.

(a) (b)

Figure 25: (a) A physical four-port DUT (Device Under Test) during mixed-mode
measurements, and (b) the port configuration during the stripline measurements.

as two logical ports which are shown in Figure 25 (a). The mixed-mode S-matrix is
defined as

S =


Sdd11 Sdd12 Sdc11 Sdc12

Sdd21 Sdd22 Sdc21 Sdc22

Scd11 Scd12 Scc11 Scc12

Scd21 Scd22 Scc21 Scc22

 (8.1)

where

• Sddij is the differential-mode reflection/transmission parameter at logical port
i when the logical port j is excited with a differential-mode signal.

• Sccij is the common-mode reflection/transmission parameter at logical port i
when the logical port j is excited with a common-mode signal.
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• Scdij is the differential-mode reflection/transmission parameter at logical port
i when the logical port j is excited with a common-mode signal.

• Sdcij is the common-mode reflection/transmission parameter at logical port i
when the logical port j is excited with a differential-mode signal.

As an example, the cross-mode parameter Scd21 is defined as bc2

ad1

∣∣
ac1=ad2=ac2=0

in
Figure 25 (a).

Figure 26: The test set-up during the mixed-mode S-paramater measurements.
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Sdd21 1st strip pair

Sdd21 2nd strip pair

Scc21 1st strip pair

Scc21 2nd strip pair

Figure 27: Sdd21 and Scc21 of the two strip pairs in the range 4 to 4.5 GHz.

It is also possible to perform balanced transmission line measurement with single-
ended VNA ports by using a balanced-unbalanced (balun) transformer network.
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However, the accuracy of such measurements are limited by the phase/amplitude
unbalance and by the bandwidth limitation of the network.

Two measurements per stripline are performed, where a single opposite located
strip pair are characterized in each measurement. In each such measurement, the
downstream stripline port of the upper strip is connected to the physical VNA port
1, while the upstream stripline port is connected to the the physical VNA port 2.
Consequently, the downstream and upstream port of the lower strip are connected
to the physical VNA ports 3 and 4, respectively. The four ports of the stripline pair
that are not measured are terminated with 50 Ω loads. The test set-up is shown in
Figure 26, and Figure 25 (b) shows a diagram of the port configuration during the
measurements. The mixed-mode S-parameters of the two strip pair in the stripline
that is located in the 3 GeV ring are shown in Figure 36-43 in Appendix B.

As expected, the matching becomes worse at higher frequencies as shown in the
differential and common-mode reflection parameters depicted in Figure 36 and 37.
This can also be seen in the differential and common-mode transmission parameters
in Figure 40 and 41. However, ceramic losses in the coaxial feedthroughs also increase
with frequency, so impedance mismatch is not the only reason why the throughput
is lower at higher frequencies. The cross-mode parameters in Figure 42 and 43
show that the phase/amplitude balance is better for the second strip pair since
Sdc21 = Sdc12 = Scd21 = Scd12 = 0 if the strips would be identical and with the same
dielectric losses in the feedthroughs.

Figure 27 shows Sdd21 and Scc21 of the two strip pairs in the range 4 to 4.5 GHz.
Note that there is a glitch found at 4.427 GHz in the otherwise quite smooth Sdd21

curve of the first strip pair. A similar glitch is found at 4.407 GHz when measuring
the second strip pair. These glitches are the resonance responses of the first trapped
π/2 mode (the TE11 mode) pair, listed in Table 7. As mentioned, the π/2 modes
are degenerate modes and exist in orthogonal pairs. However, due to mechanical
tolerances, the two-plane transverse symmetry is not perfect, which seems to have
resulted in a mode separation of 20 MHz. The mechanical tolerances might also
explain why the measured resonance frequencies differ 1.6 % and 2.1 %, respectively
from the simulated one. Also note that the response of the trapped eigenmodes can
only be seen in the Sdd21 curves, and not in the Scc21 curves. This indicates that the
eigenmodes are dipole modes since they are only excited when the two strips pairs
are fed in differential-mode. E⊥(r) in Figure 23 shows why the π/2 modes can only
be excited when the strips are fed in differential-mode.

