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Abstract

This thesis covers areas within estimation and optimal control of vehicles,
in particular four-wheeled vehicles. One topic is how to handle delayed
and out-of-sequence measurements (OOSMs) in tracking systems. The
motivation for this is that with technological development and exploitation
of more sensors in tracking systems, OOSMs gain more significance in
various applications. The thesis derives a Bayesian formulation of the
OOSM problem for nonlinear state-space models, when a linear, Gaussian
substructure is present. This formulation is utilized when developing two
particle-filter algorithms for the OOSM problem. The algorithms improve
estimation accuracy and tracking robustness, compared with methods that
do not utilize the linear substructure.

A second topic is sensor fusion for improved autonomy in vehicles. A
novel approach to model-based joint wheel-slip and motion estimation of
four-wheeled vehicles is developed. Unlike other approaches, the method
explicitly models the nonlinear slip dynamics in the state and measure-
ment equations. Excellent and consistent accuracy for all relevant states
are reported, both during steady-state driving and aggressive maneuver-
ing. The method applies to general classes of four-wheeled vehicles and it
only assumes kinematic relationships.

Optimization-based control methods have found their way into auto-
motive applications. Optimal control for vehicles typically results in con-
trol inputs that give aggressive maneuvering. Proper models are there-
fore crucial. An investigation on what impact different vehicle models and
road surfaces have on the optimal trajectories in safety-critical maneuvers
is presented. One conclusion is that the control-input behavior is highly
sensitive to the choice of chassis and tire models. Another conclusion is
that the optimal driving techniques are different depending on tire-road
characteristics. The conclusions motivate the design of a novel, two-level
hierarchical approach to optimal trajectory generation for wheeled vehi-
cles. The first novelty is the use of a nonlinear vehicle model with tire
modeling in the optimization problem at the high level. This provides for
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better coupling with the low-level controller, which uses a nonlinear model
predictive controller (MPC) for allocating the torques and steer angles to
the wheels. This is combined with a linear MPC, which is used when the
nonlinear MPC fails to converge in time.

The thesis also describes a hierarchical design flow for performing on-
line, minimum-time trajectory generation for four-wheeled vehicles with
independent steer and drive actuation, combined with real-time obstacle
avoidance. The approach is based on convex optimization. It therefore al-
lows fast computations, both for trajectory generation and online feedback-
based obstacle avoidance. The proposed method is fully implemented on
a pseudo-omnidirectional mobile platform and evaluated in experiments
in a path-tracking scenario.
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Nomenclature

The following pages give the notation, abbreviations, and the names of the
algorithms that are used in the thesis. The aim has been to identify each
entity with a unique variable, but sometimes the same notation means
different things.

Symbol Descriptions

The table below summarizes the most frequently used notation in the
thesis. Some of the symbols sometimes have additional indices referring
to time or different wheels. This is not included here.

Notation Description

R Real numbers
Rm Real-valued matrices of dimension m $ 1
Rm$n Real-valued matrices of dimension m $ n
0m$n The zero matrix of dimension m $ n
0m The zero vector of dimension m $ 1
In$n The identity matrix of dimension n$ n
In The unity vector of dimension n$ 1
x State vector
x Scalar state
ẋ Time derivative of x
xT Transpose of x
qxq Euclidean norm of x
qxq2

Q xTQx
Ts Sampling period
k Time index
tk Time corresponding to k
diag(x) Diagonal matrix (x appropriately interpreted)
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sign Signum function

Notation Description

Estimation
z Linear part of state vector
η Nonlinear part of state vector
y Measurement vector
w Process noise vector
Q Process noise covariance matrix
e Measurement noise vector
R Measurement noise covariance matrix
u Input vector
f , �, h System vectors
A, B, F, G, C System matrices
E(x) Expected value of x
P(x) Probability of x
p Probability density function (PDF)
p(⋅p⋅) Conditional PDF
N Gaussian distribution
N (xpµ, ϒ) Gaussian conditional PDF
x̂kpT Estimated state vector at time tk given y0:T
PkpT Covariance matrix at time tk given y0:T
∼ Sampled from or distributed according to
∝ Proportional to
wi Particle weight i
N Number of particles
τ OOSM time index
l OOSM delay
ta
k Arrival time
Z k Set of OOSMs generated in [0, k]
Y k Set of ISMs generated in [0, k]

Notation Description

Vehicle Variables
CoG Mass center or geometric center
X Longitudinal coordinate axis
Y Lateral coordinate axis
Z Vertical coordinate axis
x Longitudinal wheel-coordinate axis
y Lateral wheel-coordinate axis
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z Vertical wheel-coordinate axis
I Inertial frame
W Robot-fixed inertial frame
V Vehicle-fixed frame
C Chassis-fixed frame
B Body-fixed frame
XV Longitudinal coordinate axis of frame V
p Position vector
v Velocity vector
a Acceleration vector
b Bias vector
vV Velocity vector expressed in frame V
vX Longitudinal component of velocity vector
β Vehicle sideslip angle
ξ Spatial angular-velocity vector
F Total force vector acting on vehicle
M Total torque vector acting on vehicle
F Generalized torques
φ Roll angle (rotation about chassis X -axis)
θ Pitch angle (rotation about vehicle Y-axis)
ψ Yaw angle (rotation about inertial Z-axis)
ψ Rotation angle vector
RIV Rotation matrix from V to I
e Deviation from mid-lane segment

Notation Description

Wheel Variables
vw Wheel velocity
α Wheel-slip angle
λ Longitudinal wheel slip
ω Wheel angular velocity
ϑ Wheel drive angle
δ Wheel steer angle
τ Wheel-torque vector

Notation Description

Vehicle Parameters
m Vehicle mass
IX X Vehicle moment of inertia about X B -axis
IYY Vehicle moment of inertia about YB -axis
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IZ Z Vehicle moment of inertia about ZB -axis
l f Distance from front wheels to mass center
lr Distance from rear wheels to mass center
w Half track width
w f Distance from front wheels to XV -axis
wr Distance from rear wheels to XV -axis
w1 Distance from front left wheel to XV -axis
w2 Distance from front right wheel to XV -axis
w3 Distance from rear left wheel to XV -axis
w4 Distance from rear right wheel to XV -axis

Notation Description

Wheel Parameters
Rw Wheel radius
Iw Wheel moment of inertia
Ri Wheel radius for wheel i

Notation Description

Optimization
Wx Weight matrix for states
Wu Weight matrix for control inputs
Hp Prediction horizon
Hc Control horizon
t0 Initial time
t f Final time
w Algebraic variables
x Differential (state) variables
Ts,h High-level sampling period in Chapter 11
Ts,l Sampling period of MPC in Chapter 11
Hl Prediction horizon of MPC in Chapter 11

Abbreviation Description

ABS Anti-lock Braking System
ASR Anti-Slip Regulation
CAN Controller Area Network
CasADi Computer algebra system with Automatic Differentiation
CPU Central Processing Unit
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DAE Differential-Algebraic Equation
EKF Extended Kalman filter
ESC Electronic Stability Control system
ESP Electronic Stability Program
FE Friction-Ellipse based tire model
GPS Global Positioning System
IPOPT Interior Point OPTimizer
LMPC Linear Model Predictive Control(ler)
MGSS Mixed-Gaussian State Space
MPC Model Predictive Control(ler)
MRT Most Recent Time
NHTSA National Highway Traffic Safety Administration
NMPC Nonlinear Model Predictive Control(ler)
ODE Ordinary Differential Equation
OOSM Out-of-Sequence Measurement
PID Proportional Integral Derivative
RBPF Rao-Blackwellized Particle Filter
RBPS Rao-Blackwellized Particle Smoother
ROS Robot Operating System
RTS Rauch-Tung-Striebel
WF Weighting-Functions based tire model

Algorithms
The algorithms that are used in the thesis are summarized in the table
below.

Abbreviation Description

A-PF OOSM particle filter based on Bayesian solution
OOSM-GARP Gaussian approximation rerun particle filter
PFDISC Particle filter that discards OOSMs
PFIDEAL Offline, idealized particle filter
PF-CISI Particle filter with Complete In-Sequence Information
PF-CISIMI PF-CISI with selective processing
RBOOSMBS Rao-Blackwellized OOSM with Backward Simulation
RBPFDISC RBPF that discards OOSMs
SERBPF Storage-Efficient RBPF
SEPF Storage-Efficient Particle Filter
SEPF-GARP SEPF with selective processing
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1
Introduction

This thesis addresses topics within nonlinear estimation and optimal con-
trol of ground vehicles. The ever-continuing advancements in computing
power, sensors, and control theory, have led to an increased interest in
autonomous vehicles, illustrated by, for example, the Google car and the
DARPA grand challenge [Thrun et al., 2006b]. The inclusion of more sen-
sors gives potential for better estimation and understanding of the ve-
hicle motion, which makes it possible to formulate control principles for
improved autonomy. On the other hand, more sensor measurements, ar-
riving with different delays and accuracy, increase demands on the system
that is responsible for combining the sensor signals.

1.1 Background

Autonomous, or at least semiautonomous, vehicles have been the subject
of much research during the past decades [Thrun et al., 2006a; Shiller
and Gwo, 1991]. Examples from the automotive industry are predictive
steering control [Falcone et al., 2007] and platooning [Alam et al., 2010].
Moreover, in a production scenario with small batch sizes, the combina-
tion of an autonomous mobile robot platform with a conventional robot
manipulator mounted on the base offers flexible and cost-efficient assem-
bly solutions. Hence, mobile robot platforms have the potential of reducing
the costs for production and improving productivity. Figure 1.1 provides
an example of a possible combination.

Ideally, autonomous vehicles should be able to work in unstructured
environments, where moving obstacles, such as humans, are present. Au-
tonomous vehicles are increasingly being employed in outdoor environ-
ments, where examples are planetary exploration, site inspection, min-
ing, and search and rescue operations [Iagnemma and Dubowsky, 2004].
Outdoor applications include traveling in unknown environments, typi-
cally with highly varying wheel-surface interaction and uneven terrain.
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Chapter 1. Introduction

Figure 1.1 Mounting an industrial manipulator on a mobile robot plat-
form offers flexible and cost-efficient assembly solutions. Because the in-
dustrial manipulator’s work space is now dynamic, the setup also demands
more knowledge about the environment.

In both production scenarios and outdoor applications, the vehicles have
to navigate autonomously, with automated real-time decision making. It
is therefore imperative that the navigation strategies are fast and reliable,
and that the robot’s environmental perception is of high quality.

The introduction of anti-lock braking systems (ABS) in 1978 [Burton
et al., 2004] marked the introduction of control systems for active safety
in production cars. In 1995, the Electronic Stability Program (ESP) was
introduced as a means to avoid excessive understeering and oversteer-
ing [Liebemann et al., 2005; Reif and Dietsche, 2011]. The characteristics
of the ESP is to prevent the vehicle from skidding. This is essentially
done by controlling yaw rate and body slip toward reference values, which
are computed from driver steering input and estimated vehicle velocity.
Since the introduction of the ESP, several similar systems have been in-
troduced. These safety systems are commonly referred to as electronic
stability control systems (ESCs). There are many other active safety sys-
tems available—for example, rollover-prevention controllers and collision-
avoidance systems, which both typically use the brakes as main actua-
tors. The brake actuation can also be combined with active suspension
and/or active steering. Most active safety systems in production have in
common that they control specific variables that have tight interaction

20



1.1 Background

∆M
ψ̇

v
d

Figure 1.2 An illustration of the difference between traditional yaw-
rate controllers (left) and safety systems that take advantage of improved
technologies (right). Principally, ESCs maintain vehicle stability by con-
trolling the yaw rate ψ̇ through wheel braking. This wheel braking creates
a moment ∆Mz, which stabilizes the vehicle. With improved sensing and
environmental perception, it is possible to develop high-level controllers,
such as lane-keeping controllers, where, for example, combinations of the
distance d to the road vicinity and velocity v are controlled.

with the desired vehicle behavior, being the yaw rate for ESCs, roll angle
for rollover-prevention systems, and target distance in case of collision-
avoidance systems.

Because of the inclusion and combination of sensors such as cameras,
radar systems, satellite positioning systems, and inertial sensors, there
exist new possibilities for improved vehicle perception. In combination
with the availability of braking and steering individual wheels [Jonas-
son et al., 2011], a spectrum of more advanced safety systems that are
not limited to controlling specific signals alone are possible. More high-
level control architectures that focus on controlling the overall vehicle
behavior—instead of a few characteristics in isolation from each other—
are viable. An example of more advanced safety systems is situation-aware
lane-following systems based on optimal control, where situation aware
essentially means that the vehicle has sufficient knowledge about the sur-
roundings [Lundquist, 2011]. Figure 1.2 contains an illustration of a safety
system that takes advantage of improved technologies.
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Fusion CenterSensor

Sensor

Sensor

...

...

Estimates

Model

Figure 1.3 An illustration of a sensor-fusion system. Several sensors
measure various quantities. The measurements are combined to form state
estimates by using a model of the considered system. The estimates can
then be used in various applications—for example, in control, surveillance,
or fault detection. It is also possible to use the estimates in other estimation
algorithms.

1.2 Motivation

Vehicle Estimation
Sensor fusion is the process of extracting information from different sen-
sors, to acquire more knowledge about a system than what would be pos-
sible if using the sensors individually, see Figure 1.3. In automotive sys-
tems, each sensor has traditionally belonged to a specific active safety
system, where one or two sensors have been used in a particular appli-
cation. With the emergence of sensor fusion in automotive systems, it is
possible to improve overall understanding of the vehicle motion, in addi-
tion to improving existing applications. ESCs, as an example, have tradi-
tionally used measurements of the lateral acceleration and the yaw rate
to compute desired control inputs [Isermann, 2006; Savaresi and Tanelli,
2010]. Furthermore, ESCs assume knowledge of the wheel slip, which of-
ten is estimated separately from other vehicle states using longitudinal
acceleration and wheel-rotation measurements. Sensor fusion enables si-
multaneous use of many sensors, which can improve tracking accuracy
while using fewer estimation algorithms.

In multisensor target-tracking systems, local sensor measurements
are typically sent to a common fusion center, where the measurements
are fused to form state estimates. Because of different data processing
and transmission times, some measurements can arrive when more re-
cent measurements have already been processed. Figure 1.4 illustrates
a possible scenario. These delayed measurements are denoted out-of-
sequence measurements (OOSMs). They arise in a number of applica-
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Transmitter
Preprocessing

Tracking SystemDelay
y3

y1

Camera

Accelerometer
y2
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Figure 1.4 An example of a multisensor target-tracking system. The
different measurements arise from different types of sensors. Thus, the
measurements arrive at the tracking system with different delays.

tions, and with the technological development and improvement of sen-
sors, the OOSM problem is gaining more interest in different applications,
see [Bar-Shalom et al., 2001] for a coverage of estimation techniques and
applications. More recent examples are data-traffic applications [Jia et
al., 2008], visual target tracking for autonomous vehicles [Agnoli et al.,
2008], and automotive precrash systems [Muntzinger et al., 2010]. Most
research on the inclusion of OOSMs in estimation algorithms have fo-
cused on linear systems. However, many systems in the real world have
nonlinear characteristics; hence, it is important to also include OOSMs
in tracking systems that are aimed at nonlinear systems.

Optimal Control of Ground Vehicles
Optimal control of ground vehicles is interesting for several reasons. One
objective is to develop improved active safety and driver-assistance sys-
tems for production cars. Numerous studies have shown the importance
of ESCs. Investigations in Sweden during the years 1998–2004 showed
that ESCs had an effectiveness on fatal crashes of approximately 50%. It
was estimated that of the 500 vehicle-related deaths annually, up to 100
could have been avoided had the vehicles been equipped with an ESC.
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Figure 1.5 An example of a maneuver that expert drivers can handle
while maintaining vehicle stability. Author: Christopher Batt. Made avail-
able via Wikimedia Commons.

Also, a National Highway for Traffic Safety Administration (NHTSA) re-
port showed a reduction of single vehicle crashes with 35% [Lie et al.,
2005] in the USA. With that said, there are still about 30 000 fatal vehi-
cle crashes per year in the USA alone, see the NHTSA report [NHTSA,
2011]. Moreover, a recent paper points out that the current generation
of safety systems is still inferior to the maneuvering performance achiev-
able by expert drivers in critical situations [Funke et al., 2012]. Figure 1.5
gives an example of an expert driver’s ability to maintain stability while
performing extreme maneuvering.

The long-term goal is obviously to achieve an autonomous vehicle fleet.
Before this is possible, several issues have to be solved, technological as
well as legislative. Hence, improved driver-assistance systems that are sit-
uation aware can be seen as an intermediate step toward autonomy. Op-
timal control is an enabler for autonomy because it provides a systematic,
united approach to vehicle control. Sometimes the optimal-control prob-
lem is too complex to use directly for devising new control systems [Sharp
and Peng, 2011]. In those cases optimal control at least increases under-
standing of vehicle dynamics, in the sense that it helps finding model
limitations—for example, approximations in the modeling of chassis sus-
pension, see Figure 1.6.
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M

Figure 1.6 An example of different techniques for modeling chassis sus-
pension. One approach (left) is to model each wheel as a spring-damper
system, whereas another possibility (right) is to model the whole vehicle
as a torsional spring-damper system. Of course, there is also the possibil-
ity to neglect suspension altogether. How this modeling is performed may
have large impact on the model behavior.

Another motivation for optimal control is task-execution effectiveness.
To improve productivity in production scenarios there is a huge potential
for replacing industrial robots with, or mount them on, mobile robots, the
main reason being increased flexibility and work space. Examples of ap-
plications that could benefit from this approach include painting, medical
surgery assistance, logistics, and assembly applications. An integral part
of the programming and task execution of mobile robots is the path and
trajectory generation. A common task is to move the robot from point A to
point B, without constraints on the path between the endpoints. However,
in certain applications the path between the points is of explicit inter-
est, and thus reliable path tracking is desired. Another scenario is that a
high-level path planner determines the geometric path, and a subsequent
trajectory generation is to be made [LaValle, 2006]. Naturally, in a path-
tracking application where the robot actuators are the limiting factors,
a near time-optimal solution robust to model uncertainties is desired in
order to maximize productivity.

1.3 Contributions

This thesis presents work on how nonlinear estimation techniques and
optimal control can improve vehicle behavior. The main contributions can
be summarized as:

• Integration of components for enabling mobile manipulation in a
realistic industrial scenario. Position, velocity, and force control is
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used for controlling a mobile-manipulator setup in a pick-and-place
scenario. The use of an algorithm that incorporates OOSMs ensures
reliable estimation performance.

• A particle-filter algorithm that incorporates a method for taking into
account that several OOSMs can arrive at the same time step.

• Two particle-filter algorithms that account for that measurements
from different sensors often arrive delayed and out of sequence. The
algorithms utilize model structure. This enables improved perfor-
mance compared with previous approaches, when applicable.

• A method for performing combined wheel-slip and motion estima-
tion of ground vehicles. The problem is formulated such that it can
be solved using particle-filter methods that utilize linear substruc-
ture. Unlike other approaches that deal with slip estimation, the
method explicitly models the nonlinear slip dynamics in the state
and measurement equations, and combines this with estimating the
pose and velocities. In addition, the method only relies on kinematic
relations. This significantly reduces parameter uncertainty.

• A thorough investigation of the influence of vehicle- and tire-model
configurations for use in automotive safety. The contribution com-
pares vehicle models in aggressive maneuvers.

• An investigation of the influence of road surfaces in optimal road-
vehicle maneuvers. The contribution lies in that the comparison is
based on experimental data, using an experimentally verified tire
model.

• A two-level, hierarchical approach to online trajectory generation for
improved vehicle safety and/or autonomy. Both nonconvex and con-
vex optimization techniques are used in a two-level structure with
feedback. The first novelty is the use of a nonlinear vehicle model
with tire modeling in the optimization problem at the high level. The
second novelty is a combined nonconvex/convex control structure at
the low level.

• A design flow for real-time, time-optimal trajectory generation and
collision avoidance for four-wheeled vehicles. The approach includes
both high-level and low-level convex optimization, with feedback
from both global and local information. The contribution outlines
the whole chain, from modeling to implementation.
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1.4 Included Publications

This section states all papers that the author has been involved in, and
give the author’s contributions to all publications that the thesis is based
on.

Berntorp, K. (2013). Derivation of a Six Degrees-of-Freedom Ground-
Vehicle Model for Automotive Applications. Technical Report ISRN
LUTFD2/TFRT--7627--SE. Department of Automatic Control, Lund
University, Sweden.

This publication presents a derivation of a two-track vehicle model that
incorporates rotations in space as well as load transfer. It also discusses
aspects of tire modeling. The vehicle modeling is done using a Newton-
Euler approach. The model is derived with control applications in mind.

Berntorp, K., K.-E. Årzén, and A. Robertsson (2011). “Sensor fusion
for motion estimation of mobile robots with compensation for out-of-
sequence measurements”. In: 11th International Conference on Con-
trol, Automation and Systems. Gyeonggi-do, Korea.

The tracking problem for mobile robots is approached by fusing mea-
surements from inertial sensors, wheel encoders, and a camera. An im-
plementation that executes online is done on a four-wheeled pseudo-
omnidirectional mobile robot, using a dynamic model with 11 states. The
algorithm is analyzed and validated with simulations and experiments.

K. Berntorp was the main contributor to this publication. A. Roberts-
son assisted in setting up the experimental equipment, and he and K.-
E. Årzén gave suggestions for improvements and valuable input on the
manuscript.

Berntorp, K., K.-E. Årzén, and A. Robertsson (2012). “Mobile manipula-
tion with a kinematically redundant manipulator for a pick-and-place
scenario”. In: 2012 IEEE Multi-Conference on Systems and Control.
Dubrovnik, Croatia.

This paper combines a pseudo-omnidirectional mobile robot and a
kinematically redundant manipulator for enabling mobile manipulation.
The scenario is that of distributing groceries on refilling shelves, and we
use a constraint-based task specification methodology to incorporate sen-
sors and geometric uncertainties into the task. Sensor fusion is used for
estimating the pose of the mobile base online. Force sensors are utilized
to resolve remaining uncertainties. The approach is verified with experi-
ments.
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K. Berntorp was the main contributor. K.-E. Årzén outlined the basic
idea, and K. Berntorp worked out all details regarding estimation, con-
trol, and implementation. A. Robertsson assisted with the experimental
setup, and both he and K.-E. Årzén provided valuable comments on the
manuscript.

Berntorp, K., K.-E. Årzén, and A. Robertsson (2012). “Storage efficient
particle filters with multiple out-of-sequence measurements”. In: 15th
International Conference on Information Fusion. Singapore.

OOSMs typically arise when the sensing information in some way uses
preprocessing. Here, we treat the multiple OOSM problem for nonlinear
models. The proposed method exploits the complete in-sequence informa-
tion approach and extends it to nonlinear systems. Simulations indicate
improved tracking performance for the considered scenario.

K. Berntorp was the main contributor. A. Robertsson and K.-E. Årzén
provided valuable comments on the manuscript.

Berntorp, K., A. Robertsson, and K.-E. Årzén (2013). “Rao-Blackwellized
out-of-sequence processing for mixed linear/nonlinear state-space
models”. In: 16th International Conference on Information Fusion. Is-
tanbul, Turkey.

Here, we investigate the OOSM particle-filtering problem for mixed-
Gaussian models, which is a class of dynamic systems that often arise
in navigation and tracking applications. The paper includes a simulation
study on two benchmark examples.

The idea is due to K. Berntorp, who also derived the models and im-
plemented the examples used in the paper. A. Robertsson and K.-E. Årzén
provided valuable comments on the manuscript.

Olofsson, B., K. Lundahl, K. Berntorp, and L. Nielsen (2013). “An inves-
tigation of optimal vehicle maneuvers for different road conditions”.
In: 7th IFAC Symposium on Advances in Automotive Control. Tokyo,
Japan.

The subject of this publication is optimal maneuvers for vehicles on
different road surfaces such as asphalt, snow, and ice. This study is mo-
tivated by the desire to find control strategies for improved future vehi-
cle safety and driver assistance technologies. We develop vehicle and tire
models corresponding to different road conditions and determine the time-
optimal maneuver in a hairpin turn for each of these. Our main finding
is that there are fundamental differences between how the vehicle should
perform the maneuver on different surfaces.
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K. Berntorp developed the optimization methodology together with B.
Olofsson. K. Berntorp, B. Olofsson, and K. Lundahl performed the op-
timizations, and K. Lundahl was main responsible for tire-model cali-
brations. L. Nielsen provided comments and assisted in structuring the
manuscript.

Berntorp, K., B. Olofsson, and A. Robertsson (2014). “Path tracking with
obstacle avoidance for pseudo-omnidirectional mobile robots using con-
vex optimization”. In: 2014 American Control Conference. Portland,
Oregon. Accepted.

This paper considers time-optimal path tracking for the class of
pseudo-omnidirectional mobile robots. Using sensor data, objects along
the desired path are detected. Subsequently, a new path is planned and
the corresponding time-optimal trajectory is found. The robustness of the
method and its sensitivity to model errors are analyzed and discussed
with extensive simulation results. Moreover, we verify the approach by
successful execution on a physical setup.

This publication was developed as a cooperation between K. Berntorp
and B. Olofsson, and equal contribution is asserted. A. Robertsson pro-
vided comments for the method and gave valuable ideas for improving the
manuscript.

Submitted Publications
Berntorp, K., A. Robertsson, and K.-E. Årzén (2014). “Rao-Blackwellized

particle filters with out-of-sequence measurement processing”. IEEE
Transactions on Signal Processing. Submitted.

The OOSM particle-filtering problem for mixed-Gaussian models is
revisited. We develop and further improve two algorithms that utilize
the linear substructure, and provide an extensive simulation study using
three different systems. Both algorithms yield estimation improvements
when compared with recent particle-filter algorithms for OOSM process-
ing. In some cases the proposed algorithms even deliver accuracy that is
similar to the lower performance bounds.

K. Berntorp was the main contributor. He derived the models and
implemented the examples used in the paper. A. Robertsson and K.-E.
Årzén provided valuable comments on the manuscript.

Berntorp, K. (2014). “Particle filter for combined wheel-slip and vehicle-
motion estimation”. IEEE Transactions on Control Systems Technol-
ogy. Submitted.
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Traditionally, estimation algorithms in automotive systems have been
designed to aid a specific application, implying that correlation with other
variables is neglected. This paper uses a Bayesian approach to estima-
tion. We derive a model for combined wheel-slip and vehicle-motion es-
timation. By modeling the coupling between the vehicle states, improved
tracking accuracy is achieved. A Rao-Blackwellized particle filter esti-
mates 14 states in total, including key variables in active safety systems,
such as longitudinal velocity, roll angle, and wheel slip for all four wheels.
One key feature is that the method is robust to vehicle parameter uncer-
tainties, because it only relies on kinematic relationships. The results
show that the estimation algorithm provides high-precision tracking in
the vast majority of the executions, when evaluated on a demanding sce-
nario. Moreover, a comparison with a slip-estimation algorithm from the
literature indicates clear improvements in terms of slip estimation.

Berntorp, K., B. Olofsson, K. Lundahl, and L. Nielsen (2014). “Models and
methodology for optimal trajectory generation in safety-critical road-
vehicle maneuvers”. Vehicle System Dynamics. Submitted.

There has not been much research devoted to comparing vehicle models
for at-the-limit maneuvers. This paper aims to fill this void by thoroughly
investigating six vehicle models in three different maneuvers. The results
are extensively analyzed and discussed. We also outline a methodology for
how to solve these types of problems.

The original problem formulation is due to L. Nielsen. K. Berntorp,
B. Olofsson, and K. Lundahl developed the methodology, sorted out all
details, and performed the optimizations. K. Berntorp and B. Olofsson
were main responsible for analysis of the results and the manuscript.

Berntorp, K. and F. Magnusson (2014). “Closed-loop optimal control for
vehicle autonomy”. In: 53rd IEEE Conference on Decision and Control.
Los Angeles, California. Submitted.

This paper presents a hierarchical approach to feedback-based tra-
jectory generation for improved vehicle autonomy. Hierarchical control
structures have been used in safety systems before—for example, in ESCs,
where a simplified model generates high-level references for a low-level
control loop to handle. This paper contains two novelties: First, we in-
clude a nonlinear vehicle model already at the high level to generate
optimization-based references. Second, we use two model predictive con-
trol formulations at the low level for increased robustness, together with
a vehicle model that incorporates load transfer and rotations in space.
With this structure the two control layers have a physical coupling, which
makes it easier for the low-level loop to track the references.
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K. Berntorp was the main contributor. He developed the control struc-
ture, and implemented and tuned the controllers. F. Magnusson assisted
in the implementation, developed the low-level framework needed for the
application, and provided valuable comments on the manuscript.

Olofsson, B., K. Berntorp, and A. Robertsson (2014). “A convex approach to
path tracking with obstacle avoidance”. IEEE Transactions on Control
Systems Technology. Submitted.

To improve autonomy for wheeled vehicles, we consider the problem of
combined trajectory generation and online collision avoidance for four-
wheeled vehicles with independent steer and drive actuation on each
wheel. An Euler-Lagrange model of the dynamics is derived, and by
making appropriate approximations a convex reformulation of the path-
tracking problem is developed. This enables the use of time-optimal tra-
jectories during runtime, which combined with model predictive control
that achieves feedback from the estimated global position and orientation
provides robustness to model uncertainty and disturbances. The proposed
approach also incorporates avoidance of moving obstacles, which are not
encoded in the map information and thus unknown a priori. We verify the
proposed approach by successful execution on a pseudo-omnidirectional
mobile robot platform, and compare the method to an algorithm that is
currently used on the considered mobile robot platform.

This publication was developed as a cooperation between K. Berntorp
and B. Olofsson, and equal contribution is asserted. A. Robertsson pro-
vided comments for the method and gave valuable ideas for improving the
manuscript.

1.5 Other Publications

The following publications were chosen not to be included in the thesis.

Berntorp, K. (2008). ESP for Suppression of Jackknifing in an Articulated
Bus. Master’s Thesis ISRN LUTFD2/TFRT--5831--SE. Department of
Automatic Control, Lund University, Sweden.

Berntorp, K. and J. Nordh (2014). “Rao-Blackwellized particle smoothing
for occupancy-grid based SLAM using low-cost sensors”. In: 19th IFAC
World Congress. Cape Town, South Africa. Accepted.

Berntorp, K., B. Olofsson, K. Lundahl, B. Bernhardsson, and L. Nielsen
(2013). “Models and methodology for optimal vehicle maneuvers ap-
plied to a hairpin turn”. In: 2013 American Control Conference. Wash-
ington, DC.
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Lundahl, K., K. Berntorp, B. Olofsson, J. Åslund, and L. Nielsen (2013).
“Studying the influence of roll and pitch dynamics in optimal road-
vehicle maneuvers”. In: 23rd International Symposium on Dynamics
of Vehicles on Roads and Tracks. Qingdao, China.

Lundahl, K., B. Olofsson, K. Berntorp, J. Åslund, and L. Nielsen (2014).
“Towards lane-keeping electronic stability control for road-vehicles”.
In: 19th IFAC World Congress. Cape Town, South Africa. Accepted.

Magnusson, F., K. Berntorp, B. Olofsson, and J. Åkesson (2014). “Symbolic
transformations of dynamic optimization problems”. In: 10th Interna-
tional Modelica Conference. Lund, Sweden.

Nordh, J. and K. Berntorp (2012). “Extending the occupancy grid concept
for low-cost sensor based SLAM”. In: 10th International IFAC Sympo-
sium on Robot Control. Dubrovnik, Croatia.

Nordh, J. and K. Berntorp (2013). pyParticleEst — A Python Framework
for Particle Based Estimation. Technical Report ISRN LUTFD2/TFRT-
-7628--SE. Department of Automatic Control, Lund University, Swe-
den.

1.6 Preliminaries

Throughout, vectors and column matrices will be used interchangeably.

• Vector variables are written in boldface letters as in x, with its
scalar components written in lightface letters as in x.

• Matrices are denoted with capital boldface letters as in A.

• Rn means the real-valued vector space of dimension n. Matrices with
dimension m $ n are written as Rm$n.

• The Euclidean norm of a vector x is qxq and qxqQ =
√
xTQx.

• The zero column matrix of dimension n $ 1 is 0n. We will write
out the dimension when it is deemed helpful. The zero and identity
matrix of dimension n$n are written as 0n$n and In$n, respectively.

• The time derivative of a variable x is written as ẋ or

d
dt x,

depending on the context.
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• The notation
� f
�x

∣∣∣∣
x̄

means the partial derivative of f evaluated at x̄.

1.7 Outline

Chapter 2 gives an overview of control methods that relate to the work in
this thesis. A small subset of the available particle-filtering techniques
for nonlinear state estimation are briefly reviewed in Chapter 3. Dif-
ferent tire and vehicle models that are common in literature and used
throughout the thesis are introduced in Chapter 4. In addition, we give
a derivation of a nonlinear vehicle model that incorporates rotations in
space as well as chassis suspension. In Chapter 5 we present the notion of
out-of-sequence measurements. In addition, previous work and a general
problem formulation are stated.

The contributions of this thesis are presented in Chapters 6–12, and
can roughly be divided into two areas:

• Nonlinear estimation

• Optimal control of ground vehicles

Nonlinear Estimation
Chapter 6 presents an application study in which OOSMs are compen-
sated for. The application is a mobile robotic setup where a mobile ma-
nipulator picks up and places groceries. It is a rather challenging applica-
tion, which includes estimation using vision and inertial sensing, as well
as control of positions, velocities, and forces.

An approach to deal with OOSMs in nonlinear tracking systems when
several of them arrive at the same time instant is investigated in Chap-
ter 7. We evaluate the performance in a target-tracking example and com-
pare against related algorithms.

Chapter 8 presents two algorithms for handling OOSMs when a linear
substructure is present. The algorithms are derived with computational
considerations in mind. We perform an evaluation on three tracking ex-
amples and compare the algorithms against related approaches.

Wheel-slip and motion estimation are often considered as two prob-
lems in the vehicle community. In Chapter 9 we present a method for
estimating 14 states related to vehicle motion, some of which are key
variables in automotive safety systems. The chapter includes experimen-
tal results, which are extracted from a race-track scenario with aggressive
maneuvering.
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Optimal Control of Ground Vehicles
Chapter 10 investigates dynamic optimization with applications to road
vehicles. Different tire and chassis models are combined, and optimal
solutions are found for two maneuvers using dynamic optimization. We
thoroughly analyze the optimization results and discuss their implica-
tions. This chapter also investigates optimal road-vehicle maneuvers on
different surfaces, where the tire-road parameters are based on experi-
mental data.

The conclusions made in Chapter 10 are utilized in Chapter 11, where
we outline a hierarchical control structure for improved vehicle autonomy.
The chapter presents simulation results and discusses implementation.

Chapter 12 presents a convex approach to real-time, time-optimal tra-
jectory generation and collision avoidance for pseudo-omnidirectional mo-
bile robots. Given a geometric path from a high-level path planner, the
approach finds a time-optimal trajectory over the defined path. Unfore-
seen obstacles, such as humans entering the vicinity of the planned path,
are avoided by a model predictive control approach. The chapter gives the
whole chain from idea to implementation, as well as verifying the ap-
proach using both simulated and experimental results on a mobile robot.

The thesis and its conclusions are summarized in Chapter 13, and
Chapter 14 presents directions for future work. Appendix A contains in-
formation on the parametrization of rotations in space that is used exten-
sively throughout the thesis. It also contains different parameters that
have been used in the automotive applications. Finally, Appendix B con-
tains MATLAB code for an example in Chapter 3.

Figure 1.7 shows a flowchart of the contents and how the chapters
connect to each other.
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Figure 1.7 A flowchart of the contents. The thesis consists of two tracks.
One track treats vehicle estimation and the other covers vehicle control.
The blue dashed arrows indicate interconnections between the two tracks.
Chapters 3 and 9 should be read before Chapter 10 to get additional un-
derstanding. Similarly, Chapters 6 and 12 are tightly connected.
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2
Control Concepts

This chapter presents background material on control concepts that are
used in the thesis. The aim is to provide so much details that the remain-
ing chapters can be understood without having to consult other material,
in addition to introduce the notation that is used throughout the the-
sis. Each section points out references to appropriate literature where
detailed derivations and in-depth discussions can be found.

2.1 PID Control

PID (Proportional Integral Derivative) control is widely used in academia
and industry, and it is by far the most common feedback mechanism used
in the process industry [Åström and Wittenmark, 1997; Åström and Mur-
ray, 2008]. The standard parallel version is in continuous time given by

u(t) = Kp

(
e(t) + 1

Ki

∫ t

−∞

e(τ )dτ + Kd
de(t)

dt

)
= P(t) + I(t) + D(t), (2.1)

where t is the time, u(t) is the control input, e(t) = r(t)− y(t) is the differ-
ence between desired (reference) value r(t) and measured value y(t), Kp
is the proportional gain, Ki is the integral gain, and Kd is the derivative
gain. The controller consists of three parts. The proportional part con-
cerns the current control error, whereas the integral part and derivative
part consider the history and predicted future, respectively. To avoid ex-
cessive magnifications of measurement noise, it is common to filter the
derivative part with a low-pass filter. By using a first-order filter, the
derivative is modified as

D(t) = − Kd
Nd

dD(t)
dt + KpKd

de(t)
dt ,

where Nd is a parameter that governs the low-pass characteristics. Both
model-based and experimental-based tuning methods exist, see [Åström
and Hägglund, 2005].
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When implemented in a computer, a discretized version is needed.
Denote the sampling period with Ts. The standard way of discretizing
(2.1) at the sampling instant tk is to approximate the integral part I(t)
with a forward difference—that is,

I(tt + Ts) ( I(tk) +
KpTs

Ki
e(tk).

The derivative part is often approximated with a backward approxima-
tion, which gives

D(tk) (
Kd

Kd + Ts Nd
D(tk − Ts) +

KpKd Nd
Kd + Ts Nd

(e(tk) − e(tk − Ts)) .

In some applications, for example in the process industry, the reference
typically changes in steps. This means that the reference is constant for
most of the time, with occasional, large changes at specific time instants.
In those cases, excessive control signals are avoided by setting the refer-
ence to zero in the derivative part.

We will use PID control in Chapter 6, but it is also implicitly used in
other parts of the thesis.

2.2 Force Control

Force control [Siciliano and Villani, 1999] is frequently used in robotics.
Some examples are deburring [Hsu and Fu, 2000], drilling [Olsson, 2007],
and assembly [Linderoth, 2013], where force sensors measure the contact
forces. Force feedback can be performed with (2.1). A more common ap-
proach is to employ impedance (admittance) control [Hogan, 1984; Spong
and Hutchinson, 2006]. The idea is to control the apparent inertia of the
system, and a common controller form in Cartesian space is

u(t) = 1
M

(
F(t) − Fr(t) − D(ṙ(t) − ṗ(t)) − K (r(t) − p(t))

)
, (2.2)

where M , D, and K are tuning parameters that describe the desired
mass, damper constant, and spring constant of the system, respectively.
Moreover, F(t) is the measured force, Fr(t) is the force reference, p(t) is
the position, and ṗ(t) is the time derivative of p at time t. Figure 2.1
provides the intuition. Impedance controllers are popular in force-control
applications because they provide an intuitive control structure for when
in contact with stiff environments. Note that the control structure (2.2)
allows for performing position and velocity control as well.
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M
K

DD

u F

Figure 2.1 An illustration of impedance-based force control. The idea
is to change the apparent inertia of the system. The desired behavior is
chosen by selecting appropriate mass M , damper constant D, and spring
constant K .

2.3 Dynamic Optimization

Dynamic optimization has gained increased attention over the last decade,
both in academia and industry [Albanesi et al., 2006; Larsson, 2011;
Grover and Andersson, 2012; Sällberg et al., 2012]. Examples of applica-
tions are parameter estimation, offline trajectory generation, and online
optimization. In one general formulation, it aims to solve optimization
problems while allowing for model descriptions written as differential-
algebraic equations (DAEs); that is,

f (ẋ(t), x(t),w(t),u(t), p) = 0, (2.3)

where f in general is a vector-valued function and x(t) ∈ Rnx , w(t) ∈ Rnw,
u(t) ∈ Rnu , and p ∈ Rnp contain the states, algebraic variables, control
variables, and system parameters, respectively. Figure 2.2 shows the dif-
ferent classes of optimization problems we will encounter in this thesis,
and we will briefly go through the main ideas next. Given the model
description (2.3), the optimization problem is formulated on the time in-
terval t ∈ [0, t f ] as

minimize
ẋ,x,w,u,p,t f

J(ẋ(t), x(t),w(t),u(t), p) (2.4a)

subject to f (ẋ(t), x(t),w(t),u(t), p) = 0 (2.4b)
f0(ẋ(0), x(0),w(0),u(0), p) = 0 (2.4c)
f̄ (ẋ(t), x(t),w(t),u(t), p) ≤ 0 (2.4d)
h̄(ẋ(t), x(t),w(t),u(t), p) = 0 (2.4e)
f̄ end(ẋ(t f ), x(t f ),w(t f ),u(t f ), p) ≤ 0 (2.4f)
h̄end(ẋ(t f ), x(t f ),w(t f ),u(t f ), p) = 0, (2.4g)

where (2.4a) is the scalar-valued objective function, (2.4c) contains the
initial conditions, (2.4d) contains the path inequality constraints, and
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Dynamic Optimization

Static Optimization

Nonlinear Program

ConvexNonconvex

Quadratic Program

Figure 2.2 The different classes of optimization problems that we will
encounter in the thesis and briefly go through in this chapter. The dashed
line to the left indicates other classes, such as mixed-integer optimization
problems. In this thesis, dynamic optimization problems are (in an ap-
proximate manner) formulated as static optimization problems, which are
solved by nonlinear programs.

