
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Multi Sensor Loitering Detection Using Online Viterbi

Ardö, Håkan; Åström, Karl

2007

Link to publication

Citation for published version (APA):
Ardö, H., & Åström, K. (2007). Multi Sensor Loitering Detection Using Online Viterbi.

Total number of authors:
2

Creative Commons License:
Unspecified

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/ead56366-9a48-445e-8c15-ae2b607a46ac

Multi Sensor Loitering Detection Using Online Viterbi

Håkan Ardö Kalle Åström
Centre for Mathematical Sciences Centre for Mathematical Sciences

Lund University, Sweden Lund University, Sweden
ardo@maths.lth.se kalle@maths.lth.se

Abstract
In this paper the problem of loitering detection in image
sequences involving situations with multiple objects is stud-
ied. A multi camera approach is used to incorporate data
from several cameras viewing the same scene. A Hidden
Markov Model describing the movements of a varying num-
ber of objects as well as their entries and exits is used.
The maximum likelihood over all possible state sequences
is found using online Viterbi optimisation. Previously sim-
ilar models have been used for single camera setups. In
this paper the technique is extended to allow several cam-
eras. The model is also made less sensitive to uninteresting
objects occluding the region of interest, by integration out
their effect on the observation probabilities. Finally the on-
line Viterbi optimisation technique is extended to be able
to produce it’s output after a constant number of frames.
In previous work this delay varied with the complexity of
the data. The resulting system is tested on the PETS2007
dataset scenarios S0-S2, with promising result.

1. Introduction
Detecting simple events, such as a pedestrian entering a
shop, a vehicle turning left at an intersection, or a person
loitering, can be done by using a robust tracker. By plac-
ing restrictions on the tracker, such as “vehicles may only
appear at the borders of the image and not in the middle of
the intersection”, the event detection will be a simple mat-
ter of checking the endpoints of the tracks produced, and, in
case of loitering, the time spend in the scene. In this paper
we present a tracker that uses online Viterbi optimisation to
find the set of tracks with maximum likelihood conforming
to constraints as the one mentioned above.

1.1. Previous Work
In [1] an online system is presented that tracks a varying
number of multiple moving objects. The entire state space
is modelled by a Hidden Markov Model (HMM) [7], where
each state represents a configuration of objects in the scene
and the state transactions represent object movements as
well as the events of objects entering or leaving the scene.

The solution is found by optimising the observation likeli-
hood over different state sequences. Results are generated
with several frames delay in order to incorporate informa-
tion from both past and future frames in the optimisation.
This delay varies depending on the input data.

In this paper that method is extended to (i) handle multi-
ple cameras, (ii) produce results after a constant delay and
(iii) improve the performance of objects moving outside the
state space considered. The later extension improves the
tracking results when there are objects outside some region
of interest that occludes that region.

A very simple object model is used. It states that all
objects are boxes of some given dimension and the obser-
vations made are the result of background foreground seg-
mentation. The boxes are projected into the camera images
and the probability of all pixels within the projected boxes
being foreground and all pixel outside the boxes being back-
ground is calculated. By combining data from several cam-
eras and using the efficiency of HMM to optimise over dif-
ferent state sequences, it is shown that this simple model
can actually achieve reliable results.

For single target tracking the particle filter have been
a successful solution. Extending this to handle a varying
number of objects is not straightforward as the state now
contains a discrete component, the number of objects cur-
rently present. One common way is to use one particle
filter for each object, but that means that the problems of
track initialisation, track termination and data association
has to be solved separately, which is not the case when those
events are modelled within the state space c.f. [4].