The upper bandwidth limit of the VNA is 4.5 GHz, so it was not possible to
map any higher order eigenmodes during the measurements of the S-parameters.

9 RF Distribution
In this section, the design and measurements of the RF feeding network for the
stripline and the receiving network for the diagnostic BPM are presented. This is
for the RF networks in the MAX IV 3 GeV ring when the stripline is used for tune
measurements.
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The feeding network distributes the RF power delivered by an amplifier to the
strips. This distribution is adjusted to the plane where the excitation occurs. The
receiving network combines the signals from the four BPM buttons so that the hori-
zontal, vertical and longitudinal motions of the beam can be monitored. The control
of the feeding and receiving networks are integrated into the MAX IV control system.
Unlike the S-parameter measurements described in Section 8, the measurements of
the feeding and receiving networks are single-ended.

9.1 Feeding Network

Basically, the feeding network consists of three 180◦ 2-way splitters, eight 2-way
electromechanical switches, and four adjustable phase shifters (line stretchers). A
circuit diagram of the feeding network can be seen in Figure 28. The control signals
to the electromechanical switches are 24 V logic and are delivered by an external
PLC system. A logic diagram of the two switch control signals, Sw1-2, and how they
correspond to the three modes of operation can be seen in Table 8. The numbering
of the output ports and the modes of operation are the same as in Table 2 and
Figure 4, respectively. The logic table is selected so that all the control signals are
low when exciting the beam in the diagonal mode of operation. Thus it is possible
to excite the beam so that both the horizontal and vertical tunes can be measured
in case of a PLC system failure.

The bandwidth and maximum input power at Port 0 are 100 MHz - 500 MHz
and 200 W, respectively. These limits are set by the specifications of the splitters
[13], while the electromagnetic switches and line stretchers are more broadband and
can handle higher power levels. During the initial tests, it was discovered that the
switches could not be placed as close to each other as planned. The reason was that
they did not switch back to the "low" state after being put in the "high" state. This
is most likely because there still exists a magnetic field around the electromagnet in
the neighbouring switch due to magnetic remanence. This remaining magnetic field
prevents a neighbouring switch from being switched back to the "low" state. This
problem was eliminated by placing sheets of mu-metal (an alloy with very high per-
meability) between each neighbouring pair of switches in order to provide magnetic
shielding. The components of the feeding network are mounted in a standard 19”
rack case, see Figure 29.

The amplifier is feed by the tracking generator of the spectrum analyzer. Both
the amplifier and the spectrum analyzer are placed in a cabinet room on top of the
3 GeV ring where they are protected from radiation. The feeding network is less
sensitive to radiation and is therefore placed inside the enclosure of the ring, about 1
m from the stripline. Four phase matched N-type cables are connecting the feeding
network to the stripline, and the short length of the cables maximizes the delivered
power to the strips. The 8 coaxial terminations (4 for the feeding network and 4
for the upstream ports of the stripline) are connected via N-type cables, and their
cooling flanges are attached to a water cooling pipe in order to minimize the heat
exchange to the storage ring enclosure.

It would be possible to construct a simpler network with less switches by using
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Figure 28: A circuit diagram of the stripline feeding network. The tracking generator
of the spectrum analyzer is the AC source. The red numbers show the port indices
during the S-parameter measurements.

Figure 29: The feeding network mounted in a standard 19” rack case. Note that
half of the switches are not visible since they are shielded by sheets of mu-metal.

180◦ hybrid junctions as in the receiving network (see Section 9.2). However, it was
decided to use a single in-house designed amplifier as the source of excitation, and
we were only able to find wide-band 180◦ hybrid junctions that could handle much
less power than the splitters used in the design described above. It would of course
be possible to feed a low-power RF signal to the hybrid junctions and then add four
amplifiers (one for each strip), but it would be harder to obtain a good phase and
amplitude match between the four strips with this layout since the amplitude/phase
unbalance between four amplifiers would be much larger than in the feeding network
alone. A system with only one amplifier (and a spare unit) is also considered more
reliable.