(2.4e) contains the path equality constraints. Moreover, (2.4f) and (2.4g)
describe the terminal constraints. These are similar to the path con-
straints, but are only enforced at the final time t f . To exemplify, the initial
conditions in (2.4c) are often on the form x(0) = x0 and the inequal-
ity constraints are typically bounds on the optimization variables (e.g.,
−umax ≤ u(t) ≤ umax). The time dependency is most often suppressed
throughout the thesis.

Formulation of Dynamic Optimization Problems
The optimization problem (2.4) can be solved using two different ap-
proaches, which are direct and indirect approaches, see [Biegler, 2010]
for a thorough investigation. The indirect approach is based on first-order
necessary conditions for optimality [Pontryagin et al., 1964]. The opti-
mality conditions are formulated as a set of DAEs, which results in a
two-point boundary-value problem [Cervantes and Biegler, 2009].

The direct approach involves transforming the infinite-dimensional
problem (2.4) to a finite-dimensional nonlinear program (NLP) [Biegler,
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2010] by discretization. The resulting NLP is on the form

minimize J(x̄) (2.5a)
subject to fi(x̄) ≤ 0, i = 1, . . . , m (2.5b)

hi(x̄) = 0, i = 1, . . . , n, (2.5c)

where x̄ ∈ Rnx contains the discretized variables. Further, (2.5a) is a dis-
cretized version of (2.4a), where J : Rnx → R, and (2.5b)–(2.5c) are the cor-
responding discretized inequality and equality constraints, respectively,
with fi : Rnx → R, i = 1, . . . , m, hi : Rnx → R, i = 1, . . . , n. The transforma-
tion is either done by sequential or simultaneous methods.
Sequential Methods In sequential methods, the control variables are
discretized and parametrized by piecewise polynomials. Given initial con-
ditions and control parameters, the DAE system is integrated (simulated)
forward in time and used for evaluation of (2.4a). Using the DAE integra-
tion an NLP solver finds improved control parameters, whereby the pro-
cedure is repeated [Binder et al., 2001]. Sequential methods are relatively
easy to construct, but require repeated numerical integration. Further,
path constraints are typically handled by introducing extra terms in the
penalty function.
Simultaneous Methods Simultaneous methods mainly consist of mul-
tiple shooting and direct transcription [Biegler, 2010]. Multiple shooting
splits the time domain into smaller elements, and in each element the
DAEs are integrated separately from the other segments. Continuity is en-
forced by including equality constraints at the initial and terminal point,
respectively, of two neighboring elements. Control variables are treated
in a similar way as for sequential methods, but a difference is that path
constraints can be enforced at the grid points. However, they might be
violated between the grid points.

Direct transcription methods discretize all algebraic and control vari-
ables, as well as the states and the corresponding equations. Typically
the discretization makes use of polynomial approximations. The result
is a large, sparse NLP of the form (2.5), which is a difference compared
with sequential and multiple shooting methods. Thus, direct transcription
methods do not need any integrators as the solution is found simultane-
ously for all time instants. A drawback with this approach is that adaptive
discretization schemes are in general not straightforward to include.

Solution of Nonlinear Programs
Two methods to solve NLPs are active-set methods and interior-point
methods. Active-set methods essentially aim to repeatedly remove inactive
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2.4 Convex Optimization

constraints and solve smaller equality-constrained optimization problems.
They assume that a feasible solution is available.

Interior-point methods reduce the full optimization problem by intro-
ducing the inequality constraints in the objective function and sequen-
tially solving equality-constrained minimization problems with increas-
ing precision. Feasibility is not achieved until the last iterations. Interior-
point methods are typically solved using gradient-based methods, such as
Newton’s method.

A possible advantage of active-set methods is that the iterations re-
main feasible as soon as an initial feasible solution has been found. This
can be advantageous for online implementations, where it because of com-
putation time may be necessary to terminate before an optimum has been
found. However, the need for a feasible initial solution is a disadvantage
of active-set methods. Interior-point methods have been shown to be very
efficient for large NLPs and for NLPs where certain structure is present.
For more detailed presentations of both solver types, see [Biegler, 2010;
Maciejowski, 2002].

Dynamic optimization will be used in Chapters 10 and 11, and the
optimization problems will be solved by using direct transcription and an
interior-point method.

2.4 Convex Optimization

Convex optimization problems are special cases of NLPs (see Figure 2.2 for
the hierarchy), in which the optimization problem has certain beneficial
properties. The reader is referred to [Boyd and Vandenberghe, 2008] for
in-depth discussions of how to formulate and solve convex optimization
problems.

DEFINITION 2.1—CONVEX SETS
A set S is convex if and only if

θ x1 + (1− θ )x2 ∈ S (2.6)

for any point x1, x2 ∈ S and any θ ∈ [0, 1]. 2

The definition implies that the straight line that connects x1 and x2 be-
longs to S. Figure 2.3 gives an illustration of convex sets.

DEFINITION 2.2—CONVEX FUNCTIONS
A function f : Rnx → R is convex if and only if it fulfills

f (θ x1 + (1− θ )x2) ≤ θ f (x1) + (1− θ ) f (x2) (2.7)

for all x1, x2 ∈ Rnx and any θ ∈ [0, 1]. 2
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x1

x2

x1

x2

Figure 2.3 A convex set (left) and a nonconvex set (right). Because every
point on a line that connects (x1,x2) belong to the same set as (x1,x2) if
and only if the set is convex, the set to the left is convex while the set to
the right is not.

x

f (x)

f (x) = x2

(x1, f (x1))

(x2, f (x2))

Figure 2.4 An illustration of the convexity concept in the one-
dimensional case. For a convex function, in this case f (x) = x2, the line
segment between (x1, f (x1)) and (x2, f (x2)) lies above the graph of f .

For differentiable functions, Definition 2.2 is equivalent to

f (x1) ≥ f (x2) +∇ f (x2)
T(x1 − x2), (2.8)

where

∇ f (x2) =
� f (x2)

�x2
∈ Rnx

is the gradient to f at x2. This definition implies that the line segment be-
tween (x1, f (x1)) and (x2, f (x2)) lies above the graph of f , see Figure 2.4
for an illustration in the one-dimensional case.
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2.5 Model Predictive Control

Convex Optimization Problems
Again consider the NLP (2.5); that is, consider

minimize J(x)
subject to fi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , n,
(2.9)

where x ∈ Rnx contains the optimization variables. The function
J : Rnx → R is the objective function, fi : Rnx → R, i = 1, . . . , m are the
inequality constraint functions, and hi : Rnx → R, i = 1, . . . , n are the
equality constraint functions. The optimization problem (2.9) is con-
vex if J and { fi}

m
i=1 are convex functions and if {hi}

n
i=1 are affine—that

is, hi = aT
i x − bi. Moreover, the feasible set of (2.9) is convex. This class

of optimization problems has several attractive properties. First, every
locally optimal point x∗ to (2.9) is also globally optimal. Second, there
exist fast solvers for a large variety of different problem formulations.
Third, many problems can be formulated as, or approximated by, convex
optimization problems. Convex optimization is therefore used in a wide
range of applications.

A quadratic program (QP) is a common special case of (2.9). In QPs,
the objective function is quadratic and the equality constraint functions
are linear. This yields

minimize 1
2 x

TPx+ qTx+ d (2.10a)

subject to Gx− r ≤ 0 (2.10b)
Ax− b = 0, (2.10c)

where G ∈ Rm$nx and A ∈ Rn$nx , with a symmetric, positive-definite
matrix P ∈ Rnx$nx .

For a detailed presentation of an interior-point method for solving
convex optimization problems, see [Boyd and Vandenberghe, 2008]. By
utilizing structure, QPs can be solved very efficiently with custom-made
solvers, often within a few milliseconds and sometimes even faster. See
[Mattingley and Boyd, 2012] for an example of a custom-made solver.

2.5 Model Predictive Control

Model Predictive Control (MPC) is a control technique that has gained
attention in several contexts—for example, process control [Maciejowski,
2002; Wang et al., 2007], automotive applications [Del Re et al., 2010;
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Hermans et al., 2013], and combustion-engine control [Widd, 2012; Hen-
ningsson, 2012]. For thorough descriptions of MPC, see [Rawlings and
Mayne, 2009] and [Maciejowski, 2002]. It is an optimization-based con-
trol methodology that optimizes system behavior given predictions from
a system model. The considered models are in continuous time typically
(DAE formulations are also possible) described by the set of differential
equations

ẋ = f (x(t),u(t)), x(0) = x̄, (2.11)
where x ∈ Rnx , u ∈ Rnu , f : Rnx $ Rnu → Rnx , and x̄ is the initial value.
It is common to apply piecewise constant control inputs. Hence, (2.11) is
often written as the difference equation

xk+1 = �(xk,uk), x0 = x̄, (2.12)

where xk ∈ Rnx is the corresponding state vector in discrete time and
uk ∈ Rnu is the input vector. The function � : Rnx $ Rnu → Rnx is the
discrete-time counterpart to f in (2.11). In the following we outline
the MPC formulation in the discrete-time case; however, there exists a
continuous-time equivalent [Mayne et al., 2000].

MPC solves a finite horizon optimal-control problem given the state
estimate at time index k as initial condition, yielding the optimal future
control sequence U∗

k as

U∗
k = {û∗

kpk, . . . , û∗
k+Hc−1pk},

where û∗
jpk is the predicted optimal control input at time index j given

information about the system up to time index k and Hc is the control
horizon. Subsequently, the first control action û∗

kpk is applied to the system.
The procedure is repeated as soon as a new state estimate is available.
Because of this, another name for MPC is receding horizon control. Note
that feedback is introduced in the algorithm by repeating the optimization
at each time instant. Throughout the thesis, we neglect that the control
sequence is based on predictions, and simply write uk for ûkpk. Further,
depending on the actual computation time and sampling periods involved,
the control sequence sometimes stretches from time index k+ 1 instead
of time index k.

A feature with MPC is that it naturally handles state and control
constraints; that is, the state and input vector can be forced to satisfy
xk ∈ X and uk ∈ U for some sets X and U, respectively. The cost function,
Jk(xk,Uk), reflects the system behavior over a finite prediction horizon
Hp, which typically is longer than the control horizon Hc:

Jk(xk,Uk) = � f (xk+Hp) +

Hp∑
i=1
�x(xk+i) +

Hc−1∑
i=0

�u(uk+i), (2.13)
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k

x

xk

x̂k

rk

Hc Hp

k

u

uk

û∗
k

Hc Hp

Figure 2.5 The basic idea of model predictive control in the one-
dimensional case. The predicted optimal control input sequence U∗

k gives
the predicted state sequence, and the first of these control inputs is ap-
plied to the system. The control sequence is found through minimization
of a cost function that is specified in terms of initial state xk and state-
reference sequence ri, for all i ∈ {k+ 1, . . . , k+ Hp}, as well as including
a cost on the control inputs.

where �x(xk+i) and �u(uk+1) are the costs associated with the states and
controls, respectively, and � f (xk+Hp) is the terminal cost. Figure 2.5 illus-
trates the concept. When using Hp > Hc in (2.13), the control input uk+i
is held constant for i ≥ Hc. Moreover, the states are often restricted to
reside in a set X f at the final time (i.e., xk+Hp ∈ X f ), where X f ⊆ X. This
yields the optimization problem

minimize
Uk

Jk(xk,UHc)

subject to xi+1 = �(xi,ui), ∀i ∈ {k, . . . , k+ Hp}

xk = x̄
xi ∈ X, ∀i ∈ {k+ 1, . . . , k+ Hp}

ui ∈ U, ∀i ∈ {k, . . . , k+ Hc − 1}
xk+Hp ∈ X f .

(2.14)
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There are numerous papers and books treating stability and feasibility
of MPC. The survey paper [Mayne et al., 2000] states four sufficient con-
ditions for stability. Two of the assumptions are that X f and X are closed
and U is compact. Further, the conditions in [Mayne et al., 2000] rely on a
terminal cost, terminal constraint, and terminal controller to prove stabil-
ity. Without imposing terminal constraints, a common approach to show
stability is to assume that the horizons are sufficiently long [Maciejowski,
2002; Grimm et al., 2005; Grüne and Rantzer, 2008].

Linear Systems
An important special case in MPC is when the system dynamics are linear,
that is,1

xk+1 = Axk + Fuk, (2.15)

where A ∈ Rnx$nx and F ∈ Rnx$nu are constant matrices that define the
system dynamics. The linear model (2.15) makes it possible to formulate
the MPC problem as a QP (i.e., as in (2.10)). The QP formulation has the
features:

1. A cost Jk(xk,Uk) that is quadratic in the state and input variables

2. Maximum and minimum constraints on the state and input vari-
ables

3. Rate constraints on the control variables

The assumption on the cost function means that �x(xk+1), �u(uk+1), and
� f (xk+Hp) in (2.13) are written as

�x(xk+i) = (xk+i − rk+i)
TWx(xk+i − rk+i)

�u(uk+i) = uT
k+iWuuk+i + ∆uT

k+iW∆u∆uk+i

� f (xk+Hp) = (xk+Hp − rk+Hp)
TWf (xk+Hp − rk+Hp),

(2.16)

where the weight matrices Wx, Wu, W∆u, and Wf are symmetric and pos-
itive semidefinite matrices, and where ∆uk+1 = uk+1 − uk. The cost func-
tions (2.16) correspond to the quadratic objective (2.10a), features 2 and 3
correspond to the linear inequality constraints (2.10b), and the dynamics
(2.15) correspond to the equality constraints (2.10c).

We will make use of both linear and nonlinear MPC in an automotive
application (Chapter 11), and linear MPC will be used in mobile robotics
(Chapter 12).

1 In the control literature, B usually denotes the input matrix. For consistence with nota-
tion in the rest of the thesis, we use F instead.
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2.6 Summary

2.6 Summary

This chapter provided a short summary of the different control methods
that will be used throughout the thesis. In addition, references to appro-
priate reading material were given in each section. The PID controller,
which was described in Section 2.1, is a simple, yet powerful method to
control different kinds of systems, and is the most wide-spread control
technique in industry.

Force control can be implemented in various ways, but is frequently
being done using impedance-based controllers, because it provides a way
of describing the desired behavior in terms of physical entities. Section 2.2
gave a formulation of one common impedance controller.

We examined different optimization techniques in Sections 2.3–2.5.
Dynamic optimization is becoming more and more widespread, both in
academia and industry. An important special case of optimization is con-
vex optimization, in which a locally optimal solution is also globally opti-
mal. There are many different convex problem formulations. This chapter
discussed quadratic programs in general and model predictive control in
particular.
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3
Estimation Using Particle
Methods

The aim in state estimation is to estimate the state vector x given the
measurement vector y. Estimation as a field started to evolve during the
second half of the 18th century. Gauss, Legendre, Bayes, and Laplace
were some of the early contributors. Gauss and Legendre contributed
to estimation with, for example, the least-squares solution [Gauss and
Davis, 1857; Stigler, 1981]. Bayes and Laplace made contributions within
Bayesian probability by, for example, formulating and developing what is
now known as Bayes’ theorem [Laplace, 1986]. A breakthrough on recur-
sive estimation was given in [Kalman et al., 1960], where the Kalman
filter was introduced as a means to employ recursive state estimation of
linear, Gaussian state-space systems. The Kalman filter has been success-
fully applied to numerous types of systems and applications. It provides
the minimum mean-square error estimate when the system is linear with
Gaussian distributed noise sources.

The particle filter was introduced in [Gordon et al., 1993], and is con-
sidered a major contribution within nonlinear recursive estimation. Sev-
eral ideas had been presented on how to estimate the states of nonlin-
ear systems using extensions of the Kalman-filter framework—for exam-
ple, the extended Kalman filter (EKF) and the unscented Kalman filter
[Julier and Uhlmann, 2004]. However, the particle filter readily solves the
estimation problem for nonlinear, non-Gaussian systems, at least in the-
ory. One of the drawbacks with particle filters is increased computational
complexity.

In the Bayesian view, the state estimation problem is solved by finding
the probability density function p(xs:kpy0:T), where xs:k := {xs, . . . , xk} and
y0:T := {y0, . . . , yT}. Depending on the values of s and T , three different
estimation problems are obtained (Figure 3.1):

• If s ≤ k < T it is called the smoothing problem.
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y Smoothing

x̂

k < T

y

x̂

Filtering

k = T

y

k > T

x̂

Prediction

Figure 3.1 An illustration of smoothing, filtering, and prediction for
s = k. The symbol x̂ means the estimate of x.

• If s = k = T it is called the filtering problem.

• If k ≥ s > T it is called the prediction problem.

This chapter treats the filtering and smoothing problems.
Consider a state-space model with the dynamics and measurement

equation as
xk+1 = f (xk,uk,wk)

yk = h(xk) + ek,
(3.1)

where xk ∈ Rnx , yk ∈ Rny, and uk ∈ Rnu . Further, the noise processes
wk ∈ Rnw and ek have known densities.1 The time evolution of xk is
described by the possibly nonlinear function f : Rnx $ Rnu $ Rnw → Rnx

and h : Rnx → Rny denotes the possibly nonlinear measurement function.
If (3.1) is a linear model with white, additive, and Gaussian noise; that
is, if (3.1) is equal to

xk+1 = Axk + Fuk +wk, wk ∼N (0,Qk)

yk = Cxk + ek, ek ∼N (0,Rk),
(3.2)

then the Kalman filter is the optimal state estimator [Kalman et al.,
1960; Anderson and Moore, 1979]. In (3.2), Qk is the process-noise co-
variance matrix, Rk is the measurement-noise covariance matrix, and
ek ∼ N (0,Rk) implies that the measurement noise is a sample from
the Gaussian distribution, which has zero mean and covariance Rk. In
this context, optimal means that the state estimates minimize the mean-
square estimation error; that is, the state estimates solve

minimize E(qx̂kpk − xkq
2),

1 In Chapter 2 w denoted algebraic variables, which is not the case here.
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whereE(x) is the expected value of x and x̂kpk is the state estimate at time
index k given measurements up to time index k. The covariance matrix
Pkpk ∈ Rnx$nx is associated with the estimate. The Kalman filter solves
the estimation problem in a recursive manner, where the filtered estimate
is found by correcting the one-step prediction with the measurement at
each time instant. The algorithm is summarized in Algorithm 3.1.

Algorithm 3.1—The Kalman Filter
1: Initialize: Set x̂0p−1 = x0, P0p−1 = P0.
2: for k = 0 to T do
3: Measurement update:

x̂kpk = x̂kpk−1 + Kk(yk − Ckxkpk−1)

Pkpk = Pkpk−1 − KkSkKT
k

Sk = CkPkpk(Ck)
T + Rk

Kk = Pkpk−1CT
k (Sk)

−1.

(3.3)

4: Time update:
x̂k+1pk = Axkpk + Fuk

Pk+1pk = AkPkpkAT
k +Qk.

(3.4)

5: end for

There are several solutions to the linear smoothing problem. One approach
is to extend the Kalman filter with a state xs, s < k, and then execute the
Kalman filter from time ts to time tk. This yields a fixed-point estimate,
that is, the smoothed estimate at a given point in time. Another possibility
is to use the Rauch-Tung-Striebel fixed-interval smoother [Rauch et al.,
1965], which computes smoothed estimates over an interval.

Put in a Bayesian framework, (3.1) can be reformulated as

xk+1 ∼ p(xk+1pxk,uk), (3.5a)
yk ∼ p(ykpxk), (3.5b)

where xk+1 and yk are regarded as samples from the respective distribu-
tion. The Markov property holds for (3.5), which implies that

p(xkpx0:k−1, y0:k−1) = p(xkpxk−1),
p(ykpx0:k, y0:k−1) = p(ykpxk).

In the following, we briefly discuss particle filters and particle smoothers.
For notational brevity, uk is omitted. Since uk can be seen as the mean of
the process noise, this omission does not cause any loss of generality. For
more details, see, for example, [Arulampalam et al., 2002; Schön et al.,
2005; Gustafsson, 2010b].
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3.1 Particle Filtering

Particle filters approximate the posterior density p(xkpy0:k),2 and belong
to the class of sequential Monte-Carlo methods, which represent the poste-
rior density with a set of weighted particles [Doucet et al., 2000; Arulam-
palam et al., 2002]. The first papers on sequential Monte-Carlo methods
came in the 1950’s, see [Hammersley and Morton, 1954] for one example,
but it was in 1993 that [Gordon et al., 1993] provided an implementation
of what is now known as the particle filter. One of the novelties in that
paper was the inclusion of the crucial resampling step, see a discussion
on page 54. Since then it has found its use in numerous applications, see
[Gustafsson, 2010a] for a plethora of them. Positioning and tracking ap-
plications have been motivators to drive the technological developments
for particle filters, and still are [Gustafsson, 2010b].

One key ingredient in the derivation of recursive state estimators us-
ing probability density functions is Bayes’ theorem (or Bayes’ rule): for
two variables x and y, it holds that

p(xpy) = p(ypx)p(x)
p(y) . (3.6)

Consider the one-step prediction (prior) of the posterior density expressed
in terms of the Chapman-Kolmogorov equation:

p(xkpy0:k−1) =

∫
p(xk, xk−1py0:k−1)dxk−1

=

∫
p(xkpxk−1, y0:k−1)p(xk−1py0:k−1)dxk−1

=

∫
p(xkpxk−1)p(xk−1py0:k−1)dxk−1, (3.7)

where the Markov property was used for the third equality. The posterior
filtering density

p(xkpy0:k)

can be rewritten using Bayes’ rule (3.6), which gives

p(xkpy0:k) = p(xkpyk, y0:k−1) =
p(ykpxk)p(xkpy0:k−1)

p(ykpy0:k−1)
, (3.8)

where
p(ykpy0:k−1) =

∫
p(ykpxk)p(xkpy0:k−1)dxk

2 More correct is to say that particle filters approximate p(x0:kpy0:k), but here only a sim-
plified, marginalized case is considered. The marginalized case is the most common of
the two in the application-oriented literature.
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is a normalization constant. Thus, in (3.8), the measurement yk is used
for updating the prior density to obtain the posterior probability density
function.

When (3.1) is linear with Gaussian noise sources—that is, when (3.1)
is equal to (3.2)—the solutions to (3.7) and (3.8) are analytic and given
by the Kalman filter. However, the integrals in (3.7) and (3.8) do not
in general admit analytic solutions; therefore approximations, such as
the particle filter, must be used. Assume that N particles (hypotheses)
{xi

k}
N
i=1 are sampled from the one-step prior as

xi
k ∼ p(xkpy0:k−1). (3.9)

The particle filter then approximates this density with

p(xkpy0:k−1) ( p̂(xkpy0:k−1) =
N∑

i=1
wi

kpk−1δ (xk − xi
k). (3.10)

In this context δ (⋅) is the Dirac delta function, which fulfills

∫ ∞

−∞

δ (x)dx = 1,
∞∫

−∞

f (x)δ (x− x0)dx = f (x0)

for a function f . The importance weights {wi
kpk−1}

N
i=1 indicate how likely

each particle is, and fulfill

N∑
i=1

wi
kpk−1 = 1, wi

kpk−1 ≥ 0, ∀i ∈ {1, . . . , N}.

Figure 3.2 shows an illustration of the particle-filter idea.
The weights in (3.10) can be chosen using importance sampling [Robert

and Casella, 2004; Marshall, 1956] as follows: Often it is difficult to sam-
ple from (3.9) directly. Instead, let q(xkpxk−1, y0:k) be a proposal density
(the importance density) from which it is straightforward to sample. Us-
ing the importance density, (3.7) is rewritten as

p(xkpy0:k−1) =

∫
q(xkpxk−1, y0:k)

p(xkpxk−1)

q(xkpxk−1, y0:k)
p(xk−1py0:k−1)dxk−1.

(3.11)
By drawing N samples from the proposal density, that is,

xi
k ∼ q(xkpxk−1, y0:k),
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xk

p

Figure 3.2 A probability density function p and its particle-filter approx-
imation. The weights are indicated by the dots. Analogous to a continuous
distribution, the weights sum to one.

the integral in (3.11) approximates to a sum according to

p(xkpy0:k−1) =
N∑

i=1

p(xi
kpxk−1)

q(xi
kpxk−1, y0:k)

p(xk−1py0:k−1)︸ ︷︷ ︸
wi

kpk−1

δ (xk − xi
k). (3.12)

The weights wi
kpk−1 are defined as

wi
kpk−1 ∝

p(xi
kpxk−1)

q(xi
kpxk−1, y0:k)

p(xk−1py0:k−1), (3.13)

where ∝ means proportional to. By inserting (3.12) into (3.8), the follow-
ing is obtained:

p(xkpy0:k) =
p(ykpxk)p(xkpy0:k−1)

p(ykpy0:k−1)

(
N∑

i=1

p(ykpxi
k)

p(ykpy0:k−1)
wi

kpk−1δ (xk − xi
k)

∝
N∑

i=1
p(ykpxi

k)wi
kpk−1︸ ︷︷ ︸

wi
k

δ (xk − xi
k).

The filtering posterior p(xkpy0:k) is thus approximated as

p(xkpy0:k) ( p̂(xkpy0:k) =
N∑

i=1
wi

kδ (xk − xi
k), (3.14)
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where the weights are given by

wi
k ∝ p(ykpxi

k)wi
kpk−1. (3.15)

One obvious choice of importance density is

q(xi
kpxk−1, y0:k) = p(xi

kpxk−1), (3.16)

that is, the state dynamics (3.5a). With this choice of importance density,
the weight update equation (3.15) reads

wi
k ∝ p(ykpxi

k)wi
k−1, (3.17)

since wkpk−1 = wi
k−1 in (3.13). The importance density (3.16) was intro-

duced in [Gordon et al., 1993]. There are, however, other alternatives; see
[Arulampalam et al., 2002; Gustafsson, 2010b] for a few examples.

Resampling
A problem with the particle filter is the degeneracy (also referred to as
depletion) phenomenon, which means that after a few iterations all but
very few particles will have negligible weights. Thus, particles that do
not contribute to the posterior approximation are updated in each step,
which is inefficient. To remedy this, the particles are resampled. The idea
of resampling is to replace particles that have negligible weights with
particles that have larger weights. More specifically, resampling involves
generating a new set of particles {xi

k}
N
i=1 from the posterior approximation

in such a way that the probability P of generating xi
k is wi

k:

P(xi
k = x

j
k ) = wj

k, ∀i ∈ {1, . . . , N}. (3.18)

The resampling step (3.18) was introduced in [Gordon et al., 1993], and
makes the particle filter practically useful. The resampling step greatly
reduces the effects of degeneracy, but introduces other negative effects,
such as sample impoverishment; thus, particle diversity is lost, which im-
plies that the same particle can be selected many times in the resampling
step. The degeneracy effect is often more significant for small process
noise. Consequently, resampling is often only performed when the degen-
eracy is large enough. A measure of degeneracy is the effective sample
size, which commonly is approximated by

Neff =

( N∑
i=1
(wi

k)
2

)−1

. (3.19)
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3.2 Rao-Blackwellized Particle Filtering

When (3.19) drops below a given threshold Nthr, the particles are resam-
pled and the weights are equalized as

wi
k =

1
N , ∀i ∈ {1, . . . , N}.

For a discussion on resampling algorithms, see [Arulampalam et al., 2002;
Douc, 2005; Hol et al., 2006; Gustafsson, 2010b]

The Algorithm
Algorithm 3.2 provides a version of the particle filter that uses resampling
in each time step. There are many refinements of it, but the basic steps
remain the same.

Algorithm 3.2—The Particle Filter
1: Initialize: Set {xi

0}
N
i=1 ∼ p0(x0) and weights {wi

0}
N
i=1.

2: for k = 0 to T do
3: Time update: Generate new particles from (3.5a):

xi
k+1 ∼ p(xk+1pxi

k), ∀i ∈ {1, . . . , N}.

4: Measurement update: Compute weights as in (3.17)
and normalize them.

5: Resample according to (3.18).
6: end for

3.2 Rao-Blackwellized Particle Filtering

To decrease the required number of particles and the variance of the es-
timates, and thus to reduce computational complexity, it is advantageous
to exploit model structure. This is the idea behind Rao-Blackwellization,
where the subset of the state space that allows for analytic expressions is
marginalized out. Thus, the sampled state space is smaller and it should
therefore be possible to use fewer particles [Doucet et al., 2000; Schön et
al., 2005]. The term Rao-Blackwellization stems from the Rao-Blackwell
theorem [Blackwell, 1947]. The theorem essentially states that if x̂ is an
unbiased estimate of x and if � is the sufficient statistics,3 then the ex-
pected value of x̂ given �, E(x̂p�), is an unbiased estimate with smaller
variance than x̂. This transformed estimator is called a Rao-Blackwellized
estimator.

3 As an example, the sufficient statistics for the Gaussian distribution is the mean and
covariance.
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Similar to particle filters, Rao-Blackwellized particle filters (RBPFs)4
have found their use in many applications—for example, in aircraft track-
ing [Schön et al., 2005]; aerial vehicles [Törnqvist et al., 2009]; terrain-
aided positioning, radar-based target tracking, bearings-only target track-
ing, automotive target tracking [Schön et al., 2006]; and simultaneous lo-
calization and mapping (SLAM) [Hähnel et al., 2003; Grisetti et al., 2005;
Grisetti et al., 2007] in robotics. The RBPFs have become useful because
for a lot of applications it is possible to model a major part of the states as
linear. Sometimes the RBPF is the only feasible alternative; the number
of particles needed to cover the state space grows exponentially with the
number of states in many particle-filter implementations [Beskos et al.,
2011; Rebeschini and van Handel, 2013].5

The details and derivations leading up to the RBPF as we will use
it are found in [Schön et al., 2005] and a complexity analysis is given
in [Karlsson et al., 2005]. The remainder of this section gives the main
ideas behind the RBPF. Assume that the state vector xk ∈ Rnx can be
partitioned into a linear part zk ∈ Rnz and a nonlinear part ηk ∈ Rnη as
xk =

[
zTk ηT

k
]T. Further assume that the dynamics (3.1) can be written

as

zk+1 = f (ηk) + A(ηk)zk + F(ηk)wzk, (3.20a)
ηk+1 = �(ηk) + B(ηk)zk + G(ηk)wηk, (3.20b)
yk = h(ηk) + C(ηk)zk + ek. (3.20c)

This model class is denoted mixed-Gaussian state space (MGSS) and is a
model class that covers a set of other model classes where marginalization
can be used. The process noise wk =

[
(wzk)T (wηk)T

]T is assumed white
and Gaussian distributed according to

wk ∼ N (0,Qk) , Qk =

[
Qzk Qzηk

(Qzηk )T Qηk

]
. (3.21)

The process noise and the measurement noise are assumed mutually
independent. Furthermore, f (ηk), �(ηk), h(ηk); the system matrices
A(ηk), B(ηk), C(ηk); and F(ηk), G(ηk) all have a possibly nonlinear
dependence on ηk. This dependence is implicit in the following. The mea-
surement noise is assumed white and Gaussian distributed as

ek ∼N (0,Rk).

4 Sometimes also referred to as marginalized particle filters.
5 This is known as the curse of dimensionality.
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3.2 Rao-Blackwellized Particle Filtering

The enabler for the RBPF is the key factorization

p(zk,η0:kpy0:k) = p(zkpη0:k, y0:k)p(η0:kpy0:k). (3.22)

The factorization in (3.22) allows for first estimating the trajectory η0:k
with a particle filter (3.14) and then computing zk analytically with a
Kalman filter [Kalman et al., 1960; Anderson and Moore, 1979] for each
trajectory {η0:k}

N
i=1. It is possible to use a Kalman filter because (3.20a)

and (3.20c) combined describe a linear Gaussian system given η0:k. This
implies that

p(zkpη0:k, y0:k) =N (zkpẑkpk, Pkpk), (3.23)
where N (zkpẑkpk, Pkpk) means the Gaussian density given mean ẑkpk and
covariance matrix Pkpk, ẑkpk := ẑkpk(η0:k) is the estimate of zk given the
measurements y0:k and the nonlinear trajectory up to time index k, and
Pkpk := Pkpk(η0:k) is its associated covariance. By combining (3.14) and
(3.23), an approximation p̂(zk,η0:kpy0:k) to (3.22) is given by the Gaussian
mixture

p̂(zk,η0:kpy0:k) =
N∑

i=1
wi

kN
(
zkpẑi

kpk, Pi
kpk
)
δ
(
η0:k − η

i
0:k
)

,

where the weight update resembles that of the standard particle filter.
The RBPF is summarized in Algorithm 3.3 in the case when Fk and Gk
both are identity matrices. On line 1 in Algorithm 3.3, p0 and P0 mean
the initial distribution and initial covariance, respectively.

Algorithm 3.3—Rao-Blackwellized Particle Filter
1: Initialize: Generate {ηi

0}
N
i=1 ∼ p0(η0), {zi

0p−1}
N
i=1 ∼ p0(z0) and for all

i ∈ {1, . . . , N}, set wi
−1 = 1/N, Pi

0p−1 = P0.
2: for k = 0 to T do
3: Particle-filter measurement update: Evaluate the importance

weights as

w̄i
k ∝ p(ykpηi

0:k, y0:k−1)wi
k−1, ∀i ∈ {1, . . . , N}, (3.24)

and normalize according to

wi
k =

w̄i
k∑N

i=1 w̄i
k
.

4: if
( N∑

i=1
(wi

k)
2
)−1

< Nthr then

5: Resampling: Resample (with replacement) N particles {ηk}
N
i=1

with probabilities {wi
k}, reinitialize weights as wi

k = 1/N.
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6: end if
7: Kalman-filter measurement update:

ẑi
kpk = ẑi

kpk−1 + K i
k(yk − hi

k − Ci
kzi

kpk−1)

Pi
kpk = Pi

kpk−1 − K i
kSi

k(K i
k)

T

Si
k = Ci

kPi
kpk(Ci

k)
T + Rk

K i
k = Pi

kpk−1(Ci
k)

T(Si
k)
−1.

(3.25)

8: Particle-filter time update: Predict new particles,

ηi
k+1 ∼ p(ηk+1pη

i
0:k, y0:k), ∀i ∈ {1, . . . , N}. (3.26)

9: Kalman-filter time update:

ẑi
k+1pk = f i

k + (Q
zη
k )

T(Qηk)
−1(ηi

k+1 − �
i
k) + Āi

k z̄i
kpk

Pi
k+1pk = Āi

k P̄i
kpk( Āi

k)
T +Qzk − (Q

zη
k )

T(Qηk)
−1Qzη

Āi
k = Ai

k − (Q
zη
k )

T(Qηk)
−1Bi

k

z̄i
kpk = ẑi

kpk + Li
k(η

i
k+1 − �

i
k − Bi

k ẑi
kpk)

P̄i
kpk = Pi

kpk − Li
kM i

k(Li
k)

T

Li
k = Pi

kpk(Bi
k)

T(M i
k)
−1

M i
k = Bi

kPi
kpk(Bi

k)
T +Qηk.

(3.27)

10: end for

The densities in (3.24) and (3.26) are given by

p(ykpη0:k, y0:k−1) =N (ykphk + Ck ẑkpk−1,CkPkpk−1CT
k + Rk),

p(ηk+1pη0:k, y0:k) =N (ηk+1p�k + Bk ẑkpk, BkPkpkBT
k +Q

η
k).

For easier access to the theory, Listing B.1 on page 327 provides a MATLAB
implementation of Algorithm 3.3. The code is used for a four-dimensional
problem in Example 3.1.

EXAMPLE 3.1—RAO-BLACKWELLIZED PARTICLE FILTER IMPLEMENTATION
The system is described by the fourth-order system

zk+1 =

1 0.3 0
0 0.92 −0.3
0 0.3 0.92

 zk +wzk,

ηk+1 = arctan(ηk) + (1 0 0)zk +wη
k,

yk =
[
0.1η2

ksign(ηk)
0

]
+

[
0 0 0
1 −1 1

]
zk + ek,

58



3.2 Rao-Blackwellized Particle Filtering

where sign is the signum function. The noise sources are mu-
tually independent, white, and Gaussian distributed according to
wk ∼N (0, 0.01I4$4) and ek ∼ N (0, 0.1I2$2). This model has previously
been used in [Lindsten and Schön, 2010].

First, we define the system parameters. Then simulated data is gen-
erated, which is followed by executing the RBPF. The MATLAB code for the
example is given next, and the implementation of the filter (line 27 in the
code) is found in Listing B.1 on page 327.

1 A = [1 0.3 0;...
2 0 0.92 -0.3;...
3 0 0.3 0.92]; %System matrix for linear states
4 B = [1 0 0]; %System matrix for nonlinear state
5 C = [0 0 0; 1 -1 1]; %Measurement matrix
6 R = 0.1*eye(2); %Measurement noise covariance
7 Q = 0.01*eye(4); %Process covariance
8 P0 = 1e-6*eye(4); %initial covariance
9 Tfinal = 50; %Number of time steps

10 x = zeros(4,Tfinal+1);
11 y = zeros(2,Tfinal);
12 x(:,1) = sqrtm(P0)*randn(4,1);
13

14 for t=1:Tfinal %Generate data
15 x(:,t+1) = [zeros(3,1);atan(x(4,t))]...
16 + [A;B]*x(1:3,t)+sqrtm(Q)*randn(4,1);
17

18 y(:,t) = [0.1*x(4,t)^2*sign(x(4,t));0]...
19 +C*x(1:3,t)+sqrtm(R)*randn(2,1);
20 end
21

22 N = 500; %Number of particles
23 xp = sqrtm(P0)*randn(4,N);
24 P = repmat(P0(1:3,1:3),[1 1 N]);
25 w = ones(1,N)/N;
26 %% Execute RBPF
27 [xmean,xparts] = RBPF(N,y,xp,w,P,A,B,C,R,Q,Tfinal);

2

Figure 3.3 shows results that are generated from executing Example 3.1
once. The corresponding estimates of the distributions for the nonlinear
state are displayed in Figure 3.4. The estimated distributions have large
resemblence with a Gaussian distribution, but differ in their support (the
length of the tails differ).

59



Chapter 3. Estimation Using Particle Methods

0 50

−1

1

k

z2

0 50

−1

1

k

z1

0 50

−1

1

k

z3

0 50

−1

1

k

η
RBPF
True

Figure 3.3 True states and estimated states for Example 3.1. The esti-
mates were generated by the code in Listing B.1, corresponding to Algo-
rithm 3.3.
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Figure 3.4 Estimated distribution of the nonlinear state (black) at ev-
ery fifth time step, corresponding to the results in Figure 3.3. The red +
correspond to the true states and the dashed line is the resulting trajec-
tory.
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3.3 Particle Smoothing

Particle smoothers form approximate solutions to the smoothing den-
sity p(x0:T py0:T). Note that the fixed-point, p(xkpy0:T), and fixed-interval,
p(xs:kpy0:T), smoothing densities can be found by marginalization. If whole
trajectories are stored and resampled, the particle filter in (3.14) can also
be used for approximating the smoothing density. However, because of
the inherent depletion problem in particle filters, this estimate is often
degenerate for large time lags. Hence particle smoothing is frequently
approached with other algorithms, such as the forward filter/backward
simulator (FFBS) [Godsill et al., 2004; Schön et al., 2005] or the two-filter
formula [Kitagawa, 1996]. The FFBS has obtained its name from that it
uses a particle filter in the forward direction and then iterates backward
in time using the filtered estimates. For more details about backward-
simulation methods, see [Lindsten and Schön, 2013]. The FFBS utilizes
the sequential factorization

p(x0:T py0:T) = p(xT py0:T)
T−1∏
k=0

p(xkpxk+1:T , y0:T). (3.28)

It starts by sampling a state x′T = xi
T with probability wi

T from the fil-
tering approximation p(xT py0:T) at time index T . Then the use of Bayes’
rule and the Markov property inherent in the process model (3.5a) gives
that

p(xkpxk+1:T , y0:T) ∝ p(xk+1pxk)p(xkpy0:k), (3.29)
which results in

p(xT−1px′T , y0:T) (
N∑

i=1
wi

T−1pTδ
(
x0:T−1 − xi

0:T−1
)

,

where
wi

T−1pT ∝ wi
T−1p(x′T pxi

T−1). (3.30)

At the second time step, x′T−1 = xi
T−1 is sampled from the filtering distri-

bution with probability wi
T−1pT . Thus, the particle x′T , which was chosen

in the previous time step, is concatenated with x′T−1 to form the trajectory
{x′T−1, x′T}. This recursion is performed until k = 0 is reached, whereby
an approximation to (3.28) can be formed using the trajectory x′0:T . For a
more diverse approximation, the algorithm is repeated M times to yield
the approximation p̂(x0:T py0:T) to the smoothing density as

p̂(x0:T py0:T) =
1
M

M∑
j=1

δ
(
x0:T − x j

0:T

)
. (3.31)
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Zq(x)

p(x)

x

p

Figure 3.5 An illustration of rejection sampling. Samples are drawn
from the area below the black curve. If they are deemed to be samples
from the red area, they are accepted. Otherwise, they are rejected.

Alternative Sampling Methods
As presented here, the FFBS assumes that all smoothing weights (3.30)
are computed in each time step. This is computationally heavy. There
are sampling methods that can be used for decreasing the computational
complexity, such as acceptance-rejection and Metropolis-Hastings sampling
methods [Neumann, 1951; Chib and Greenberg, 1995; Gustafsson, 2010b].
Instead of sampling directly from the smoothing weights, these methods
are based on sampling from alternative densities. Similarly to importance
sampling, which is used in the particle-filter derivation in this chapter,
the alternative densities are denoted by proposal distributions.