Most real-time HMM-based trackers [6], [5] and [3] do
not use the standard Viterbi dynamic programming algo-
rithm [7], which finds the global maximum likelihood state
sequence. The main problem of using that algorithm is that
it requires the entire set of future observations to be avail-
able. Instead they estimate the state posterior distribution
given the past observations only. The particle filter also re-
sults in this kind of posterior state distribution, which means
that both the particle filter and this kind of HMM trackers
suffer from the problem of trying to estimate the single state
of the system from this distribution. Later processing stages
or data-displays usually requires a single state and not an

distribution.
Common ways to do this is to estimate the mean or the

maximum (MAP) of this posterior distribution, but this have
a few problems:

1. A mean of a multimodal distribution is some value be-
tween the modes. The maximum might be a mode that
represents a possibility that is later rejected. In this pa-
per we instead use optimisation that considers future
observation and thereby chooses the correct mode.

2. In the multi object case the varying dimensionality of
the states makes the mean value difficult to define. In
[4] it is suggested to threshold the likelihood of each
object in the configurations being present. Then the
mean state of each object for which this likelihood is
above some threshold is calculated separately.

3. Restrictions placed in the dynamic model, such as ille-
gal state transactions, are not enforced, and the result-
ing state sequence might contain illegal state transac-
tions. For the particle filter also restrictions in the prior
state distribution might be violated. In [4] for example,
the prior probability of two objects overlapping in the
3D scene is set to zero, as this is impossible. However
the output mean state value may still be a state where
two objects overlap, as the two objects may originate
from different sets of particles. The problem is that
only single states are considered. In the suggested ap-
proach state sequences are considered, which means
that impossible state transactions will never appear in
the results. Neither will impossible states, as the opti-
misation produces a single state sequence as the opti-
mum, and there never is any need to calculate the mean
over different states.

In [1] a novel modification to the Viterbi algorithm [7]
were suggested. It allows it to handle infinite time se-
quences and still produce the global optimum. However,
there is a delay of several frames between obtaining an ob-
servation and the production of the optimum state for that
frame.

Another problem addressed in the same paper is that
when considering multiple objects, the state space becomes
huge. Typically at least some 10000 states is needed for a
single object, and to be able to track N objects simultane-
ously that means 10000N states. An exact solution is no
longer possible for real time applications. A possible ap-
proximation that can be used to compute results in real time
were suggested: Only evaluate the M most likely states in
each frame.

It was also shown that it is possible, to assess whether
this approximation actually found the global optimum or
not. This could be useful in an off line calibration of the
approximation parameter M .

1.2. Paper overview
The paper is organised as follows. The theory behind hid-
den Markov models is described in Section 2. This Sec-
tion begins with a review of the basic definition and the
classic Viterbi optimisation. Then the extensions from [1]
to handle infinite time sequences, Section 2.2, and infinite
state spaces, Section 2.3 are briefly described. Section 3
describes how to use the HMM for multi target tracking,
and includes our extension for using multiple cameras, Sec-
tion 3.3, producing result after a constant delay, Section 3.4
and handle occluding objects not tracked, Section 3.5. Ex-
perimental verification is given in Section 4, and Section 5
concludes.

2. Hidden Markov models
A hidden Markov model, c.f. [7], is defined as a discrete
time stochastic process with a set of states, S = S0, . . . , SN
and a constant transitional probability distribution ai,j =
p(qt+1 = Sj |qt = Si), where Q = (q0, . . . , qT) is a
state sequence for the time t = 0, 1, . . . , T . The ini-
tial state distribution is denoted π = (π0, . . . , πN), where
πi = p(q0 = Si). The state of the process cannot be di-
rectly observed, instead some sequence of observation sym-
bols, O = (O0, . . . , OT) are measured, and the observation
probability distribution, bj(Ot) = bj,t = p(Ot|qt = Sj),
depends on the current state. The Markov assumption gives
that

p(qt+1 | qt, qt−1, . . . , q0) = p(qt+1 | qt) (1)

and the probability of the observations satisfies

p(Ot | qt, qt−1, . . . , q0) = p(Ot | qt). (2)

2.1. Viterbi optimisation
From a hidden Markov model λ = (ai,j , bj , π) and an
observation sequence, O, the most likely state sequence,
Q∗ = argmaxQ p(Q|λ,O) = argmaxQ p(Q,O|λ), to pro-
duce O can be determined using the classical Viterbi opti-
misation [7] by defining

δt(i) = max
q0,...,qt−1

p(q0, . . . , qt−1, qt = Si, O0, . . . , Ot).