Since the amplifier is optimized for 500 MHz, the line stretchers were adjusted
for that frequency. Table 9 lists the magnitudes and phases of the Sx0 parameters
at 500 MHz. The measured phase and amplitude unbalance originate mainly from
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Mode of operation Sw1 Sw2
Diagonal L L
Horizontal H L
Vertical H H

Table 8: The PLC logic diagram of the three modes of operation of the feeding
network. Here, H (High) and L (Low) correspond to 24 V and 0 V, respectively.

the splitters. The complete S-parameters measurement results are presented in
Appendix C.

Diagonal Horizontal Vertical
Port, x 20·log10(Sx0) arg(Sx0) 20·log10(Sx0) arg(Sx0) 20·log10(Sx0) arg(Sx0)

1 -7.57 -107.1◦ -7.57 70.4◦ -7.74 -107.3◦
2 < −100 - -7.72 -108.4◦ -7.72 -108.4◦
3 -7.83 70.3◦ -7.83 -107.0◦ -7.65 70.3◦
4 < −100 - -7.54 71.7◦ -7.54 71.7◦

Table 9: The magnitudes and phases of the Sx0 parameters of the feeding network
at 500 MHz when the switches are set to excite the beam in the diagonal, horizontal,
and vertical plane. The port indices can be seen in Figure 28.

9.2 Receiving Network

This network produces the horizontal differential, the vertical differential, and the
sum signal of the induced signals from four BPM electrodes. Basically, the receiving
network consists of four 180◦ hybrid junctions. A circuit diagram of the network
can be seen in Figure 30. The hybrid junctions have a large specified bandwidth of
2-2000 MHz [11], but S-paramter measurements show that the network can be used
for monitoring signals up to at least 3.5 GHz. However, the phase and magnitude
unbalance becomes worse outside the specified bandwidth. The specific signal that
one wants to monitor is selected by four electromechanical switches. The switches
also make sure that the two signals that are not monitored are terminated. The
switches are controlled by three 24 V-logic signals (Sw1-3) that are provided by a
PLC system which can be controlled from the MAX IV control system. Table 10
shows the logic diagram of the three switch signals. The components are mounted
inside a standard 19” rack case seen in Figure 31. The rack case is larger than
needed and is therefore prepared for future modifications such as adding low-noise
amplifiers, etc. Three SMA jumpers are mounted on the front of the case, and if
one wants to monitor the three different signals simultaneously, one can bypass the
four switches by disconnecting the jumpers and connect the instrument(s) directly
to the three outputs.

The four input ports seen in Figure 30 are connected to the output ports of the
diagnostic BPM chamber which have the port indices seen in Figure 32. This diag-
nostic BPM chamber is located in the first achromat directly after the transport line
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from the LINAC. While the standard BPM chambers in the 3 GeV ring have circular
cross sections, this cross section is hexagonal. Note that there is no symmetry in the
yz-plane of vacuum chamber. The reason for this is that the electron pulse that is
injected has an orbit that is left of the origin in the BPM chamber, while the stored
beam is centered in the chamber. The "Switch Output" port is connected to the
input port of the spectrum analyzer.

Figure 30: A circuit diagram of the receiving network. The red numbers show the
port indices during the S-parameter measurements.

Figure 31: The receiving network mounted inside a standard 19” rack case.

Table 11 lists the magnitudes and phases of the S0x parameters at 500 MHz. As
seen, the measured phase and amplitude unbalance at this frequency is quite low.
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Signal Sw1 Sw2 Sw3
Horizontal H L L
Vertical L H L
Sum L L H

Table 10: The PLC logic diagram of the receiving network when the horizontal,
vertical and sum signals are monitored. Here, H (High) and L (Low) correspond to
24 V and 0 V, respectively.

Figure 32: The 2D cross section of the diagnostic BPM chamber and the indices of
the four buttons.

The complete S-parameters measurements, up to 1 GHz are presented in Appendix
D.