Rejection sampling assumes that the original density p(x) can be
bounded by a user-chosen proposal distribution q(x) as p(x) < Zq(x),
Z > 1, for all x, where Z is a constant. The idea is to sample from the
area below Zq(x), x′ ∼ Zq(x), and accept x′ as a sample from the distri-
bution p(x) if Zq(x′) is deemed to be below the graph of p(x). Otherwise
the sample is rejected. Figure 3.5 sketches the idea. The sample is ac-
cepted if Zq(x′)n ≤ p(x′), where n is a number between zero and one,
drawn from a uniform distribution. If q is poorly chosen, there will be
many rejections, thus resulting in large computation time.

3.4 Rao-Blackwellized Particle Smoothing

It is beneficial for smoothing performance to utilize model structure, sim-
ilar to the filtering case. Compared with filtering, smoothing is not as
straightforward. The reason is that the Markovian property (3.29) is lost;
that is, the linear part of the state vector (thus also the measurement
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likelihoods) depends on the entire nonlinear trajectory. Whole trajectories
must therefore be generated to preserve Gaussianity. Some early work on
Rao-Blackwellized particle smoothers (RBPS) is found in [Fong et al.,
2002]. In [Särkkä et al., 2012], an RBPS was derived for a class of state-
space models where the nonlinear part does not depend on the linear part.
Another smoother is found in [Lindsten and Schön, 2011], where both the
linear and nonlinear part are sampled backward in time.

An alternative, improved RBPS was derived in [Lindsten et al., 2013].
This RBPS seeks the solution to the density p(z0:T ,η0:T py0:T) for the model
class (3.20). The density at time step k < T is approximated by

p̂(zk,ηkpy0:T) =
1
M

M∑
j=1
N (zkpẑj

kpT , P j
kpT)δ (ηk − η

j
k), (3.32)

where η j
k is the component of the nonlinear trajectory at time index k and

where zj
kpT is conditioned on the nonlinear backward trajectory.

Assume that the trajectory x′k+1:T is given. To compute (3.32), the
RBPS in [Lindsten et al., 2013] draws one of the RBPF particles {ηi

0:k}
N
i=1

with probability wi
kpT . By discarding the forward trajectory ηi

0:k−1 the back-
ward trajectory is extended with ηi

k, yielding the trajectory {ηi
k,η′k+1:T}.

This procedure is repeated for each time step k = T − 1, . . . , 0, resulting
in a backward trajectory that can be used for approximating p(η0:T py0:T).

The smoothing weights are found by using Bayes rule on the left-hand
side of (3.29), which gives that

p(η0:kpη
′
k+1:T , y0:T) ∝ p(yk+1:T ,η′k+1:T pη0:k, y0:k)p(η0:kpy0:k). (3.33)

The second factor on the right-hand side in (3.33) is approximated by the
particle-filter part of the RBPF. This results in that (3.33) transforms to

p(η0:kpη
′
k+1:T , y0:T) ∝ p(yk+1:T ,η′k+1:T pη0:k, y0:k)p(η0:kpy0:k)

(
N∑

i=1
p(yk+1:T ,η′k+1:T pη

i
0:k, y0:k)wi

k︸ ︷︷ ︸
wi

kpT

δ
(
η0:k − η

i
0:k
)

=
N∑

i=1
wi

kpTδ
(
η0:k − η

i
0:k
)

,

where the smoothing weights were introduced as

wi
kpT ∝ wi

kp(yk+1:T ,η′k+1:T pη
i
0:k, y0:k). (3.34)
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The predictive density in (3.34) is expressed as

p(yk+1:T ,η′k+1:T pη
i
0:k, y0:k)

=

∫
p(yk+1:T ,η′k+1:T pzi

k,ηi
k)p(zi

kpη
i
0:k, y0:k)dzi

k, (3.35)

where the second factor on the right-hand side is given by the Kalman-
filter part of the RBPF—that is, (3.23). The density p(yk+1:T ,η′k+1:T pzi

k,ηi
k)

in (3.35) is found by propagating zero, first, and second order moments
{Zk,λk,Ωk}, dependent on ηi

k but independent of zi
k, backward in time

as the nonlinear trajectory is drawn. Given {Zk,λk,Ωk}, the predictive
density in (3.34) is given by

p(yk+1:T ,η′k+1:T pzi
k,ηi

k) ∝ Zk exp
(
−

1
2
(
(zi

k)
T

Ωkzi
k − 2λTzi

k
))

.

Marginalizing out zi
k gives the sought density (3.35) as

p(yk+1:T ,η′k+1:T pη
i
0:k, y0:k) ∝ Zkdet(Λk)

−1/2 exp
(
−

1
2ζ k

)
, (3.36)

In (3.36), det(Λk) is the determinant of Λk and

ζ k = qẑkpkq
2
Ωk
− 2λT

k ẑkpk − qΓ
T
k(λk −Ωk ẑkpk)q

2
Λ−1 ,

Λk = Γ
T
kΩkΓk + I,

ΓkΓ
T
k = Pkpk, where qµq2

Ω = µ
T
Ωµ.

When the full backward trajectory η′0:T has been computed, the algo-
rithm is typically repeated M times to give a set of backward trajectories
{η j

0:T}
M
j=1 analogous to (3.31). Note that (3.36) is computed for all N par-

ticles, yielding the complexity O (T M N). To find smoothed estimates of
the linear states for each nonlinear trajectory, different constrained linear
smoothers can be employed. Alternatively, it is possible to run Kalman fil-
ters conditioned on the backward trajectories and fuse the estimates with
the backward statistics {Zk,λk,Ωk}. This finally gives the approximated
smoothing density as in (3.32). For further details, see [Lindsten et al.,
2013; Lindsten, 2013].

3.5 Summary

This chapter treated estimation, beginning with giving a historical per-
spective on estimation. We examined the powerful estimation technique
particle filtering in Section 3.1. Starting from the desired posterior
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p(xk, y0:k) and Bayes’ rule, we derived a common form of the particle filter
that was summarized in Algorithm 3.2. The particle filter was introduced
in the seminal paper by [Gordon et al., 1993], but the roots trace back to
the 1950’s. Since then it has been widely used in many applications, and
it excels in applications where the nonlinearities are severe and/or the
noise is non-Gaussian.

Rao-Blackwellized, or marginalized, particle filters were introduced
in Section 3.2. In many applications the state vector can be partitioned
into a part with nonlinear dynamics and a part with linear dynamics. In
these cases it is possible to marginalize out the linear part and find an
analytic expression of the corresponding density. This provides improved
estimation accuracy and in many cases also decreased execution time.
We presented the main idea and the key factorization behind the filter,
and one form of it was given in Algorithm 3.3. In addition, to provide for
easier access to the theory, Example 3.1 used the MATLAB implementation
in Listing B.1 for a test example.

Section 3.3 discussed particle smoothing. In its general formulation,
particle smoothers aim to find the density

p(x0:T py0:T).

This can be achieved using various approaches. One approach is to store
the particles in the particle filter and resample whole trajectories, instead
of only the particles at the current time step. More feasible approaches
include the two-filter formula and the forward filter/backward simula-
tor. We sketched a derivation of the forward filter/backward simulator
smoother, which perhaps is the most widely used approach to particle
smoothing.

Finally, Section 3.4 discussed Rao-Blackwellization in particle smooth-
ing. The solution is not as straightforward as in the filtering case, since
the process is non-Markovian. This implies that the measurement like-
lihood depends on the whole backward trajectory. We outlined a recent
particle smoother that utilizes Rao-Blackwellization for mixed-Gaussian
state-space models.
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4
Ground-Vehicle Modeling

This chapter introduces and explains the tire and chassis models used in
the thesis. Vehicle dynamics is a field that has been given considerable
attention during the last 50 years, and this chapter only treats a small
subset of the available models. Different tire models that are common in
the literature are introduced and compared in terms of their qualitative
behavior. We also discuss aspects of chassis modeling. We conclude the
chapter with a derivation of the dynamic equations of a five degrees-
of-freedom chassis model. The derivation is based on the Newton-Euler
formulation. The coordinate frames that are used in the derivation are
described in Appendix A.

For more information about vehicle modeling in general, the reader
will benefit from the books [Ellis, 1994; Kiencke and Nielsen, 2005; Reim-
pell and Betzler, 2005; Isermann, 2006; Rajamani, 2006; Schindler, 2007;
Wong, 2008] and the theses [Gäfvert, 2003; Schofield, 2008], whereas
tire modeling is given particular attention in [Pacejka, 2006; Svendenius,
2007].

4.1 Ground-Tire Interaction

The dominant interaction between a ground vehicle and its surroundings
is via the tires; it is the friction forces between the tires and ground that
generate most of the vehicle motion. Figure 4.1 shows a common way
to model ground-tire interaction for the longitudinal dynamics [Petersen,
2003; Solyom, 2004], where the tilt about the wheel x-axis has been ig-
nored. The wheel has longitudinal velocity vx with respect to an inertial
system, resolved in the wheel’s coordinate system, and the normal load
Fz acts on the wheel. A torque balance around the center of the wheel
gives

τ = Iwω̇ − RwFx, (4.1)
where
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Fx

τω vx

Fz

x

z

y

Figure 4.1 A wheel model for longitudinal dynamics. The input torque
τ generates a longitudinal friction force Fx, which gives rise to angular
velocity ω and longitudinal wheel velocity vx.

• τ is the applied torque.

• Iw is the wheel moment of inertia.

• ω is the wheel angular velocity.

• Rw is the effective wheel radius—that is, the distance from the wheel
center to the road.

• Fx is the longitudinal friction force, which depends on the normal
force Fz.

The longitudinal force Fx is generated by applying a wheel torque τ ,
whereas the lateral force Fy is generated when cornering. Both these
quantities are dependent on slip, something that will be described next.

Tire Slip
When applying wheel torque, longitudinal slip λ develops. Several defini-
tions exist, all slightly different. In [Pacejka, 2006], it is defined as

λ := Rwω − vx

vx =
Rwω
vx − 1. (4.2)
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x

y

vw

α

Figure 4.2 The wheel together with its coordinate system seen from
above. The wheel velocity vector consists of vx and vy, assuming planar
motion.

With this definition, λ ∈ [−1,∞).1 Another definition, adopted from
[Schindler, 2007], is given by

λ := vx − Rwω
vx if vx ≥ Rwω

λ := vx − Rwω
Rwω

if Rwω > vx.
(4.3)

With the slip definition in (4.3), λ ∈ [−1, 1]. The lateral slip angle α is the
ratio of the wheel’s velocities in the lateral and longitudinal directions,
resolved in the wheel’s coordinate system. It is often defined as

tanα := −vy

vx , (4.4)

because a positive α then corresponds to a positive lateral force, see Fig-
ure 4.2 for a visualization.

Tire Forces
The interaction between tire and ground is highly complex and nonlinear,
and it is hard to capture all aspects of it in low-order models. Still, in
many situations it is enough to consider the longitudinal and lateral tire
forces as static functions of tire slip, friction coefficient between tire and
road, and normal load—that is, as the relations

Fx := Fx(λ ,α , µ, Fz), (4.5a)
Fy := Fy(α , λ , µ, Fz). (4.5b)

The reason for the different ordering of λ and α between (4.5a) and (4.5b),
is to emphasize the different dependence between the slip quantities and

1 Assuming that both ω and vx are positive.
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4.1 Ground-Tire Interaction

forces. Linear approximations may be suitable for small slip. The approx-
imations are

Fx ( Cλ λ
Fy ( Cαα ,

(4.6)

where the longitudinal stiffness Cλ and lateral stiffness Cα are found
through linearizations of the respective force-slip relations at zero slip
[Wong, 2008]:

Cλ =
�Fx

�λ

∣∣∣∣
λ=0,α=0

(4.7a)

Cα =
�Fy

�α

∣∣∣∣
α=0,λ=0

. (4.7b)

The linear approximations are widely employed in the vehicle community;
they are, for example, sometimes used in reference-generation models for
safety systems [Rajamani, 2006] and in algorithms that estimate tire-
stiffness parameters [Carlson and Gerdes, 2005].

For pure slip—that is, when only one of the slip quantities are
nonzero—an experimentally verified slip-force model is the Magic For-
mula model [Pacejka, 2006], given by

F0(m) = D sin
(

C arctan
(
Bm − E(Bm − arctan (Bm))

))
, (4.8)

where

• B is the stiffness factor.

• C is the shape factor.

• D = µ Fz is the peak factor.

• E is the curvature factor.

• F0 is either the longitudinal (Fx
0 ) or lateral (Fy

0 ) force and m is either
λ or α .

The typical shape of (4.8) in the longitudinal direction for three different
surfaces are shown in Figure 4.3. The difference compared with the forces
in the lateral direction is that the peaks are often more pronounced in
the longitudinal direction. When braking on snow, a locked wheel builds
up snow in front of it. Thus, the force curve for snow (and loose gravel,
for that matter) often increases monotonically with increased λ . The tire
behavior for different surfaces and the implications on vehicle control will
be discussed more in Chapter 10.
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Figure 4.3 Typical shape of longitudinal force as a function of longitudi-
nal slip for surfaces corresponding to asphalt, loose snow, and ice. In this
plot, the force increases monotonically with increasing slip on snow. This
is often, but not always, the case. The reason for the monotonicity is that
the wheel typically builds up snow in front of it as the wheel locks.

Forces for Combined Slip Both (4.6) and (4.8) describe the slip-force
interaction for pure slip. A straightforward approach to model combined
slip is based on the friction ellipse. The friction ellipse is the envelope of
the maximum achievable forces. Several models assume the same rela-
tionship for intermediate forces. In [Wong, 2008], the friction-ellipse as-
sumption is used for computing the lateral force Fy given the longitudinal
force Fx as

Fy = Fy
0

√
1−

(
Fx

µx Fz

)2
, (4.9)

where Fy
0 is computed using (4.8). The main limitation with this model is

that the longitudinal force does not explicitly depend on the lateral slip,
which is not realistic. Nevertheless, owing to its simplicity it is sometimes
adopted in the control literature [Andreasson, 2009; Sundström et al.,
2010]. A related model is the Kamm-circle model [Kiencke and Nielsen,
2005; Isermann, 2006]. The resulting slip is defined as σ res :=

√
λ2 +α 2,
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4.2 Chassis Models

and the forces for combined slip are

Fx =
λ

σ res
Fr(σ res)

Fy =
α

σ res
Fr(σ res),

(4.10)

where Fr(σ res) is the resulting force. Variants of (4.10) are used in the au-
tomotive literature [Velenis and Tsiotras, 2005; Chakraborty et al., 2013].

Another approach to tire modeling, inspired by the Magic Formula,
is to scale the nominal force (4.8) with weighting functions Gα and Gλ ,
which depend on α and λ [Pacejka, 2006]. The relations for the longitu-
dinal force are

Fx = Fx
0 Gα , (4.11a)

Gα = cos(Cα arctan(Hαα )), (4.11b)
Hα = Bα 1 cos(arctan(Bα 2λ)), (4.11c)

and the corresponding relations in the lateral direction are given by

Fy = Fy
0 Gλ , (4.11d)

Gλ = cos(Cλ arctan(Hλ λ)), (4.11e)
Hλ = Bλ1 cos(arctan(Bλ2α )), (4.11f)

where B and C are model parameters. Figure 4.4 contains a comparison
between (4.9) and (4.11), where the lateral force is plotted against lon-
gitudinal force for α = 10 deg. As seen, the longitudinal force increases
monotonically with decreasing lateral force for the model based on the
friction ellipse, which is not the case for the model based on the weight-
ing functions. Typically, experimental results tend to support the behavior
of (4.11) [Pacejka, 2006]. Figure 4.5 shows how the lateral force changes
with λ for fixed values of α when using (4.11).

Compared with (4.11), both (4.9) and (4.10) have the advantage that
they depend on few parameters. This makes them easy to use.

4.2 Chassis Models

Also chassis models have been given a fair amount of attention in lit-
erature, see [Kiencke and Nielsen, 2005; Pacejka, 2006; Wong, 2008;
Schofield, 2008] for various models of cars and [Gäfvert, 2003] for deriva-
tion of a nine degrees-of-freedom truck-trailer combination.
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Figure 4.4 Lateral force versus longitudinal force for the models based
on the weighting functions and the friction ellipse, respectively, for
α = 10 deg. The longitudinal force increases monotonically with decreasing
lateral force for the friction ellipse. Experimental results tend to support
the behavior of the weighting functions (4.11). The parameters correspond
to the plot for asphalt in Figure 4.3.
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Figure 4.5 Longitudinal-slip impact on the lateral force for different
α . The lateral force is computed using (4.11d)–(4.11f) with parameters
corresponding to the plot for asphalt in Figure 4.3.
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One-Track Model
Figure 4.6 shows a ground-vehicle model that is common in literature.
The model is often referred to as the one-track model, the single-track
model, or the bicycle model. It only treats planar motion. Hence, it has
three degrees of freedom, two translational and one rotational. Further,
it lumps together the two wheels on each axle. The model dynamics are
straightforward to derive [Rajamani, 2006; Schindler, 2007; Wong, 2008]
and are given by

v̇X − vYψ̇ =
1
m (F

x
f cos(δ ) + Fx

r − Fy
f sin(δ ))

v̇Y + vXψ̇ =
1
m (F

y
f cos(δ ) + Fy

r + Fx
f sin(δ ))

IZ Zψ̈ = l f Fy
f cos(δ ) − lr Fy

r + l f Fx
f sin(δ ),

(4.12)

where vX , vY are the longitudinal and lateral velocities at the mass center;
ψ̇ is the yaw rate; Fx

f , Fy
f and Fx

r , Fy
r are the longitudinal and lateral tire

forces acting at the front and rear wheels, respectively; δ is the steer angle;
and IZ Z is the vehicle inertia about the Z-axis. The nominal normal force
Fz

0 acting on the respective wheel in steady state is given by

Fz
0, f = m� lr

l , Fz
0,r = m� l f

l ,

where the wheel base is defined as l := l f + lr. A variable related to safety
systems is the vehicle body-slip (or sideslip) angle β , and is defined as

β := arctan
(

vY

vX

)
. (4.13)

The one-track model has proven valuable in numerous applications,
such as optimal motion planning for high-speed driving [Jeon et al., 2013],

l f lr

Fx
f Fy

f
v
β

v f

δ

α f

Fx
r

Fy
r

vr

α rX

Y

ψ

Figure 4.6 A sketch of the one-track model. The slip angle in (4.4) as
well as the body-slip angle β in (4.13) are shown.
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yaw-rate reference generation [Berntorp, 2008], and road-geometry esti-
mation [Lundquist and Schön, 2011]. It is possible to extend the model
to capture pitch dynamics with load transfer (i.e., rotation about the Y-
axis) or roll dynamics, but to fully seize the effects of load transfer, it is
necessary to consider two-track (four-wheel) models. More or less compli-
cated variants of two-track models can be found in literature; see [Ellis,
1994; Gäfvert, 2003; Kiencke and Nielsen, 2005; Pacejka, 2006; Rajamani,
2006; Schofield, 2008] for a few of them. However, the models are often
derived for a specific purpose, resulting in approximations appropriate for
the considered application. For completeness we derive a two-track model
that incorporates rotations in space. Together with most of the models de-
scribed in this chapter, it will be used for optimal control in Chapters 10
and 11.

Derivation of a Two-Track Model
We now derive a two-track ground-vehicle model including roll and pitch
dynamics. Figure 4.7 shows a schematic of the vehicle model. The deriva-
tion is done using a Newton-Euler modeling approach. The resulting chas-
sis model has five degrees of freedom, two translational and three rota-
tional, but the load transfer can be interpreted as a sixth degree of free-
dom. The derivation is based on [Berntorp, 2013], which also discusses
load transfer and possible simplifications of the model.

X

Y

Z

δ 2

δ 1

l flr

w fwr

ψ
φ

θ

Fx
1Fy

1

Fx
2Fy

2
Fx

4

Fy
4

Fx
3

Fy
3

Figure 4.7 A schematic of the two-track vehicle model and its degrees of
freedom, with pitch dynamics as well as roll dynamics. The X - and Y-axes
reside in the ground plane. The wheels are numbered from the front left
wheel to the rear right wheel.
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Z
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φ
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DφDφ

Figure 4.8 An illustration of the suspension system in the roll direction,
modeled as a torsional spring-damper system with spring constant Kφ and
damper constant Dφ . This suspension model is used in the derivations
of the two-track model, see Figure 4.7. The mass center is located at a
distance h from the origin of the vehicle frame. The suspension system is
modeled in an equivalent way for the pitch dynamics.

Preliminaries The model incorporates suspension. We model the sus-
pension system as a torsional spring and damper system, where the spring
and damper constants for each wheel have been lumped to two constants,
one for each degree of freedom. We assume small roll and pitch angles and
model the suspension in the roll and pitch directions as two decoupled sys-
tems. Figure 4.8 provides an illustration of the roll dynamics. We assume
that the wheels at all times are in contact with the ground and that the
road is flat. Matrices with dimension 3$ 1 serve as placeholders for the
vector components. The coordinate systems are described in Appendix A.
I means an inertial, earth-fixed, frame and V denotes the vehicle-fixed
frame rotated an angle ψ (the yaw) about the Z-axis of I . Similarly, C
indicates the chassis frame, rotated with an angle θ (the pitch) about the
Y-axis ofV and with B we mean the body frame, rotated an angle φ (the
roll) about the X -axis of C . The rotation matrix from C to V is RVC . The
time derivative of a vector v with respect to a specific frame S is indicated
with a subscript as in d

dt
∣∣
S v.

Kinematics Assume that V rotates with the angular velocity vector ξ
with respect to the inertial frame I . Then, given a vector v,

d
dt

∣∣∣∣
I
v = d

dt

∣∣∣∣
V
v+ ξ$ v. (4.14)
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I

V

P

p

v0

ξ

Figure 4.9 The inertial coordinate system I and the noninertial system,
here denotedV . The noninertial frame is translating with velocity v0 and
rotating with angular velocity ξ relative to I .

Consider a point P with coordinates p with respect toV . The frameV is
moving with translational velocity v0 with respect to I . Then the velocity
of P is

vP = v0 +
d
dt

∣∣∣∣
I
p = v0 +

d
dt

∣∣∣∣
V
p+ ξ$ p. (4.15)

See Figure 4.9 for an illustration. By applying (4.14) to (4.15), an expres-
sion for the acceleration is

aP =
d
dt

∣∣∣∣
V

(
v0 +

d
dt

∣∣∣∣
V
p+ ξ$ p

)
+ ξ$ (v0 +

d
dt

∣∣∣∣
V
p+ ξ$ p), (4.16)

which can be expanded to

aP =
d
dt

∣∣∣∣
V

(
v0 + ξ$ p

)
+

d2

dt2

∣∣∣∣
V
p+ ξ$ v0 + ξ$ (ξ$ p)

+ 2ξ$ d
dt

∣∣∣∣
V
p. (4.17)

Kinetics In a Newton-Euler setting the total external forces F acting
on a rigid body B are given by

F = maCoG =

∫
B
aP dmP, (4.18)

where the integration is performed over all mass elements dmP. Further,
aCoG denotes the acceleration of the mass center. Likewise, the total ex-
ternal moments acting on the body are equal to

M =
d
dt

∣∣∣∣
I
IV ξI =

d
dt

∣∣∣∣
I

∫
B
p$ vP dmP, (4.19)
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where ξI =
[
φ̇ θ̇ ψ̇

]T and IV is the vehicle’s moment-of-inertia matrix
with respect to the vehicle-fixed frame. By applying (4.14) to (4.19) we
get

M = IV ξ̇I + ξV $ IV ξI , (4.20)

where ξV =
[
0 0 ψ̇

]T is the angular velocity of the frame in which
the formulas are to be derived, in this case V . In (4.20), we have used
that IV is constant in V . The moment of inertia is typically measured
in the body frame B. Conveniently, IV is found by using the formula
IV = RVC RCB IB(R

C
B)

T(RVC )T [Spong and Hutchinson, 2006], where IB is
the moment of inertia in the body frame, and RVC and RCB are given by
(A.1) and (A.2). For simplicity we have assumed that

IB =

IX X 0 0
0 IYY 0
0 0 IZ Z

 ,

that is, cross terms are neglected. This gives that

IV =

I1 I2 I3
I2 I4 I5
I3 I5 I6

 , (4.21)

where

I1 = cos2(θ )IX X + sin2(θ ) sin2(φ)IYY + sin2(θ ) cos2(φ)IZ Z ,
I2 = sin (θ ) sin (φ) cos (φ)(IYY − IZ Z),

I3 = − sin (θ ) cos (θ )
(

IX X − IYY + cos2(φ)(IYY − IZ Z)
)

,

I4 = cos2(φ)IYY + sin2(φ)IZ Z ,
I5 = sin (φ) cos (φ) cos (θ )(IYY − IZ Z),

I6 = sin2(θ )IX X + cos2(θ )
(

sin2(φ)IYY + cos2(φ)IZ Z

)
.

Chassis Modeling The total forces acting on the vehicle are found from
force equilibria in the X - and Y-directions, see Figure 4.7:

F X = Fx
1 cos (δ 1) − Fy

1 sin (δ 1)

+ Fx
2 cos (δ 2) − Fy

2 sin (δ 2) + Fx
3 + Fx

4

FY = Fx
1 sin (δ 1) + Fy

1 cos (δ 1)

+ Fx
2 sin (δ 2) + Fy

2 cos (δ 2) + Fy
3 + Fy

4 .

(4.22)
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By performing a torque equilibrium around the vehicle Z-axis, we obtain

M Z = l f

(
Fx

1 sin (δ 1) + Fx
2 sin (δ 2) + Fy

1 cos (δ 1) + Fy
2 cos (δ 2)

)
+w f

(
− Fx

1 cos (δ 1) + Fx
2 cos (δ 2) + Fy

1 sin (δ 1) − Fy
2 sin (δ 2)

)
− lr(Fy

3 + Fy
4 ) −wr(Fx

3 + Fx
4 ). (4.23)

To derive the model we first assume that the noninertial frame V
is translating with velocity vector v relative to the inertial frame. By
attachingV at the mass-center coordinates in the X Y-plane, we get that
p = 0 in (4.15). Thus, the velocity in the X - and Y-directions are

v =
[
vX vY]T .

The translational force equations are found by combining (4.17) and
(4.18). Note that we have assumed that p and all its derivatives are zero
with respect to V . By rearranging the equations, we get

v̇X = vYψ̇ + h
(

sin (θ ) cos (φ)(ψ̇ 2 + φ̇ 2 + θ̇ 2) − sin (φ)ψ̈ − 2 cos (φ)φ̇ψ̇

− cos (θ ) cos (φ)θ̈ + 2 cos (θ ) sin (φ)θ̇φ̇ + sin (θ ) sin (φ)φ̈
)
+

F X

m
v̇Y = −vXψ̇ + h

(
− sin (θ ) cos (φ)ψ̈ − sin (φ)ψ̇ 2 − 2 cos (θ ) cos (φ)θ̇ψ̇

+ sin (θ ) sin (φ)φ̇ψ̇ − sin (φ)φ̇ 2 + cos (φ)φ̈
)
+

FY

m .
(4.24)

The motion equation in the ψ -direction (about the Z-axis) is found by
combining (4.20) and (4.21). Because of deflection of the mass center, the
external forces in the X - and Y-directions give rise to additional external
torques τ Z , in this case τ Z = −h(F X sin (φ) + FY sin (θ ) cos (φ)):

ψ̈ (IX X sin (θ )2 + cos (θ )2(IYY sin (φ)2 + IZ Z cos (φ)2)) = M Z

− h
(

F X sin (φ) + FY sin (θ ) cos (φ)
)

. (4.25)

The suspension system gives a contribution τ Y = Kθθ + Dθ θ̇ in the pitch
dynamics, where Kθ and Dθ are the rotational spring and damper con-
stants in the θ -direction. Thus, proceeding in the same manner as for the
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yaw dynamics, we get

θ̈ (IYY cos (φ)2 + IZ Z sin (φ)2) = −Kθθ − Dθ θ̇

+ h
(

m� sin (θ ) cos (φ) − F X cos (θ ) cos (φ)
)

+ ψ̇
(
ψ̇ sin (θ ) cos (θ )

(
∆ IX Y + cos (φ)2∆ IYZ

)
− φ̇ cos (θ )2 IX X + sin (φ)2 sin (θ )2 IYY

+ sin (θ )2 cos (φ)2 IZ Z) − θ̇
(

sin (θ ) sin (φ) cos (φ)∆ IYZ
))

, (4.26)

where ∆ IYZ = IYY − IZ Z and ∆ IX Y = IX X − IYY . The third equation of
angular motion is in the same manner found to be

φ̈(IX X cos (θ )2 + IYY sin (θ )2 sin (φ)2 + IZ Z sin (θ )2 cos (φ)2)
= −Kφφ − Dφφ̇ + h(FY cos (φ) cos (θ ) +m� sin (φ))

+ ψ̇ ∆ IYZ

(
ψ̇ sin (φ) cos (φ) cos (θ ) + φ̇ sin (θ ) sin (φ) cos (φ)

)
+ ψ̇ θ̇ (cos (φ)2 IYY + sin (φ)2 IZ Z). (4.27)

Equations (4.22)–(4.27) constitute the chassis two-track model with five
degrees of freedom.

The two-track model derived here incorporates suspension modeling.
The derivation assumes that the suspension system is modeled as a tor-
sional spring-damper system. This assumption can be relaxed, and a
derivation based on more intricate suspension dynamics is possible. The
model also assumes that the roll and pitch angles are sufficiently small,
which implies that the roll and pitch angles are in the linear region. The
relative errors for this approximation exceed 1% at approximately 10 deg.

4.3 Summary

In this chapter we treated two key ingredients in vehicle modeling, namely
tire modeling and chassis modeling. We defined the notion of tire slip,
which is the main variable when it comes to modeling the static behavior
of tire-ground interaction.

The Magic formula was defined. It is the most well known formula
for describing tire forces as function of pure longitudinal or lateral slip.
There are, however, many more models available, and we mentioned a few
of them. There are also many approaches for modeling the tire forces when
both longitudinal and lateral slip are nonzero. We described three of them
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and compared their characteristics against each other. The weighting-
functions model has been experimentally verified for quite aggressive ma-
neuvering. Nonetheless, the friction-ellipse based models are very popular
in the control community because of their simplicity.

Section 4.2 discussed chassis models. We described one of the simplest
and most commonly used chassis models—that is, the one-track model
(single-track model, bicycle model). It has been widely adopted in many
applications, perhaps most notably as a reference generator for electronic
stability control systems. Still, it has the drawbacks that it only treats
planar motion and that it lumps the two wheels on each axle. To provide
a more advanced model, we derived a two-track model that incorporates
suspension dynamics as well as rotations in space.
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5
The Out-of-Sequence
Measurement Problem

This chapter introduces the out-of-sequence measurement (OOSM) prob-
lem, which will be studied in different contexts over the next three chap-
ters. This chapter also contains a section on related work and a general
problem formulation.

5.1 Motivation

Tracking systems frequently employ decentralized sensor platforms that
gather measurements. These measurements are then sent to a central-
ized fusion center, which, given a model of the system and the sensor
platforms, correlates the data and estimates the system behavior. More
computing power in combination with improved sensor technologies—for
example, sophisticated computer-vision algorithms that efficiently extract
information from cameras—has led to that the amount of sensors used
in tracking systems has increased during the last decades. Obviously, the
aim with using more sensors is improved perception of the environment
and in the end enhanced system performance.

OOSMs are measurements that arrive after more recent measure-
ments have already been processed. Because the amount of sensors used
in tracking is increasing, and because tracking is frequently performed
using distributed sensor platforms, tracking systems increasingly often
encounter OOSMs [Bar-Shalom et al., 2001]. Delayed measurements oc-
cur for several reasons—for example, data preprocessing and communi-
cation delays. Nondeterministic transmission times is inherent in many
communication protocols, such as in TCP/IP or wireless sensor networks,
and is a potential creator of OOSMs. However, OOSMs can also occur
when using deterministic communication protocols—for example, because
of buffering. That measurements arrive out of sequence implies that they
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Timestamp

Arrival time

ISM

OOSM

Figure 5.1 An illustration of OOSMs. Note that the ISMs also can be
delayed. The difference compared with OOSMs is that they still arrive at
the fusion center in the correct order.

are delayed. However, the delay itself is not enough for a measurement
to be classified as an OOSM. Rather, only when the delayed measure-
ment is combined with a measurement that arrives in the same order
as it occurred in (an in-sequence measurement), is the delayed measure-
ment an OOSM. Figure 5.1 illustrates the situation in the case of one
OOSM. It could, for example, be the case that all measurements have
the same delay, and are thus in-sequence measurements (ISMs). In this
case the solution to the estimation problem would be to process the mea-
surements that have arrived and then predict up to the current time. A
common case, however, is that some measurements are ISMs and some
are OOSMs. Hence, the ability to account for OOSMs is crucial in modern
tracking systems if high accuracy is wanted. Neglecting the time delays
of the measurements is a rather common choice [Maskell et al., 2006],
but this means discarding information and will lead to inferior tracking
performance. On the other hand, to make efficient use of OOSMs in non-
linear tracking systems can be challenging, and is probably why many
choose to neglect that they in fact are OOSMs.

OOSMs arise in many applications. Because of the rapid technologi-
cal development in the automotive industry, where sensors such as lidar,
radar, optical cameras, and inertial measurement units are used in pro-
duction cars, OOSMs have received a lot of attention in automotive appli-
cations. How to account for OOSMs in automotive applications is by some
considered a key challenge for enabling autonomy [Mauthner et al., 2006].
Practical examples of OOSMs are from automotive collision-avoidance sys-
tems, where network links cause transmission delays of radar sensors
[Muntzinger et al., 2010; Westenberger et al., 2013]. Another application
is tracking of autonomous vehicles, where cameras have become increas-
ingly important for giving spatial information. The processing times of
the vision algorithms, in combination with inertial measurement units,
often cause OOSMs, see [Ranganathan et al., 2007; Jia et al., 2008].

82



5.2 Problem Formulation

5.2 Problem Formulation

When studying the OOSM problem, it is customary to assume that some
measurements experience negligible delay, implying that they can be pro-
cessed without taking the delay into account. It is only the measurements
that have delays so large that they become OOSMs that actually are com-
pensated for. In the following, tk means the timestamp of a measurement
and ta

k is the arrival time of the same measurement. Definition 5.1 gives
a formal definition of OOSMs and ISMs [Zhang and Bar-Shalom, 2012a].

DEFINITION 5.1—[ZHANG AND BAR-SHALOM, 2012A]
Given a measurement yk1 , if there exists another measurement yk2 with
ta
k2
< ta

k1
and tk2 > tk1 , then yk1 is an OOSM. Otherwise, yk1 is an ISM. 2

We use the notation yτ to indicate that the measurement is an OOSM.
In general, when discussing the OOSM problem we consider the scenario
of possibly nonlinear state dynamics, possibly nonlinear measurement
relations, and additive process and measurement noise. In other words,
the systems are on the same form

xk+1 = f (xk,uk) +wk,
yk = h(xk) + ek.

(5.1)

Without loss of generality, we will assume that uk = 0 and thus that the
system is driven by noise. Another assumption is that the timestamps of
the ISMs are the same as their arrival times (i.e., tk = ta

k).
The problem formulation can be stated as follows: Suppose that mea-

surements up to time index k (i.e., time tk) have been processed. Thus,
an expression for the posterior probability density function p(xkpy0:k) is
available. Then one or several delayed measurements yτ arrive, and the
problem is to update with the OOSM—that is, to form

p(xkpy0:k, yτ ). (5.2)

Note that when the system is linear with white, Gaussian noise, to find
(5.2) is equivalent to update the state estimate and associated covari-
ance in the Kalman-filter framework. Moreover, when the timestamp tτ
is bounded as tτ ∈ [tk−1, tk), the problem of finding (5.2) is referred to as
the 1-step lag problem. More generally, for a positive integer l, when the
timestamp is bounded as tτ ∈ [tk−l, tk−l+1) the problem is referred to as
the l-step lag problem, see Figure 5.2. Note that the OOSM index τ need
not be an integer; that is, the timestamp of the OOSM can have any value
between two sampling instants.

Many target-tracking systems estimate the states of multiple targets.
While tracking these targets, both measurements from the target and
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Arrival time
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tτ

ta
k

tk−l

ta
k−l

tk−l+1

ta
k−l+1

tk−2

ta
k−2

tk−1

ta
k−1

tk

Estimates

x̂k−l+1x̂k−l x̂k−1 x̂k

ISM
OOSM

Figure 5.2 An illustration of the l-step lag OOSM problem, where the
circles denote OOSMs and squares refer to ISMs. OOSMs yτ arising from
time tτ arrive at time tk, and are subsequently utilized to compute an
updated x̂k.

false alarms (clutter), for example caused by measurement noise, can
reach the tracking systems. Data association deals with the problem of
selecting the measurement that most probably is originated from the ob-
ject to be tracked. Throughout, we discard measurements delayed more
than lmax time steps, with lmax predefined, and assume that all sensors
give detection of the correct targets each time. Hence, data association
and clutter are beyond the scope of this thesis [Karlsson and Gustafsson,
2001; Särkkä et al., 2004; Maskell et al., 2006].

5.3 Related Work

Over the last decades there has been substantial research considering
OOSMs for tracking. An overview of initial work spanning to the late
1990’s is found in [Blackman and Popoli, 1999]. In [Bar-Shalom, 2002], the
optimal solution (i.e., the minimum mean-square error solution) to the 1-
step lag problem was derived. An efficient, suboptimal approach for the
l-step lag problem is given in [Bar-Shalom et al., 2004], and [Zhang et al.,
2010] contains an algorithm that handles sensor bias. Optimal solutions to
the l-step problem for different available information and using different
approaches have been derived in, for example, [Zhang et al., 2005; Koch,
2009; Shen et al., 2009].

One of the drawbacks with the presented approaches is that only the
most recent estimate is updated with the OOSM. In real-life scenarios
there are sometimes multiple OOSMs arriving, either in succession or
interleaved with ISMs. What one then is faced with is to update with
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multiple OOSMs. In this case the preceding approaches will in general
not be optimal. The first optimal solution to the multi-OOSM problem was
derived in [Shen et al., 2009]. The solution assumes that the OOSMs are
not interleaved with the ISMs. The first general optimal solution with
multiple OOSMs, denoted the complete in-sequence information (CISI)
approach, was presented in [Zhang and Bar-Shalom, 2012a]. A number
of approaches yielding the optimal solution were compared in terms of
complexity, among them a fixed-point smoother, a fixed-interval smoother,
an fading-information approach, and an algorithm using the equivalent-
measurement method. The conclusion was that the fixed-point smoother
approach is superior to the fixed-interval smoothing approach, the fading
information approach, and the equivalent-measurement method in terms
of computational demands. The storage requirements in [Zhang and Bar-
Shalom, 2012a] are only the mean and covariances for the lmax last time
steps. For the scenario with several OOSMs arriving simultaneously, the
CISI approach is applied sequentially, still giving optimality. Another,
similar solution, is found in [Govaers and Koch, 2012], which is based on
a generalized, computationally efficient Rauch-Tung-Striebel algorithm
[Rauch et al., 1965].

Nonlinear Systems
All work presented so far is for linear systems. The implementation-wise
easiest extension for nonlinear systems is to use extended Kalman-filter
(EKF) type approximations. For systems with significant nonlinearities
and/or non-Gaussian noise, the use of EKFs can lead to poor performance.
Several methods for exploring OOSMs in the more general particle-filter
framework have been proposed. An approach where the measurement
equation is allowed to be nonlinear was outlined in [Orton and Marrs,
2001; Orton and Marrs, 2005]. The particle weights are first updated
without the OOSM. They are then modified utilizing the OOSM in a
Markov chain Monte Carlo smoothing step to overcome the problem of
degeneracy in the particle filter. This approach stores the N particles for
the last lmax time steps, where lmax is the predetermined maximum de-
lay. Unfortunately, it also needs a linear state-transition model. Another
drawback with this approach is that the storage requirements are large,
since all particles have to be stored for the last lmax steps. A workaround
for this was described in [Mallick et al., 2002], where an invertible state-
transition matrix is assumed. This matrix is then used for retrodiction of
the states back to the time of the OOSM. The only storage requirements
in this algorithm are the mean and covariances for the last lmax steps.
A comparison between particle filters and Kalman filters for OOSM fil-
tering is found in [Mallick and Marrs, 2003]. For the considered system,
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which is linear, the two types of estimators perform similarly.
An extension of the work in [Mallick et al., 2002] was presented in

[Orguner and Gustafsson, 2008], where the assumption of a linear, in-
vertible state-transition matrix was removed. In addition, [Orguner and
Gustafsson, 2008] derived a particle filter for OOSM updates using an or-
thogonal approach, denoted storage-efficient particle filter (SEPF). SEPF
handles nonlinear state-space models with white, Gaussian noise. It is
computationally fast and memory efficient, since it only stores and pro-
cesses means, covariances, and measurements for the last lmax time steps.
Because there is only one measurement vector yk at each time instant,
and because the dimension of the measurements usually is less than
that of the states, the storage requirements for the measurements are
often minor compared with storing the particles. Different fixed-point
smoothers determine the likelihood of the measurement given each par-
ticle at the current time. The likelihood is then utilized to update the
weight of the particle. When [Orguner and Gustafsson, 2008] compared
an extended fixed-point smoother, an unscented Kalman smoother, and a
particle smoother on a highly nonlinear example, the fixed-point smoother
outperformed the unscented Kalman smoother and the particle smoother
despite demanding less computational power. As mentioned previously,
SEPF usually performs very well. However, as pointed out in [Orguner
and Gustafsson, 2008], the performance of SEPF sometimes suffers when
the OOSMs introduce a large change in the estimated filtering distri-
bution. This problem is partially overcome in [Liu et al., 2010], where an
algorithm for detecting these OOSMs was derived, denoted SEPF with se-
lective processing (SEPF-GARP). In [Oreshkin et al., 2011], the approach
in [Liu et al., 2010] was extended with an optimization-based algorithm
for separating between informative and uninformative OOSMs. Moreover,
an exact Bayesian solution and its corresponding particle filter implemen-
tation, denoted A-PF, were derived in [Zhang and Bar-Shalom, 2012b] for
general nonlinear models with white noise. One drawback with this algo-
rithm is that it is computationally expensive. For OOSMs that have larger
delays than one sample, its complexity is O ((l − 1)N3 + N2), where N is
the number of particles in the forward filter. This complexity usually pro-
hibits real-time implementations for anything but the smallest systems.
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6
Out-of-Sequence
Measurements in Robotics

Chapter 5 gave an introduction to the OOSM problem as well as men-
tioned a few applications where they occur. This chapter presents an ap-
plication of an OOSM solution to a physical setup. It is based on the work
in [Berntorp et al., 2011; Berntorp et al., 2012], and treats a combined
indoor navigation and mobile-manipulation example. The scenario is that
of distributing groceries. This chapter does not intend to derive any new
models or estimation techniques. Rather, it shows how different sensor
and process-model combinations, in combination with classic control the-
ory, can be combined to perform complex tasks.