(3)
For t = 0, δ0(i) becomes p(q0 = Si, O0), which can be
calculated as δ0(i) = πibi,0, and for t > 0 it follows that
δt(i) = maxj(δt−1(j)aj,i) · bi,t. By also keeping track of
ψt(i) = argmaxj(δt−1(j)aj,i) the optimal state sequence
can be found by backtracking from q∗T = argmaxi δT (i),
and letting q∗t = ψt+1(q∗t+1) for t < T .

2.2. Infinite time sequences
To handle the situations where T → ∞ consider any given
time t1 < T . The observation symbols Ot, for 0 ≤ t ≤ t1,

have been measured, and δt(i) as well as ψt(i) can be cal-
culated. The optimal state for t = t1 is unknown. Consider
instead some set of states, Θt, at time t such that the global
optimum q∗t ∈ Θt. For time t1 this is fulfilled by letting
Θt1 = S, the entire state space. For Θt, t < t1, shrinking
sets of states can be found by letting Θt be the image of
Θt+1 under ψt+1, such that

Θt = {Si|i = ψt+1(j) for some Sj ∈ Θt+1} . (4)

If the dependencies of the model is sufficiently localised
in time, then for some time t2 < t1, there will be exactly
one state q∗t2 in Θt2 , and the optimal state q∗t for all t ≤ t2
can be obtained by backtracking from q∗t2 . No future ob-
servations made can alter the optimum state sequence for
t ≤ t2.

2.3. Infinite state spaces
The problem with using the Viterbi optimisation for large
state spaces is that δt(i) has to be calculated and stored for
all states i at each time t. By instead only storing the M
largest δt(i) and an upper bound, δmax(t) on the rest, sig-
nificantly less work is needed. If M is large enough, the
entire optimal state-sequence might be found by backtrack-
ing among the stored states. It is also possible to verify if
this is the case or not for a given example sequence and
a given M by using δmax(t). If the global optimum were
not found, then M could be increased and the algorithm
executed again, or an approximate solution could be found
among the stored states. Typically the algorithm is executed
off-line for some example sequences to decide how large an
M is needed, and then when running live this value is used
and approximate solutions are found. The details of this
algorithm and a proof of it’s correctness is presented in [1].

3. Using HMM for tracking
3.1. Single object tracking
An HMM such as described above can be used for tracking
objects in a video sequence produced by a stationary cam-
era. Initially we assume that the world only contains one
mobile object and that this object sometimes is visible in the
video sequence and sometimes located outside the scene.

The state space of the HMM, denoted S1, is constructed
from a finite set of grid points Xi ∈ R2, j = 1, . . . , N
typically spread in a homogeneous grid over the image. The
state Si represents that the mass centre of the object is at
positionXi in the camera coordinate system. A special state
S0, representing the state when the object is not visible, is
also needed.

The observation symbols of this model will be a bi-
nary background/foreground image, Ot : R2 → {0, 1},
as produced by for example [2]. By analysing the result

a7,3

q3

q7

q11

q138

... q2

... q9

q34 q56

...a2,3

a2,34

a2,9

Figure 1: Illustration of the HMM used to track multiple
objects. Each state represents a configurations of objects in
the scene. The transactions represents object movements as
as well as the events of objects entering or leaving the scene.

of the background/foreground segmentation algorithm on a
sequence with known background and foreground, the con-
stant probabilities

pfg = p(Ot(x) = 1|x is a foreground pixel) (5)

and

pbg = p(Ot(x) = 0|x is a background pixel) (6)

can be calculated. Typically these are well above 1/2, and
it is here assumed that they are constant over time and does
not depend on x.