Horizontal Vertical Sum
Port, x 20·log10(S0x) arg(S0x) 20·log10(S0x) arg(S0x) 20·log10(S0x) arg(S0x)

1 -8.49 -17.6◦ -8.31 142.9◦ -8.41 -37.2◦
2 -8.39 163.5◦ -8.33 144.1◦ -8.43 -36.0◦
3 -8.41 163.5◦ -8.34 -36.7◦ -8.35 -37.1◦
4 8.35 -15.9◦ -8.36 -36.0◦ -8.38 -36.2◦

Table 11: The magnitudes and phases of the S0x parameters of the receiving network
at 500 MHz, when the switches are set to monitor the horizontal, vertical, and sum
signal of the four BPM buttons. The port indices can be seen in Figure 30.

10 Initial Beam Measurements in MAX IV
Figure 33 and 34 show the power spectrum obtained at the diagnostic BPM when
the stripline is exciting the beam in the horizontal and vertical plane, respectively.
In each figure, the receiving network is switched to monitor the corresponding plane.
The measurements were performed in the MAX IV 3 GeV ring during the initial
state of beam commissioning in October 2015, and only 8 following ring buckets
were filled. The total ring current during the measurements was approximately 5
mA. The peaks found at 498.51 MHz, 499.08 MHz, and 499.65 MHz are the 878:th,
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879:th, and 880:th harmonic of the revolution frequency ω0, respectively. Note
that if the ring would be filled with a perfectly even filling pattern, the revolution
harmonics would not be visible in the spectrum (but the RF harmonics would).
The horizontal and vertical betatron oscillations can be seen as sidebands of each
revolution harmonic at ±178 kHz and ±130 kHz, respectively.
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Figure 33: The power spectrum obtained at the diagnostic BPM when the beam is
excited by the stripline in the horizontal plane. The peaks at 498.51 MHz, 499.08
MHz, and 499.65 MHz are harmonics of the revolution frequency. The horizontal
betatron oscillations can be seen as sidebands of each revolution harmonics at ±178
kHz.

As already mentioned in Section 2.1.2, the integer part of the betatron tunes are
lost due to the stroboscope effect. Therefore, the integer parts of the tunes during
the measurements were obtained by counting the number of horizontal/vertical os-
cillations registered by the BPM system for a distorted orbit around the ring. The
horizontal and vertical integers of the tunes are 42 and 16, respectively. According
to (2.6), one can not determine if the fractional part of the tunes are higher or
lower than 0.5 by looking at the spectrum alone. However, by sweeping one of the
quadrupole magnets and observing the tune shift, it was found that Qf < 0.5 in both
planes. Hence, the betatron tunes during the measurements were Qx = 42.31 and
Qy = 16.23. These values differ somewhat from those specified in Table 1. However,
the measurements were performed in the initial state of beam commissioning, and
numerous adjustments have been done to the optics since.

The receiver network is switched to sum mode when monitoring the longitudinal
beam motion. This is very useful when measuring the synchrotron frequency Ωs

when the phases between the accelerating cavities are adjusted. Due to the longitu-
dinal phase focusing, the electrons inside a ring bucket reach an energy equilibrium
where the mean energy gain per turn eÛ sin(Ψs) is equal to the mean energy loss
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Figure 34: The power spectrum obtained at the diagnostic BPM when the beam is
excited by the stripline in the vertical plane. The peaks at 498.51 MHz, 499.08 MHz,
and 499.65 MHz are harmonics of the revolution frequency. The vertical betatron
oscillations can be seen as sidebands of each revolution harmonics at ±130 kHz.

per turn W0. Therefore, the relative phase of the bucket (the synchronous phase
Ψs) to the fields in the accelerating cavities changes if the total peak voltage of the
cavities Û changes so that W0 remains constant. Note that we define Ψs so that
π/2 < Ψs < π for a stored beam. The synchrotron frequency increases with the
magnitude of the accelerating gradient so that Ωs ∝ (−Û cos(Ψs))

1/2. Hence, Ωs

is maximized when the fields in all the accelerating cavities have the same phase
relative to the beam. Note that this relation between Ωs, Û , and Ψs is different
when the fields induced by Landau cavities are present.

Since the beam commissioning of the 3 GeV ring began in the autumn of 2015,
the stripline with its RF distribution networks have been used almost on daily basis
to monitor the transverse and longitudinal tunes.