We first give an introduction to the application and why it is stud-
ied, and then present the experimental equipment. The chapter proceeds
with a section on modeling, which is followed by a summary of the es-
timation algorithm. The second part of the chapter is devoted to mobile
manipulation. Finally, a summary and some remarks are given.

6.1 Motivation and Problem Description

The last two decades, attention has been drawn to combine mobile robots
with manipulators. The ambition has not only been to improve existing
applications, but also to enable new applications. Several potential appli-
cations were mentioned in Chapter 1—for example, manufacturing, as-
sembly, and medical surgery assistance. Another area is service robotics
for domestic applications. Examples of approaches in this direction are
ROMAN [Hanebeck et al., 1997], the PR2 [Wyrobek et al., 2008], and the
Care-O-Bot [Reiser et al., 2009a]. There are several challenges when it
comes to mobile manipulation; for example, the question of how to co-
ordinate between the mobile base and the manipulator is a nontrivial
issue. Another issue is how to define and specify the control task. In this
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chapter we use a light-weight, two-armed industrial robot combined with
a pseudo-omnidirectional mobile base within a pick-and-place scenario,
where the stationary robot manipulator places groceries on the mobile
base while both the mobile base and manipulator arm are moving. To in-
corporate sensor measurements, introduce uncertainties such as the un-
certainty of the pose estimates into the control problem, and coordinate
movements, the constraint-based task-specification methodology (iTaSC),
described in [De Schutter et al., 2007], is used.

We use the OOSM solution in [Bar-Shalom et al., 2004] to provide
real-time estimates of the position and orientation of the mobile base. The
method in [Bar-Shalom et al., 2004] assumes a linear model with white,
Gaussian noise. It is a computationally efficient, approximate method,
and is based on the equivalent-measurement concept. Here, equivalent
measurement means that all measurements from the current time to
the OOSM time are replaced with a function that depends on the pre-
dicted state estimates from the OOSM time and a modified process noise.
The OOSM timestamp must be bounded by a positive integer lmax as
tτ ∈ [tk−lmax , tk), but the delays do not have to be known prior to the OOSM
arrival. Thus we assume the l-step lag problem defined in Section 5.2.

The estimator fuses inertial sensor, wheel-encoder, and vision mea-
surements using an extended Kalman-filter (EKF) approach. A times-
tamp is attached to every camera measurement. The extension from [Bar-
Shalom et al., 2004] is that the algorithm executes on a physical setup in
real time.

6.2 Related Work

How to combine internal and external sensors for position and velocity
estimation in real time is crucial for autonomous mobile robots. Methods
based on wheel encoders, inertial measurement units (IMUs), and global
positioning systems (GPS) are common to localize mobile robots, see [Yi et
al., 2007; Yi et al., 2009] and references therein. The major drawback with
using GPS indoors is well known; the GPS signal strength is often heavily
attenuated, as well as scattered by walls and roofs. Therefore, using GPS
is in general not an option when navigating indoors. Dead-reckoning ap-
proaches based on wheel encoders and IMUs all suffer from integration
and accumulation of erroneous signals—for example, caused by noise or
bias in the sensors. Vision can be used for removing the drift caused by
dead reckoning. Vision for mobile-robot navigation is by no means a new
concept, see the survey [DeSouza and Kak, 2002], which covers the de-
velopments from the 1980’s to the late 1990’s. Vision in combination with
inertial sensors has been investigated before, see [Corke et al., 2007] for
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an introduction and [Armesto et al., 2004] for multi-rate fusion of inertial
and visual sensors, to mention a few examples.

Fusion of IMU and vision for state estimation of mobile robots has
been studied before in slightly varying setups. In [Nuetzi et al., 2011],
IMU data is fused with vision in a simultaneous localization and map-
ping framework, by employing an EKF. In [Choi et al., 2007], OOSM state
estimation considering wheel encoders and a GPS with time delay is per-
formed and verified by simulations. Another work is [Jia et al., 2008],
which uses the method in [Bar-Shalom, 2002] by assuming that the delay
is within a fraction of a sample. An autonomous vehicle’s target is esti-
mated using a constant-velocity model with the help of vehicle-mounted
cameras, and inertial sensors are used for estimating the stereo-cameras’
motion.

An example of motion coordination was given in [Carriker et al., 1989],
where the coordination problem is formulated as a nonlinear optimization
problem. The resulting solution is evaluated on a two degrees-of-freedom
mobile base combined with a three degrees-of-freedom manipulator. Other
examples of motion coordination are found in [Khatib et al., 1996], [Khatib,
1999], where the coordination is solved by modeling the mobile base as the
mechanism with coarse and slow dynamics, with the manipulator viewed
as the fast and accurate device. The coordination between the two devices
is then done by considering internal forces. In [Meeussen et al., 2010]
the problem of door opening was considered. The mobile base motion is
independent of the arm motion, whereas the arm motion is coupled to the
mobile base through sensing of the reaction forces of the environment.

6.3 Experimental Setup

The mobile base, see Figure 6.1, which was built and designed at Fraun-
hofer IPA in Stuttgart, Germany, has previously been used in the DESIRE
project [Reiser et al., 2009b]. It is a four-wheeled pseudo-omnidirectional
mobile robot equipped with eight motors, two for each wheel.1 Figure 6.2
shows a sketch of the robot and its degrees of freedom. For the experiments
in this chapter, the mobile robot is equipped with a six degrees-of-freedom
IMU from Xsens [Xsens Technologies B.V., 2010], which is aligned with
the robot’s coordinate frame. The IMU provides measurements with a rate
of 50 Hz. An internal calibration procedure accounts for imperfections in
the physical alignment of each component, gains, offsets, and tempera-
ture relations. Using the calibration, the accelerometer and gyro vectors,
expressed in the IMU’s local coordinate frame, are computed using an
onboard processor.

1 The robot needs to turn its wheels, thus prohibiting true omnidirectionality.
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Figure 6.1 The mobile robot used for the experiments. The IMU is placed
below the black plate to the left in the picture, and the feature-detection
pattern used for the vision algorithm is located above the black plate.
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Figure 6.2 A sketch of the robot and its degrees of freedom.
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The wheel-encoder position and velocity measurements are extracted
with a rate of 20 Hz. The robot is controlled and sensor data are acquired
using the ROS software package [ROS, 2014]. A roof mounted camera
is situated above the robot’s workspace. Using the camera the absolute
position of the robot, as well as the orientation are calculated. The al-
gorithms for object tracking and feature detection are not included here,
but are surveyed in [Yilmaz et al., 2006]. In this experimental setup, the
camera vision algorithm provides position measurements with an update
rate between 1.5–2 Hz. The update rate differs because of jitter and non-
deterministic computational demands. Moreover, the camera provides a
timestamp associated with each frame, thus enabling OOSM compensa-
tion.

Mobile Manipulator
FRIDA [Kock et al., 2011], see Figure 6.3, is a dual-arm lightweight ma-
nipulator that is used in the pick-and-place scenario and for ground-truth
evaluations. Both arms have seven degrees of freedom, which means that
they have one redundant degree of freedom each. The robot is designed
to be intrinsically safe, which is accomplished by having low payload and
robot inertia, a mechanical design free from sharp edges, as well as cover-
ing exposed regions with soft padding. Also, power and speed limitations
together with collision detection are implemented. The robot is controlled
with the ABB IRC5 robot control system, which has been extended with
an external control system (see [Blomdell et al., 2005] and [Blomdell et
al., 2010]) that makes it possible to alter the references for the low-level
joint velocity and position loops. The external controllers are designed in
MATLAB/Simulink. The Real-Time workshop toolbox is used for code gen-
eration. The resulting program is executed on a Linux Xenomai PC with
communication between the IRC5 control system and the external control
system via a dedicated Ethernet connection. For communication between
the two robots, Java with PalCom, see [Åkesson et al., 2012; Fors, 2009],
is used. The communication executes with a rate of 50 Hz.

6.4 Modeling

When working with moving objects, different coordinate frames have to
be used. For the combined vehicle and camera system, three coordinate
systems are of particular interest:

1. World (W ): This frame is considered an inertial frame and is fixed
to the base of FRIDA. The robot pose is estimated with respect to
this frame.
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Figure 6.3 The ABB light-weight robot FRIDA used both in the pick-
and-place scenario and for verification of the estimation accuracy. To eval-
uate estimation performance, FRIDA’s endpoint (flange) of the left arm
tracks the robot, and the position differences between FRIDA and the mo-
bile robot are used as an error estimate.

2. Body (B): This frame is fixed to the mobile robot, with its origin
placed at the position of the IMU. Both the IMU and wheel-encoder
measurements are resolved in this frame.

3. Camera (C ): The camera measurements are given in this frame,
which is fixed relative toW .

Assume that the position ofB expressed inW is pW , and that the rotation
is given by a yaw ψ , a pitch θ , and a roll φ (see Appendix A). Then the
transformation between the frames is performed by an addition of pW
followed by a rotation given by the rotation matrix

RWB :=

cθ cψ −cφ sψ + sφ sθ cψ sφ sψ + cφ sθ cψ
cθ sψ cφ cψ + sφ sθ sψ −sφ cψ + cφ sθ sψ
−sθ sφ cθ cφ cθ

 ,

where cθ and sθ are short for cos(θ ) and sin(θ ), respectively, and similarly
for the other angles.

The mobile base is modeled by a state-space model. In congruence with
the standard notation used throughout the thesis, at time tk the robot
state vector is denoted xk and uk is the input vector. It is safe to assume
that the mobile base moves in a plane, because it navigates indoors on
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Table 6.1 Mobile base states with description and dimension.

Notation Description
p ∈ R2 Position in world coordinates
v ∈ R2 Velocity in world coordinates
a ∈ R2 Acceleration in world coordinates
ba ∈ R2 Bias states for acceleration measurement
ψ ∈ R Yaw angle relative to the world frame
ψ̇ ∈ R Yaw velocity in world coordinates
bψ̇ ∈ R Bias state for yaw velocity measurement

flat surfaces. The state vector consists of

xk =



pk
vk
ak
ba,k
ψ k
ψ̇ k
bψ̇ ,k


∈ R11, (6.1)

where pk ∈ R2 is the position, vk ∈ R2 is the velocity, ak ∈ R2 is the
acceleration, which are all both given and expressed in W , ψ k ∈ R is
the yaw angle, and ψ̇ k ∈ R is the yaw rate. Moreover, the state vector is
extended with bias states bk,a ∈ R2 and bk,ψ̇ ∈ R to account for sensor
imperfections. Note that both the acceleration and yaw rate are introduced
as states in (6.1), but they could be used as inputs instead. Including
them as states gives a larger state space, but increases flexibility since
the model can then be used for prediction of accelerations and yaw rates
as well. Table 6.1 summarizes the state vector.

Process Model
The process model describes the time evolution (i.e., the dynamics) of
the state vector xk. There are of course many ways, with different com-
plexity, to model this. For rigid bodies, it is common to employ constant-
acceleration or constant-velocity models [Gustafsson, 2010b]. By modeling
the process as a constant-acceleration process, the model that describes
the time evolution of xk becomes

xk+1 = Axk +wk, (6.2)

93



Chapter 6. Out-of-Sequence Measurements in Robotics

with

A =



I2$2 TsI2$2
T2

s
2 I2$2 02$2 02 02 02

02$2 I2$2 TsI2$2 02$2 02 02 02

02$2 02$2 I2$2 02$2 02 02 02

02$2 02$2 02$2 I2$2 02 02 02

0T
2 0T

2 0T
2 0T

2 1 Ts 0
0T

2 0T
2 0T

2 0T
2 0 1 0

0T
2 0T

2 0T
2 0T

2 0 0 1


. (6.3)

In (6.3), Ts is the sampling period, I2$2 is the 2$ 2 identity matrix, 02$2
is the 2$ 2 zero matrix, and 02 is the 2$ 1 zero vector. The process noise
wk is assumed independent, white, and Gaussian distributed with zero
mean according to

wk ∼N (011,Q), Q = FQwFT, (6.4)

where

F =



T3
s

6 I2$2 02$2 02 02

T2
s

2 I2$2 02$2 02 02

TsI2$2 02$2 02 02

02$2 TsI2$2 02 02

0T
2 0T

2
T2

s
2 0

0T
2 0T

2 Ts 0
0T

2 0T
2 0 Ts


and Qw ∈ R6$6 is a diagonal matrix with noise parameters for the accel-
eration states, acceleration bias, yaw rate state, and yaw rate bias. Note
that (6.2) is linear and thus fits directly into the framework that is used
for OOSM processing.

Measurement Model
The vision system provides position and yaw-angle measurements (pm,k
and ψ m,k, respectively), and the velocities vBm,k are extracted from the
wheel-encoder measurements. Moreover, the IMU measures accelerations
and angular velocities in the IMU frame B. Since we use acceleration and
yaw rate as states, the IMU measurements enter in the measurement
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equation. Thus, the measurements are

yk =


pm,k

vBm,k
aBm,k
ψ m,k

ψ̇ m,k

 ∈ R8. (6.5)

Note that vBm,k in (6.5) is not given directly by the wheel encoders, but
needs to be transformed using the forward kinematics. If longitudinal and
lateral slip are neglected, investigation of Figures 6.2 and 6.4 straightfor-
wardly gives the relations for the velocity vector of the robot’s geometric
center, vBCoG,k, as

vBCoG,k =

[∑4
i=1 cos(δ i,k)Riω i,k∑4
i=1 sin(δ i,k)Riω i,k

]
.

The velocity measurement vector vBCoG,k gives the velocity at the geometric
center. Therefore, vBCoG,k has to be translated to the IMU’s location prior
to being used in (6.5). This is done as

vBm,k = vBCoG,k + ψ̇ k $ pBCoG,k, (6.6)

where pBCoG,k is the relative position between the IMU and the geometric
center.

The measurement model that relates the measurement vector (6.5) to

y ω i

δ̇ i

vx
i

Figure 6.4 Wheel i and its two rotational degrees of freedom.
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the states is given by

yk = h(xk) + ek =


pk

RWB vk

RWB ak + ba,k
ψ k

ψ̇ k + bψ̇ ,k

+ ek. (6.7)

The measurement noise ek is assumed to be independent, white, and
Gaussian distributed, which leads to

ek ∼N (08,R),

where the covariance matrix R ∈ R8$8 is determined from experiments.
The rotation matrix introduces nonlinearities in (6.7), but these are mild.

6.5 Filter Design

To solve the state estimation problem, we use an EKF. The forward-filter
algorithm that is used is Algorithm 3.1 on page 50, with linearized dy-
namics. The algorithm consists of two steps; the time update step and
the measurement update step. In the time update step, (6.2) is used for
updating the states and covariances.

When a measurement arrives, (6.5) is used for updating the mean of
the state estimate. To update the covariance estimate, the measurement
model is linearized at x̂kpk−1 (i.e., the one-step prediction of the estimated
mean), which yields

Ck =
dhk(xk)

dxk

∣∣∣∣
x̂kpk−1

.

With this calculation of the measurement matrix, Algorithm 3.1 is used
for updating with the in-sequence measurements.

REMARK 6.1
From (6.6) it is clear that the velocity at the geometric center depends on
both wheel-encoder and yaw-rate measurements. However, we neglect this
and only treat the wheel-encoder measurements as disturbed by noise.2

Handling Out-of-Sequence Measurements
The camera delivers pictures with a rate of approximately 30 Hz, but
the vision algorithm only produces about two position and angle mea-
surements per second on average. The wheel encoders produce measure-
ments at 20 Hz and the IMU delivers measurements at 50 Hz. Thus, the
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measurements from the vision algorithms are OOSMs, and the delay is
therefore accounted for using an OOSM approach. As pointed out in Sec-
tion 5.3, there are many alternatives to account for measurements that
arrive delayed in time for linear systems. The approach used here, which
was derived in [Bar-Shalom et al., 2004], assumes the retrodicted2 noise to
be zero. This assumption implies that the algorithm is only suboptimal.
When an OOSM arrives, the estimate at time index k given measure-
ments up to time index k, x̂kpk, is retrodicted to the OOSM time index τ
using equivalent measurements. The algorithm is outlined below, but for
more details the reader is referred to [Bar-Shalom et al., 2004].

The algorithm assumes a maximum OOSM delay lmax and that the
OOSM time tτ for each OOSM is bounded by a positive integer l as
τ ∈ [k− l, k− l + 1). Starting with the estimate x̂kpk, the retrodiction of
the state from k to τ is

x̂τ pk = Aτ ,k x̂kpk = Aτ A−l x̂kpk, (6.8)

where Aτ is A in (6.3) with Ts replaced with Ts(tτ − tk−l). The covariance
for the state retrodiction is

Pτ pk = Aτ ,k

(
Pkpk +Qk,τ − Pxwk,τ pk − (Pxwk,τ pk)

T
)
AT

τ ,k,

where Qk,τ is the accumulated process noise covariance matrix, which is
equal to Q in (6.4) with Ts replaced with Ts(tτ − tk−l). Moreover,

Pxwk,τ pk = PkpkPkpk−lPwwk,τ pk, (6.9)

where Pxwk,τ pk is the cross-covariance between the accumulated process noise
and the current state. The covariance between the state at time index k
and the OOSM is computed as

Pxyk,τ pk =
(
Pkpk − Pxwk,τ pk

)
AT

τ ,kCT
τ . (6.10)

Using the cross-covariance (6.10), the gain used for the EKF update is

Kkpτ = Pxyk,τ pkS
−1
τ ,

where Sτ is given by the expression

Sτ = Cτ Pτ pkCT
τ + R.

The new, updated estimate x̂kpk,τ is

x̂kpk,τ = x̂kpk + Kkpτ
(
yτ − ŷτ pk

)
, (6.11)

2 Backward predicted.
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where the retrodicted OOSM is equal to

ŷτ pk = Cτ x̂τ pk, (6.12)

and the retrodicted state is given by (6.8). Finally, the covariance for the
updated state estimate is

Pkpτ = Pkpk − Pxyk,τ pkS
−1
τ (Pxyk,τ pk)

T. (6.13)

Note that no storage of the old state estimates is needed. The only stored
covariance matrix that is explicitly needed for the algorithm is Pk−lpk−l,
which is used in (6.9). The storage requirements for the algorithm in addi-
tion to the standard EKF is the storage of {Pk−mpk−m}

lmax
m=1, corresponding

to lmaxnx(nx + 1)/2 scalars, where nx is the number of states. The algo-
rithm is summarized in Algorithm 6.1

Algorithm 6.1—OOSM algorithm
1: Initialize: Set x̂−1p−1 = x−1, P−1p−1 = P−1.
2: for k = 0 to T do
3: Update the state estimate and covariance with (3.4).
4: When velocity and/or IMU measurements arrive, update the state

estimate and covariance with (3.3).
5: When a delayed camera measurement arrives, use (6.11)–(6.13).
6: end for

6.6 Tracking-Performance Evaluation

This section will first give experimental results for two different scenar-
ios. These scenarios are intended to showcase how the position estimates
differ from the camera measurements. In the first scenario, the robot
drives around randomly, with longitudinal, translational, as well as rota-
tional movements. The second scenario consists of straight-line driving,
and we show a 35 s excerpt from the whole experiment. Then, we assess
the performance in an evaluation where we use FRIDA as ground truth.

Evaluation against Camera Sensor
Figure 6.5 shows the measured and estimated pose (position and orienta-
tion) for one of the two scenarios. The estimates cohere well with the mea-
sured quantities, although some discrepancies exist. One reason for the
discrepancies is that dead-reckoning errors will cause the Kalman-filter
estimates to become less reliable as time progresses without any new po-
sition information. Another cause for discrepancies is that the IMU is
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not perfectly aligned with the robot, which implies that it senses nonpla-
nar motion; for example, the contribution from gravity to the longitudinal
and lateral acceleration measurements are nonzero. If investigating Fig-
ure 6.5 closely, it is possible to see small discontinuities (jumps) in the
position estimates when compensating for the OOSMs. This shows that
even though approximately 25 IMU measurements arrive between every
camera measurement, the position measurements contain significant in-
formation. Further, the discontinuities give an indication of how fast the
estimation algorithm would diverge (which it would) without absolute
position information.

The second scenario consists of a straight-line path with the yaw angle
held constant. Figure 6.6 shows the longitudinal position. The estimates
are very close to the camera measurements, and a comparison of Fig-
ure 6.6 with Figure 6.5 gives that the estimated robot motion is smoother
for the second scenario (i.e., the less complex maneuver), as expected.

Evaluation against Ground Truth
To verify the tracking accuracy we use FRIDA, see Figure 6.3, as ground
truth. FRIDA has an absolute accuracy of approximately 0.25 mm mean
error and 1 mm maximum error in steady state. The state estimates from
the estimation algorithm are sent to FRIDA at a rate of 50 Hz, and FRIDA
is controlled to keep the position of the flange of its left arm constant
relative to the mobile base. With an ideal control system, the flange only
moves away from its reference position if the pose and velocity estimates
are incorrect. The control system in FRIDA is, of course, not ideal, but
still the procedure gives some information about the performance.

Figure 6.7 shows the results from an experiment where the mobile
base drives back and forth as well as rotating back and forth. The upper
plot displays the difference between the mobile base position estimates
and the X - and Y-coordinates of the robots’ left flange. The lower plot
shows the estimated mobile base velocities. The minor deviations that
occur are when the base accelerates. This can be explained by the rela-
tively low sampling rates of the wheel encoders and vision algorithm, but
also because the system is not perfectly controlled. The maximum error
is about 15 mm, but is often well below 10 mm. The results indicate that
the estimation is smooth and correct enough to perform high-precision
coordinated control, at least when the acceleration is not too large.
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Figure 6.5 Estimated trajectories compared with the camera measure-
ments for the Kalman-filter approach with OOSM compensation. The red
+ indicate the camera measurements. The camera measurements have
been moved to their correct place in time.
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Figure 6.6 Estimated longitudinal trajectory compared with the camera
measurements for the Kalman-filter approach with OOSM compensation.
The red + indicate the camera measurements. The camera measurements
have been moved to their correct place in time. Compared with Figure 6.5
the estimates are now smoother throughout, which owes to the less complex
maneuver.
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Figure 6.7 Verification of the uncertainty-estimation algorithm. The up-
per plot shows the longitudinal (X ) and lateral global errors between the
flange of FRIDA’s left arm and the position of the mobile base. The lower
plot shows the estimated global velocities of the mobile robot. The position
error is at most approximately 15 mm (at 42 seconds), but most often it
is well below 10 mm.
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6.7 Application: A Pick-and-Place Scenario

The considered application is a pick-and-place scenario. The aim is to pick
up and place cans using a mobile manipulator, but the framework and pos-
sible use cases of the robots are not restricted to this scenario. Examples
of applications that can be approached, estimated, and controlled using a
similar procedure and experimental setup are assembly and milling.

The pick-and-place scenario is as follows: The manipulator first picks
up a can, which is positioned at a fixed, known position. The size of the
can is unknown but, of course, has to fit into the gripper’s fingers. The
shape of the can is assumed cylindrical. The manipulator then places the
can at the corner of the plate while the mobile base drives around. Force
control ensures that the item is placed in the correct position. Figure 6.8
shows the setup. Figure 6.9 contains a flowchart of the scenario.

• In state 1, FRIDA picks up the item.

• When entering state 2, the mobile base starts moving with varying
velocity. FRIDA moves to a position above the plate, with the ori-
entation chosen such that the coordinate frames of both robots are
aligned in the Z-direction.

• In state 3, FRIDA initiates a search motion using velocity control in
the Z-direction. The position and orientation are kept constant in
the other directions.

• When contact is made, the state machine enters state 4, where the
control in the Z-direction now switches to force control.

• In states 4 and 5, FRIDA searches for contact using velocity control
in the Y- and X -directions, respectively. As soon as contact is made,
the controller switches back to position control. Finally, the item is
released and the procedure can either be restarted or terminated.

Task Specification
We use a constraint-based task specification framework (iTaSC) for spec-
ifying the task, see [De Schutter et al., 2007] for a thorough description.
The main ideas behind the framework and how it is used in the pick-and-
place scenario is explained next.

The constraint-based task-specification framework specifies the rel-
ative motion of objects by introducing constraints. Constraints can ex-
press geometric relationships, force relationships, velocity relationships,
or some other relationships. These constraints are specified using kine-
matic chains. Normally a kinematic chain contains two object frames, o1
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Figure 6.8 The setup used in the pick-and-place scenario. FRIDA’s left
gripper is used for picking up and placing groceries on the mobile base.
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Pick up object

Move to above mobile base

State 1

Object picked up

Move to contact Z

Position reached

State 2

Move to contact Y

Z-force detected
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Move to contact X

Y-force detected
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Release object

X -force detected
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Figure 6.9 A flowchart describing the pick-and-place strategy used in
the experiments in Section 6.7. The intermediate boxes between two states
indicate the rules that govern the respective switches.
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and o2, and two feature frames, f1 and f2. The object frames are rigidly
attached to the manipulated object and the object that manipulates, re-
spectively. The feature frames should be attached in such a way that they
simplify the problem of specifying the constraints that define the task.
Furthermore, they should be linked to o1 and o2, respectively. The dif-
ferent transformations between the frames are either constant or time
varying. In total there are six degrees of freedom distributed over the
transformations, and these are represented by the feature coordinates
χ f . The feature coordinates are usually partitioned as

χ f =
[
χT

f1
χT

f2
χT

f3

]T ,

where χ f1 represents the relative motion of f1 with respect to o1, χ f2 rep-
resents the relative motion of f2 with respect to f1, and χ f3 represents the
relative motion of o2 with respect to f2. To obtain the feature coordinates,
the inverse kinematics of the kinematic chains have to be solved for.

Normally not all transformations are exactly known, which implies
that some uncertainties exist. These uncertainties are modeled by intro-
ducing auxiliary transformations, placed between the frames where the
uncertainties occur. The degrees of freedom of the uncertainties are given
by χu, the uncertainty coordinates; for example, frame o′1 could model the
uncertainty of o1, with the degrees of freedom between the two frames
represented by χu.

The variables that are of interest to constrain (i.e., to control) are
chosen by specifying desired outputs yd as functions of the robot joint
coordinates q and feature coordinates χ f as

yd = f (q,χ f ), (6.14)

If the kinematic chain is chosen appropriately, yd directly corresponds
to some or all of the feature coordinates χ f . If there are fewer outputs
than the degrees of freedom, the robot system will be underconstrained.
The redundancy can then be utilized to perform an additional task—for
example, minimizing the norm of the joint velocities.

Task Specification for the Pick-and-Place Scenario We use one
kinematic chain to model the pick-and-place scenario. The feature and
uncertainty coordinates connect the different transformations according
to:

• The world frameW is rigidly connected to FRIDA.

• Frame o1 is fixed toW . The unknown position of the mobile base
is modeled by o′1, and is estimated by Algorithm 6.1.
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o′1 f1

f2 f ′2

χ f I I

x

Figure 6.10 Feature and uncertainty coordinates and how the frames
connect to each other. The primed frame represents the uncertain frame
while the other represent the true frames. The transformation between
W and o2 is given by FRIDA’s forward kinematics, which depends on the
feature coordinates χ f I I and the position of the mobile base.

• Frame f1 is located at one of the corners of the plate, see Figure 6.1.
It is related to o′1 by a constant translation.

• Frame o2 is fixed to FRIDA’s left flange. It is related toW by the
kinematics of FRIDA.

• Frame f2 is connected to the tool center point, related to o2 by a
constant translation. The unknown geometry of the gripped item is
modeled by f ′2.

For a clarification of how the the different transformations connect to each
other, see Figure 6.10. The feature coordinates are collected into the trans-
formation between f1 and f2—that is, the relative position between the
mobile base and FRIDA. Hence, χ f2 ∈ R6 contains the three translational
and three rotational degrees of freedom. Since all degrees of freedom are
collected between f1 and f2, both χ f1 and χ f3 are void.

The first three feature coordinates are Cartesian translations along
the axes of f1, and the last three are rotational coordinates parametrized
by ZY X (yaw-pitch-roll) Euler angles, see Section 6.4 and Appendix A.
The length, width, and height of the gripped object are modeled by the
transformation between f2 and f ′2. No explicit uncertainty coordinates
are used for modeling this uncertainty, because the object dimensions
are accounted for using force control; that is, the motion is guarded by
a force sensor when searching for contact. When reaching contact in the
Z-direction the motion is force controlled to maintain contact throughout,
while the X - and Y-directions are both position controlled. Furthermore,
all feature coordinates are chosen as outputs.
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Computing the Feature Coordinates
The transformations in Figure 6.10 form a kinematic loop

L(q,χ f ) = 0 (6.15)

for each kinematic chain. The kinematic loop L(q,χ f ) in (6.15) is consti-
tuted by the product of all n involved transformation matrices. To exem-
plify, let Ti be a transformation matrix. Then

L(q,χ f ) = T1 ⋅ ⋅ ⋅ Tn = 0.

Note that because we use Euler angles to model rotation and we know,
or have estimates of, the feature coordinates at the previous time step,
the solution to the inverse kinematics is analytic and given by inversion
of the corresponding transformation matrix.

Manipulator Control
The constraints in the task specification are either position, velocity, or
force based. Because the control system for FRIDA only allows to alter
the joint velocity and position references, the constraint equation has to
include feedback to not violate the constraints. How to provide feedback at
joint level with the references set at Cartesian level is straightforward and
described in [De Schutter et al., 2007]: The idea is to find a relationship
between the desired output velocities ẏd and the robot joint coordinates
q. This relationship is found by differentiation of (6.14), which gives

ẏd =
�f
�q q̇ +

�f
�χ f
χ̇ f . (6.16)

Differentiation of the kinematic loop (6.15) and insertion into (6.16) yields
the relation

Bq̇ = ẏd. (6.17)
Here B is a matrix that is composed of the different jacobians involved.
Because the task specification only has six constraints (three translational
and three rotational) and the mobile base and FRIDA have more than
six degrees of freedom, the matrix B is not square. Hence, the solution
to (6.17) is in general not unique. A workaround for this is to use the
pseudoinverse B# [Golub and Van Loan, 1996], which is equal to

B# = M−1BT(BM−1BT)−1

for a suitable weighting matrix M. The feedback is now introduced by
modifying ẏd with a feedforward term ẏ f f and a controller C as

ẏd = ẏ f f + C. (6.18)
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For the pick-and-place scenario, velocity control is performed with PID
control, see (2.1) on page 36, and both position and force control are done
with impedance controllers ((2.2) on page 37). Note that the control refer-
ences are sent to FRIDA; that is, FRIDA is main responsible for controlling
the behavior.

Experimental Results
Figure 6.11 shows the state sequence (see Figure 6.9 for the flowchart)
from an experiment and Figure 6.12 displays the corresponding force data.
The threshold set to trigger transitions to state 4 is −4 N for the force
in the Z-direction, which is exceeded after approximately 5 s. To trigger
transitions to states 5 and 6 we set the threshold to 2 N for the Y- and X -
directions, respectively. The force in the Z-direction is controlled to −5 N
as soon as contact is made. The rotational coordinates are controlled to
maintain zero velocity in all states from state 3 and onward.

Figure 6.13 contains the estimated velocities for the mobile base to-
gether with the desired velocities for FRIDA (i.e., the output from (6.18))
from the same experiment. The desired velocities are expressed in B (i.e.,
the frame of the mobile base). Approximately between 1.8–5 s the velocity
in the Z-direction is controlled to keep constant relative velocity, whereas
the other positions are position controlled using impedance controllers.
Note that the velocity references in both X and Y vary. This has to do
with that the impedance controllers are tuned to avoid too large contact
forces, rather than keeping exactly the same position. Between approxi-
mately 5–8.5 s the Y-velocity is controlled, and between roughly 9–10.8 s
the X -velocity is controlled. The release of the can occurs where the con-
trol signal in Z goes to nonzero velocity at 10.8 s. The path that the mobile
base traversed and the state transitions are found in Figure 6.14.
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Figure 6.11 State sequence from the pick-and-place scenario (Sec-
tion 6.7). The state sequence is from the same experiment as Figures 6.12–
6.14.
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Figure 6.12 Force data from the pick-and-place scenario (Section 6.7) for
the same experiment as in Figure 6.11. The Z-force is controlled to −5 N
from state 4 and onward. The threshold for activating the force control in
the Z-direction is set to −4 N. The outputs in the Y- and X -directions are
position controlled except in states 4 and 5, respectively, where they are
velocity controlled.
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Figure 6.13 Velocity data for the mobile base and desired output veloc-
ities from an experiment. The upper plot shows velocities of the mobile
base. The lower plot displays the control signals—that is, the modified
desired output velocities in (6.18)—resolved in the mobile platform’s co-
ordinate system. The control signals for the ZY X -Euler angles are not
showed, since they are practically zero throughout the experiment.
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Figure 6.14 Traversed path of the mobile base together with the state
transitions, shown as red +. The path is for the origin of frame o′1 (i.e., the
plate on the mobile base). The transitions start from state 1 up to state
6, all in all five transitions. The transitions to states 2 and 3 occur in the
lower right part of the figure, whereas the other three transitions occur in
the upper left part.
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6.8 Concluding Remarks

The iTaSC framework proved to be suitable for the application at hand.
A benefit is that it is well suited for specifying the task at a rather high
level. The framework is more powerful than what was needed for our
application, but it is easy to envision scenarios where both robot arms,
possibly with more mobile robots involved, are used. We used Euler angles
for specifying the task. They are intuitive to use, but a problem with Euler
angles is that they have representation singularities. There are several
solutions to remedy this. One solution is to use different parametrizations
of the angle representation depending on the robot-system configuration.
Another approach is to instead use quaternions [Hamilton, 1844], which
can be incorporated into the framework, see [Stolt et al., 2012].

The robot coordination was done using a very crude approach; that is,
the stationary manipulator was responsible for all high-precision motion.
This is a common-sense method, which has been used before [Meeussen
et al., 2010]. However, it is likely that involving both robots in the feedback
process can improve performance.

The results indicate that a rather simple, linear constant-acceleration
process model can be used for achieving estimation performance that is
good enough for online scenarios. The only nonlinearity in the estimation
model enters in the measurement equations, and it is a rather mild one
considering that the rotation is assumed to occur in one dimension only.
Still, to perform more integrated coordinated movements, the estimation
performance must probably be improved. The estimation algorithm ex-
ecuted at 50 Hz, whereas the vision algorithm executed with approxi-
mately 2 Hz. Increasing the update rates will most probably improve per-
formance. Another way to achieve better estimation performance is to use
models that better capture the dynamic effects in the robots. As an exam-
ple, if the robot system is modeled as one robot instead of two separate
robots, it is possible to improve performance. The reason is that the force
sensor contains information about the position of the robot’s grippers. By
incorporating the force-sensor measurements together with the forward
kinematics of the stationary manipulator into the estimation framework,
it is possible to extract more information about the position of the mobile
base. In this chapter, the model used for estimation is based on rigid-
body kinematics. This assumption is typically violated when performing
manipulation, since the contact forces give rise to deflections. Thus, by
taking this into consideration, improved estimation and control accuracy
will be achieved. However, it is possible that incorporating more complex
dynamics, and possibly more intricate noise distributions that more cor-
rectly model the eigenfrequencies in the system, gives a model that is not
suitable for linear estimation techniques.
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6.9 Summary

This chapter provided an example of the type of applications OOSMs oc-
cur in and how they can be dealt with. The method that accounted for the
OOSMs assumes a linear model with Gaussian noise. This was achieved
by using a planar, constant-acceleration model and linearizing the dynam-
ics at each time step. Results showed that the estimated pose is smooth,
with minor jumps in the estimates when the OOSM arrives.

We discussed a pick-and-place scenario where a mobile manipulator
system manipulated objects. The setup was successfully verified in ex-
periments. The scenario involved several aspects of vehicle modeling and
control, being robot localization and position, velocity, and force control.
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7
Particle Filters for
Out-of-Sequence Processing

In many scenarios, the OOSM filters that assume linear dynamics per-
form very well. Chapter 6 provided an application where the estima-
tion accuracy is good enough to successfully execute a relatively complex
task. However, the vast majority of systems are not linear, and in many
cases the nonlinearities cannot be well approximated by linearizations.
As pointed out in Section 3.1, the particle filter is especially popular in
positioning and navigation/tracking applications. In mobile robotics, the
particle filter is used for localization [Fox et al., 2000] and in many of
the state-of-the-art simultaneous localization and mapping (SLAM) algo-
rithms [Thrun et al., 2006a], see [Montemerlo and Thrun, 2003; Hähnel
et al., 2003] for different particle-filter approaches.

This chapter discusses how to account for OOSMs in particle filters.
As mentioned in Chapter 5, it is not obvious how to update with the
OOSM in a sensible way. Sometimes the OOSM update can even lead
to worse performance than what would be achieved by simply discarding
it. For some types of sensor configurations, it is particularly important
how the update is done. Many OOSM filters only update the most recent
estimate. This was what was done in Chapter 6. Only updating the most
recent estimate is, however, not always the right thing to do when several
OOSMs arrive interleaved with each other.1

Here, we adapt the optimal2 complete in-sequence information (CISI)
fixed-point smoother for linear systems, described in [Zhang and Bar-
Shalom, 2012a], to nonlinear systems and use it in the context of par-
ticle filters. The CISI approach updates all states between the OOSM
timestamp and the current time. This implies better performance than

1 The problem for when several OOSMs arrive at the same time step is called the multi-
OOSM problem. It was briefly discussed in Section 5.3.

2 Optimal in the mean-square sense.
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if only updating the current estimate. The rationale for our approach is
that if the CISI method is optimal for linear systems, it should perform
better for nonlinear systems than other linearized approaches. The pro-
posed approach involves a seemingly minor, yet effective, extension to the
storage-efficient particle filter (SEPF) reported in [Orguner and Gustafs-
son, 2008] and the storage-efficient particle filter with selective processing
(SEPF-GARP) reported in [Liu et al., 2010]. We evaluate the proposed algo-
rithm on a target-tracking example and compare the performance against
related OOSM particle filters, in terms of average estimation accuracy,
robustness, and execution time. The chapter ends with a discussion and
by drawing some conclusions.

7.1 Related Work

Many of the research papers within OOSM processing were mentioned
in Section 5.3. Several of them derive optimal OOSM solutions for lin-
ear, Gaussian systems. For the multi-OOSM problem; that is, when more
than one of the OOSMs are interleaved, there are a handful of differ-
ent solutions. There are not many optimal algorithms when it comes to
particle-filter algorithms. In fact, there is only one, namely the approach
described in [Zhang and Bar-Shalom, 2012b]. That algorithm is denoted
by A-PF. For general nonlinear systems with white noise, and for a suf-
ficiently large number of particles N, the distribution estimated by A-PF
converges to the distribution that is estimated by a filter that has access
to all measurements. The problem with A-PF is that it is computation-
ally expensive; the computational complexity is O (N3), thus prohibiting
online execution for anything but the smallest problems.

Chapter 8 will cover A-PF in more detail. For now, focus will be on
particle-filter algorithms that are aimed at online execution. Approaches
toward this direction are taken in, for example, [Orguner and Gustafsson,
2008] and [Liu et al., 2010], and we will go through them after a formal
problem formulation.

7.2 Problem Formulation

The considered systems are on a similar form as (5.1):

xk+1 = fk+1,k(xk) +wk+1,k, (7.1a)
yk = h(xk) + ek. (7.1b)

The state-transition function fk+1,k : Rnx → Rnx and the process noise
wk+1,k have been appended with explicit indexing for later use, but when
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the indexing is not used they have the standard interpretation. In (7.1b),
h : Rnx → Rny is the measurement function, ek is the measurement noise,
and yk is the measurement vector. Moreover, wk+1,k and ek are mutually
independent, white, and Gaussian distributed according to

wk+1,k ∼N (0nx ,Qk),
ek ∼N (0ny,Rk).

As in Section 5.2, the timestamp is referred to as tk and ta
k means the

corresponding measurement arrival time. Denote the set of in-sequence
measurements (ISMs) generated in the interval [0, k] asY k. LetZ k denote
the set of OOSMs available at time tk. Then y0:k means Y k ∪Z k−1, that
is, the ISMs available at time tk and the OOSMs available at time tk−1.