The shape of the object when located in state Si, can
be defined as the set of pixels, CSi , that the object covers
when centred in at this position. This shape can be learnt
from training data off line. As there is only one object in
the world, when the HMM is in state Si, the pixels in CSi

are foreground pixels and all other pixels are background
pixels. The probability, bi,t = p(Ot|qt = Si), of this is

bi,t =
∏

x∈CSi

[Ot(x)pfg + (1−Ot(x))(1− pfg)]·

·
∏

x6∈CSi

[(1−Ot(x))pbg + (Ot(x))(1− pbg)] (7)

and thereby all parts of the HMM are defined.

3.2. Multi object HMMs
To generalise the one object model in the previous section
into several objects is straightforward. For the two object

case the states become Si,j ∈ S2 = S × S and the shapes,
CSi,j = CSi ∪ CSj . The transitional probabilities become
ai1j1i2j2 = ai1i2 · aj1j2 . Figure 1 illustrates such a model.

Solving this model using the Viterbi algorithm above
gives the tracks of all objects in the scene, and since
there is only one observation in every frame, i.e. the back-
ground/foreground segmented image, no data association is
needed. Also, the model states contain the entry an the exit
events, so this solution also gives the optimal entry and exit
points.

There is however one problem with this approach. The
number of states increases exponentially with the number
of objects and in practice an exact solution is only compu-
tationally feasible for a small number of objects within a
small region of space.

3.3. Using multiple cameras
Extending this to multiple overlapping or non-overlapping
cameras is relatively straightforward. By calibrating the set
of cameras and identifying a common coordinate system for
the ground plane, the objects centres, Xk, can be modelled
as moving in this common coordinate system. Thereby a
single HMM modelling the events on this ground plane can
be used. The observations for this model is the images from
all the cameras. Using the calibration of the cameras, each
centre point can be projected into the shape of the object
in each of camera images CcXk

where c = 1, 2, . . . , repre-
sents the different cameras. CcXk

might be the empty set
if an object at position Xk is not visible in camera c. By
indexing Equation 7 on the camera c, with Oct the back-
ground/foreground image produced from camera c,

bci,t =
∏

x∈Cc
Si

[Oct (x)pfg + (1−Oct (x))(1− pfg)]·

·
∏

x6∈Cc
Si

[(1−Oct (x))pbg + (Oct (x))(1− pbg)], (8)

the total observation probability becomes

bi,t =
∏
c

bci,t. (9)

3.4. Using constant delay
For real time application it is interesting to restrict the maxi-
mum delay, Tmax, between receiving a frame and outputting
the result for that frame. That would also make the pro-
cessing time of each frame and the memory needed more
constant. This can be achieved by summing up the total
likelihood converging in each node while backtracking,

∆t (i) =
∑

ψt+1(j)=i

∆t+1 (j) . (10)

For the last frame t1, we set ∆t1 (i) = δt1 (i). As
the algorithm is presented above, the backtracking should
continue until ∆t2 (i) = 0 for all i but one. But if in-
stead the backtracking is terminated while ∆t2 (i) > 0
for several i, the resulting state for t2 could be chosen as
qt2 = argmaxi ∆t2 .

By doing so a decision has been made for t2. To en-
sure that the resulting state sequence is a legal one, this
decision has to be propagated forward. For approximate
solutions this could be done by letting δt (i) = 0 for all
i and t that backtracks to any other state than qt2 . For
the exact solutions it is enough to let ψt2 (i) = −1 for all
{i|∆t2 (i) > 0, i 6= qt2}.

The additions introduced by evaluating (10) replace con-
ditionals in the original backtracking algorithm. So, if con-
ditionals and additions have the same cost, this part will
have the same cost as the original backtracking. The extra
computational effort needed is to propagating the decisions
made forward. It works in much the same way as the back-
tracking and have the same complexity. For a given length
this means that the constant delay improvement doubles the
amount of work needed as compared to the standard back-
tracking. But the idea is to make the length lower, which
also means that memory is saved. For the overall system
the time spent backtracking is negligible, as almost all time
is spent in the forward propagation of the Viterbi optimisa-
tion, Equation 3.