11 Conclusions
In this report, the design of the striplines that are used in the MAX IV and SOLARIS
storage rings is presented. The EM fields inside a stripline when the strips are excited
in different modes, and their action on the beam have been analyzed. The signals
that are induced at the strips by the beam via mirror currents, and their action
on the beam via wakefields have also been investigated. Overall, there is a good
correlation between the analysis and the simulations.

The scattering parameters of the manufactured striplines have been measured,
and the result is acceptable. Two distribution networks that are feeding the stripline
and selecting the plane to monitor at the diagnostic BPM have been constructed
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and installed in the 3 GeV ring. The amplitude and phase balance between the ports
of these networks have also been verified. Finally, initial measurements have been
performed in the MAX IV 3 GeV ring where coherent transverse beam oscillations
have been excited using a stripline.

Acknowledgments
We thank Jonny Ahlbäck, Eshraq Al-Dmour, Åke Andersson, Simon C. Leemann,
Robert Lindvall, Magnus Sjöström, Jens Sundberg, and Pedro Fernandes Tavares
for their expertise and help during the process.



46

Appendix A The Scalar Potential in the Stripline
The scalar potential over a cross section of the stripline is obtained by solving Laplace
equation in two dimensions, cf. [9]. The analysis is here limited to the region where
0 ≤ ρ ≤ a.

Since the geometry is circular, it is more convenient to use polar coordinates.
Laplace equation reads

∇2Φ =
1

ρ

∂

∂ρ

(
ρ
∂Φ

∂ρ

)
+

1

ρ2

∂2Φ

∂φ2
= 0 (A.1)

By using the method of separating of variables and denoting Φ(ρ, φ) = R(ρ)Ψ(φ),
and multiplying (A.1) by ρ2/Ψ we have

ρ

R

∂

∂ρ

(
ρ
∂R

∂ρ

)
+

1

Ψ

∂2Ψ

∂φ2
= 0 (A.2)

The two terms in (A.2) must be constant since they are functions of ρ and φ
respectively. If the first term equals ν2 and the second term −ν2, the general solution
becomes {

R(ρ) = c0 + d0 ln(ρ) + cρν + dρ−ν

Ψ(φ) = C0 +D0φ+ Cejνφ +De−jνφ
(A.3)

where the terms with indices 0 are for the special case when ν = 0.
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Figure 35: The simulated and approximated potential in the upper gap between the
strip and the extended ground.

Consider a stripline as in Figure 4 but with only one strip that is centered at
the right side with the angular extension φs and an angular gap φg to the extended
ground regions. The potential of the strip is V0 and 0 at the extended ground.
The potential in the two gaps are unknown, but a good approximation is that the
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azimuthal electric field is constant and the radial electric field is zero, i.e. E(a, φ) =
± V0

aφg
φ̂. This implies that the potential increases/decreases linearly with φ in the

gaps. Figure 35 shows the simulated and the approximated value of Φ(a, φ) in the
upper gap. The potential at ρ = a can now be written as

Φ(a, φ) =


V0

φg
(φ2 + φ) , −φ2 ≤ φ− ≤ φ1

V0 , −φ1 ≤ φ ≤ φ1
V0

φg
(φ1 − φ) , φ1 ≤ φ ≤ φ2

0 , elsewhere

(A.4)

where φ1 = φs/2 and φ2 = φs/2+φg. Three boundary conditions can now be stated.
(1) Full azimuthal periodicity, i.e. Φ(ρ, φ) = Φ(ρ, φ+ 2π).
(2) Finite potential at the origin.
(3) Φ(a, φ) as denoted in (A.4).

(1) implies that ν is an integer, and that D0 must vanish. d0 and d must also
vanish due to (2). Φ(ρ, φ) can now be written as the following series

Φ(ρ, φ) = C0 +
∞∑
n=1

ρn
(
Cne

jnφ +Dne
−jnφ) (A.5)

C0 is obtained by integrating both sides over one azimuthal period when ρ = a.