A definition of OOSMs and ISMs was given in Definition 5.1. With
this definition in mind, we define the notion of most recent time next:

DEFINITION 7.1—[ZHANG AND BAR-SHALOM, 2012A]
Given an OOSM yτ , if

tm(τ ) = max{tk; ∀tk, ta
k < ta

τ },

then tm(τ ) is the most recent time (MRT) corresponding to yτ . 2

What Definition 7.1 says is that the MRT is the largest timestamp of
all measurements that arrived before the OOSM. As mentioned in Sec-
tion 5.3, when discussing linear, Gaussian systems, it is only under special
circumstances that it is enough to update the most recent mean and co-
variance and still have optimality. The case for when this approach is op-
timal is when the OOSM scenario is of type I, see [Zhang and Bar-Shalom,
2012a] for the theorem. The type I scenario is explained in Definition 7.2.

DEFINITION 7.2—[ZHANG AND BAR-SHALOM, 2012A]
If for any two OOSMs yτ1 and yτ2 , where yτ1 arrives before yτ2 (i.e.,
ta
τ1
< ta

τ2
), we have that the most recent time corresponding to yτ1 is be-

fore the timestamp of yτ2 (i.e., tm(τ1) < tτ2), then the OOSM scenario is of
type I. 2

An interpretation is that an OOSM scenario is not of Type I if a mea-
surement occurs after yτ2 but arrives before yτ1 . An example of a type I
OOSM scenario is shown in Figure 7.1. A scenario that does not fulfill
the assumptions in Definition 7.2 is shown in Figure 7.2. The scenario in
Figure 7.2 is not of type I since yτ2 arrives before yτ1 , but the timestamp of
yτ2 is after the MRT of yτ1 . Only the CISI approach guarantees optimality
when the OOSM scenario is not of type I, which is often the case when
having more than one sensor producing OOSMs.
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Arrival time

Timestamp

tτ1 tτ2

ta
τ1

ta
τ2

ISM

OOSM

Figure 7.1 An example of the type I OOSM scenario when, for linear
systems, it is optimal to use the OOSMs for updating the most recent
estimate only. For an explanation of OOSMs and ISMs, see Definition 5.1.

Arrival time

Timestamp

tτ1 tτ2

ta
τ1

ta
τ2

ISM

OOSM

Figure 7.2 An example of an OOSM scenario which is not of type I,
when one must update all states between the OOSM time and the current
time to guarantee optimality.

Throughout the chapter we assume that the timestamp tτ of each
OOSM is bounded as tτ ∈ [tk−l, tk−l+1) for a positive integer l, where
l ∈ {1, . . . , lmax}. The constant lmax is chosen a priori but we do not as-
sume prior knowledge of the timestamps.

As stated in Section 5.2, assume that an estimate of the filtering pos-
terior p(xkpy0:k) is available. Then, assume that n OOSMs {yτ1 , . . . , yτ n}
arrive. The aim is to update the filtering posterior with the OOSMs; that
is, the aim is to find

p(xkpy0:k, yτ1 , . . . , yτ n).

For simplicity in notation, in the remainder of this chapter, yτ is also used
for denoting several OOSMs.
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7.3 Particle Filters with Out-of-Sequence Measurements

The forward filter we use for processing of ISMs is based on Algorithm 3.2,
with the addition that we at each time step k form the state and covariance
estimates as

x̂kpk =
N∑

i=1
wi

kxi
k, (7.2a)

P̂kpk =
N∑

i=1
wi

k(xi
k − x̂kpk)(xi

k − x̂kpk)
T. (7.2b)

These estimates are the minimum mean-square error estimates of the
mean and associated covariances [Schön, 2006]. Moreover, we do condi-
tional resampling according to (3.18) when the effective sample number in
(3.19) fulfills Neff < 2N/3. The algorithm is summarized in Algorithm 7.1.

Algorithm 7.1— Particle Filter with Conditional Resampling
1: Initialize: Set {xi

0}
N
i=1 ∼ p0(x0) and weights {wi

0}
N
i=1.

2: for k = 0 to T do
3: Time update: Generate new particles from (7.1a):

xi
k+1 ∼ p(xk+1pxi

k), ∀i ∈ {1, . . . , N}.

4: Measurement update: Compute weights according to

w̄i
k ∝ p(ykpxi

k)wi
k−1, ∀i ∈ {1, . . . , N}.

and normalize them as wi
k = w̄i

k/
∑N

i=1 w̄i
k.

5: if
(∑N

i=1(wi
k)

2
)−1

< Nthr then
6: Resample according to P(xi

k = x
j

k ) = wj
k, ∀i ∈ {1, . . . , N}.

7: end if
8: Compute mean and covariance from (7.2).
9: end for

Next, we briefly go through SEPF in [Orguner and Gustafsson, 2008] and
its extension SEPF-GARP in [Liu et al., 2010].

Storage Efficient Particle Filter—SEPF
SEPF is motivated by that there are usually much more particles than
measurements in a particle filter. Hence, particle storage should be
avoided, if possible. The starting point is that measurements until time
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tk have been processed using a particle filter, such as the one in Algo-
rithm 7.1. The (k + 1)th measurement arrives delayed, with the times-
tamp tτ bounded between two samples as tτ ∈ [tk−l, tk−l+1) for a positive
integer l. Note that a type I scenario as depicted in Figure 7.1 is assumed.

SEPF utilizes Bayes’ rule as

p(xkpy0:k,τ ) =
p(yτ pxk, y0:k)

p(yτ py0:k)
p(xkpy0:k). (7.3)

Substitution of (3.14) on page 53 into (7.3) leads to

p(xkpy0:k,τ ) (
N∑

i=1

p(yτ pxi
k, y0:k)

p(yτ py0:k)
wi

kδ (xk − xi
k)

=
N∑

i=1
wi

kpk,τδ (xk − xi
k), (7.4)

where the weights are generated by

wi
kpk,τ ∝ p(yτ pxi

k, y0:k)wi
k. (7.5)

SEPF computes the likelihood

p(yτ pxi
k, y0:k) =

∫
p(yτ pxτ )p(xτ pxi

k, y0:k)dt

in two steps. First, it approximates p(xτ pxi
k, y0:k) with an extended Kalman

fixed-point smoother [Biswas and Mahalanabis, 1973], where xi
k is treated

as a measurement. Second, it approximates p(yτ pxτ ) using an extended
Kalman-filter (EKF) approach, which enables computation of (7.5).

Sometimes SEPF suffers from that the OOSM update can lead to severe
mismatch between filter weights and updated weights, which drastically
reduces the effective sample number Neff. SEPF suppresses this problem
by computing the approximate effective sample number (3.19) before and
after the OOSM update, Npri

eff and Npost
eff , respectively. If

Npost
eff

Npri
eff

< γ 2, (7.6)

where γ 2 ≪ 1, the OOSM is discarded. This leads to that OOSMs that re-
duce the effective sample number by more than a factor γ 2 are dispatched.
REMARK 7.1
SEPF processes single OOSMs. In the multi-OOSM problem, as we con-
sider, the smoothing and corresponding weight update is applied sequen-
tially when several OOSMs arrive simultaneously. 2
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Selective Processing—SEPF-GARP
A more systematic approach, compared with (7.6), to decide which OOSMs
to neglect and which to process, was derived in [Liu et al., 2010]. The ap-
proach uses either the mutual-information metric or the Kullback-Leibler
divergence metric [Kullback and Leibler, 1951] to find out how informative
the delayed measurement is in relation to the state. The former approach
is summarized here. The mutual information between the measurement
yτ and the state xk is defined as

I(yτ , xkpy0:k) :=
∫

log
(

p(yτ , xkpy0:k)

p(yτ py0:k)p(xkpy0:k)

)
p(yτ , xkpy0:k)dyτ dxk. (7.7)

Thus, to compute (7.7) it is enough to find the joint distribution
p(yτ , xkpy0:k), which is done by approximating it as a Gaussian distri-
bution:

p(yτ , xkpy0:k) (N
([
yτ
xk

] ∣∣∣∣[ ŷτ pτx̂kpk

]
,
[
Ryτ Ryτ xk

Rxkyτ Rxk

])
,

where ŷτ pτ = h(x̂τ pτ ) and x̂kpk is found from (7.2a). The resulting mutual
information is approximated with

I(yτ , xkpy0:k) ( Î(yτ , xkpy0:k) =
1
2 log

(
qRxkq

qRxk − Rxkyτ R−1
yτ Ryτ xkq

)
. (7.8)

The resulting filter with selective processing works as follows: When an
OOSM arrives, (7.8) is computed. The involved covariance matrices and
means are found through repeated EKF recursions from time tτ to the
current time tk on a system formed by augmenting the state xk with the
measurement yτ . It is initialized with the estimated mean and covariance
at time tτ given by (7.2); that is, it is initialized with

Rxτ = Pτ pτ ,
Ryτ = Cτ Pτ pτCT

τ + Rτ ,
Ryτ xτ = RT

xτ yτ = CτRxτ ,

Cτ =
�hτ (xk)

�xk

∣∣∣∣
x̂τ pτ

.

If the resulting mutual-information approximation (7.8) is below a thresh-
old γ 1, the OOSM is discarded. If the mutual-information approximation
(7.8) is above γ 1, meaning that

Î(yτ , xkpy0:k) > γ 1, (7.9)
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the OOSM is deemed informative and is thus processed. The algorithm
proceeds with executing SEPF from Section 7.3. If condition (7.6) holds;
that is, if

Npost
eff

Npri
eff

< γ 2,

then SEPF terminates. Instead, a particle filter that executes from time
index k− l to the current time is activated, involving all (ordered) mea-
surements, including yτ , from time index k− l to time index k. This re-
run particle filter, denoted Gaussian-approximation rerun particle filter
(OOSM-GARP), is initialized with the estimated mean and covariance at
time index k− l. The thresholds γ 1 and γ 2 should be seen as governing
the tradeoff between complexity and accuracy. The rerun particle filter is
typically much more computationally demanding than SEPF.
REMARK 7.2
One of the assumptions SEPF-GARP makes is that the measurements can
be easily ordered. The data association (see Section 5.2) itself can be a
demanding problem in some applications [Maskell et al., 2006], and thus
a rerun filter should be avoided. Also, a rerun filter has relatively high
computational complexity. 2

SEPF for the Multi-OOSM Problem—PF-CISI(MI)
We now present a version of SEPF that not only updates the estimate
at the latest time step, but also all estimates between the OOSM time
tτ and the current time tk. Assume that state estimates x̂ jp j , for all
j ∈ {k− lmax, . . . , k}, and their associated covariances Pjp j , computed from
(7.2), are stored and available. The extension of SEPF with the proce-
dure from [Zhang and Bar-Shalom, 2012a] proceeds as follows: The OOSM
weight update (7.5) is also here approximated with a Gaussian density:

p(yτ pxi
k, y0:k) (N (yτ p ŷi

τ pk, Στ pk). (7.10)

The mean ŷi
τ pk is found by inserting a fixed-point smoothing estimate

of the state in (7.1b), whereas Στ pk is found by the corresponding EKF
measurement update as in

Στ pk = Cτ Pτ pkCT
τ + Rτ .

Since a Gaussian approximation is used, it suffices to propagate means
and covariances. Hence, when an OOSM with timestamp tτ arrives, we
predict the estimate x̂k−lpk−l forward to time index τ . This gives x̂τ pk−l
with the associated covariance as

Pτ pk−l = Aτ ,k−lPk−lpk−l AT
τ ,k−l +Qτ ,k−l, (7.11)
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where Aτ ,k−l is found by linearization:

Aτ ,k−l =
�fτ ,k−l(xk−l)

�xk−l

∣∣∣∣
x̂k−lpk−l

.

For j = k− l + 1, . . . , k− 1, the OOSM-updated mean and covariance in
each time step are recursively found as

x̂ jp j,τ = x̂ jp j + K j(yτ − hτ (x̂τ p j))

Pjp j,τ = Pjp j − K jSτ KT
j ,

(7.12)

where

Cτ =
�hτ (xτ )

�xτ

∣∣∣∣
x̂τ p j

,

Sτ = Cτ Pτ p jCT
τ + Rτ ,

K j = Pj,τ p jCT
τ S−1

τ ,

and where Pj,τ p j is the cross-covariance between the states at time index
j and τ . To compute (7.12), the smoothed estimates and covariances as
well as the cross-covariances are needed. If j = k− l + 1, the quantities
are given by

x̂τ p j = x̂τ p j−1 + VjP−1
jp j−1(x̂ jp j − x̂ jp j−1)

Pτ p j = Pτ p j−1 − VjP−1
jp j−1(Pjp j−1 − Pjp j)P−1

jp j−1V T
j

Pj,τ p j = Pjp jP−1
jp j−1VT

j

Vj = Pτ p j−1AT
j,τ .

(7.13)

For j = k− l + 2, . . . , k− 1, the quantities are instead given by

x̂τ p j = x̂τ p j−1 + VjP−1
jp j−1(x̂ jp j − x̂ jp j−1)

Pτ p j = Pτ p j−1 − VjP−1
jp j−1(Pjp j−1 − Pjp j)P−1

jp j−1VT
j

Pj,τ p j = Pjp jP−1
jp j−1VT

j

Vj = Pj−1,τ p j−1AT
j, j−1.

(7.14)

At the last time step, the approach of using the particles {xi
k}

N
i=1 as mea-

surements is adopted [Orguner and Gustafsson, 2008]. This means that at
the last step, j = k, x̂τ p j is updated using the Kalman smoother formulae,
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see [Biswas and Mahalanabis, 1973], according to

x̂i
τ pk,i = x̂τ pk−1 + Kk

(
x̂i

k − f (x̂k−1pk−1)
)

Pτ pk,i = Pτ pk−1 − Pk−1,τ pk−1CT
k KT

k

Kk = Pk−1,τ pk−1CT
k S−1

k

Sk = CkPk−1pk−1CT
k +Qk

Ck =
�f (xk−1)

�xk−1

∣∣∣∣
x̂k−1pk−1

,

(7.15)

for all i ∈ {1, . . . , N}, where x̂i
τ pk,i means the ith smoothed estimate given

measurements up to time tk−1 and particle i at time tk. Note that a sin-
gle smoother executes to time tk−1. At the last time step, N smoothed
estimates are computed using the particles at time tk.

Computational Considerations Compared with SEPF and SEPF-
GARP, for each j ∈ {k − l, . . . , k − 1}, an additional linearization of
the measurement equation (7.1b) at the estimate x̂τ p j for use in the
OOSM update (7.12) has to be performed. Furthermore, for j = k− l + 1
and j = k− l+ 2, . . . , k− 1, (7.13) and (7.14) need the linearization of the
system dynamics (7.1a) at x̂ j−1p j−1 to propagate the covariances. In addi-
tion, in each step the algorithm needs the inverses of Sτ (in (7.12)) and
Pjp j−1 (in (7.13) and (7.14)). Thus, compared with SEPF and SEPF-GARP,
additional matrix operations are performed in each step. The impact of
these additional operations of course depends on the system size and
the amount of resources available, but for systems of moderate size the
difference should be small.

Algorithm Summary Algorithm 7.2 contains a summary of the result-
ing algorithm, which we denote by PF-CISIMI. In this version, the second
condition on line 5 is always true. We have also implemented the algo-
rithm without mutual-information computations (i.e., the second condi-
tion on line 5 is always false). This algorithm is denoted by PF-CISI. When
several OOSMs arrive simultaneously, the algorithms are applied sequen-
tially. The storage requirements of the algorithm are

{x̂ jp j , P̂ jp j}
k−1
j=k−lmax

.

Thus, the smoother does not need the measurements but instead propa-
gates the stored means and covariances.
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Algorithm 7.2—PF-CISIMI and PF-CISI
Input: {{xi

k, wi
k}

N
i=1,{x̂ jp j , P̂ jp j}

k
j=k−l,{yτ m}

n
m=1}

1: When n OOSMs arrive, sort them with largest delay first.
2: Set accept = 0.
3: for m = 1 to n do
4: Set yτ = yτ m .
5: if I(yτ , xkpy0:k) < γ 1 and PF-CISIMI then
6: Discard yτ .
7: else
8: Set accept = 1.
9: Predict up to time tτ , yielding x̂τ pk−l and Pτ pk−l.

10: for j = k− l + 1 to k− 1 do
11: if j = k− l + 1 then
12: Compute x̂τ p j , Pτ p j , and Pj,τ p j using (7.13).
13: else
14: Compute x̂τ p j , Pτ p j , and Pj,τ p j using (7.14).
15: end if
16: Compute x̂ jp j,τ and Pjp j,τ using (7.12).
17: end for
18: for i = 1 to N do
19: Compute x̂i

τ pk,i and Pτ pk,i by applying (7.15).
20: Apply (7.10) and update weights using (7.5).
21: end for
22: Compute Npost

eff =
(∑N

i=1(wi
kpk,τ )

2
)−1

.
23: if Npost

eff < γ 2 Npri
eff then

24: discard yτ .
25: end if
26: end if
27: end for
28: if accept then
29: Form the new estimates from (7.2).
30: end if
Output: {{x̂ jp j,τ , Pjp j,τ}

k−1
j=k−l+1,{wi

kpk,τ}
N
i=1}

Note that the differences when comparing with SEPF and SEPF-GARP are
in the implementation of the EKS:

• All estimates between the OOSM time and the current time are
updated.

• OOSM-GARP (i.e., the rerun filter) is not used as a last resort when
both γ 1 (mutual-information threshold) in (7.9) and γ 2 (threshold
for effective sample number) in (7.6) are violated.
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REMARK 7.3
In lines 23–25 of Algorithm 7.2 we discard the OOSM if the effective
sample number changes the distribution much, instead of also executing
OOSM-GARP. This improves execution speed. 2

7.4 Numerical Results

This section validates Algorithm 7.2 using root-mean-square errors (RM-
SEs) and compares it against a number of different particle filters, among
them SEPF and SEPF-GARP. Let xk, j and x̂k, j denote the true and esti-
mated state vector, respectively, at time index k of the jth of K Monte-
Carlo simulations. The RMSE of the state vector at time index k is then
computed as

RMSEk =

√√√√ 1
K

K∑
j=1
qxk, j − x̂k, jq2. (7.16)

The time-averaged RMSE is found by computing the mean of the RMSE.

Simulation Model
The simulation example is similar to the ones used in [Orguner and
Gustafsson, 2008] and [Liu et al., 2010]. A target moves in a plane, with
the motion modeled as a five-state coordinated-turn model [Bar-Shalom et
al., 2001; Gustafsson, 2010b]. The geometric path forms a circle of radius
500 m. The initial position p0 and velocity v0 are set to

p0 =
[
−500 500

]T , v0 =
[
0 55

]T , (7.17)

expressed in m and m/s, respectively. The motion lasts for 40 seconds. By
introducing position, velocity, and turn rate ψ̇ k as states,

xk =
[
pX

k pY
k vX

k vY
k ψ̇ k

]T ,

the discrete-time model for the coordinated turn is

xk+1 =



1 0 sin (ψ̇ kTs)

ψ̇ k
−

1− cos (ψ̇ kTs)

ψ̇ k
0

0 1 1− cos (ψ̇ kTs)

ψ̇ k

sin (ψ̇ kTs)

ψ̇ k
0

0 0 cos (ψ̇ kTs) − sin (ψ̇ kTs) 0
0 0 sin (ψ̇ kTs) cos (ψ̇ kTs) 0
0 0 0 0 1


xk +wk.
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X

Y Target

ψ

Figure 7.3 Bearing sensors measure the angle ψ relative to the object.

This model is nonlinear in ψ̇ k. The process noise wk is white and Gaussian
distributed, with zero mean and covariance matrix

Qk = diag
([

302 302 102 102 0.12]) , (7.18)

where diag(⋅) is the diagonal matrix. To track the target, three bearings-
only sensors (Figure 7.3), common in tracking applications, send mea-
surements to the fusion center. The sampling period is set to Ts = 1 s.
The sensors are located at

S1 = (−200, 0), S2 = (200, 0), S3 = (−750, 750).

The geometric path for a simulation is shown in Figure 7.4. In addition,
the sensor locations are shown as red +. The measurement model for the
bearings-only measurements is

yk = hk + ek =



arctan
( pY

k − SY
1

pX
k − SX

1

)
arctan

( pY
k − SY

2
pX

k − SX
2

)
arctan

( pY
k − SY

3
pX

k − SX
3

)


+ ek.

The measurement noise ek is white and Gaussian distributed, with zero
mean and covariance matrix

Rk = 0.05I3$3. (7.19)

The process noise and measurement noise are mutually independent. In
this setup, the second and third sensors have serious communication is-
sues: For each of the two sensors, the probability Poosm that a measure-
ment arrives from a sensor is Poosm = 0.7. In addition, if a measurement
arrives, it has delay d. The delays are drawn randomly from a discrete
uniform distribution in the interval [0, 5] s. Thus, each of the two sensors
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Figure 7.4 The geometric path and the sensor locations (red +) used in
the simulation example. The path is taken from a 40 s simulation.

only successfully transmit 30% of the measurements to the communica-
tion center, and those measurements that arrive are delayed between zero
and five seconds. The initial estimate x̂ is set to

x̂0 =
[
0 0 0 0 0

]T
for all filters, with initial covariance P0 set to

P0 = diag
([

2502 2502 302 302 0.12]) . (7.20)

When compared with the true initial state in (7.17) and the process noise
distribution in (7.18), it is clear that the initial knowledge about the tar-
get’s state is modest.

The thresholds for the mutual-information value in (7.9) and when to
execute the rerun filter in SEPF-GARP, respectively, are set to γ 1 = 0.05
and γ 2 = 0.025. We use the same γ 1 and γ 2 in PF-CISIMI. Moreover, SEPF
and PF-CISI use γ 2 = 0.025 for choosing when to discard the OOSMs.
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Benchmarked Filters
Seven different particle filters are implemented in MATLAB, all based on
Algorithm 7.1. All seven implementations are highly optimized, and take
full advantage of vectorization techniques. The filters are:

• PFIDEAL: An offline, idealized particle filter that collects measure-
ments from all sensors with zero delay. Better results than with
this filter is not achievable, given the considered particle-filter al-
gorithm.

• PFDISC: A particle-filter implementation that discards all OOSMs.
Thus, it only processes the ISMs: It processes sensor S1 every sam-
ple, but only S2 and S3 when they arrive with zero delay.

• SEPF: The storage-efficient particle filter derived in [Orguner and
Gustafsson, 2008], see Section 7.3, page 119.

• SEPF-GARP: The storage-efficient particle filter with selective pro-
cessing derived in [Liu et al., 2010], see Section 7.3, page 121.

• OOSM-GARP: The Gaussian-approximation rerun particle filter de-
scribed in [Liu et al., 2010] and in Section 7.3. Usually OOSM-GARP
is part of SEPF-GARP, but is here used as a standalone algorithm
for OOSM processing. Hence, for every OOSM that arrives, the al-
gorithm reorders and reprocesses all measurements.

• PF-CISIMI: The particle filter outlined in Algorithm 7.2, page 125.

• PF-CISI: The particle filter outlined in Algorithm 7.2 but without
the mutual-information metric computation on line 5.

EKF versions of linear algorithms [Bar-Shalom et al., 2004; Zhang and
Bar-Shalom, 2012a] were also implemented; however, those algorithms are
omitted since they only sporadically converge for the considered example.

Results
Figure 7.5 displays the RMSE values for the position pk when executing
2000 Monte-Carlo simulations. The lower plot is a zoomed-in version of
the upper plot. In addition, Figure 7.6 shows the corresponding results
for the velocity vk. All filters use N = 2000 particles. The first observa-
tion is that the filter that discards the OOSMs (PFDISC) has much worse
performance than all other filters. This implies that it is not fruitful to
discard all OOSMs in this example. OOSM-GARP has better convergence
than the OOSM algorithms in the transient phase. Both PF-CISI and PF-
CISIMI seem to have improved convergence rates compared with SEPF
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Figure 7.5 Position RMSE values for the different particle filters over
2000 Monte-Carlo simulations for 2000 particles. The lower plot is a
zoomed in version of the upper.
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Figure 7.6 Velocity RMSE values for the different particle filters over
2000 Monte-Carlo simulations for 2000 particles. The CISI approaches PF-
CISI and PF-CISIMI seem to have better convergence rate than the other
OOSM algorithms.

and SEPF-GARP. Moreover, PF-CISI is very close in tracking performance
to both selective-processing procedures (i.e., PF-CISIMI and SEPF-GARP).
The reason for this can be found in Table 7.1. The mutual-information
computation in PF-CISIMI discards approximately 20% of the OOSMs,
but only 0.06% of the OOSMs that are deemed informative are discarded
by the second threshold; that is, almost none of the OOSMs reduce the
particle weights significantly when used in PF-CISIMI. The reason for this
is probably that the CISI-based OOSM update in PF-CISIMI and PF-CISI
is more robust than the update in SEPF-GARP and SEPF. This is validated
by that SEPF-GARP discards about 21% of the OOSMs, which is approx-
imately the same as for PF-CISIMI, but discards about six times more of
the OOSMs (i.e., execute the rerun filter). Hence, the CISI-based OOSM
update provides better correlation between the ISMs and the OOSMs.

The time-averaged RMSEs for the OOSM algorithms are shown in
Table 7.2. In round numbers, the CISI approaches result in 5–8% perfor-
mance improvements compared with SEPF.
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Table 7.1 The middle column shows the percentage of the OOSMs that
are discarded by the selective processing logic (see (7.9)). The right col-
umn shows the percentage of the OOSMs that are discarded by the ef-
fective sample computation (7.6). For SEPF-GARP, this also means the
percentage of OOSM-GARP executions.

Algorithm γ 1 [%] γ 2 [%]
SEPF - 0.9

SEPF-GARP 21.26 0.4
PF-CISI - 0.07

PF-CISIMI 22.41 0.06

Table 7.2 Time-averaged RMSE values corresponding to Figures 7.5 and
7.6. The CISI approaches perform best of the OOSM algorithms, OOSM-
GARP excluded. The smallest errors for the OOSM algorithms are indi-
cated in bold font.

Algorithm p [m] v [m/s]
PFDISC 330.2 46.4

SEPF 133.7 33.3
SEPF-GARP 128.4 32.2

PF-CISI 127.9 31.3
PF-CISIMI 128.7 30.8

OOSM-GARP 117.5 29.9
PFIDEAL 61.7 23.6

Computational Complexity As mentioned, the MATLAB code is highly
optimized, but for several reasons a comparison between execution times
should be interpreted with care. A comparison between maximum compu-
tation times can be made by measuring the execution times and compute
the maximum.3 Because of memory management and operating system
interruptions, this is not necessarily a good indication of the actual time
taken by the algorithm.

Another procedure is to compute the average of the execution times
over the simulation period for all 2000 Monte-Carlo simulations. Then an
indication of the maximum execution time is the maximum of these 2000
simulations. The result will underestimate the actual maximum execu-
tion time—nevertheless, it provides some information. Table 7.3 shows
the results after using the explained procedure. MATLAB’s tic and toc
functionality measured the execution times.

3 The maximum time is interesting since it for real-time applications is important that
the deadlines are met.
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Table 7.3 Execution times, measured in milliseconds, for 2000 Monte-
Carlo simulations using 2000 particles. The time is for executing the algo-
rithm once (i.e., one time step), including the forward filter. The smallest
execution time for the OOSM algorithms is indicated in bold font. The
results are from a standard laptop equipped with an Intel i5 CPU.

Algorithm Time [ms]
PFDISC 3.4

PFIDEAL 3.8
PF-CISIMI 7.8

SEPF 7.9
SEPF-GARP 8.6

PF-CISI 8.8
OOSM-GARP 11.6

We see that the CISI-based approach with selective processing (PF-
CISIMI) has the shortest maximum time of all OOSM algorithms, and
that SEPF has similar execution time. Moreover, SEPF-GARP has about
10% larger execution time than PF-CISIMI. This shows that PF-CISIMI is
able to deliver tracking performance that is as good as SEPF-GARP while
reducing computational demands. The rerun filter (OOSM-GARP) is by
far the slowest. It is worth stressing that SEPF-GARP and OOSM-GARP in
reality have larger maximum execution time (caused by the rerun filter),
because the maximum of the average execution time for a whole sequence
is here used as measure.

Outliers To give an indication of robustness, Figure 7.7 displays error-
bar plots for SEPF, SEPF-GARP, and the proposed PF-CISI. Clearly, there
are more outliers for SEPF. Moreover, PF-CISI has fewer outliers than
SEPF-GARP. Note that PF-CISIMI (not shown) has about the same number
of outliers as PF-CISI. The reason is that the OOSM algorithms are the
same for these two filters. The only thing that PF-CISIMI benefits from is
that some of the OOSMs that now are neglected by the mutual information
calculation would otherwise possibly yield outliers.

20 000 Particles If we instead use 20 000 particles, the position RM-
SEs in Figure 7.8 and the corresponding velocity RMSEs in Figure 7.9
are obtained. The time-averaged RMSE values are shown in Table 7.4.
When comparing with the results for 2000 particles (Figures 7.5–7.6 and
Table 7.2), the performance of both CISI-based approaches have improved
significantly. That OOSM-GARP has not improved much is an indication
of that any further increase of the number of particles will have small
impact on tracking performance.
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Figure 7.7 Error-bar plots. The boxes indicate the lower and upper quar-
tiles and the medians. Outliers (red +) are position errors that are larger
than approximately 2.7 standard deviations, corresponding to 99.3% cov-
erage for Gaussian distributed data. Executing PF-CISI results in fewer
outliers than for the two other algorithms.
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Figure 7.8 Position RMSE values for the different particle filters over
2000 Monte-Carlo simulations for 20 000 particles. Compared with Fig-
ure 7.5, where 2000 particles are used, PF-CISI and PF-CISIMI are now
closer to OOSM-GARP in performance.
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Figure 7.9 Velocity RMSE values for the different particle filters over
2000 Monte-Carlo simulations for 20 000 particles. Compared with Fig-
ure 7.6 where 2000 particles are used, PF-CISI and PF-CISIMI are now
closer to OOSM-GARP in performance (and sometimes even better). Note
that OOSM-GARP has not improved much compared with Figure 7.6, in-
dicating that the tracking potential is close to be reached.

Table 7.4 Time-averaged RMSE values for 2000 Monte-Carlo simula-
tions with 20 000 particles, corresponding to Figures 7.8 and 7.9. Com-
pared with the case for 2000 particles, the CISI approaches have improved
more than both SEPF-GARP and OOSM-GARP. The smallest errors for
the OOSM algorithms are indicated in bold font.

Algorithm p [m] v [m/s]
PFDISC 318.4 43.2

SEPF 124.3 30.8
SEPF-GARP 122.8 30.1

PF-CISI 119.8 28.2
PF-CISIMI 120.1 27.9

OOSM-GARP 113.4 28.1
PFIDEAL 58.8 20.1
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Figure 7.10 The probability of time-averaged RMSE for the velocity vec-
tor using the different filters, computed as a cumulative distribution func-
tion over the 2000 Monte-Carlo simulations. All filters use 20 000 parti-
cles. Both PF-CISI and PF-CISIMI are very similar to OOSM-GARP in
performance. To quantify, the probability that the RMSE for PF-CISIMI
is below 30 m/s is 95%. The corresponding numbers for OOSM-GARP and
SEPF-GARP are 99% and 85%, respectively.

To further illustrate the robustness, Figure 7.10 shows the likelihood
of the respective time-averaged RMSE, computed as a cumulative func-
tion over the 2000 Monte-Carlo simulations. This gives further measure
of how reproducible the results are, in that it tells how large portion of
the executions that are below a given error. Both PF-CISI and PF-CISIMI
provide smaller errors for a given probability than the other OOSM al-
gorithms, and are very close (and sometimes even better) to OOSM-GARP
in performance. The RMSEs are more evenly distributed for OOSM-GARP
compared with PF-CISIMI and PF-CISI, but the difference is small.
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7.5 Conclusion

The results in Section 7.4 indicate that both PF-CISI and PF-CISIMI are
more robust while maintaining execution-time effectiveness compared
with SEPF. Similarly, the approaches maintain tracking accuracy (and
improve the accuracy when using many particles) while decreasing ex-
ecution time compared with SEPF-GARP. In addition, when the particle
filter uses many particles, the CISI approaches seem to perform simi-
larly to OOSM-GARP. This implies that the algorithms have higher track-
ing potential (for the considered multi-OOSM problem) than the other
OOSM algorithms as the number of particles grows. Further, the algo-
rithms seem to result in fewer outliers and more predictable results for
the considered multi-OOSM scenario.

We validated the algorithms on one system only. The initial state
knowledge, see (7.20), was assumed small. The measurement-noise co-
variance (7.19) was only 0.05 rad2, whereas the position and velocity co-
variances (7.18) were 900 m2 and 100 m2/s2, respectively. Hence, the
uncertainty in the process dynamics is large. By using an algorithm that
makes more use of information in the measurements, the resulting perfor-
mance improvement will be relatively large. For systems that do not have
large process uncertainty, the performance gain in using a CISI approach
might be smaller.

7.6 Summary

This chapter presented an alternative implementation to the storage-
efficient particle-filter algorithm for OOSM processing in [Liu et al., 2010],
which in its turn builds on the results in [Orguner and Gustafsson, 2008].
In essence, the extension adapts the CISI-based fixed-point smoother so-
lution in [Zhang and Bar-Shalom, 2012a] to the nonlinear case. The CISI
approaches not only update the particle weights together with the state
estimate and associated covariance at the last time step,

x̂kpk, P̂kpk,

but also all estimates and covariances between the timestamp of the
OOSM and the current time,

{x̂ jp j , P̂ jp j}
k
j=k−l+1.

In the linear, Gaussian setting this guarantees optimality even when sev-
eral OOSMs arrive at the same time step, irrespective of the arrival order.
The multi-OOSM problem typically arises when there are several sensors
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that deliver OOSMs. Alternatively, the multi-OOSM problem could arise
when one sensor delivers OOSMs with highly varying time delays. Al-
though the optimality results do not extend to the nonlinear OOSM prob-
lem, the motivation for updating all estimates and covariances is that it
can increase tracking performance also in the nonlinear case.

In the spirit of [Orguner and Gustafsson, 2008; Liu et al., 2010; Ore-
shkin et al., 2011], we validated the algorithms using a coordinated-turn
target-tracking example. In our setup, two of the three sensors delivered
OOSMs with different delays. Thus, the considered example yielded a
multi-OOSM problem.
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8
Rao-Blackwellized
Out-of-Sequence Processing

Chapter 7 was concerned with the OOSM problem for general nonlinear
models with Gaussian noise. Special focus was on achieving high tracking
performance while allowing for both low computational complexity and low
storage requirements. As already pointed out in Section 3.2, even better
tracking performance and execution time are possible to achieve if the
models contain a tractable substructure.

In this chapter we treat the OOSM problem assuming that a linear,
Gaussian substructure is present in the otherwise nonlinear model. Next
a motivation and outline of the contributions are given. Then we give a
formal problem formulation that introduces a few new concepts compared
with those in Sections 5.2 and 7.2. This is followed by the derivations of
two OOSM algorithms, which are evaluated in an extensive simulation
study. The chapter ends with a discussion.

8.1 Motivation and Contributions

The models used in this chapter are the mixed-Gaussian state-space
(MGSS) models described by (3.20). For MGSS models, it is possible to
use the Rao-Blackwellized particle filter/smoother for improved perfor-
mance compared with the standard particle filter/smoother, as was dis-
cussed in Chapter 3. As also mentioned in Chapter 3, MGSS models are
common in target tracking, positioning, and navigation [Gustafsson et al.,
2002; Schön et al., 2005], to mention a few examples. Two occurrences
are when the system equations are almost linear and/or the measure-
ment equations are highly nonlinear, see [Rong Li and Jilkov, 2001; Rong
Li and Jilkov, 2003]. As discussed in Section 3.2, specific applications that
RBPFs are used in are simultaneous localization and mapping (SLAM)
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[Grisetti et al., 2005; Grisetti et al., 2007; Berntorp and Nordh, 2014],
automotive applications [Schön et al., 2006; Lundquist et al., 2014], and
aircraft tracking [Schön et al., 2005]. Note that the robotic navigation ex-
ample in Chapter 6 and the target-tracking example in Chapter 7 classify
as MGSS. This also holds for the application we will consider in Chap-
ter 9. Furthermore, because tracking applications often combine several
sensors, some of which use sophisticated preprocessing, it is clear that
gains can be made if utilizing model structure for the OOSM updates.

Previous work has provided the exact Bayesian inference solution and
the corresponding particle-filter implementation to the OOSM problem,
see the reference [Zhang and Bar-Shalom, 2012b] and the brief description
in Section 5.3. The major contributions in this chapter are

• The Bayesian formulation when utilizing substructure in nonlinear
state-space models

• Two algorithms for the OOSM problem that utilize the substructure

This is the first time that marginalization is used in conjunction with
OOSMs. In particular, exploitation of the conditionally-linear Gaussian
substructure that is present in the model class provides improved track-
ing performance and competitive computational demands compared with
current state-of-the-art OOSM algorithms.

This chapter presents two alternative approaches for solving the
OOSM problem. The first algorithm (SERBPF) can be regarded as a
generalization of the storage-efficient particle filter (SEPF), reported in
[Orguner and Gustafsson, 2008] and evaluated in Chapter 7, with the
derivations adapted to the MGSS setting. SERBPF is, however, not an ex-
tension of PF-CISIMI, which we presented in Chapter 7, because it does not
consider the multi-OOSM problem and does not perform selective process-
ing. Except for the measurements, the approach only stores a subset of the
particles over a predefined time interval. These particles are then used
in an additional forward filter to associate the current estimates with the
OOSMs. Because of its computational simplicity, it is well suited for real-
time applications. The second algorithm (RBOOSMBS) instead adapts a
backward-simulation approach for the association task. This implies that
when the number of particles and smoothing trajectories are sufficiently
large, RBOOSMBS achieves close to optimal tracking performance at the
OOSM arrival times.

The aim with the algorithms is that they should be possible to use in
realistic online applications. Therefore computational simplifications are
made when feasible. In addition, one of the three examples that are used
for benchmarking is a target-tracking example with characteristics that
are common in typical tracking scenarios.
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8.2 Related Work

We gave numerous references to different OOSM filters in Section 5.3.
Those that are most related to the research in this chapter are described
below.

Some of the most related particle-filter algorithms were discussed and
evaluated in Chapter 7—for example, SEPF [Orguner and Gustafsson,
2008], the storage efficient particle filter with selective processing (SEPF-
GARP) given in [Liu et al., 2010], and the algorithm PF-CISI that we pre-
sented in Chapter 7.

Another algorithm is A-PF. It is rooted in exact Bayesian inference,
and allows for a general nonlinear Markov process model, with white pro-
cess and measurement noise sources. It assumes that the OOSMs are
of type I (defined in Definition 7.2). When this holds, for a sufficiently
large number of particles, the estimated distribution in A-PF converges
to the distribution that is estimated by a filter that has access to all
measurements. Hence, a comparison against A-PF indicates how the algo-
rithms compete with an algorithm that is optimal when no substructure
is present. It is worth mentioning that A-PF is computationally expen-
sive. For OOSMs that have larger delays than one sample, its complexity
is O ((l − 1)N3 + N2), N being the number of particles and l the OOSM
delay.

Other related research is [Oreshkin et al., 2011], in which an
optimization-based approach to selective processing was derived. This
approach is not considered here. The reason is that the main difference
compared with SEPF-GARP is computational efficiency and not tracking
performance.

8.3 Problem Formulation

Most notation has been used before, but some is used with slightly dif-
ferent meaning. Hence, it is restated for ease of reading. Throughout the
chapter, p(xkpym:k) denotes the conditional probability density function of
the state vector x at time tk ∈ R conditioned on the measurement-vector
sequence ym:k from time tm to time tk. As for the RBPF in Section 3.2,
we assume that the state vector xk ∈ Rnx can be partitioned into a linear
part zk and a nonlinear part ηk as

xk =
[
zTk ηT

k
]T .

The considered MGSS models are on the form
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zk+1 = f (ηk) + A(ηk)zk +wzk(ηk), (8.1a)
ηk+1 = �(ηk) + B(ηk)zk +wηk(ηk), (8.1b)
yk = h(ηk) + C(ηk)zk + ek(ηk), (8.1c)

where the process noise

wk(ηk) =
[
(wzk(ηk)

T wηk(ηk)
T]T

and the measurement noise ek(ηk) are mutually independent, white, and
Gaussian distributed according to

wk(ηk) ∼N (0nx ,Qk(ηk)), Qk(ηk) =

[
Qzk(ηk) Qzηk (ηk)

Qzηk (ηk)
T Qηk(ηk)

]
, (8.2a)

ek(ηk) ∼N (0ny,Rk(ηk)), (8.2b)

with Qηk(ηk) and Rk(ηk) invertible. For notational brevity, the dependence
on ηk is implicit in what follows. Note that (8.1) differs slightly from the
model formulation (3.20) in that we have transferred Fk and Gk into the
process and measurement noise sources in (8.2).

For the OOSM filtering task, Y k denotes the set of in-sequence mea-
surements generated in the interval [0, k]. The symbol Z k indicates the
set of OOSMs generated in the interval [0, k] available at time index k.
Moreover, y0:k represents the set Y k ∪Z k−1. Further, ẑkpk := ẑkpk(η0:k) is
the linear state estimate given the trajectory η0:k and measurements y0:k,
and Pkpk := Pkpk(η0:k) is its associated covariance.

Suppose that an estimate of the filtering posterior p(zk,ηkpy0:k) ex-
ists at time tk, where zk is conditioned on η0:k. Assume that an OOSM
yτ ∈ Z k with timestamp tτ ∈ [tk−l, tk−l+1) arrives, see Figure 8.1. The
Rao-Blackwellized OOSM filtering task is to update the particle weights
and linear estimates at time tk with yτ ; that is, the aim is to obtain
p(xkpy0:k, yτ ) = p(zk,ηkpy0:k, yτ ).