3.5. Using Region of Interest
In many cases it is neither interesting nor computational
possible to consider all objects visible in the camera field
of view. Typically the state space is restricted to only con-
sider objects within a specific region of interest. But this
leads to problems along the border of this region as objects
moving outside this region, but close enough to occlude it
in the camera view, will affect the background/foreground
segmentation within. Regardless of how the region of inter-
est is chosen (including the entire image), there will always
be objects outside this region but close enough to have some
part of them project into the region in the image.

In [1] it was suggested to solve this by using a post-
processing step that discards objects located at the very bor-
der of the region of interest. But if there is a lot of activity
outside the region this means that a lot of uninteresting ob-
jects has to modelled, which increases the computational
time. It also increases the number of possibilities, which
means that M has to be chosen larger. That increases the
computational time even further. Also, the true state of
those objects outside is not in the state space, which means
that their state will be projected into the state space. That
might generate strange results.

We suggest to instead model the entire world as a single
ground plane with an infinite number of equally shaped ob-

Camera

O
bj

ec
t

Ground Plane
ROI

Ax

Figure 2: This setup shows a camera viewing a ground
plane at a tilted angle. A region of interest is specified in
3 dimensions with it’s height equal to the height of the ob-
jects. The thick blue line indicates the region in which ob-
jects outside the region of interest will occlude the region of
interest.

jects moving along this plane. The positions of the objects
outside a given region of interest are considered uninterest-
ing and are integrated out. This means that Si will represent
the state “one object within the region of interest at position
i, and any number of objects at any positions outside”.

To form an observation-model for this kind of states
some prior distribution of how many objects are located
within a certain area has to be assumed. It could for ex-
ample be assumed that the number of objects present within
an area, A, is Poisson distributed with mean λA, where λ is
a parameters specifying how many objects are expected per
m2,

po (n,A) = p (n objects present in A) =
(λA)n e−λA

n!
.

(11)
Using the camera calibration, the geometry of the setup

such as shown in Figure 2 can be calculated. The re-
gion of interest is a three dimensional box, with the same
height as all the objects. For every pixel x the area Ax of
the region outside the region of interest where objects oc-
clude the region of interest can be calculated. The proba-
bility of the background at that pixel being visible, given
that no object within the region of interest occludes it is
po (0, Ax) = e−λAx . The probability of the background at
that pixel being occluded given that an object within the re-
gion of interest occludes it is of course 1. This can be intro-
duced into the observation probability in (7), by replacing
pbg with

p′bg (x) = e−λAxpbg +
(
1− e−λAx

)
(1− pfg) , (12)

which is no longer constant, but varies over the pixels, x.
The prior model assumed should then also be used in the

state probability by adding a term, po (n,A) to (9), where

A is the area on the ground plane covered by the region of
interest, and n is the number of objects present within. With
this modification (9) becomes

bi,t =
(λA)n e−λA

n!

∏
c

bci,t. (13)

All the calculations can be performed offline and stored
in an calibration image that for each pixel, x, stores the
value of p′bg (x). The extra work needed online is then re-
duced to a pixel lookup in this image. This is the same
amount of work needed when a binary mask is used to mask
out regions permanently occluded. To use this kind of soft
mask instead of a binary one makes it possible to use data
from cameras mounted at an lower angle. A binary mask
removing all pixels that might originate from outside the re-
gion of interest in the PETS dataset (see Section 4 and Fig-
ure 3) would render the entire image from camera 4 masked
out, and only very small portions of the images from camera
1 and 2 unmasked.

4. Experiments
Tests were performed on the PETS 2007 dataset1. It con-
sists of 8 different scenarios, each recorded with four cam-
eras from four different angles, Figure 3. In addition to this
there is a background sequence that can be used for cali-
brating the system. The first three scenarios, S0, S1 and S2
where analysed to automatically detect loitering. Loitering
is defined as a person who enters the field of view of camera
3, and remains within the scene for more than 60 seconds.
The dataset comes with calibration parameters for the cam-
eras, that were calculated from markers on the floor using
the Tsai camera model [8]. There were some problems with
the calibration initially released for camera 3. It was recal-
ibrated by manually identifying the markers in the image.
The camera parameters were the estimated using the freely
available Tsai Camera Calibration Software2 by Reg Will-
son. Since then a new version of the camera 3 calibration
has been released, but the tests presented here have not be
reevaluated using this calibration data.