LHS =

π∫
−π

Φ(a, φ) dφ = V0(φ1 + φ2)

RHS =

π∫
−π

C0 dφ+
∞∑
n=1

an
π∫

−π

(
Cne

jnφ +Dne
−jnφ) dφ = 2πC0

Thus,

C0 =
V0

2π
(φ1 + φ2) =

V0

2π
(φs + φg) (A.6)

Cn is obtained by multiplying (A.5) by e−jn
′φ and then integrating over one

azimuthal period when ρ = a.
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(A.7)

Dn is obtained in the same way as Cn, except by multiplying both side in (A.5)
by ejn′φ instead of e−jn′φ. Due to symmetry, we have that

Dn = Cn (A.8)

By inserting (A.6), (A.7), and (A.8) into (A.5), Φ(ρ, φ) can finally be written as

Φ(ρ, φ) =
V0(φs + φg)

2π
+

4V0

πφg
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n=1

(ρ
a

)n sin
(
nφg

2

)
sin
(
nφs+φg

2

)
n2

cos(nφ) (A.9)

We can now calculate the potential for an arbitrary rotated strip by adding its
rotation angle α to (A.9), thus cos(nφ) → cos(n(φ − α)). We superimpose the
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potentials from the four strips, and the potential of the excitation modes listed in
Table 2 can be written as

Φ(ρ, φ) =
4∑

m=1

Um
π

φs + φg
2

+
4

φg
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n=1

(ρ
a

)n sin
(
nφg

2

)
sin
(
nφs+φg

2

)
n2

cos
(
n
(
φ− mπ

2
+
π

4

))
where Um is the potential of the m:th electrode.
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Appendix B Stripline S-parameter Measurement
The S-parameters from the measurements described in Section 8 can be seen in
Figure 36-43. Here, all the 2x16 parameters are not shown since Sdc11 ≈ Scd11,
Sdc22 ≈ Scd22, Sdd21 ≈ Sdd12, and Scc21 ≈ Scc12.
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Figure 36: Differential and common-mode reflection coefficients of the first strip
pair.
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Figure 37: Differential and common-mode reflection coefficients of the second strip
pair.
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Figure 38: Cross-mode reflection coefficients of the first strip pair.
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Figure 39: Cross-mode reflection coefficients of the second strip pair.
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Figure 40: Differential and common-mode transmission coefficients of the first strip
pair.
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Figure 41: Differential and common-mode transmission coefficients of the second
strip pair.
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Figure 42: Cross-mode transmission coefficients of the first strip pair.
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Figure 43: Cross-mode transmission coefficients of the second strip pair.
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Appendix C Feeding Network S-parameter Measure-
ments

Here, the S-parameter measurements of the feeding network in Section 9.1 are pre-
sented. The port numbering in Figure 28 are used. The transmission coefficients of
the network can be seen in Figure 44-49, and Figure 50 shows S00.
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Figure 44: Sx0 of the feeding network in the horizontal mode.
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Figure 45: Sx0 of the feeding network in the horizontal mode.
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Figure 46: Sx0 of the feeding network in the vertical mode.
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Figure 47: Sx0 of the feeding network in the vertical mode.
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Figure 48: Sx0 of the feeding network in the diagonal mode.
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Figure 49: Sx0 of the feeding network in the diagonal mode.
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Figure 50: S00 of the feeding network in the diagonal mode. Note that S00 does not
differ much in the horizontal and vertical mode of operation.
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Appendix D Receiving Network S-parameter Mea-
surements

Here, the S-parameter measurements of the receiving network in Section 9.2 are
presented. The four input ports can be seen in Figure 30 and correspond to the
button indices in Figure 32. Port 0 is the "Switch Output" port in Figure 30. The
spectrum of the transmission coefficients can be seen in Figure 51-56.
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Figure 51: S0x of the receiving network when monitoring the horizontal signal.
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Figure 52: S0x of the receiving network when monitoring the horizontal signal.
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Figure 53: S0x of the receiving network when monitoring the vertical signal.
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Figure 54: S0x of the receiving network when monitoring the vertical signal.
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Figure 55: S0x of the receiving network when monitoring the sum signal.
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Figure 56: S0x of the receiving network when monitoring the sum signal.
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