8.4 Rao-Blackwellized Out-of-Sequence Processing

The aim is to estimate the density

p(zk,ηkpy0:k, yτ ), (8.3)

as described in Section 8.3. To utilize the linear structure in the system
dynamics (8.1), factorize (8.3) in the same manner as for the standard
RBPF. This gives

p(zk,ηkpy0:k, yτ ) = p(zkpηk, y0:k, yτ )p(ηkpy0:k, yτ ). (8.4)

143



Chapter 8. Rao-Blackwellized Out-of-Sequence Processing

Arrival time

Timestamp

tτ

tk

tk−l

tk−l

tk−l+1

tk−l+1

tk−2

tk−2

tk−1

tk−1

tk

Estimates

x̂k−l+1x̂k−l x̂k−1 x̂kx̂k−2

ISM
OOSM

Figure 8.1 An illustration of the l-step lag OOSM problem. Measure-
ments y0:k have arrived and been used in the estimation process to calcu-
late x̂k. Then, an OOSM yτ arising from time tτ arrives at time tk, and is
subsequently utilized to compute an updated x̄k.

Using Bayes’ rule on the second factor of (8.4) yields

p(ηkpy0:k, yτ ) =
p(yτ pηk, y0:k)p(ηkpy0:k)

p(yτ py0:k)
∝ p(yτ pηk, y0:k)p(ηkpy0:k). (8.5)

By approximating the last term in (8.5) with the particle-filter part of
the RBPF, (8.5) transforms to

p(ηkpy0:k, yτ ) (
N∑

i=1
wi

kpk,τδ
(
ηk − η

i
k
)

, (8.6)

where the weights are

wi
kpk,τ ∝ wi

kp(yτ pηi
k, y0:k). (8.7)

Moreover, it holds that

p(yτ pηi
k, y0:k) =

∫
p(yτ pzi

k,ηi
k, y0:k)p(zi

kpη
i
k, y0:k)dzi

k. (8.8)

Thus, to update the posterior p(ηkpy0:k) with the OOSM yτ to form (8.6),
the weight update (8.7) needs estimates of the likelihoods{

p
(
yτ pzi

k,ηi
k, y0:k

)}N
i=1 .
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To incorporate the OOSM yτ in the first factor on the right-hand side
in (8.4), recast it as

p(zkpηk, y0:k, yτ ) =
p(yτ pzk,ηk, y0:k)p(zkpηk, y0:k)∫

p(yτ pzk,ηk, y0:k)p(zkpηk, y0:k)dzk
. (8.9)

The RBPF can be used for approximating the second factor in the numer-
ator of (8.9). The first term in the numerator equals the first term on the
right-hand side of (8.8). Hence, what remains is to evaluate the densities{

p(yτ pzi
k,ηi

k, y0:k)
}N

i=1 .

In the following, we present two different approaches for computing

p
(
yτ pxi

k, y0:k
)
= p

(
yτ pzi

k,ηi
k, y0:k

)
and thus performing the particle-filter and Kalman-filter OOSM updates.

OOSM Processing with Supporting RBPF—SERBPF
For the first algorithm (SERBPF), the focus is on finding a computa-
tionally efficient method that approximately computes p(yτ pxi

k, y0:k). The
idea is that by explicitly utilizing the linear substructure (8.1a), we can
use approximations and still improve performance compared with existing
OOSM algorithms.

To derive the algorithm, start with computing p(yτ pxi
k, y0:k) as

p(yτ pxi
k, y0:k) =

∫
p(yτ pzτ ,η0:τ )p(zτ ,η0:τ pxi

k, y0:k)dzτ dη0:τ . (8.10)

The density p(zτ ,η0:τ pxi
k, y0:k) in (8.10) is a smoothing density. Rewrite it

as

p(zτ ,η0:τ pxi
k, y0:k) ∝ p(xi

k, yk−l+1:k−1pzτ ,η0:τ )p(zτ ,η0:τ py0:k−l), (8.11)

with yk removed because xi
k is given. Furthermore, the density

p(zτ ,η0:τ py0:k−l) in (8.11) can be approximated by applying the RBPF
and using a prediction to time tτ . This gives

p(zτ ,η0:τ py0:k−l) = p(zτ ,η0:τ pzk−l,η0:k−l)p(zk−l,η0:k−lpy0:k−l).

The first density on the right-hand side in (8.11) is a measurement update
using both yk−l+1:k−1 and xi

k as measurements. Thus, we need to propagate
the past, {zτ ,η0:τ}, to update with {xi

k, yk−l+1:k−1}.
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Figure 8.2 The trajectory and the corresponding filtered and smoothed
estimated densities. The intuition is that because smoothing utilizes more
information than filtering, it typically reduces multimodality and uncer-
tainty. Thus, the smoothing density in general needs fewer particles than
the filtering density.

Forward Propagation As discussed in Section 3.3, the RBPF is also an
approximate solution to the smoothing problem, but the estimate is often
degenerate for large smoothing intervals because of the inherent deple-
tion problem in particle filters. Nevertheless, if the smoothing interval is
small, the RBPF should be an adequate approximation. Consequently, we
apply a supporting (additional) RBPF to find (8.11). With this approach,
both the smoothing weights and the linear smoothing estimates are effi-
ciently found in one forward sweep: Initialize an additional RBPF from
time index k − l. Because (8.11) is a smoothing density, the supporting
RBPF typically needs fewer particles than the original RBPF. The mo-
tivation for this is that because more measurements are available when
performing smoothing than filtering, the uncertainty, and thus the num-
ber of particles needed, is smaller. Figure 8.2 illustrates the idea.

To apply the supporting RBPF, start with sampling MFF ≪ N esti-
mates {ẑ j

k−lpk−l,η
j
k−l}

MFF
j=1 from the filtering density at time index k − l.1

Then predict the estimates up to time index τ and augment the linear
state vector to

ζ j
m =

[
z j

m
z j

τ

]
, (8.12)

with initialization according to

1 Note that performing this sampling already in the original forward RBPF, at each time
step, reduces the storage requirements.

146



8.4 Rao-Blackwellized Out-of-Sequence Processing

ζ j
τ =

[
ẑ j

τ pk−l
ẑ j

τ pk−l

]
, P̄ j

τ =

[
P j

τ pk−l P j
τ pk−l

P j
τ pk−l P j

τ pk−l

]
. (8.13)

Then for each m ∈ [k− l + 1, k− 1], execute the supporting RBPF with
resampling as usual, where the lower part of ζ j

m in (8.13) is the lin-
ear smoothing estimate, the lower right block of P̄ j

m in (8.13) gives the
smoothing covariance, and the upper right block of P̄ j

m gives the cross-
covariance P j

m,τ pm between the states at time index m and τ . At time tk,
use {ẑi

kpk,ηi
k}

N
i=1 as measurements. At the end of the recursion, an approx-

imation of the smoothing density (8.11) is therefore given by the Gaussian
mixture

p(zτ ,η0:τ pxi
k, y0:k) (

MFF∑
j=1

q j
τ pk,iN (zτ pẑ

j
τ pk,i, P

j
τ pk,i)δ (η0:τ − η

j
0:τ ), (8.14)

where q j
τ pk,i are the smoothing weights given both measurements up to

time tk−1 and state estimate i at time tk.
Updating with the OOSM Given (8.14), an approximation of (8.10) is

p(yτ pxi
k, y0:k) (

MFF∑
j=1

q j
τ pk,ip(yτ pẑ

j
τ pk,i,η

j
0:τ ), (8.15)

with the measurement likelihood given by

p(yτ pz j
τ pk,i,η

j
0:τ ) =N (yτ p ŷ j

τ pk,i,Σ
j

τ pk,i). (8.16)

In (8.16), the mean and covariance are computed as

ŷ j
τ pk,i = h

j
τ + C j

τ ẑ
j

τ pk,i,

Σ
j

τ pk,i = C
j

τ P
j

τ pk,i(C
j

τ )
T + R j

τ .

With (8.15) inserted into (8.8), the particle weights (8.7) become

wi
kpk,τ ∝ wi

k

MFF∑
j=1

q j
τ pk,ip(yτ pẑ

j
τ pk,i,η

j
0:τ ). (8.17)

To find the linear estimates and their covariances after the update with
the OOSM, and hence to find (8.9), we utilize Proposition 8.1.
PROPOSITION 8.1
Given (8.15), for each i ∈ {1, . . . , N}, (8.9) is given by

p(zi
kpη

i
k, y0:k, yτ ) =N (zkpẑi

kpk,τ , Pi
kpk,τ ),
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where
ẑi

kpk,τ = ẑi
kpk + Ei

Pi
kpk,τ = Pi

kpk +
M∑

j=1
q j

τ pk,i

(
(E j,i − Ei)(E j,i − Ei)T

−W j,i
k,τΣ

j
τ pk,i(W

j,i
k,τ )

T
)

=
M∑

j=1
q j

τ pk,iW
j,i

k,τ e
j,i

τ

E j,i = W j,i
k,τ e

j,i
τ

e j,i
τ = yτ − ŷ j

τ pk,i

W j,i
k,τ = P

j
k,τ pk,i(C

j
τ )

T(Σ j
τ pk,i)

−1.

(8.18)

2

The algorithm is denoted by SERBPF and is summarized in Algorithm 8.1.
The algorithm’s storage requirements are{

{ẑ j
mpm, P j

mpm,η j
m}

k−1
m=k−lmax

,{ym}k−1
m=k−lmax+1

}MFF

j=1
,

where lmax is the predetermined maximum delay in the number of time
steps. Because the RBPF has computational complexity O (N) [Karlsson
et al., 2005], the algorithm has complexity O (lMFF + MFF N).

Algorithm 8.1—SERBPF
Input: {x̂ j

k−lpk−l, P
j

k−lpk−l, xi
k, Pi

kpk, wi
k, yk−l+1:k−1}

MFF
j=1

1: Predict up to time tτ , yielding p(z j
τ ,η j

0:τ py0:k−l).
2: Initialize smoothing weights as q j

τ pk−l = 1/MFF .
3: Augment the state vector as in (8.12) and initialize with (8.13).
4: for m = k− l + 1 to k− 1 do
5: Perform RBPF time update to time tm using (3.26) and (3.27).
6: Perform weight update according to forward-filter measurement

likelihood (3.24).
7: if

(∑MFF
j=1 (q

j
m)2
)−1

< Nthr then
8: Resample MFF new particles with replacement. Keep track of
{η j

0:τ}
MFF
j=1 and equalize weights: q j

τ pm = 1/MFF, ∀ j ∈ {1, . . . , MFF}.
9: end if

10: Perform Kalman-filter measurement update using (3.25).
11: end for
12: Perform RBPF time update to time tk using (3.26) and (3.27).
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13: Use {ẑi
kpk,ηi

k}
N
i=1 as measurements with (8.1a) and (8.1b) as measure-

ment likelihoods.
14: Update weights as in (8.17).
15: Update linear estimates by applying (8.18).
Output: {ẑi

kpk,τ , Pi
kpk,τ , wi

kpk,τ}
N
i=1

OOSM Update Using Backward Simulation—RBOOSMBS
Algorithm 8.1 is computationally efficient, but the generated smoothing
density may, especially for large delays, suffer from degeneracy. Accord-
ingly, the estimate of the measurement likelihood that is used when asso-
ciating the current estimate with the OOSM may be inaccurate. To avoid
this, and thus to improve estimation accuracy, the next algorithm instead
uses a backward-simulation approach to the OOSM update.

As a start, now instead rewrite p(yτ pxi
k, y0:k) as

p(yτ pxi
k, y0:k) =

∫
p(yτ pzτ ,η0:τ )

⋅ p(zτ ,ητ ,η0:k−1pxi
k, y0:k)dzτ dητ dη0:k−1 (8.19)

for insertion into and subsequent weight update in (8.8) and (8.7), re-
spectively, where

p(zτ ,ητ ,η0:k−1pxi
k, y0:k) = p(zτ pη0:τ ,ηk−l:k−1, xi

k, y0:k)

⋅ p(η0:τ pηk−l:k−1, xi
k, y0:k)p(ηk−l:k−1pxi

k, y0:k).

For later use in the linear state update (8.9), rewrite p(yτ pxi
k, y0:k) as

p(yτ pxi
k, y0:k) =

∫
p(yτ pzτ ,ητ )

⋅ p(zτ ,ητ ,ηk−l:k−1pxi
k, y0:k)dzτ dητ dηk−l:k−1, (8.20)

where

p(zτ ,ητ ,ηk−l:k−1pxi
k, y0:k) = p(zτ pητ ,ηk−l:k−1, xi

k, y0:k)

⋅ p(ητ pηk−l:k−1, xi
k, y0:k)p(ηk−l:k−1pxi

k, y0:k). (8.21)

In both (8.19) and (8.20), the last term p(ηk−l:k−1pxi
k, y0:k) factorizes in

the same manner as the sequential factorization (3.28) in the FFBS on
page 61:

p(ηk−l:k−1pxi
k, y0:k) = p(ηk−1pxi

k, y0:k)

⋅

k−2∏
m=k−l

p(ηmpηm+1:k−1, xi
k, y0:k). (8.22)
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This smoothing density can be solved for in a similar way to how the
Rao-Blackwellized particle smoother, described in Section 3.3, solves it
[Lindsten et al., 2013]. However, the smoother derived in [Lindsten et al.,
2013] assumes that the covariance matrix in (8.2a) is diagonal (i.e., wzk
and wηk are mutually independent). This restriction is here taken into
account by decorrelating the noise in the same manner as in [Schön et
al., 2005], which yields a modified system. This modified system can then
be used in the derivations in [Lindsten et al., 2013], which amounts to
replacing fk, Ak, and the covariance matrix for the process noise acting
on the linear states, Qzk, with

f̄ k = fk +Qzηk (Q
η
k)
−1(ηk+1 − �k),

Āk = Ak −Qzηk (Q
η
k)
−1Bk,

Q̄zk = Qzk −Q
zη
k (Q

η
k)
−1(Qzηk )

T,

respectively, in the derivations. Also, we adapt the smoother to be applica-
ble to the OOSM scenario and take a computationally efficient rejection-
sampling approach for finding the backward trajectories, instead of com-
puting the smoothing weights for each particle in each time step. How to
find (8.22) is described next.
Finding the Nonlinear Backward Trajectories First, at time tk, in-
stead of drawing η′k = η

j
k with probability w j

k for all j ∈ {1, . . . , MBS},
giving the starting point for MBS backward trajectories, we must choose
η′k = η

i
k for each of the N forward particles to associate the filtered es-

timates with the OOSM. Thus, in total MBS backward trajectories are
associated with each forward particle. Second, if the smoothing-weight
computation (3.34) was to be computed for all particles in each time step
for appending the trajectories, the complexity would beO (N2MBS) in each
time step. However, by using the assumption that smoothing densities are
less complex than filtering densities, see Figure 8.2, it is feasible to sample
D < N particles instead in each time step to form D smoothing weights.
Note that this assumption is not true in general. Rather, it depends on the
structure of the measurement equation and the information it contains.
This is elaborated on in Sections 8.5 and 8.6.

There exist computationally efficient particle smoothers that create
backward trajectories without explicitly computing the smoothing weights,
with sustained algorithm behavior [Douc et al., 2012]. As will be clear
later, the smoothing weights are only needed at time step k − l. Thus,
the approach in [Douc et al., 2012] can be adapted to our MGSS model
setting for m = k− 1, . . . , k− l + 1: The aim is to sample from the discrete
distribution formed by the smoothing weights

{w j,d
mpk}

D
d=1,
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without actually computing all smoothing weights. Here, we use the for-
ward weights {wd

m}
D
d=1 as a proposal distribution, for which we already

know the distribution. By noting that the transition density in (3.36) is
bounded from above as

p
(
ym+1:k,η j

m+1:k−1,ηi
k

∣∣∣ηd
0:m, y0:m

)
≤ σ j

m

where
σ j

m = max
d=1,...,D

Z j,d
m det(Λ j,d

m )
−1/2,

we can perform rejection sampling [Neumann, 1951] to extend each back-
ward trajectory as {η j

m,η j
m+1:k−1,ηi

k}. Algorithm 8.2 summarizes the al-
gorithm, and a (very) brief discussion about rejection sampling is found
on page 62.

Algorithm 8.2—Rejection Sampling
1: L = {1, . . . , MBS}.
2: while L is not empty do
3: Set n = size(L).
4: Sample {I( j)}n

j=1 independently with probabilities proportional to
{wI( j)

m }n
j=1.

5: Sample {U( j)}n
j=1 independently and uniformly over [0, 1].

6: for j = 1 to n do
7: if U( j)σ L( j)

m ≤ p(ym+1:k,ηL( j)
m+1:k−1,ηi

kpη
I( j)
0:m , y0:m) then

8: Set J(L( j)) = I( j).
9: Set L = L \ L( j).

10: end if
11: end for
12: end while
13: return Backward-trajectory indices {J( j)}MBS

j=1 .

There is no upper bound on the number of executions of the while-
loop in Algorithm 8.2. Hence, a threshold Cmax for the maximum number
of iterations is set. If L is still empty after Cmax iterations, an index is
sampled from the smoothing weights (3.34) by computing the transition
densities for the indices that have not already been selected. Even though
Algorithm 8.2 occasionally does not succeed in finding an index, on aver-
age it provides a noticeable speedup compared with evaluating all weights
at each time step. Note that for MBS = D and D large, Algorithm 8.2 has
close to linear computational complexity in the number of particles.

At (the last) time step k− l, for each trajectory, draw D forward parti-
cles {ηd

0:k−l}
D
d=1 with probability wd

k−l and compute the smoothing weights
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(3.34), using (3.35) and (3.36), for these D particles. This implies that
the smoothing density (8.22) at time tk−l approximates to

p(ηk−l:k−1pxi
k, y0:k) (

1
MBS

MBS∑
j=1

D∑
d=1

w j,d
k−lpk,iδ (η0:k−l − η

d
0:k−l). (8.23)

Finally, by drawing a particle ηk−l with probability w j,d
k−lpk,i for each j, an

approximation to (8.22) based on the mean of the full backward trajecto-
ries is

p(ηk−l:k−1pxi
k, y0:k) (

1
MBS

MBS∑
j=1

δ (ηk−l:k−1 − η
j
k−l:k−1). (8.24)

The reason for approximating (8.22) in two different ways is that the lin-
ear part of the state vector relies on access to the backward density (8.24).
However, every extension of the backward trajectory introduces approxi-
mation errors. Thus, (8.23) is a better choice than (8.24) for updating the
particle weights with the OOSM.

Updating the Weights and Linear Estimates To update the particle
weights with the OOSM, insert (8.23) into the expression for the mea-
surement likelihood (8.19). This implies that

p(yτ pxi
k, y0:k) (

1
MBS

MBS∑
j=1

D∑
d=1

w j,d
τ pk,ip(yτ pẑ

d
τ pk−l,ηd

0:τ ). (8.25)

Here, w j,d
τ pk,i = w j,d

k−lpk,i since only a time update differs between tτ and
tk−l. Inserting (8.25) into (8.8) and using (8.7) gives the weights after
processing the l-step lag OOSM as

wi
kpk,τ ∝ wi

k

MBS∑
j=1

D∑
d=1

w j,d
τ pk,ip(yτ pẑ

d
τ pk−l,ηd

τ ), (8.26)

where p(yτ pẑd
τ pk−l,ηd

τ ) is computed in a similar way to (8.16):

p(yτ pẑd
τ pk−l,ηd

τ ) =N (yτ p ŷd
τ pk−l,Σd

τ pk−l),

in which

ŷd
τ pk−l = hd

τ + Cd
τ ẑd

τ pk−l,

Σ
d
τ pk−l = Cd

τ Pd
τ pk−l(Cd

τ )
T + Rd

τ .
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To update the linear filtering density (8.9) (i.e., p(zkpηk, y0:k, yτ )), the
measurement update step (8.20) needs an estimate of the linear smooth-
ing density

p(zτ pητ ,η j
k−l:k−1, xi

k, y0:k),
that is, the first density on the right-hand side of (8.21), for which it is
possible to resort to different linear smoothers (conditioned on the gener-
ated backward trajectories (8.24) and the measurements). Here we choose
a Rauch-Tung-Striebel (RTS) fixed-interval smoother [Rauch et al., 1965],
which for the MGSS model class is given by Proposition 8.2:
PROPOSITION 8.2
Given the model (8.1), the filtering density p(zkpη0:k, y0:k), and the trajec-
tory ηm:k, the marginal smoothing density for zm is given by

p(zmpηm:k, y0:k) =N (zmpẑmpk, Pmpk),
where

ẑmpk = ẑ∗
mpm + Km(ẑm+1pk − ẑm+1pm)

Pmpk = P∗
mpm + Km(Pm+1pk − Pm+1pm)

Pm,kpm = Pm+1,kpm+1KT
m

Km = P∗
mpmAT

mP−1
m+1pm

ẑm+1pm = f̄ m + Ām ẑ∗
mpm

Pm+1pm = ĀmP∗
mpm ĀT

m + Q̄zm
f̄ m = fm + (Qzηm )T(Qηm)−1(ηm+1 − �m)

Ām = Am − (Qzηm )T(Qηm)−1Bm

Q̄zm = Qzm − (Qzηm )T(Qηm)−1Qzη

ẑ∗
mpm = ẑmpm + Lm(ηm+1 − �m − Bm ẑmpm)

P∗
mpm = Pmpm − LmMmLT

m

Lm = PmpmBmM−1
m

Mm = BmPmpmBT
m +Qηm.

(8.27)

2

By using Proposition 8.2 to iterate the linear states back from tk to tk−l
and then performing a time update to tτ , it holds that the linear smoothing
density is

p(zτ pητ ,η j
k−l:k−1, xi

k, y0:k) =N (zτ pẑ j
τ pk,i, P

j
τ pk,i). (8.28)

With (8.24) and (8.28) inserted in (8.20), an approximation of p(yτ pxi
k, y0:k)

is

p(yτ pxi
k, y0:k) ( p̂(yτ pxi

k, y0:k) =
1

MBS

MBS∑
j=1

p(yτ pη j
τ , ẑ j

τ pk,i) (8.29)
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where, again, the measurement likelihood is computed similarly to (8.16),
namely

p(yτ pz j
τ pk,i,η

j
τ ) =N (yτ p ŷ j

τ pk,i,Σ
j

τ pk,i),

where

ŷ j
τ pk,i = h

j
τ + C j

τ ẑ
j

τ pk,i,

Σ
j

τ pk,i = C
j

τ P
j

τ pk,i(C
j

τ )
T + R j

τ .

Finally, we update the linear estimates and the associated covariances,
and thereby find (8.9) for each i ∈ {1, . . . , N}, using the measurement
update (8.29) as

ẑi
kpk,τ = ẑi

kpk +
1

MBS

MBS∑
j=1
W j,i

k,τ e
j,i

τ

Pi
kpk,τ = Pi

kpk −
1

MBS

MBS∑
j=1
W j,i

k,τΣ
j

τ pk,i(W
j,i

k,τ )
T

W j,i
k,τ = P

j
k,τ pk,i(C

j,i
τ )

T(Σ j
τ pk,i)

−1

Σ
j

τ pk,i = C
j,i

τ P
j

τ pk,i(C
j,i

τ )
T + Rτ

e j,i
τ = yτ − hj,i

τ − C j,i
τ ẑ

j
τ pk,i.

(8.30)

The update (8.30) is given in [Zhang and Bar-Shalom, 2012a] for the
purely linear, Gaussian setting, and the extension is straightforward. The
algorithm is denoted by RBOOSMBS and is summarized in Algorithm 8.3.
The storage requirements of the algorithm are {ẑ j

mpm, P j
mpm,η j

m, w j
m, ym}D

j=1
for m = k− lmax, . . . , k− 1. Without using rejection sampling, Algo-
rithm 8.3 has computational complexity O (lN MBS D). This complexity
is most often reduced when utilizing Algorithm 8.2, and should be com-
pared withO (lMFF+MFF N) for SERBPF andO ((l − 1)N3 + N2) for A-PF
in [Zhang and Bar-Shalom, 2012b].

Algorithm 8.3—RBOOSMBS
Input: k−1

m=k−l {x̂d
mpm, Pd

mpm, wd
m, xi

k, Pi
kpk, wi

k, ym}D
d=1

1: for i = 1 to N do
2: Set η j

k = η
i
k for all j ∈ {1, . . . , MBS}.

3: for m = k− 1 to k− l do
4: if m > k− l then
5: Execute Algorithm 8.2.
6: else
7: for j = 1 to MBS do
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8: for d = 1 to D do
9: Sample forward particle ηd

m with probability wd
m.

10: Compute the unnormalized smoothing weight w̄ j,d
mpk,i using

(3.34) and (3.36).
11: end for

12: Normalize: w j,d
mpk,i = w̄ j,d

mpk,i

( D∑
d=1

w̄ j,d
mpk,i

)−1

.

13: Set J( j) = d with probability w j,d
mpk,i.

14: end for
15: end if
16: Set η j

m:k = {η
J( j)
m ,η j

m+1:k} for all j ∈ {1, . . . , MBS}.
17: Perform a backward RTS step using (8.27).
18: end for
19: Update weight wi

k using (8.26).
20: Update mean and covariance using (8.30).
21: end for
Output: {ẑi

kpk,τ , Pi
kpk,τ , wi

kpk,τ}
N
i=1

REMARK 8.1
By using D ≤ N particles in Algorithm 8.3, it is possible to trade tracking
performance against computation requirements. For unimodal densities
it may suffice with using D ≪ N particles to get adequate performance,
thus saving processing time. See Figure 8.3 for an illustration. Moreover,
D can also be used as a tradeoff with the number of smoothing iterations
MBS, since sometimes it may be advantageous to perform the smoothing
iterations many times instead of utilizing all N particles in each smooth-
ing step. 2

REMARK 8.2
If the measurements are stored it is theoretically possible to reorder and
reprocess the measurements when an OOSM arrives. Reprocessing in-
cludes redoing the data association, which in itself can be challenging
[Zhang and Bar-Shalom, 2012b]. Furthermore, SERBPF has lower com-
putational complexity and demands less storage for MFF ≪ N, compared
with reordering and reprocessing. 2

8.5 Numerical Results

This section presents a simulation study, in which the proposed algo-
rithms are evaluated on three examples by comparing their performance
against various particle filters. For a fair comparison of the algorithms’
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D ≪ N

xk

p
D ( N

xk

p

Figure 8.3 The density to the left illustrates an example where it may
suffice with only using a subset of the available particles for approximating
the density well. To the right is an example where a larger amount of
particles typically is needed.

abilities to process the OOSMs, all filters use identical RBPFs in the
forward direction, see Algorithm 3.3. The algorithms are implemented in
MATLAB and converted to mex-files using the Coder toolbox. No measures to
code optimization have been taken. The root-mean-square error (RMSE)
of the weighted mean at each time step and the time average of it are
here used as performance measures, see (7.16) on page 126.

Benchmarked Filters
The methods compared in this section are:

• RBPFDISC: An RBPF that discards all OOSMs and thus only pro-
cesses measurements with zero delay.

• RBPF: An offline, idealized RBPF that collects all measurements
from both sensors with zero delay. This filter serves as a perfor-
mance benchmark.

• A-PF: The algorithm found in [Zhang and Bar-Shalom, 2012b], de-
rived from exact Bayesian inference.

• PF-CISI: The algorithm described in Algorithm 7.2 in Chapter 7,
which uses a fixed-point extended Kalman smoother for associating
the OOSMs.

• SERBPF: The first method proposed in this chapter, described in
Section 8.4 and summarized in Algorithm 8.1.

• RBOOSMBS: The proposed backward-simulation based method, de-
scribed in Section 8.4 and summarized in Algorithm 8.3.
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Example 1
This example considers the fourth-order MGSS system

zk+1 =

1 0.3 0
0 0.92 −0.3
0 0.3 0.92

 zk +wzk

ηk+1 = arctan(ηk) +
[
1 0 0

]
zk +wη

k

yk =
[

0.1η2
ksign(ηk)

0

]
+

[
0 0 0
1 −1 1

]
zk + ek.

(8.31)

The noise sources are mutually independent, white, and Gaussian dis-
tributed according to

wk ∼N (04, 0.01I4$4),
ek ∼N (02, 0.1I2$2).

Model (8.31) has been used for benchmarking purposes in research be-
fore [Lindsten and Schön, 2010]. Note that it is the same system as in
Example 3.1, page 58.

In this chapter, the second sensor (i.e., the second element in yk) has
communication issues:2 A measurement arrives with probability 0.5 and
is delayed according to a discrete-valued uniform distribution in the in-
terval [1, 4] samples, with the sampling period Ts = 1 s. This should be
interpreted as that 50% of the packets of the second sensor are lost on
their way to the communication center, and the packets that arrive are
delayed between one and four seconds. As a result of that only 50% of
the measurements arrive on average, the performance of RBPF is impos-
sible to reproduce with any of the other methods. The initial state x0 and
covariance matrix P0 for all filters are

x0 =
[
0 0 0 0

]T ,
P0 = diag

([
0 0 0 1

])
.

The following results are for 20 000 Monte-Carlo simulations, with T = 50
time steps in each simulation.

Tracking Performance Figures 8.4 and 8.5 show the RMSE values for
all four states, two states in each figure, using N = 100 particles in the

2 Note that simulations where instead the first sensor had communication issues were
also performed. This resulted in that all filters had similar performance. The reason is
that the second measurement contains more information; consequently, in the following
the results focus on when the second sensor delivers OOSMs.
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forward filters. Further, SERBPF uses MFF = 0.1N particles in the sup-
porting RBPF and RBOOSMBS uses MBS = 1, D = N. Clearly, RBOOSMBS
performs better than the other methods in terms of RMSE, followed by
SERBPF. Intuitively, the performance difference between RBOOSMBS and
SERBPF should increase when the delay increases.

At a first glance, the performance differences might seem minor. To
give an indication of how close the proposed algorithms are to the lower
performance bounds, and to show that the improvements are indeed sig-
nificant, Figure 8.6 contains a close-up of the RMSE for z2

k when also
comparing with a particle filter that reorders and reprocesses the mea-
surements when an OOSM arrives (i.e., an optimal filter given the infor-
mation). This filter is denoted RERUN in the figure. As seen, RBOOSMBS
is very close (approximately 1.5%) to the performance of RERUN when
compared with the other filters. Moreover, RBOOSMBS performs approxi-
mately 6% and 10% better than SERBPF and A-PF, respectively. The other
linear states show similar results and for z1 and η, also the performance
of SERBPF is close to that of RERUN. The relatively low performance of
A-PF is related to that 100 particles is not enough to reliably associate the
estimates with the OOSMs when the model structure in (8.31) is unex-
ploited. Moreover, PF-CISI hardly outperforms RBPFDISC; that is, in this
example there is little gain in using PF-CISI compared with discarding the
OOSMs. This is caused by the use of the mean of all the particles for ini-
tializing the weight update, which does not allow for a good approximation
of the smoothing density in this case. This observation again underlines
that it is crucial how the OOSM update is done. The estimated distri-
bution for the filtering solution when all measurements are in-sequence
measurements (i.e., for RBPF), using 500 particles, is found in Figure 3.4
on page 60. Note that the estimated distributions in the OOSM case are
different, the reason being less sensor information.

Table 8.1 shows the time-averaged RMSE values for both N = 100
and N = 200 particles, with the results when using MFF = N in SERBPF
added for comparison. The results for RBOOSMBS when using D = 0.25N
are also added. Using MFF = 0.1N instead of MFF = N in SERBPF gives
almost no decrease in estimation accuracy but much less computational
complexity. Likewise, using D = 0.25N in RBOOSMBS gives an insignifi-
cant change in estimation performance but considerably reduced compu-
tation time.
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Figure 8.4 RMSEs of the two first linear states in Example 1 for 20 000
Monte-Carlo simulations using 100 particles. SERBPF uses MFF = 0.1N
particles in the supporting RBPF and RBOOSMBS uses MBS = 1 back-
ward trajectory, something that is enough in most cases for the considered
lags. RBOOSMBS performs best of the OOSM algorithms, followed by
SERBPF.
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Figure 8.5 RMSEs of the third linear state and the nonlinear state in
Example 1 with the same settings as in Figure 8.4. RBOOSMBS performs
best of the OOSM algorithms followed by SERBPF, but the difference is
quite small between the two algorithms for the nonlinear state.
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Figure 8.6 A close-up of the RMSEs for z2
k in Example 1 obtained by

using the OOSM particle filters, with the same settings as in Figure 8.4.
RBOOSMBS, and to some extent SERBPF, have similar performance as
RERUN.
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Table 8.1 Time-averaged RMSE values for Example 1, obtained by exe-
cuting 20 000 Monte-Carlo simulations with the same settings as in Fig-
ure 8.4. For the algorithms that account for OOSMs, the smallest errors
are shown in bold font. The number of particles is indicated in the top row.
In this example, it is possible to drastically reduce both MFF and D while
retaining estimation accuracy.

N = 100
Algorithm z1 z2 z3 η

RBPFDISC 0.391 0.281 0.270 0.756
PF-CISI 0.418 0.273 0.269 0.747
A-PF 0.403 0.253 0.248 0.734
SERBPF, MFF = 0.1N 0.378 0.246 0.245 0.707
SERBPF, MFF = N 0.376 0.244 0.243 0.696
RBOOSMBS, D = 0.25N 0.371 0.232 0.236 0.690
RBOOSMBS, D = N 0.370 0.231 0.236 0.687
RBPF 0.279 0.206 0.170 0.494

N = 200
Algorithm z1 z2 z3 η

RBPFDISC 0.389 0.280 0.269 0.752
PF-CISI 0.414 0.271 0.267 0.740
A-PF 0.400 0.250 0.245 0.728
SERBPF, MFF = 0.1N 0.374 0.244 0.242 0.693
SERBPF, MFF = N 0.373 0.243 0.241 0.689
RBOOSMBS, D = 0.25N 0.369 0.231 0.235 0.686
RBOOSMBS, D = N 0.368 0.231 0.235 0.684
RBPF 0.278 0.205 0.170 0.490
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Figure 8.7 The likelihood of time-averaged RMSE for the nonlinear
state using the different OOSM filters, with the same settings as in Fig-
ures 8.4 and 8.5, computed as a cumulative distribution function. Both
RBOOSMBS and SERBPF have higher probability of achieving smaller
errors than the other approaches. As a quantification, SERBPF has a
probability of 90% to achieve errors smaller than 0.69, whereas the prob-
ability for the same error with A-PF is 85%.

To indicate the tracking robustness, Figure 8.7 shows the likelihood of
the respective time-averaged RMSE over the 20 000 Monte-Carlo simu-
lations. Both RBOOSMBS and SERBPF have slightly larger likelihood for
a smaller error than the other OOSM algorithms. These results are con-
sistent with those presented before. The results for the other states are
similar.

Computational Complexity The average execution times of 100
Monte-Carlo simulations as function of forward particles for A-PF,
SERBPF, and RBOOSMBS are shown in Figure 8.8 when the delay is
fixed to l = 3. The implementation is performed in MATLAB and no mea-
sures to code optimization have been taken. The execution time for one
set of particles is language and implementation dependent. Thus, the
absolute execution time is not particularly interesting. Nevertheless, Fig-
ure 8.8 indicates the relative complexity increase for increasing N. For
N = 200, setting D = 0.25N in RBOOSMBS gives a reduction in execution
time with 75% compared with D = N, whereas MFF = 0.1N gives a 87.5%
decrease compared with MFF = N.
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Figure 8.8 Average execution times of 100 Monte-Carlo simulations
when implemented in MATLAB for varying number of forward particles. The
delay is l = 3. We have set MFF = N, MBS = 1, and D = N. A decrease to
MFF = 0.1N for SERBPF gives a speedup factor of eight for N = 200. Sim-
ilarly, setting D = 0.25N in RBOOSMBS gives a speedup factor of four.
Note that the execution time for each algorithm includes the computation
time of the RBPF used in the forward filtering. The results are for the
system in Example 1.

Example 2
In this evaluation we use a fifth-order MGSS model. The nonlinear part
is given by

ηk+1 = 0.5ηk + θ k
ηk

1+η2
k
+ 8 cos (1.2k) +wη

k, (8.32a)

yk = 0.05η2
k + ek, (8.32b)

with the noise processes distributed according to

wη
k ∼N (0, 0.005),

ek ∼N (0, 0.1).

The case when θ k = 25 in (8.32a) has been used in several papers and
books, among them [Gordon et al., 1993; Gustafsson, 2010b; Zhang and
Bar-Shalom, 2012b]. Here, θ k is the output from a linear system with
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dynamics given by

zk+1 =


3 −1.691 0.849 −0.3201
2 0 0 0
0 1 0 0
0 0 0.5 0

 zk +wzk

θ k = 25+
[
0 0.04 0.044 0.008

]
zk,

(8.33)

where wzk ∼N (04, 0.01I4$4). Again, the noise sources are mutually inde-
pendent, white, and Gaussian distributed. The system (8.32)–(8.33) has
previously been used in, for example, [Lindsten et al., 2013]. Figure 8.9
shows one realization of the process. Note that the nonlinear state is
squared in the measurement equation (8.32b), leading to a bimodal fil-
tering posterior. The initial state and covariance matrix are set to zero
for all states, in each filter. The results are based on two data sets, both
generated by executing 20 000 Monte-Carlo simulations twice, with 100
time steps in each simulation. The sampling period is Ts = 1 s. In both
data sets N = 400. In the first data set every second measurement is
delayed one time step (i.e., l = 1), whereas in the second data set every
third measurement is delayed two time steps (i.e., l = 2). Note that in
this example all measurements arrive. Hence, at the OOSM arrival times
the performance of RBPF is attainable, for a sufficiently large number of
particles.

As an illustration of the bimodality, Figure 8.10 displays the esti-
mated posterior for the nonlinear state at every fifth time step, together
with the true state. There is a bimodality in the estimated posterior at
t = 31, 65, 86 s, which shows that it is a demanding filtering problem, even
when all measurements arrive without delay.

Tracking Performance Table 8.2 presents the time-averaged
RMSE values at the OOSM arrival times (i.e., k = 1, 3, . . . , 99 and
k = 1, 4, . . . , 100, respectively) for ηk and θ k. The different smoothing
parameters are indicated in column one. PF-CISI is omitted because of in-
adequate handling of multimodal distributions. The tracking performance
of SERBPF is superior to both RBOOSMBS and A-PF for l = 1. The reason
is that for l = 1, the smoothing in SERBPF yields a better approximation
than only using MBS = 1 in RBOOSMBS. Setting MFF = 0.4N renders
performance close to that obtained for MFF = N. However, using fewer
than MFF = 0.4N particles—for example, MFF = 0.1N—does not give bet-
ter performance than discarding the OOSMs (this is not shown). It is
interesting to note that SERBPF with MFF = 0.4N performs better than
RBOOSMBS with MBS = 1. Furthermore, decreasing D in RBOOSMBS
gives deficient performance for virtually all D < N.
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Figure 8.9 One realization of the model that is used in Example 2. The
nonlinear state ηk and the output θ k from the linear subsystem are shown.

Table 8.2 Time-averaged RMSE values at the OOSM arrival times for
Example 2, using 20 000 Monte-Carlo simulations. The OOSM delays are
indicated in the top row. The errors between l = 1 and l = 2 are not
comparable, since they are measured at different time steps. Setting MFF
much smaller than 0.4N gives insufficient tracking performance.

l = 1 l = 2
Algorithm η θ η θ

RBPFDISC 0.453 0.954 0.514 0.895
A-PF 0.448 0.940 0.508 0.892
SERBPF, MFF = 0.4N 0.430 0.856 0.493 0.850
SERBPF, MFF = N 0.428 0.853 0.484 0.847
RBOOSMBS, D = 0.5N 0.445 0.950 0.496 0.892
RBOOSMBS, D = N 0.437 0.881 0.476 0.857
RBPF 0.414 0.844 0.443 0.839
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Figure 8.10 Estimated distribution of one realization for the nonlin-
ear state in Example 2 every fifth second. The estimated distribution
(black curve), the true state (red +), and resulting estimated trajectory
(dashed line) are shown. It is clear that the posterior is bimodal (e.g., at
t = 31, 65, 86 s).

For l = 2, RBOOSMBS and SERBPF have similar tracking performance,
both for ηk and θ k. The reason for RBOOSMBS not consistently perform-
ing better than SERBPF is that this is a demanding estimation problem
where RBOOSMBS benefits from using more than one backward trajectory
per forward particle. The problem complexity is also indicated by both ap-
proaches being more sensitive to the values of D and MFF, respectively.
Note that for the fifth-order model given by (8.32)–(8.33), N = 400 par-
ticles is not enough to consistently approximate the (bimodal) filtering
posterior with high accuracy. Still, the estimation accuracy of SERBPF
for MFF = 0.4N is close to MFF = N, and indicates that SERBPF is quite
robust to increased OOSM delay.

An observation is that A-PF performs only slightly better than discard-
ing the OOSMs, both for l = 1 and l = 2. Again, this has probably to do
with that N = 400 particles is not enough to reliably estimate the filtering
posterior. A-PF uses a backward recursion to associate the estimates with
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the OOSM, which in each step depends on the forward filter particles and
weights. Thus, as for the smoothers in SERBPF and RBOOSMBS, the per-
formance of the OOSM association hinges on a reliable filtering-posterior
approximation. The approximation errors accumulate as the OOSM de-
lay increases, which in the end renders an OOSM update that lacks in
performance.

Example 3
The third example deals with estimating the states of an aircraft using a
simplified two-dimensional constant-acceleration process model [Karlsson
et al., 2005]. As opposed to Example 1 and Example 2, this is an example
that has a physical interpretation.