The ground plane was discretised into a uniform 74x42
grid reaching from (x, y) = (−4,−2) to (x, y) = (4, 2.5)
in world coordinates (meters) as defined by the camera
calibration’s provided. This roughly corresponds to the
filed of view of camera 3. The objects were modelled as
0.44x0.44x1.8 m boxes. Those boxes were projected into
each of the four camera images, and bounding boxes paral-
lel to the image axes where fitted. This allows the observa-
tion probability of each state to be calculated very fast using
integral images.

1http://pets2007.net/
2http://www.cs.cmu.edu/afs/cs.cmu.edu/user/rgw/www/TsaiCode.html

Figure 3: Example frames from the PETS 2007 dataset. From left to right, camera 1 to 4.

Figure 4: Example result from the background/foreground segmentation algorithm used as input. The images corresponds to
the frames in Figure 3

Objects detected on the very border of the grid were
ignored since such detections often correspond to object
movements outside the grid. The number of frames an ob-
ject stayed strictly in the interior of the grid were counted,
and if this exceeded 1500 (60 s), the loiter alarm were
raised. The sequence S0 contains no loiters, while S1 and
S2 contains one each.

4.1. Background/Foreground segmentation

As input to the algorithm a correlation based back-
ground/foreground segmentation, where used. It compares
8x8 blocks of the background model with the corresponding
block in current frame using the correlation coefficient. For
each pixel the probability of it being foreground is calcu-
lated using a probabilistic background/foreground segmen-
tation. A typical result is shown in Figure 4. For cam-
era 3 a mask where generated manually masking the pix-
els in it’s lower left where some static object is located be-
tween the camera and the scene. The mask is used to set
the foreground probability of all occluded pixels to 0.5. To
make sure that the estimate of the background model had
converged before the tracking started, the background se-
quences were concatenated to each of the scenarios. The
tracking was not started until the real sequence begun.
There is no initialisation of the state for the first frame. The
scene is assumed to be empty. If this is not the case the first
seconds of the tracking result contains errors. But after that
the tracker typically converges to a correct state.

M Cameras Runtime/frame (ms)
10 1 1
10 2 2
10 3 2
10 4 4
100 1 15
100 2 21
100 3 30
100 4 42

1000 1 200
1000 2 281
1000 3 429
1000 4 526

Table 1: Mean frame processing time for different values
of the M parameter described in Section 2.3 using different
number of cameras.

4.2. Result
To test the real time performance of the HMM tracker, it’s
runtime where measured on a 2.40GHz P4, for different
values on M and different number of cameras. The back-
ground/foreground segmentation was precalculated, so it’s
runtime is not considered. For M = 1 the algorithm be-
comes equivalent to a greedy algorithm changing to the
most likely state in each frame. The result is shown in Ta-
ble 1.

The performance of the system was measured by eval-

M Cameras Loiter detections Tracker OK (%)
used S0 S1 S2 Frames Ids

100 3 0 1 1 84 73
100 1 3 0 1 1 76 62
100 2 3 0 1 2 85 80
100 3 4 0 1 1 84 73
100 1 2 3 0 1 2 88 84
100 1 3 4 0 1 1 76 62
100 2 3 4 0 1 2 85 81
100 1 2 3 4 0 1 1 88 84

Table 2: Tracking result using different sets of cameras. The
number of loitering detections found in each of the three se-
quences are shown. S0 contains no loiters, while S1 and
S2 contains one each. The “Tracker OK Frames” column
shows the percentage of frames the the algorithm has de-
tected objects less tan 1m from the objects in the ground
truth. “Tracker OK Ids” shows the percentages of object
frames where the id-number is not mixed up between ob-
jects.

uation how successful the loitering detection is in different
setups. Each setup uses a different set of cameras. The cor-
rect result is to find one loiter in each of S1 and S2 and zero
in S0. In three of the setups there were an extra loiter de-
tected, which actually is the same loiter detected twice due
to an id-mixup between two objects.