The states to be estimated are the position pk ∈ R2, velocity vk ∈ R2,
and acceleration ak ∈ R2. The measurements are the range rk and bearing
ψ k from the radar system to the aircraft. The dynamic equations are
linear, with the nonlinearities entering in the measurement equations.
Using the sampling period Ts = 1 s, the model is

xk+1 =



pX
k+1

pY
k+1

vX
k+1

vY
k+1

aX
k+1

aY
k+1


=



1 0 1 0 1
2 0

0 1 0 1 0 1
2

0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1


xk +wk, (8.34a)

yk =
[

rk
ψ k

]
=


√
(pX

k )
2 + (pY

k )
2

arctan
( pY

k
pX

k

)
+ ek, (8.34b)

This model can be written on the form (8.1), where the lines in (8.34a)
indicate the partition into linear and nonlinear states. Since the position
vector pk shows up nonlinearly in (8.34b), corresponding to (8.1c), it is
modeled as the nonlinear part of the state vector. The other four states
are linear. Note that the linear and nonlinear states show up in reversed
order compared with the standard formulation (8.1). The process noise
for pk is white and Gaussian distributed as

wηk ∼N (02, 10I2$2),

whereas the process noise for the linear states (vk and ak) are distributed
as

wzk ∼N (04,Qzk), Qzk = diag
([

1 1 0.01 0.01
])

.
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The measurement noise ek is distributed as
N (02,Rk), Rk = diag

([
100 10−6]) .

In this example the communication with the bearing measurements (i.e.,
the second element of yk) is corrupted, and on average only 50% of the
packets arrive. Moreover, those packages that eventually arrive are de-
layed between [0, 3] samples according to a discrete uniform distribution.
Tracking Performance Figure 8.11 shows the RMSE for the position
pX

k and velocity vX
k for 4000 Monte-Carlo simulations using 200 particles,

with the initial state and covariance matrix for all filters set to
x0 =

[
2000 2000 10 10 0 0

]T ,
P0 = diag

([
1002 1002 252 252 0.22 0.22]) .

Again the proposed filters perform very well. Compared with the other
examples, the filter that associates the OOSMs with the current states
using an extended Kalman smoother, PF-CISI, now also performs well in
terms of RMSE. This is unsurprising since the state dynamics is linear;
hence, the Kalman smoother will only be approximate in the measure-
ment update steps. Still, PF-CISI has worse tracking performance than
the other filters. For this example, especially for the position estimates,
SERBPF with MFF = 0.2N performs better than the rest of the OOSM
filters. A close-up of the velocity RMSE in Figure 8.12 verifies this, ex-
cept for some transient behavior in A-PF. Various different noise settings
in combination with different initial estimates and number of particles
have been tried out, and although the backward-simulation based ap-
proach, RBOOSMBS, most often performs best, SERBPF frequently yields
very similar performance. A reason that RBOOSMBS does not consistently
outperform SERBPF is probably the linear process dynamics; it is possible
to use very few particles for the smoother in SERBPF and still obtain ac-
curate estimation accuracy when compared with only using one backward
trajectory in RBOOSMBS. Note that all OOSM filters are quite close to
RBPF in performance.
Execution Time The execution time for one time step when the OOSM
delay is l = 3 s is shown in Table 8.3. To reduce the effects of memory
management and operating-system intervention, Table 8.3 displays the
minimum execution time. This differs to the approach used for the re-
sults in Figure 8.8, where the mean execution time was used as measure.
Obviously the execution time is smallest for PF-CISI, but the computa-
tion time for SERBPF is competitive, especially considering that the code
is not optimized for performance. In a real-time implementation, the im-
proved tracking performance of SERBPF has to be weighed against the
lower execution time of PF-CISI.
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Figure 8.11 RMSEs of the position pX
k and velocity vX

k in Example 3
for 4000 Monte-Carlo simulations. All filters use N = 200 particles, and
MFF = 0.2N. Further, D = N and MBS = 1. The results for pY

k and vY
k are

similar, because of symmetry.
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Figure 8.12 A close-up of the RMSE for the velocity vX
k , using the same

settings as in Figure 8.11. SERBPF performs best in this example, except
for initial transients.

Table 8.3 Minimum execution time for one time step in Example 3, with
OOSM delay l set to l = 3 s. The implementation is done on a standard
desktop PC with an Intel i7 CPU. The implementation is not optimized for
performance.

N = 200
Algorithm Time [s]
A-PF 1.6
RBOOSMBS, D = N 0.62
SERBPF, MFF = 0.2N 3.1 ⋅ 10−3

PF-CISI 6.2 ⋅ 10−4
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Outliers Figures 8.13 and 8.14 display error-bar plots for the four OOSM
algorithms PF-CISI, SERBPF (Figure 8.13); and A-PF, RBOOSMBS (Fig-
ure 8.14). They have been grouped to compare filters that are more focused
toward online execution and tracking performance, respectively. There are
much more outliers for PF-CISI than SERBPF. Thus, SERBPF does not only
give an improvement in tracking performance, but also increased robust-
ness. This is important for online tracking systems.

Figure 8.14 shows that RBOOSMBS gives rise to fewer outliers than
A-PF, which is expected. It is also interesting that SERBPF (Figure 8.13)
has fewer outliers than A-PF. The reason is obviously that SERBPF uti-
lizes model structure; still, it is worth stressing that A-PF is based on
exact Bayesian inference while SERBPF uses a rather crude smoothing
approximation with MFF = 0.2N to associate with the OOSMs. These re-
sults complement the RMSE errors in Figures 8.11 and 8.12 in that it is
important to not only monitor the tracking errors but also the variance
of the tracking errors, which is crucial for online tracking systems.

8.6 Discussion

For the considered examples and delays, it is often sufficient to only use
one backward trajectory per particle in RBOOSMBS and still get excel-
lent estimation accuracy. This is important, especially considering that
the computational complexity grows with the number of backward trajec-
tories. The reason for why one backward trajectory per particle often is
sufficient is most probably that each trajectory in the smoothing iterations
is fixed to a specific forward particle at the endpoint, thus reducing the
number of distinct backward trajectories. The performance of RBOOSMBS
also turned out to be rather insensitive to the choice of D when compared
with having D = N. However, for some cases it is essential that D ( N.
This is, for example, the case when the number of forward particles is
small and/or the posterior has a multimodal behavior, as in Example 2.
This is also true for the number of backward trajectories. Thus, the choice
is problem dependent.

Experience indicates that the number of iterations in the while-loop
in Algorithm 8.2 depends heavily on the proposal distribution. If the pro-
posal distribution mimics the target distribution well, an index will of-
ten be found after a few iterations only. Hence, in those cases it can be
worthwhile to allow for a large Cmax. However, if the proposal distribu-
tion differs a lot from the target distribution, Cmax is preferably set to
a small value since the maximum number of iterations will probably be
reached anyway. In the simulation study the limit was, quite arbitrarily,
set to Cmax = D/4, but the choice is, again, highly problem dependent.
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Figure 8.13 Error-bar plots for PF-CISI and SERBPF corresponding to
Example 3 (see Figure 8.11). The boxes indicate the lower and upper quar-
tiles and the medians. Outliers (red +) are position errors that are larger
than approximately 2.7 standard deviations, corresponding to 99.3% cov-
erage for Gaussian distributed data. Executing SERBPF results in much
less outliers than for PF-CISI.
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Figure 8.14 Error-bar plots for A-PF and RBOOSMBS corresponding
to Example 3 (see Figure 8.11). The boxes indicate the lower and upper
quartiles and the medians. Outliers (red +) are position errors that are
larger than approximately 2.7 standard deviations, corresponding to 99.3%
coverage for Gaussian distributed data. Executing RBOOSMBS results in
less outliers than for A-PF and also compared with Figure 8.13.
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8.7 Summary

Although Cmax was reached in some cases, the rejection sampling on aver-
age provided a noticeable speedup compared with explicitly computing all
smoothing weights. Note that adaptive schemes can be designed, which
possibly can improve performance.

For the considered examples, a suitable number of particles in the sup-
porting RBPF in SERBPF considering the tradeoff between performance
and computation time, is 0.05N ≤ MFF ≤ 0.4N depending on noise levels
and the number of forward particles used. When N is large the value of
MFF can typically be chosen relatively small. The reason is that the filter
weights are more accurate; hence, when sampling from the filter weights
at time index k− l, more consistent samples are drawn than when using
few particles. Although the choice of MFF is more insensitive than the
choice of D in RBOOSMBS, sometimes the tracking performance deterio-
rates for small MFF, see Example 2 in Section 8.5. Therefore, the choice
is also dependent on the degree of multimodality in the posterior.

In many practical applications, it is likely that the number of particles
used in the smoothing iterations in both SERBPF and RBOOSMBS can be
drastically reduced without sacrificing estimation accuracy. This is em-
phasized for SERBPF by the results for Example 3 in Section 8.5, where
the model structure is similar to those used in many tracking applications,
although somewhat simplified. The outlier plots in Figures 8.13 and 8.14
show that reducing MFF to 20% of the number of forward particles N in
the RBPF still gives very robust tracking performance. It should be men-
tioned that setting D smaller than N in Example 3 does not drastically
decrease tracking performance, although setting it lower than D = 0.5N
seems to render poor performance (depending on noise levels, obviously).
Consequently, both algorithms can be feasible alternatives in online im-
plementations. However, with the computing power currently available,
real-time tracking of full-scale problems is only possible for SERBPF.

8.7 Summary

This chapter presented two new algorithms for OOSM processing con-
sidering mixed-Gaussian state-space models, which is a rather general
class of conditionally linear state-space models. Both algorithms use Rao-
Blackwellization to exploit the conditionally linear Gaussian substructure
in the model. One of them focus on fast execution and the other on esti-
mation accuracy. Simulation examples showed that both approaches yield
improvements, both in terms of RMSE and repeatability, when compared
with recent particle filter algorithms for OOSM processing. In terms of
computational complexity, SERBPF is the most viable option. The results
showed that RBOOSMBS is the preferred choice if execution time is not
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a concern. Both out-of-sequence measurements and the considered model
class are common in target tracking, positioning, and navigation scenar-
ios. Thus, the developed algorithms enable performance improvements in
relevant filtering applications.

8.8 Proofs

Proof Proposition 8.1 Follows by application of results in [Schön et al.,
2005] on how to calculate expected means and their covariances in RBPFs
and in [Zhang and Bar-Shalom, 2012a] on how to update linear states with
the OOSM. 2

Proof Proposition 8.2 It holds that

p(zmpηm:k, y0:k) =

∫
p(zm, zm+1pηm:k, y0:k)dzm+1.

Moreover, using Bayes’ rule and the Markov property of the linear states,
gives that

p(zmpηm:k, y0:k) = p(zmpηm:m+1, y0:m)

⋅

∫ p(zm+1pzm,ηm:m+1)p(zm+1pηm:k, y0:k)

p(zm+1pηm:m+1, y0:m)
dzm+1.

The density p(zm+1pηm:k, y0:k) is given by the previous smoothing step.
The rest is analogous to the constrained Kalman-filter derivations for the
RBPF in [Schön et al., 2005]. 2
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9
Particle Filter for Wheel-Slip
and Motion Estimation

The last two chapters have dealt with particle-filter algorithms for han-
dling out-of-sequence measurements. The algorithms are extensions of the
standard particle-filter variants with smoothing techniques. In this chap-
ter we address the state-estimation problem in vehicles using a standard
Rao-Blackwellized particle filter.

9.1 Motivation and Contributions

Vehicle safety systems have traditionally relied on their own set of sensors
to estimate the states needed for the particular control application. With
the improved computing and networking capabilities in modern vehicles
during the last decade, made available by, for example, the controller
area network (CAN) bus [Johansson et al., 2005], opportunities exist for
the different systems to exchange information. It is therefore possible
to utilize sensor-fusion techniques within automotive systems, something
that has gained interest in recent years [Lundquist, 2011].

In the automotive industry, it is common practice to use a high-level
safety system for computing the brake forces that are needed to stabi-
lize the vehicle. It is then up to an anti-lock braking system (ABS) to
achieve the desired brake forces through wheel-slip control [Solyom, 2004;
Johansen et al., 2003; Berntorp, 2008; Savaresi and Tanelli, 2010], see
Figure 9.1 for a typical force-slip relation. The ABS uses estimates of the
vehicle velocity and longitudinal wheel slip. These quantities are typically
estimated using wheel-speed sensor signals and/or measurements of lon-
gitudinal acceleration [Gustafsson, 1997; Savaresi and Tanelli, 2010]. Al-
though the estimates are reliable in many situations there is much room
for improvements, especially for all-wheel drive vehicles and when cor-
nering [Solyom, 2004; Imsland et al., 2006; Savaresi and Tanelli, 2010;
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Figure 9.1 Longitudinal force Fx as function of longitudinal wheel slip
λ . ABS systems aim to control the wheel slip around, possibly time varying,
reference values, determined by a high-level safety system. The behavior is
stable to the left of the peak and unstable to the right of the peak. Hence,
reliable estimates of the wheel slip is necessary for good performance.

Reif and Dietsche, 2011]. As discussed in [Savaresi and Tanelli, 2010], in-
sufficient knowledge of wheel slip can cause instability in the closed-loop
control. Examples of high-level safety systems are electronic stability con-
trol systems (ESCs), which rely on lateral-acceleration, steer-angle, and
yaw-rate measurements to estimate the lateral acceleration and vehicle
sideslip angle [Tseng et al., 1999], and rollover-avoidance systems, which
rely on roll-rate and lateral-acceleration measurements to estimate the
roll angle. Typically there is a cross dependence between the states; for
example, the roll angle affects the longitudinal and lateral accelerations
in the ABS and ESC, respectively, and vice versa. Further, [Gustafsson,
2009] points out that accurate state information is more important than
advanced algorithms in current vehicles. With improved sensor-fusion
techniques in automotive systems, however, advanced model-based con-
trol algorithms and principles are possible.

This chapter outlines a novel approach to model-based joint wheel-
slip and motion estimation of four-wheeled ground vehicles. The method
fuses wheel-encoder, acceleration, gyro, and (optionally) global positioning
system (GPS) position measurements to create estimates of the vehicle’s
pose, translational velocities, and wheel slip. The main contributions are:

• Unlike other approaches that deal with slip estimation, we here ex-
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plicitly model the nonlinear slip dynamics in the state and mea-
surement equations. The slip dynamics are then combined with a
dynamic model of the translational and rotational entities, which
are all estimated simultaneously in an RBPF.

• The method only relies on kinematic relations, which makes it ro-
bust to parameter uncertainties; for example, neither parameters
describing the ground-wheel interaction, which otherwise need to be
estimated for multiple terrain types [Svendenius, 2007], nor mass
parameters are required. A drawback with the proposed approach
is that some of the states enter the dynamic equations in a highly
nonlinear fashion. However, a vast majority of the states are either
linear or close to linear, which makes the state estimation problem
tractable in terms of execution time.

The approach is validated using a Volkswagen Golf V 2008, equipped
with external sensors for measuring wheel slip, vehicle velocities, and
rotation angles with high accuracy [Lundahl et al., 2013b]. These mea-
surements are used as ground truth.

We will next go through related work. The assumptions that are intro-
duced for enabling the algorithm are then stated, which is followed by a
section devoted to deriving the model and its structure. The chapter then
proceeds with the results section and some concluding remarks.

9.2 Related Work

Nonlinear approaches have been used in relation to slip estimation before,
see [Carlson and Gerdes, 2005] for a nonlinear least-squares approach for
longitudinal tire-stiffness estimation in automotive systems and [Ward
and Iagnemma, 2008; Yi et al., 2009] for extended Kalman-filter solu-
tions to slip estimation in mobile robotics. Nonlinear estimation schemes
have also been used for motion estimation; see [Imsland et al., 2006] for
estimation of vehicle speed via nonlinear observers that utilize a dynamic
description of the tire-road interaction. However, no approach based on
particle filters, which can accurately capture the nonlinear wheel-slip
dynamics, has been reported. Moreover, slip estimation techniques are
typically either rule based and modeled for straight-line driving [Ward
and Iagnemma, 2008; Savaresi and Tanelli, 2010; Iagnemma and Ward,
2009]; assume kinematic constraints on the experimental setup [Yi et
al., 2009]; restricted to two-wheel drive [Gustafsson, 1997; Carlson and
Gerdes, 2005]; or assume knowledge of, or the need to, estimate physi-
cal vehicle parameters before being possible to use [Ward and Iagnemma,
2008].
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Other related research on motion estimation includes [Reina et al.,
2006], where visual information was introduced as a means to estimate
wheel sinkage. Linearizations of the force-slip curve were used in [Miller
et al., 2001] to estimate the longitudinal tire stiffness. Motor-current
based wheel-slip detection was proposed in [Ojeda et al., 2005]. A fuzzy-
logic approach for choosing Kalman gains was introduced in [Kobayashi
et al., 1995]. Moreover, [Ray, 1997] used a nine degrees-of-freedom vehicle
model in a Kalman filter to estimate vehicle speed, brake forces, wheel
slip, and vehicle sideslip angle. In [Lghani, 2012] a roll-angle and road-
bank estimation procedure using a proportional-integral observer was in-
troduced, and [Grip et al., 2009] presented an experimentally verified
roll-angle estimation scheme with accompanying stability proofs. Further,
[Ryu and Gerdes, 2004] estimated the roll angle using a dynamic model.
Another paper is [Lundquist et al., 2014], in which the effective wheel
radius was estimated during normal driving conditions.

9.3 Preliminaries

Figure 9.2 contains the kinematics schematics for a four-wheeled ground
vehicle and the corresponding notation, and Figure 9.3 shows the degrees
of freedom and the notation for the wheels. We introduce the following
assumptions:

• The vehicle has two rotational degrees of freedom, being the roll
angle φ and yaw angle ψ . This is motivated by that roll and yaw are
the rotational quantities of interest when considering vehicle-safety
aspects [Tseng et al., 1999]. Further, the approximations cos(φ) ( 1
and sin(φ) ( φ are introduced since the roll angle typically is below
5 deg, even during extreme maneuvering [Lundahl et al., 2013a].1

• The vehicle moves in the plane—that is, vertical movements are
assumed small. This is motivated by that vertical movements will
have a minor impact on the rest of the states for small inclination
and road bank angles.

• Measurements of the longitudinal and lateral accelerations a ∈ R2,
wheel angular velocities ω ∈ R4, wheel steer angles δ ∈ R4, and
roll and rotation rates ξ ∈ R2 are available. These measurements
can be considered standard equipment for vehicles equipped with
ABS, ESC, and rollover-avoidance system. Consumer cars are often

1 Figure 1.5 seems to contradict this claim. However, since the estimates are intended
to be used in safety systems, or situation-aware systems, it is feasible to assume that
situations as those in Figure 1.5 do not occur.
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Figure 9.2 The vehicle model and its degrees of freedom. The wheels are
numbered from the front left wheel to the rear right wheel. The coordinate
axes of the vehicle-fixed and the inertial frames are denoted with capital
letters.
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Figure 9.3 Wheel i and its two rotational degrees of freedom. The co-
ordinate axes of the wheels’ coordinate systems are denoted with small
letters.
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equipped with GPS—for example, cars with a navigation system.
We do not assume, but can incorporate, GPS measurements in the
presented framework.

With a slight modification of notation compared with Chapter 4, with
pk =

[
pX

k pY
k
]T
∈ R2 we mean the longitudinal and lateral positions of

the vehicle’s mass center at time index k expressed in the inertial frame I ,
and ṗk = vk ∈ R2 represents the corresponding velocity vector. The com-
posite rotation between the inertial frame I and the body-fixed frame B
is described by ψ =

[
φ ψ

]T
∈ R2. This composite rotation is defined as a

rotation ψ about ZI , followed by a rotation φ about the resulting XV -axis.
The rotation matrix RIV ∈ R2$2 from V to I is

RIV =
[
cos(ψ ) − sin(ψ )
sin(ψ ) cos(ψ )

]
.

The superscript V on a vector, as in vV , means v with respect to I , ex-
pressed in frameV . With ua ∈ R2 and uξ ∈ R2 we mean the accelerome-
ter and gyroscope measurements, respectively, which are mounted (hence
also expressed) in frame B. When using the rotation matrix RVB ∈ R3$3

(see Appendix A), the two-dimensional acceleration and rotational rate
vectors are appended with zeros in the Z- and Y- components, respec-
tively. RIB denotes the rotation matrix from B to I .

9.4 Modeling

The mass center is assumed to be located at center of geometry (CoG). We
do not impose restrictions on the wheels’ steer or drive angles; that is, the
wheels can steer and drive independently from each other. This allows for
more general vehicle classes than standard cars, such as vehicles utiliz-
ing independent front and rear axle steering, or pseudo-omnidirectional
mobile robots. Note that we in this chapter do not make any assumptions
on whether the vehicle is of all-wheel drive type or not.

Let the velocity of CoG with respect to frame I expressed in frame
V be vV =

[
vV ,X vV ,Y]T. Then the longitudinal velocities at the wheel

center contact points, {vx
i }

4
i=1, are equal to

vx
1 = cos(δ 1)(vV ,X −w1ψ̇ ) − sin(δ 1)(vV ,Y + l fψ̇ )

vx
2 = cos(δ 2)(vV ,X +w2ψ̇ ) − sin(δ 2)(vV ,Y + l fψ̇ )

vx
3 = cos(δ 3)(vV ,X −w3ψ̇ ) − sin(δ 3)(vV ,Y − lrψ̇ )

vx
4 = cos(δ 4)(vV ,X +w4ψ̇ ) − sin(δ 4)(vV ,Y − lrψ̇ ).

(9.1)
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There exists several definitions for wheel slip. The longitudinal wheel slip
for wheel i is here defined as

λ i := 1− Riω i
vx

i
, ∀i ∈ {1, . . . , 4}, (9.2)

where Ri is the wheel radius for wheel i. This definition implies that
λ i ∈ (−∞, 1], and is slightly different compared with (4.2) and (4.3). The
reason for this definition is that it simplifies the modeling.

Continuous-Time Dynamic Model
The aim is to perform joint vehicle-motion and wheel-slip estimation.
Hence, the minimum set of states to estimate are the position p ∈ R2,
rotation ψ ∈ R2, velocity v ∈ R2, and the wheel slip λ ∈ R4. We model
the acceleration and gyro measurements ua and uξ as process inputs.
Typically, low-cost inertial measurement units suffer from biased mea-
surements [Woodman and Harle, 2008]. A common way to model the
bias is to assume first-order Markov processes for both accelerometer,
ba =

[
bX
a bY

a
]T, and gyroscope, bξ =

[
bX
ξ bZ

ξ

]T
, as

ḃ = − 1
Tb

b+wb, (9.3)

where Tb denotes the time constant. The bias noise term wb, which is
modeled as white Gaussian with zero mean, can be determined from an
Allan variance analysis [IEEE, 1996] for each coordinate axis of the ac-
celerometer and gyroscope. For measurement series lasting less than a
few minutes, the bias is typically dominated by a constant offset. For the
experiments in this chapter, we therefore neglect the first term in (9.3).
Thus, in our model the accelerometers and gyroscopes measure

ua = aB + ba + �+wa, (9.4a)
uξ = ξB + bξ +wξ, (9.4b)

where � =
[
0 �φ

]T is the component vector from gravity caused by the
roll angle φ . Moreover, wa and wξ are modeled as zero mean, white Gaus-
sian noise terms. This gives that the kinematic equations for the position,
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velocity, and bias states are

ṗ = v, (9.5a)
v̇ = RIB(ua − ba − �+wa), (9.5b)
ḃa = wba , (9.5c)
ḃξ = wbξ , (9.5d)
φ̇ = (uX

ξ − bX
ξ +wX

ξ ), (9.5e)

ψ̇ = uZ
ξ − bZ

ξ +wZ
ξ , (9.5f)

The kinematic equations (9.5a)–(9.5d) describe the relation between the
position p and velocity v, expressed in the inertial frame I , and the ac-
celeration aB and associated bias ba, expressed in the body frame B. The
kinematic equations (9.5e)–(9.5f) describe the relation between the rota-
tion angles with respect to I and the rotation rates ξB with associated
bias bξ, expressed in the body frame B.

To derive dynamic equations for the slip, differentiate (9.2):

λ̇ i =
�λ i
�vx

i

dvx
i

dt +
�λ i
�ω i

dω i
dt

=
�
(

1− Riω i
vx

i

)
�vx

i
ax

i +
�
(

1− Riω i
vx

i

)
�ω

ω̇ i

=
Riω i
(vx

i )
2 ax

i −
Ri
vx

i
ω̇ i. (9.6)

Rearranging the slip definition (9.2) gives that

Riω i
vx

i
= 1− λ i, (9.7)

and inserting (9.7) into the first term in (9.6), results in the following
model of the slip dynamics:

λ̇ i =
1− λ i

vx
i

ax
i −

Ri
vx

i
ω̇ i, ∀i ∈ {1, . . . , 4}. (9.8)

To find ax
i , it is convenient to utilize that the relation

ai = aV + ψ̈$ dVi + ψ̇$ (ψ̇$ dVi ), (9.9)

holds, compare with (4.16) (page 76). In (9.9), aVi is the acceleration of
a point Pi with coordinates dVi and dVi . Note that all quantities in (9.9)
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Table 9.1 The states used in the dynamic model.

Notation Description
p ∈ R2 Position vector
v ∈ R2 Velocity vector
ba ∈ R2 Accelerometer bias
bξ ∈ R2 Gyroscope bias
φ ∈ R Roll angle
ψ ∈ R Yaw angle
λ ∈ R4 Wheel slip

should be interpreted as three dimensional for the cross product to be
defined.

The first and third terms in (9.9) can be found using the accelerom-
eter and gyroscope measurements and their associated bias states. The
second term is, however, not easily available. One option is to differenti-
ate the gyroscope signal to provide an estimate. This approach introduces
additional noise and outliers, because it would mean differentiating an
already noisy signal. Moreover, the introduced noise will make it harder
to extract valuable information, if any. Hence, in the following we neglect
this term. Using (9.9), the longitudinal acceleration at the wheel cen-
ter contact points, expressed in the respective wheels’ coordinate system
ax

i , ∀i ∈ {1, . . . , 4}, is then written as

ax
1 = cos(δ 1)(aV ,X −w1ψ̇ 2) − sin(δ 1)(vV ,Y + l fψ̇ 2)

ax
2 = cos(δ 2)(aV ,X +w2ψ̇ 2) − sin(δ 2)(vV ,Y + l fψ̇ 2)

ax
3 = cos(δ 3)(aV ,X −w3ψ̇ 2) − sin(δ 3)(vV ,Y − lrψ̇ 2)

ax
4 = cos(δ 4)(aV ,X +w4ψ̇ 2) − sin(δ 4)(vV ,Y − lrψ̇ 2),

(9.10)

where ψ̇ is replaced with (9.5f) and the acceleration aV ,X is replaced with
(9.4a) together with a small-angle approximation. This yields

ψ̇ = uZ
ξ − bZ

ξ +wZ
ξ , (9.11a)

aV ,X = uX
a − bX

a +wX
a . (9.11b)

To summarize, the process model consists of (9.5) and (9.8), where (9.1)
and (9.10) are used for computing (9.8). Table 9.1 summarizes the differ-
ent states and the respective description.

Discrete-Time Dynamic Model
The dynamic model needs to be discretized to fit into the estimation frame-
work. With the sampling period Ts, discretization of (9.5) and (9.8) yields
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the discrete-time dynamic model

pk+1 = pk + Tsvk +
T2

s
2 R

I
B(ua,k − ba,k − �k +wa,k), (9.12a)

vk+1 = vk + TsRIB(ua,k − ba,k − �k +wa,k), (9.12b)
ba,k+1 = ba,k + Tswba,k, (9.12c)
bξ,k+1 = bξ,k + Tswbξ,k, (9.12d)

φ k+1 = φ k + Ts(uX
ξ,k − bX

ξ,k +wX
ξ,k), (9.12e)

ψ k+1 =ψ k + Ts(uZ
ξ,k − bZ

ξ,k +wZ
ξ,k), (9.12f)

λ i,k+1 = λ i,k + Ts

(
1− λ i,k

vx
i,k

ax
i,k −

Ri
vx

i,k
(ω̇ i,k +wω̇ ,i)

)
. (9.12g)

In (9.12a) we have used an Euler discretization, with second order cor-
rections for the acceleration components. In (9.12g), zero mean, white
Gaussian noise terms wω̇ ,i for the wheel angular accelerations have been
added. In total, the input state vector is

uk =

ua,k
uξ,k
ω̇k

 ∈ R8.

The wheel angular accelerations, which are used as inputs, are not
measured. These are estimated by a central difference approximation us-
ing the wheel angular velocities measured by the ABS wheel-speed sen-
sors. Hence, the approximation ˆ̇ωk is calculated as

ˆ̇ωk =
ω(tk) − ω(tk − 2Ts)

2Ts
.

REMARK 9.1
The terms ax

i,k and vx
i,k in (9.12g) are computed with (4.15) and (9.10),

which in its turn employ (9.11). Therefore the noise terms for the accel-
erations and the rotation rates also enter in (9.12g). 2

REMARK 9.2
The steer angles δk are considered known. The motivation for this is that
although it is possible to let the steer angles be used as inputs disturbed
by noise, it will complicate the estimation algorithm while only giving
minor, if any, tracking improvements. 2

Measurement Model
The first two elements in the measurement vector consist of the longi-
tudinal and lateral GPS position measurements. To incorporate velocity
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information it is common to model the vehicle velocities in the body frame
as measurements, either by using the wheel angular velocity measure-
ments ωm,k together with the forward kinematics, see Chapter 6 and [Yi
et al., 2009], or employment of GPS velocity measurements [Ward and
Iagnemma, 2008; Iagnemma and Ward, 2009]. Both these approaches are
valid in many scenarios, but to estimate the slip when it is incorporated in
the state equations, we here use the wheel angular velocity measurements
of each wheel independently as elements of the measurement vector. The
rationale for this is that it reduces observability issues.

The relation between the GPS position measurement pm,k and the
position pk is

pm,k = pk + ep,k, (9.13)
where ep,k is the GPS position measurement noise. To incorporate the
wheel angular velocities, reuse of the slip definition (9.2) gives

λ i = 1− Riω i
vx

i
Z[ vx

i λ i = vx
i − Riω i Z[ Riω i = vx

i (1− λ i). (9.14)

Thus, the wheel angular velocity measurements ωm,k are at each time
instant related to the states as

Riω m,i = vx
i (1− λ i) + eω ,i, ∀i ∈ {1, . . . , 4}, (9.15)

where {eω ,i}
4
i=1 are the measurement noise sources for the wheel-speed

measurements. Note that (9.15) measures a combination of λ i, v, ψ , φ ,
and the bias terms through the relation (4.15). However, since the contri-
bution from the roll angle φ is small, it is hard to estimate φ from (9.15)
alone. Thus, to improve roll-angle estimation, start with noting that the
acceleration of CoG is composed of a translational part and a rotational
part; that is, it is possible to rewrite the Y-component of (9.4a) as

uY
a = aB,Y + bY

a + �φ +wY
a

= v̇B,Y + ψ̇ vB,X + bY
a + �φ +wY

a

( v̇V ,Y + ψ̇ vV ,X + bY
a + �φ +wY

a

( ψ̇ vV ,X + bY
a + �φ +wY

a , (9.16)

where we, besides sin(φ) ( φ and cos(φ) ( 1, have assumed that the
acceleration owing to v̇V ,Y is small. Insertion of (9.5f) into (9.16) yields

uY
a (

(
uZ
ξ − bZ

ξ +wZ
ξ

)
vV ,X + bY

a + �φ +wY
a . (9.17)

Splitting up (9.17) into the standard measurement equation form results
in the measurement equation

uY
a =

(
uZ
ξ − bZ

ξ

)
vV ,X + bY

a + �φ +
[
vV ,X 1

] [
wZ
ξ wY

a

]T
.
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To summarize, the measurement vector is

yk =


pm,k

R1ω m,1,k
...

R4ω m,4,k

uY
a,k

 ∈ R7

and is related to the states via

yk =



pk

vx
1,k(1− λ1,k)

...
vx

4,k(1− λ4,k)(
uZ
ξ,k − bZ

ξ,k

)
vV ,X

k + bY
a,k + �φ k


+ ek, (9.18)

where

ek =

I2$2 02$4 02 02

04$2 I4$4 04 04

0T
2 0T

4 vB,X
k 1



ep,k

eω,k

wZ
ξ,k

wY
a,k

 . (9.19)

9.5 Estimation Algorithm

To get the dynamics (9.12) and the measurement equations (9.18) on the
same form as (3.20) (page 56), it is necessary to partition the states into a
linear part and a nonlinear part. Naturally, it is computationally efficient
to put as many states as possible in the linear part, because these can be
estimated with a Kalman filter. The state space that the particle filter
estimates is therefore smaller, hence demanding fewer particles [Lindsten
et al., 2011]. Consequently, only those states that contribute the most to
the nonlinearities are put into the nonlinear part. The remaining states
are either linear or linearized, and then estimated by a Kalman filter.

Partitioning the States
The major nonlinearities are the velocities at the wheels, vx

i,k, found in
(9.12g). Since the wheel velocities depend on the yaw angle, longitudinal
and translational vehicle velocites, the roll angle, and the bias terms, see
(4.15) and (9.11a), all these states can be modeled as nonlinear. However,
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with computational efficiency in mind, we only model the vehicle velocities
and yaw angle as nonlinear. The reason is that these will dominate the
contributions to vx

i,k. The roll angle is multiplied with the gyro input and
the bias term bY

ξ,k in both (9.12f) and (9.18). This nonlinearity is mild
and can be handled quite good with a linearization, especially since φ k
and bY

ξ,k are small. Note that the yaw-rate measurement enters in vx
i,k,

that is, in the denominator in (9.12g), which is not supported in (3.20).
Hence, this term has to be linearized in the measurement update step.
The slip is multiplied with the wheel acceleration in (9.12g), where the
wheel acceleration depends on the bias terms and the process inputs.
The same type of nonlinearities occur in the second to fifth element in
(9.18). These nonlinearities are rather mild compared with 1/vx

i,k, and
introducing the four slip quantities as nonlinear states would drastically
increase computational complexity. Thus {λ i,k}

4
i=1 are considered to be

linear.
In total there are three nonlinear states in ηk and 11 linear states

in zk, which together form the total state vector xk =
[
zTk ηT

k
]T
∈ R14,

where

ηk =
[
vT

k ψ k
]T , zk =

[
pT

k bT
a,k bT

ξ,k φ k λT
k

]T
. (9.20)

Time Update
In the prediction steps of the RBPF, the dynamics (9.12) is used for prop-
agating the estimates x̂i

k to time index k+1. To propagate the covariances
in the Kalman filter, the states in zi

k that actually are nonlinear need to be
linearized. With the partitioning (9.20), the matrices needed for (3.20a)
in the time update of the covariance matrices are

Ak =



I2$2 P̄ba 02$2 P̄φ 02$4

02$2 I2$2 02$2 0 02$4

02$2 02$2 I2$2 0 02$4

0T
2 0T

2 [−Ts 0] 1 0T
4

02$2 Λba Λbξ Λφ Λλ



Fk =



T2
s

2 R
I
B 02$2 02$2 02$2 02$4

02$2 TsI2$2 02$2 02$2 02$4

02$2 02$2 02$2 TsI2$2 02$4

0T
2 0T

2 [Ts 0] 0T
2 0T

4
D1 04$2 Λuξ 04$2 D2


,

(9.21)
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whereas the matrices that are to be inserted into (3.20b) for the covari-
ance prediction are

Bk =

[
02$2 −TsRIB 02$2 0 02$4

0T
2 0T

2 −[0 Ts] 0 0T
4

]

Gk =

[
TsRIB 02$2

0T
2 [0 Ts]

]
.

(9.22)

In (9.21), P̄ba =
�pk+1
�ba,k

∣∣∣
x̂k,uk

and similarly for Λ. Moreover,

D1 =



1− λ1,k
vx

1,k
cos(δ 1,k)

1− λ1,k
vx

1,k
sin(δ 1,k)

...
...

1− λ4,k
vx

4,k
cos(δ 4,k)

1− λ4,k
vx

4,k
sin(δ 4,k)

 ,

D2 = −Tsdiag
([ R1

vx
1,k

R2
vx

2,k

R3
vx

3,k

R4
vx

4,k

])
.

The noise terms corresponding to wzk and wηk in (3.20a) and (3.20b) are

wzk =


wa,k

wba,k

wξ,k
wbξ,k
wω̇,k

 ∈ R12

wηk =
[
wa,k

wξ,k

]
∈ R4,

(9.23)

where bothwzk andwηk are white and Gaussian distributed with zero mean
according to

wzk ∼N (012,Qz)
wηk ∼N (04,Qη).

(9.24)

BothQz andQη in (9.24) are assumed to be constant and diagonal. Hence,
they are modeled as

Qz = diag
([
Qa Qba Qξ Qbξ Qω̇

])
Qη = diag

([
Qa Qξ

])
.

(9.25)
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The process noise terms wzk and wηk are correlated, as seen from (9.23).
Thus, the cross term Qzη in (3.21) is nonzero and fulfills

(Qzη)T =
[
Qa 02$2 02$2 02$2 04$4

02$2 02$2 Qξ 02$2 04$4

]
. (9.26)

The process inputs that correspond to the noise terms (9.23) are

uzk =


ua,k

ba,k

uξ,k
bξ,k
ω̇k


uηk =

[
ua,k

uξ,k

]
.

(9.27)

The state prediction consists of propagating the dynamics (9.12) based on
the estimates at the previous time step. The prediction of the covariance
matrices for the linear states is done with the system matrices in (9.21)
and (9.22) and the noise distributions (9.25)–(9.26).

REMARK 9.3
The mixed Gaussian formulation in (3.20) assumes zero mean inputs, but
the inputs, in this case (9.27), are straightforward to include. 2

Measurement Update
In a similar manner to the prediction step, the measurement update step
needs Ck in (3.20c), where some of the states have to be linearized to fit in
the framework. With our choice of partitioning in (9.20), the measurement
matrix becomes

Ck =



I2$2 02$2 02$2 0 02$4

0T
2 0T

2 Y1,bξ 0 Y1,λ
...

...
...

...
...

0T
2 0T

2 Y4,bξ 0 Y4,λ

0T
2 0 1 0 − vV ,X

k � 0T
4


, (9.28)
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where

Y1,bξ =
�vx

1,k(1− λ1,k)

�bξ,k

∣∣∣∣
x̂k,uk

Y4,bξ =
�vx

4,k(1− λ4,k)

�bξ,k

∣∣∣∣
x̂k,uk

and similarly for the other partial derivatives.

Decorrelating the Noise
Note that the measurement noise (9.19) can be written as

ek = Hkēk (9.29)

where

ēk =


ep,k

eω,k

wZ
ξ,k

wY
a,k

 .

The noise sources for the wheel encoders and the Z- and Y-components
of the gyroscope and accelerometer, respectively, enter both in (9.29) and
(9.23). Hence, the process noise and measurement noise sources are cor-
related, which should be taken into account for improved performance.
This can be done using a decorrelation procedure similar to the one that
is used for decorrelating the noise (9.26) in the RBPF [Schön et al., 2005],
and is not pursued further here.

9.6 Experimental Results

The presented method has been validated on five different test drives,
ranging from aggressive maneuvering on race tracks to normal driving
conditions in city traffic. The experimental results presented here are
from a test drive that was performed at a race track in Linköping, Sweden.

To compare the performance with other methods, we have also imple-
mented the approach to slip estimation in [Savaresi and Tanelli, 2010].
It is a rule-based velocity estimator that uses the angular velocities of
the wheels and the longitudinal acceleration for estimating the velocity.
Depending on if the vehicle is braking, accelerating, driving with approx-
imately constant velocity, or if the velocity is very low, different sensor
signals are used.
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Experimental Setup
The testbed consists of a Volkswagen Golf V 2008, equipped with state-
of-the-art sensors, see Figure 9.4 and [Lundahl et al., 2013b]. The sensors
we use in the estimation algorithm are:

• The wheel angular velocities from the ABS wheel-speed sensors,
sending measurements at 10 Hz.

• A GPS sensor, delivering position measurements at 4 Hz with an
accuracy of approximately 2.5 m.

• An XSens IMU [Xsens Technologies B.V., 2010] that delivers mea-
surements at 100 Hz. Note that only the planar accelerations and the
yaw and roll rates are used in the estimation algorithm. The IMU is
approximately located at the (unloaded) mass center, nearly aligned
with the vehicle’s coordinate system, during the experiments. No ac-
tions are taken to account for the location error or misalignment.

In addition, the vehicle is equipped with high-precision roll and pitch
angle sensors (accuracy approximately 0.07 deg at 250 Hz), as well as an
optical sensor for measuring the longitudinal velocity with high precision
(accuracy 0.1% at 250 Hz). By using the wheel-speed measurements to-
gether with measurements of the longitudinal velocity, it is possible to
extract information about longitudinal wheel slip with high accuracy.

The internal sensor measurements, such as the wheel-speed measure-
ments, are accessible over the CAN bus [Johansson et al., 2005]. For the
experiments in this chapter the data stream from the CAN bus was sent
to a measurement computer, which synchronized the data with the ex-
ternal sensors and then converted the data to a MATLAB-readable format.
For more information on the experimental setup, consult [Lundahl et al.,
2013b].
REMARK 9.4
The effective tire radii {Ri}

4
i=1, which are important in both velocity and

slip estimation, were determined by logging data during steady-state,
straight-line driving and comparing the measured longitudinal velocity
vX with the wheel angular velocity ω i. The effective wheel radius for
each wheel was then chosen as Ri = vX /ω i. Note that the datasets were
not acquired on the same day, and thus the variation in tire pressure will
add uncertainty to the wheel-radius estimate. 2

Implementation Aspects
The RBPF in Algorithm 3.3 is used in the experiments. The algorithm is
implemented in MATLAB and converted to mex-files using the Coder toolbox.
No measures to code optimization have been taken.
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Figure 9.4 The vehicle testbed used in the experiments. The velocity
sensor is placed at the front end, aligned with the longitudinal axis. The
roll and pitch angle sensors are situated at the front end and in front of
the rear wheels. The vehicle was also equipped with a GPS receiver during
the experiments.