The dataset used comes with ground truth data. This data
were compared to tracks generated by the suggested algo-
rithm. For each frame with ground truth, the tracking re-
sults were search for objects within 1m of the ground truth
objects. If such objects could be found for all ground truth
objects, that frame was considered OK. The percentage of
good frames from S1 (ground truth for S0 and S2 were
not available at the time) is presented In the “Tracker OK
Frames” column of Table 2.

To also verify the id-numbers each track of the ground
truth were mapped to the track it fitted closest among the re-
sults generated from the tracker. The total number of frames
for each track in the ground truth where the ground truth is
less than 1m from the tracked objects were counted. The
percentage of such frames is presented in the “Tracker OK
Ids” column.

The two “Tracker OK” columns should be interpreted as
follows. If “Frames” is close to 100%, but “Ids” is lower,
the objects were tracked, but the identities mixed up. If
“Frames” is low some object were missed altogether.

5. Summary and Conclusions
In [1] a multi HMM model where proposed, to model multi-
ple targets in one single model with the advantage of solving

all the problems of a multi target tracker by a Viterbi opti-
misation. This includes track initiation and termination as
well as the model updating and data association problems.
In this paper this model is extended to handle multiple cam-
eras surveying the same scene. Also, the online Viterbi al-
gorithm, suggested in the same paper, is extended making it
possible to specify a maximum delay between the reception
of a frame and the production of the tracking result for this
frame. The produced tracks are still guaranteed to follow
any restrictions placed on the model, such as “objects may
not overlap” or “objects many only (dis)appear along the
borders”. Finally this paper introduces a statistical model
that makes it possible for the tracker to ignore uninteresting
objects moving outside some region of interest by integra-
tion out their effect on the observation model.

The proposed algorithm is tested by building a loitering
detection system and evaluating it on the scenario S0, S1
and S2 of the PETS 2007 dataset, with promising result.

To improve the result it should be fairly straightforward
to plug in some more sophisticated object model, instead of
the background/foreground segmentation, e.g. a pedestrian
detector.

References
[1] H. Ardö, R. Berthilsson, and K. Åström. Real time viterbi op-

timization of hidden markov models for multi target tracking.
In IEEE Workshop on Motion and Video Computing, 2007.

[2] Håkan Ardö and Rikard Berthilsson. Adaptive background
estimation using intensity independent features. Proc. British
Machine Vision Conference, 03:1069–1078, 2006.

[3] Mei Han, Wei Xu, Hai Tao, and Yihong Gong. An algorithm
for multiple object trajectory tracking. In Proc. Conf. Com-
puter Vision and Pattern Recognition, Washington DC, vol-
ume 01, pages 864–871, Los Alamitos, CA, USA, 2004. IEEE
Computer Society.

[4] Michael Isard and John MacCormick. Bramble: A bayesian
multiple-blob tracker. In Proc. 8th Int. Conf. on Computer
Vision, Vancouver, Canada, pages 34–41, 2001.

[5] Jien Kato, T. Watanabe, S. Joga, Ying Liu, and H. Hase.
An hmm/mrf-based stochastic framework for robust vehicle
tracking. IEEE Transactions on Intelligent Transportation
Systems, 5(3):142–154, 2004.

[6] Javier Movellan, John Hershey, and Josh Susskind. Real-time
video tracking using convolution hmms. In Proc. Conf. Com-
puter Vision and Pattern Recognition, Washington DC, 2004.

[7] L.R. Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition. Proc. IEEE,
77(2):257–286, 1989.

[8] R. Tsai. An efficient an accurate camera calibration technique
for 3D machine. In Proc. Conf. Computer Vision and Pattern
Recognition, pages 364–374, 1986.

Figure 5: Resulting output of the tracker from frames 700-900 of scenario S1. The red boxes indicates the detected and
tracked objects in the four cameras. The green rectangle indicates the area with which objects are tracked.