The variances of the IMU measurements are chosen to be approxi-
mately the same as in the product specifications. The standard deviations
of the GPS measurements are set to be in the order of the accuracy, and
the noise parameters of the wheel speeds and the numeric differentia-
tion of the wheel speeds are decided by a straightforward procedure for
standard-deviation estimation [Johansson, 2009]. Moreover, to take into
account that the noise sources are not truly Gaussian noise distributions,
a roughening procedure is implemented [Gordon et al., 1993], which works
as follows: For all particles {ηk+1}

N
i=1, which are calculated from the dy-

namic equations in the time-update step, add an independent jitter ci. The
jitter is a sample from a Gaussian distribution with standard deviation
σ . The standard deviation of the Gaussian jitter is computed as

σ = EN−1/nη ,

where E is the length of the interval between the maximum and minimum
values of the particles. All test scenarios used the same noise distribu-
tions. Only a minor effort was put into tuning the filter parameters. It is
therefore highly likely that better performance can be achieved by making
more sensible choices. Further, choosing a better prior for updating the
particle weights can also improve performance.
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Figure 9.5 The estimated positions and GPS positions for one lap on
the race track, using 1000 particles. The differences between GPS position
measurements and the estimated positions are at most approximately 2 m,
which is in the order of the measurement uncertainty.

Race-Track Scenario
This scenario was constructed by driving approximately seven laps on a
small part of a race track. The dataset contains both straight-line driv-
ing and cornering, and both drive and brake torques are heavily uti-
lized throughout. Figure 9.5 shows the GPS positions for a portion of the
scenario together with the position estimates, corresponding to approxi-
mately one lap. The accelerations, as measured by the accelerometer, and
the longitudinal velocity, measured by the optical sensor, are shown in
Figure 9.6 for the whole test drive. It is clear that a major part of the
available friction is used during cornering and that the braking behavior
is very aggressive.

Figure 9.7 shows results for a 25 s excerpt of the maneuver, which
corresponds to approximately one lap. The upper plot compares the es-
timated longitudinal velocity with the velocity measured by the optical
sensor, which is used as ground truth. The roll angle estimate and the
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Figure 9.6 The accelerations as measured by the accelerometer, together
with the longitudinal velocity as measured by the optical sensors. Note that
the velocity measurement was not used in the estimation algorithm, but
only as a ground-truth certificate. The driving behavior is aggressive and
utilizes the available friction. The lateral acceleration peaks at approxi-
mately 10 m/s2. The maneuver is performed on dry asphalt, where the
friction coefficient µ typically is in the range 0.95 ≤ µ ≤ 1.2 [Svendenius,
2007].
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corresponding ground truth are in the middle plot, while the lower plot
shows the estimated wheel slip and true wheel slip (as measured by the
external, optical sensor) of the second wheel. The maximum velocity error
in this figure is approximately 0.6 m/s, and occurs at 83 s. The roll-angle
estimation is consistent. The largest error is approximately 2 deg (occur-
ring at 91 s). The roll-angle estimates are, however, more accurate than
2 deg for most parts of the maneuver. The slip behavior is also captured
very well, with only minor discrepancies. The results for the other wheels
are very similar in performance.

Figure 9.8 visualizes the true wheel slip and estimated wheel slip for
the second and fourth wheel, respectively, together with corresponding re-
sults for the rule-based slip estimation algorithm in [Savaresi and Tanelli,
2010]2 for another 25 s excerpt. As shown in [Savaresi and Tanelli, 2010],
and as we have also confirmed using other datasets, that algorithm per-
forms well for straight-line driving scenarios. For this dataset, however,
it is clear that the slip estimation with our method is superior, and also
very rapid changes in the slip are handled well. The slip characteristics
between the second and fourth wheels are different. This is explained by
that the vehicle is front-wheel driven in combination with significant load
transfer in both roll and pitch direction, owing to large acceleration/decel-
eration as well as aggressive cornering. The slip values exceed 0.1, which
approximately corresponds to the slip value for where the force peak is
attained [Solyom, 2004; Svendenius, 2007].

2 The parameters in that algorithm were chosen as in [Savaresi and Tanelli, 2010].
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Figure 9.7 Estimated (black) and ground-truth (red) velocity, roll an-
gle, and wheel slip for a 25 s excerpt from the whole dataset, using 1000
particles. The largest estimation error for the roll angle is approximately
2 deg (occurring at 91 s), but the estimation error is typically within one
deg. The peak in the force curve occurs when the slip (λ) is about 0.1.
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Figure 9.8 Estimated (black dashed) and ground truth (red) wheel slip
for a 25 s excerpt from the whole dataset, using 1000 particles. For compar-
ison, the results for the slip-estimation approach in [Savaresi and Tanelli,
2010] are also shown (blue). The considered dataset contains combined lon-
gitudinal and lateral movement, in addition to significant roll. This puts
large demands on modeling coupling effects, something which the proposed
method does remarkably well. The slip peak at t ( 154 s reaches about
0.3, something which both schemes handle well.
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Robustness in Tracking
To give a measure of how the number of particles affects the tracking
performance, Figure 9.9 shows the likelihood of the time-averaged velocity
error as a cumulative distribution function over the 100 executions, for
100, 200, 400, and 1000 particles. As an example, 93% of the executions
yield less than 0.37 m/s velocity error when using 400 particles. The
corresponding average error for λ1 is 0.025 (and is in the same range
for the other wheels). Moreover, the probability of achieving an average
velocity error smaller than 1 m/s when using 400 particles is 94%, with
the corresponding number for 1000 particles being 99%. Note that only
one two of the 100 executions rendered an error of more than 0.7 m/s
(corresponding to an error of 0.05 for λ1) for 1000 particles. For 1000
particles, over 90% of the executions yield less than 0.27 m/s in velocity
error and a slip error smaller than 0.02. When using very few particles,
in round numbers less than 200, the performance deteriorates quickly.

9.7 Concluding Discussion

The proposed method performed well in all of the considered datasets,
five in total. Some of the shorter datasets that were gathered (approx-
imately 30 s long) did not contain GPS measurements. The method es-
timates velocities and slip quantities with high precision also in these
experiments. Hence, the algorithm works also in the cases when occa-
sional packet losses in the GPS communication occur. In some setups the
GPS velocities are also available. This has not been utilized here, but it
is likely that incorporating this information improves performance.

When it comes to statistical properties, the algorithm delivers excellent
tracking accuracy in all but very few cases (see Figure 9.9). It is highly
likely that better tuning of the filter, in combination with using more
particles, can improve performance further. In addition, the IMU and the
GPS receiver were assumed to be located at the mass center. This is an
erroneous assumption for this particular experimental setup. There are
therefore improvement possibilities when it comes to calibration. Note
that the results presented in Figures 9.7–9.8 are representative of the
performance that can be expected from a typical realization of the filter.

The dataset used in this chapter corresponds to very aggressive ma-
neuvering. As such, it really tests the method’s abilities to handle large
slip in combination with significant roll. The largest longitudinal slip val-
ues that were measured were approximately λ = 0.3, which is beyond
the value where the force peak occurs. The lateral acceleration peaks at
approximately 10 m/s2. It is interesting that the slip estimation is of high
quality also in periods of aggressive cornering, because this is a scenario
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Figure 9.9 The probability of time-averaged velocity error for different
number of particles, computed as a cumulative distribution function over
100 executions of the whole dataset. Out of the 100 executions, 98 give a
velocity error smaller than 0.7 m/s when using 1000 particles. The results
for the other wheels are similar. The corresponding number for 400 parti-
cles is 93%. Moreover, over 90% of the executions yield less than 0.27 m/s
in velocity error for 1000 particles. Using less than 400 particles makes
the algorithm quite sensitive.
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that often causes deficient performance for many slip-estimation algo-
rithms. Moreover, also the roll angle is precisely estimated in most parts
of the experiments.

The average execution time for one iteration of the algorithm when
using 400 particles is about 5 ms. Thus, even in a general-purpose MAT-
LAB implementation, where no measures to code optimization have been
taken, the algorithm almost executes in real time. The algorithm scales
linearly with the number of particles [Karlsson et al., 2005], and for 1000
particles the average execution time is approximately 20 ms in the current
implementation. Hence, with a dedicated implementation, the algorithm
can execute in real time for a large amount of particles.

9.8 Summary

This chapter presented a novel method for combined wheel-slip and mo-
tion estimation of four-wheeled vehicles. One of the main novelties was
a Bayesian approach to solve the combined wheel-slip and vehicle-motion
estimation problem. The approach explicitly models the highly nonlin-
ear slip dynamics within a mixed-Gaussian formulation. This makes the
model suitable for Rao-Blackwellized particle filters. Another novelty was
that traditional key variables in safety systems, such as roll angle, vehi-
cle velocity, and wheel slip are estimated simultaneously. In reality, all
these variables are correlated. Still, usually estimation algorithms found
in literature concentrate on some of the variables. This is not the case in
the proposed method. The drawbacks are that the model is highly non-
linear and that the computational complexity is higher than for linear
approaches.

We evaluated the resulting algorithm on five datasets in total, and this
chapter investigated results from one of them. The results showed that
the estimation algorithm provides excellent tracking, even for aggressive
maneuvering with large resulting slip values. A comparison with a slip
estimation algorithm from the literature indicates clear improvements
in terms of slip estimation, especially during combined cornering and
acceleration/deceleration.
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10
Dynamic Optimization for
Automotive Systems

The previous chapter presented results on joint wheel-slip and motion
estimation for vehicles. When the method is applied to automotive sys-
tems, the estimated states can be used in different active safety systems.
Systems for active safety in automotive systems have been a hot topic
for the last decades. Two famous examples are anti-lock braking systems
(ABS) and electronic stability control systems (ESCs). There exist many
active safety systems in current production cars—for example, anti-slip
regulation (ASR) systems; active suspension systems (such as active body
control) to eliminate rollover accidents; and active steering systems that
serve as an additional actuator, see [Kiencke and Nielsen, 2005; Raja-
mani, 2006; Isermann, 2006; Schindler, 2007; Reif and Dietsche, 2011].
However, as pointed out in [Funke et al., 2012] and mentioned in Sec-
tion 1.2, current state-of-the-art safety systems are still inferior to the
maneuvering performance achievable by expert drivers in critical situa-
tions, who often manage to maintain the desired vehicle trajectory while
being at the tire friction limits, see Figure 10.1 for an illustration. More-
over, despite improved safety, there are still more than 30 000 fatal vehicle
traffic crashes per year in the USA alone, with an estimated cost of more
than 230 Billion U.S. Dollars [NHTSA, 2011]. Hence, there is clearly a
need for improved safety systems.

This chapter presents research on what impact different vehicle mod-
els and road surfaces have on the optimal trajectories in safety-critical
maneuvers. Optimal control of automotive systems is in literature often
done using a particular vehicle model on a specific surface. Here, we com-
pare the optimal control inputs and corresponding trajectories for different
tire and chassis models, four in total, in addition to investigating what
impact the road surface has on the solutions. The tire-road interaction
is modeled based on experimental data, and all relevant tire parameters
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Figure 10.1 An example of an expert driver, who manages to follow a
desired vehicle trajectory while pushing the tire-surface interaction to its
limits. Source: Wikimedia Commons.

differ between the surfaces. This is in contrast to the standard approach,
where typically only few parameters, such as the friction coefficient, are
changed.

The presented results extend those in the publications [Berntorp et al.,
2013; Olofsson et al., 2013; Lundahl et al., 2013a; Berntorp et al., 2014].
To gain insight in how commonly used vehicle models behave when uti-
lized in at-the-limit maneuvers, we employ a minimum-time optimization
criterion. The chapter presents optimal solutions for surfaces correspond-
ing to dry asphalt, snow, and smooth ice in two different maneuvers; a
90 deg turn and a hairpin turn, using four different combinations of tire
and chassis models. Of particular interest is to analyze the results from a
safety-system perspective; that is, what driving behavior and model char-
acteristics can be extracted from the results, and what differences are
there between the different surfaces. A large part of the chapter is there-
fore devoted to investigating how the solutions differ, both with respect to
the models and the surfaces.

10.1 Motivation

To improve active safety systems even further, they need to be designed
to explicitly prevent lane departure and collisions with other vehicles. In-
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volving optimal control in design of safety systems is appealing because it
implies that a model-based, systematic approach to control design is used.
A survey from 2011 on optimal control in automotive applications [Sharp
and Peng, 2011] points out that finding the right balance between mod-
els, correct formulations, and optimization methods is the fundamental
problem to be solved.

Optimal control often results in trajectories that utilize the achievable
limits of the input and state regions. It is therefore crucial how, for ex-
ample, the tires are modeled outside their normal range of operation. In
addition, chassis dynamics such as roll and pitch are necessary to give
a correct representation of load transfer and vehicle stability. The situa-
tion is further complicated by that the interaction between tire and road
is complex, and that different tires have different characteristics. Even
when only considering the longitudinal stiffness (i.e., the initial slope of
the longitudinal force-slip curve in (4.7a)) the measurements differ up to
100% between experiments, see [Carlson and Gerdes, 2005]. In addition to
the differences in stiffness there are also deviations between the charac-
teristic shape of the curve at the maximum force, where the peak can be
more or less accentuated (see Figure 4.3). This is particularly noticeable
when comparing different surfaces, see for example [Braghin et al., 2006;
Svendenius, 2007; Reimpell and Betzler, 2005].

A less complex model obviously provides for an easier system analysis,
control design, and implementation, and is thus the preferred one if it
sufficiently captures relevant dynamics. Simple models have been used in
simulation and for design of control systems, with good results. Conse-
quently, it is natural to use simple models also in optimal control. How-
ever, since optimal control problems typically result in control inputs that
give aggressive maneuvering, proper model choice is pivotal. Erroneous
modeling can be utilized by the optimization solver, which can result in
inappropriate, and sometimes even unrealistic, behavior.

10.2 Related Work

Optimization for vehicles in time-critical situations has been studied in
numerous publications previously. Different examples concerning colli-
sion mitigation and cornering are found in [Chakraborty et al., 2011;
Chakraborty et al., 2013; Velenis and Tsiotras, 2005; Velenis, 2011]. Con-
trol laws for vehicle emergency-maneuvers were developed in [Dingle and
Guzzella, 2010] based on an analytic optimal-control approach, using a
one-track model (see Section 4.2, page 73). That approach neglects roll
and pitch dynamics. [Yang et al., 2013] used optimal path control, to be
activated after light collisions.
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[Shiller and Sundar, 1998] discussed optimal lane-change maneuvers.
Given the initial speed and additional assumptions, the minimum dis-
tance at which an approaching obstacle can be avoided was determined.
The time-optimal race-car trajectories were investigated in [Kelly and
Sharp, 2010; Casanova, 2000]. [Sharp and Peng, 2011] contains a survey
on existing vehicle dynamics applications of optimal-control theory. The
influence of the road surface and the car transmission layout in minimum-
time cornering was investigated in [Tavernini et al., 2013] using a one-
track chassis model. Methods for constraint-based trajectory planning for
optimal maneuvers were given in [Anderson et al., 2010; Anderson et al.,
2012]. In [Yi et al., 2012], the stability and agility of aggressive pendulum
turn maneuvers were investigated using a one-track chassis model and a
LuGre-based friction model [Wit et al., 1995]. Further, [Andreasson, 2009;
Sundström et al., 2010] discussed optimal control of over-actuated vehicles
using a two-track model and a friction-ellipse based tire model.

A method for optimal force allocation in yaw stabilization of automo-
tive vehicles was proposed in [Tøndel and Johansen, 2005]. [Tjønnås and
Johansen, 2010] contains an expansion of the previous paper, consisting
of a two-level strategy for active steering and adaptive control allocation.
A convex approach to force allocation was outlined in [Schofield, 2008].
Further, [Esmailzadeh et al., 2003] treated an optimal yaw control law
for road vehicles.

Scaling of nominal tire models for different surfaces was discussed
and experimentally verified in [Braghin et al., 2006]. Scaling factors were
identified for different tires, together with uncertainty estimates. The
investigation of the road-surface impact on the optimal trajectories in
this chapter is based on the results in [Braghin et al., 2006].

10.3 Preliminaries

Throughout, we consider DAEs of the form (2.3)—that is,

f (ẋ(t), x(t),w(t),u(t)) = 0, (10.1)

where f is a vector-valued function and x(t), w(t), and u(t) contain the
differential (state) variables, algebraic variables, and control variables,
respectively. The time dependency of the variables is implicit in what fol-
lows. We assume that (10.1) is twice continuously differentiable. This is a
standard assumption in the dynamic optimization literature, and means
that we neglect hybrid behavior, for example stemming from gearboxes.
This is not a restriction, since this chapter is concerned with comparing
rather common chassis and tire models and discuss their qualitative be-
havior. The tires are assumed to stay in contact with the flat ground at all
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times. The comparison is meant to give insight in model choice for active
safety systems, where wheel lift obviously is not wanted.

10.4 Modeling

This section summarizes the tire and chassis models that are used in this
chapter, where many already have been mentioned in Chapter 4. It also
discusses how to calibrate the tire models to be able to compare them.

Wheel and Tire Modeling
The wheel dynamics are given by (4.1). The longitudinal slip λ is com-
puted with (4.2). The lateral slip angle α used here is given by

α̇
σ
vx +α = − arctan

(
vy

vx

)
, (10.2)

where σ is the relaxation length. The difference compared with the geo-
metric slip angle computed in (4.4) is that (10.2) uses a first-order filter, to
account for that tire forces do not develop instantaneously. This approach
was validated in [Clark et al., 1972], and is also discussed in [Pacejka,
2006].
Tire Forces The nominal longitudinal and lateral tire forces Fx

0 and Fy
0

(i.e., the forces under pure slip conditions) are computed with the Magic
Formula model (4.8), repeated for convenience:

Fx
0 = µx Fz sin

(
Cx arctan

(
Bxλ − Ex(Bxλ − arctan Bxλ)

))
Fy0 = µ yFz sin

(
Cy arctan

(
Byα − Ey(Byα − arctan Byα )

))
,

(10.3)

where µx and µ y are the longitudinal and lateral friction coefficients, B
is the stiffness factor, C is the shape factor, and E is the curvature factor.

As pointed out in Chapter 4 on page 70, under combined slip
conditions—that is, when both λ and α are nonzero—the longitudinal
and lateral tire forces depend on both slip quantities. How this coupling
is described can have large impact on the vehicle dynamics. In an optimal
maneuver, the computed control inputs will result in the best combination
of longitudinal and lateral forces, and these forces are, of course, coupled
via the tire physics. There are no experiments that measure the complete
longitudinal-lateral tire interaction, but a variety of characteristics have
been established, see [Reimpell and Betzler, 2005; Kiencke and Nielsen,
2005; Pacejka, 2006; Rajamani, 2006; Svendenius, 2007].

This study employs two models: the friction-ellipse approximation (4.9)
and the weighting-functions model (4.11). The weighting-functions model
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is referred to as WF. For the friction-ellipse based model it is customary
to use the nominal force Fx

0 directly as an input to the vehicle model,
see [Wong, 2008]. Here, however, we use the drive/brake torque as input,
see (4.1), since these are quantities that can be controlled in a physical
setup of a vehicle. The main limitation with the friction-ellipse based
model is that the longitudinal force does not explicitly depend on the
lateral slip, which is not realistic. With longitudinal slip present, it is
possible to use (4.10), which is a more realistic model. However, we use
(4.9) since it represents the simplest combined-force model that is used
in the literature, see [Andreasson, 2009; Sundström et al., 2010] for two
examples. This model is hereafter denoted by FE.

Chassis Models
We use two chassis models of different complexity. The most complex
model is a two-track model with roll and pitch dynamics and both lon-
gitudinal and lateral load transfer. This chassis model is illustrated in
Figure 4.7 and was derived in Section 4.2. Throughout the chapter, the
indices f , r and 1, 2, 3, 4 denote the respective wheel pair and wheel, re-
spectively. The dynamic equations for the longitudinal load transfer are
given by

(Fz
1 + Fz

2)l f − (Fz
3 + Fz

4)lr = Kθθ + Dθ θ̇ ,
4∑

i=1
Fz

i = m�, (10.4)

where Fz
i , i ∈ {1, 2, 3, 4}, denote the time-dependent normal forces; l f , lr

are defined in Figure 4.7; and � is the gravitational constant. The lateral
load transfer is determined by the relations

−w(Fz
1 − Fz

2) = Kφ , fφ + Dφ , f φ̇ ,
−w(Fz

3 − Fz
4) = Kφ ,rφ + Dφ ,rφ̇ ,

where the half track width w = w f = wr is defined in Figure 4.7. This
load-transfer model will fit the true load transfer well for modest combined
roll and pitch angles.

The second model is the one-track model (see Figure 4.6), with the
dynamics given by (4.12). This model lumps together the left and right
wheel on each axle and neglects roll and pitch dynamics. The model has
three degrees of freedom, two translational and one rotational (the yaw
angle ψ ). Table A.1 on page 324 provides the vehicle parameters used for
the results.

Tire-Force Characteristics and Model Calibration
It is not obvious how to model different surfaces, and the modeling choice
can have a large impact on the obtained results. This is especially true
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in aggressive maneuvering when the tires perform close to their friction
limits. Given a set of tire parameters for WF (4.11) and the nominal forces
(10.3) on a nominal surface, [Pacejka, 2006] proposes to use scaling factors
s j to describe different road conditions. This method was used in [Braghin
et al., 2006], where the scaling factors representing surfaces correspond-
ing to dry asphalt, wet asphalt, snow, and smooth ice were estimated
based on experimental data. That study included a set of different tire
brands and models; hence, the results presented in [Braghin et al., 2006]
can be seen as guidelines on how the tire characteristics will vary.

The tire calibration in this chapter uses the scaling factors from
[Braghin et al., 2006] as a basis for calibrating tire models approximately
corresponding to the force characteristics on the different surfaces. The
nominal tire parameters used in that paper are not public domain. Thus,
we use the parameters from [Pacejka, 2006], which have been estimated
from experimental data, to represent dry asphalt. We introduce the rela-
tive scaling factors with respect to dry asphalt as

sdry = 1, ssnow =
s∗

snow
s∗

dry
, sice =

s∗
ice

s∗
dry

, (10.5)

where s j are the scaling factors used here and s∗
j are the scaling factors

presented in [Braghin et al., 2006]. There are uncertainties in the original
scaling factors because of the experimental data, which causes inconsis-
tencies for the snow and ice models. This is especially true for larger slip
values, where measurements typically are highly uncertain, if possible to
gather at all; for example, it is for technical reasons hard to obtain valid
experimental data for slip larger than where the force peak is attained.
The original snow model produces a longitudinal force Fx that changes
sign for large slip, which is avoided by adjusting the scaling factor for Cα
in (4.11b). Tables A.2 and A.3 on page 325 provide the complete set of tire
parameters. A subset of these parameters are dependent on the normal
force acting on the wheel. The front and rear parameter values differ in
some respects. We therefore determine the parameters from the normal
forces present when the vehicle is at rest. This is, of course, an approx-
imation, but modeling the dependence on the time-varying normal force
is nontrivial. Further, it complicates convergence in the optimization.

The parameters we use correspond to dry asphalt, packed snow, and
smooth ice: in the following, asphalt, snow, and ice denote dry asphalt,
packed snow, and smooth ice, respectively.

Calibrating Tire Models for Comparison
There are several approaches to calibrate two different tire models to
get comparable solutions to the optimal control problem. As an example,
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Figure 10.2 shows the resultant of the tire forces, Fres : R$R→ R, defined
as

Fres :=
√
(Fx(λ ,α ))2 + (Fy(α , λ))2,

for two tire models. The resultant is expressed in terms of the normal
force to easier enable comparison of models with and without dynamic
load transfer. The first plot in Figure 10.2 is parametrized using WF and
the second using FE. To equalize these models in comparative studies,
one way would be to have the same average resultant force, whereas an-
other approach would be to equalize the longitudinal stiffness. We have
calibrated the particular tire models considered here to agree for pure
slip conditions; that is, the parameters in (10.3) are the same for both FE
and WF.

Studying Figure 10.2 gives a basis for discussion of the behavior of
the tire models in an optimal maneuver and complements the discussion
in Chapter 4; for example, the models give different force characteris-
tics for combined slip, where one major difference is that FE predicts a
larger force for large combined slip than WF does. Further, the character-
istic peaks in Fres obviously influence the behavior of the tire force model
significantly. As mentioned in Section 4.1, WF has been experimentally
verified. Figure 4.3 showed that one difference between FE and WF is
that it is always possible to fully utilize the available friction with FE,
something that is not possible in reality.

Section 10.1 mentioned that parametrizations based on experimental
data have uncertainties, and the differences between experiments can be
large. Hence, the tire-force characteristics in Figure 10.2 typically differ,
even for the same surface, depending on which particular tire that is used.

10.5 Dynamic Optimization Problem

The optimal trajectories are determined for the 90 deg turn and the hair-
pin turn as the solution to an optimization problem of the form (2.4).
Considering the physical setup of the problem, it is clear that a solution
exists for reasonable initial values. However, the resulting optimization
problem is numerically challenging since the time optimality implies that
the tire-friction models partly operate at large slip values. Since the force
curves/surfaces, see Figures 4.3 and 10.2, are rather flat in these regions,
the numerical sensitivity is large. Also, it is more demanding to solve dy-
namic optimization problems where the time horizon is free than when
it is fixed. Further, the optimization needs proper initialization of the
model trajectories to converge. To this purpose the chapter provides an
initialization procedure based on driver models, see page 214. To make
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Figure 10.2 Resultant tire force Fres for the front wheel with WF (up-
per) and FE (lower), with experimental parameters from [Pacejka, 2006]
according to the second column in Table A.2. The level curves are shown
in the λα -planes for Fres = 0. The characteristics of WF differ depend-
ing on tire and road surface, but the typical shape of the force surface is
qualitatively the same.
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the convergence robust from a numerical point of view, scaling of the op-
timization variables to the same nominal interval is essential.

Note that, as for all nonconvex optimization problems, there are no
guarantees that the obtained optimal solutions are globally optimal. One
way to see if there are other solutions to the optimization problem, is to
use different initial solutions. The results presented in this chapter have
been obtained using several different initializations. All initializations
give the same optimal solution, up to numerical tolerances.

Formulation of the Dynamic Optimization Problem
The models presented in the previous section describe a DAE system ac-
cording to f (ẋ, x,w,u) = 0, as discussed in Section 10.3. The wheel drive
and brake torques for the front and rear axles, τ f and τ r, respectively, as
well as the steer angle δ are control inputs. We assume that the front
wheels have the same steer angle in the two-track models. Moreover, to
make a fair comparison with the single-track models and for simplicity
in the optimization, the two-track models have one wheel-torque input
for each axle. The inputs are equally distributed between the wheels at
the respective axle—that is, τ1 = τ2 = τ f /2 and τ3 = τ4 = τ r/2. The opti-
mization problem is formulated over the time horizon t ∈ [0, t f ] and the
objective is to minimize t f . Accordingly, we state the dynamic optimization
problem as

minimize
ẋ,x,w,u,t f

t f

subject to τ i,min ≤ τ i ≤ τ i,max, i ∈ {1, 2, 3, 4}
pτ̇ ip ≤ τ̇ i,max, i ∈ { f , r}
pδ p ≤ δ max

pδ̇ p ≤ δ̇ max

x(0) = x0

x(t f ) = xt f

Γ(pX , pY) ≤ 0
f (ẋ, x,w,u) = 0,

(10.6)

where x0 is the initial state, xt f is the desired state at the final time
t = t f , and (pX , pY) is the position of the vehicle’s mass center in the
respective maneuver. In practice, the terminal constraints are only applied
to a subset of the model variables. Further, Γ(pX , pY) is a mathematical
description of the road constraint for the mass center. These constraints in
the geometric two-dimensional X Y-plane are formulated as super-ellipses
with different radii and degrees.
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Implementation and Solution
We implement the chassis and tire dynamics using the modeling language
Modelica [Modelica Association, 2014]. The implementation of the opti-
mization problem (10.6) is straightforward by utilizing Optimica [Åkesson,
2008], which is an extension of Modelica for high-level description of op-
timization problems based on Modelica models.

Because of the complex nature of the nonlinear and nonconvex opti-
mization problem (10.6), analytical solutions are intractable. Instead, we
utilize numerical methods based on direct transcription of the continuous-
time problem (10.6), see Section 2.3, page 40, for a short introduction. The
collocation procedure and solution of the optimization problem are per-
formed using the open-source software platform JModelica.org [Åkesson
et al., 2010; JModelica.org, 2014]. JModelica.org uses orthogonal colloca-
tion, where Lagrange polynomials are used for representation of the state
profiles in each element. The location of the collocation points (i.e., the
points within each element) are chosen as the corresponding Radau points
[Magnusson and Åkesson, 2012]. For the optimization problems described
here, Ne = 150 discretization elements are used and each element con-
tains Nc = 3 collocation points. This procedure results in an NLP on the
form (2.5). The resulting NLP is solved internally in JModelica.org using
the numerical solver IPOPT [Wächter and Biegler, 2006] in combination
with the solver MA57 for the linear equation systems [HSL, 2014]. IPOPT
is a solver based on interior-point methods opted for large and sparse
optimization problems (see Section 2.3). JModelica.org applies symbolic
transformations to the DAE and transforms it into an ordinary differen-
tial equation before using the interior-point method, as described in [Mag-
nusson et al., 2014]. This leads to a drastically reduced number of system
variables and hence improved convergence speed as the algebraic vari-
ables are eliminated from the equation system. The number of variables
in the NLP decreases from approximately 49 000 to 23 000 variables for
the two-track models when applying the symbolic transformations. For the
one-track models, the number of variables decrease from approximately
20 000 to 15 000. This transformation procedure is common practice in
simulation of DAEs in Modelica tools [Cellier and Kofman, 2006] but is
traditionally not used in the context of DAE-constrained optimization,
where the DAE is instead usually retained in its natural semi-explicit or
implicit form.

First- and second-order derivatives related to the problem are required
in the iterative numerical optimization procedure. JModelica.org uses
CasADi [Andersson et al., 2012] (Computer algebra system with Auto-
matic Differentiation) to obtain these derivatives. CasADi is a low-level
tool for efficiently computing derivatives while preserving sparsity using
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algorithmic differentiation, and is custom-tailored for dynamic optimiza-
tion. This approach significantly reduces convergence times and provides
increased numerical stability compared with the use of numerical approx-
imations based on quasi-Newton methods, such as the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [Dennis and Schnabel, 1983].

Initialization Procedure
Robust convergence to a solution of the NLP in IPOPT relies on proper
initialization. Here, a driver model in combination with the vehicle model
is used for obtaining initial trajectories to the optimization. The driver
model is designed such that the vehicle tracks the middle of the road
while following a predefined velocity profile. The driver model uses the
steer angle δ and the rear-wheel torque τ r, and is based on a lane-keeping
controller described in [Rajamani, 2006]:

δ = δ ss − k1e− k2 ė− k3ξ − k4ξ̇ ,
τ r = τ r, f f − k5(vX − vX

nom),

where δ ss is the steady-state steer angle, e is the lateral deviation from
the desired path, ξ is the angular deviation from the desired heading
direction, τ r, f f is the feedforward term for the rear torque input, vnom
is the desired velocity profile, and {ki}

5
i=1 are driver-model parameters.

The controller parameters k1–k4 are chosen such that the eigenvalues of
the closed-loop system are placed in the same manner as suggested in
[Rajamani, 2006]. The desired velocity vX

nom is tracked by controlling the
rear-wheel torque with the feedforward part τ r, f f and a term proportional
to the speed-profile error. The feedforward term is computed from v̇X

nom.

10.6 Optimization Results

This section presents optimization results obtained by solving (10.6) for
different model configurations. As mentioned previously, two maneuvers
are used in the evaluation. The first maneuver is a 90 deg turn, see
Figure 10.3 on page 217, which is important in, for example, evaluation of
ESCs in lane-keeping scenarios. The second maneuver is a hairpin turn,
see Figure 10.12 on page 229, which is selected because of its extremity
and that it tests all aspects of the tire and chassis modeling.

The following chassis and tire configurations are evaluated:

• OTFE: The one-track chassis model (4.12) in combination with the
friction-ellipse based tire model (4.9).

• OTWF: The one-track chassis model (4.12) in combination with the
weighting-functions tire model (4.11).
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• TTFE: The two-track chassis model (4.22)–(4.27) in combination
with the friction-ellipse based tire model (4.9).

• TTWF: The two-track chassis model (4.22)–(4.27) in combination
with the weighting-functions tire model (4.11).

Optimization Preliminaries
The maximum allowed wheel angle δ max and wheel-angle change rate
δ̇ max are set to 30 deg and 60 deg/s, respectively, which are reasonable
parameters, both seen from physical and driver limitations. The start
(pX

0 , pY
0 ) and final vehicle position (pX

t f
, pY

t f
) are set to be in the middle of

the road for both maneuvers. Further, the lower and upper constraints on
the torque inputs are

τ i,min = −µx,iRwFz
i , i ∈ { f , r} or {1, 2, 3, 4}

τ r,max = µx,r Fz
0,r

τ f ,max = 0,
(10.7)

which implies a rear-wheel driven vehicle. The steer-angle constraint is
based on the approximate maximum wheel-steer angle that is possible to
achieve for a standard passenger vehicle. The constraints on the deriva-
tive of the torque inputs are τ̇ i,max = 2.5µx,iRwm�, i ∈ { f , r}. Note that
the friction coefficients and the other tire parameters on the left and right
wheels on the respective axle are assumed to be equal in the two-track
models. The choice of torque limitations originates from that the maxi-
mum brake torque that can be applied to the wheel is much larger than
the corresponding acceleration torque. Further, the drive-torque limit is
set to prevent excessive wheel spin, corresponding to large slip ratios. The
reason is that the empirical tire models we use are based on tire-force mea-
surements that for experimental reasons are only possible to obtain for a
limited area in the λα -plane. The reasoning behind having constraints on
the derivatives of the input torques is that the driver cannot change the
acceleration or deceleration instantly, and in addition the engine or motor
time constant limits the change rate of the torque in a physical vehicle.
Note, however, that the choice of limitations is less restrictive than the
typical values measured for a combustion engine. Furthermore, to aid the
solver, and without loss of optimality in the original problem formulation
(10.6), the wheel velocities are constrained to be nonnegative.

Solution Times
Tables 10.1 and 10.2 show the solution times and number of iterations
for IPOPT in the 90 deg turn and hairpin maneuver, respectively, using
the tire parameters corresponding to asphalt. Obviously, the number of
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Table 10.1 Solution times and number of iterations required for solving
the time-optimal maneuver problem in the 90 deg turn on asphalt. The
optimizations were executed on a standard desktop PC with an Intel i7
CPU, using IPOPT version 3.11.4.

Model Solution Time [s] Iterations
OTFE 8.6 159
OTWF 5.3 96
TTFE 27.9 110
TTWF 44.3 144

Table 10.2 Solution times and number of iterations required for solving
the time-optimal maneuver problem in the hairpin turn on asphalt. The
optimizations were executed on a standard desktop PC with an Intel i7
CPU, using IPOPT version 3.11.4.

Model Solution Time [s] Iterations
OTFE 4 78
OTWF 3.7 74
TTFE 219.6 510
TTWF 82.4 283

iterations and computation times are dependent on the complexity of the
model configuration and the maneuver. The solution times for TTWF and
TTFE are much longer than for OTWF and OTFE. Note that the increase
in model complexity does not translate directly to the increase in solution
time.

The solution times for the 90 deg turn are sometimes longer than
the corresponding solution times for the hairpin maneuver, despite the
seemingly simpler geometry in the 90 deg turn. This is partly explained
by that IPOPT relies on proper initialization, and the generated initial
trajectories are not equally suitable for the respective maneuver.

Optimization Results in 90 deg Turn—Dry Asphalt
Here, we discuss the results when using the tire parameters that corre-
spond to asphalt. The vehicle start position is set to (pX

0 , pY
0 ) = (37.5, 0) m

in the 90 deg turn and the vehicle is aligned with the road direction,
ψ 0 = π /2. The target vehicle position is set to (pX

t f
, pY

t f
) = (0, 37.5) m,

again with the vehicle heading in the road direction, ψ t f = π . The initial
velocities are v0 = 70 km/h (approximately 19.5 m/s) and the control in-
puts at t0 are set to zero. Figure 10.3 displays the geometric paths. The
start position (pX

0 , pY
0 ) = (37.5, 0) corresponds to the lower right corner.
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Figure 10.3 Time-optimal geometric paths in the 90 deg turn for tire
parameters corresponding to dry asphalt. The vehicles start in the lower
right corner. The difference is largest at approximately (pX , pY) = (15, 39),
and is roughly 0.3 m. The dots indicate the middle of the road and the
crosses indicate the vehicle position at each second.

The paths are very similar to each other throughout the maneuver. The
largest difference is approximately 0.3 m.

Table 10.3 provides the execution times for the maneuver with the
respective model configuration. The execution times vary approximately
1.6% at most, which occurs between the one-track models and TTWF.
TTWF and TTFE exhibit larger discrepancies in execution times for the
respective tire model than OTWF and OTFE. This is a result of the load
transfer incorporated in the former models, which results in large varia-
tions in the normal load on the wheels during the maneuver. Using TTFE
results in shorter execution time than using TTWF. The reason is that the
resulting force for FE is always larger than that for WF when combined
slip is present, see Figure 10.2. In this maneuver combined slip is devel-
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Table 10.3 Time for executing the maneuver with each model configu-
ration in the 90 deg turn.

Model Maneuver Execution Time t f [s]
OTFE 4.28
OTWF 4.28
TTFE 4.30
TTWF 4.35

oped; hence, FE results in larger forces and thus increased acceleration
and deceleration. However, the differences in execution time are minor.

Trajectories The first observation when investigating the optimal tra-
jectories in Figure 10.4 closer is that the slip behavior is much more
excessive for the models using FE, which can be observed in the plot for
β . An explanation is that the characteristics of FE (compare FE and WF
in Figure 10.2) leads to that the largest forces are attained when the
vehicle both accelerates and slides. The effects of these characteristics
are pronounced when modeling load transfer, which can be seen by com-
paring β between TTFE and OTFE. Nevertheless, the models yield very
similar solutions for vX and ψ̇ , and β is similar for OTWF and TTWF.
Approximately the same lateral forces are generated at each axle, but
the longitudinal forces differ considerably between the one-track and two-
track models (Figure 10.5). The reason is the load-transfer modeling in
the two-track models, and it is clear that this has a large impact on the
available tire forces. Moreover, Figure 10.6 clearly shows that the pitch
and roll angles, and thus the load transfer, are very similar between TTWF
and TTFE.

Control Inputs Figure 10.7 shows the optimal control inputs. One ob-
servation is that the different models result in optimal control inputs with
characteristics that are similar in several aspects. However, the torques
differ significantly in magnitude between the one-track and two-track
models, because of the lack of load transfer in the one-track models. The
two-track models reduce front-wheel braking slightly earlier than the one-
track models, see τ f in Figure 10.7. This might be a consequence of τ f
being equally distributed between the front wheels for the two-track mod-
els. Thus, when braking while cornering, the inner wheels will have less
load and thus risk to lock up for large brake torques.

The steer angle varies considerably between the models. At t ( 0.7 s,
a smaller δ is obtained for TTWF than for the remaining model config-
urations. Shortly after, between t ( 0.8–1.3 s, the steer angle increases
sharply in the solutions for TTWF. The other models do not give rise to

218



10.6 Optimization Results

0 1 2 3 4
−20

−10

0

Time [s]

β [deg]

0 1 2 3 4
10

15

20

Time [s]

vX [m/s]

0 1 2 3 4

−50

0

50

Time [s]

ψ̇ [deg/s]

0 1 2 3 4
70

125

180

Time [s]

ψ [deg]

OTFE TTFE OTWF TTWF

Figure 10.4 Time-optimal trajectories in the 90 deg turn for tire param-
eters corresponding to asphalt. The models that incorporate the friction
ellipse differ from each other, but the models based on the weighting func-
tions are similar for all variables.
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Figure 10.5 Time-optimal longitudinal and lateral forces for each axle
in the 90 deg turn. The tire parameters correspond to asphalt. The lateral
forces are similar for all models, whereas the longitudinal forces differ
because of the different load transfer models.
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Figure 10.6 Time-optimal pitch and roll angles in the 90 deg turn for
tire parameters corresponding to asphalt. The one-track models do not
include pitch and roll dynamics, and are therefore not shown.

this behavior. However, the impact on the tire forces seems to be negligible
(Figure 10.5).

It is interesting that despite the optimal control inputs differing
significantly between the one-track and two-track models in parts of
the maneuver, especially when entering the turn, the variables in Fig-
ures 10.3 and 10.4 are very similar for OTWF and TTWF (i.e., the models
that use the weighting functions).
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Figure 10.7 Time-optimal control inputs in the 90 deg turn for tire pa-
rameters corresponding to asphalt. Both the steer angles and torques differ
considerably in parts of the maneuver.
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Figure 10.8 Time-optimal pitch and roll angles in the 90 deg turn for
tire parameters corresponding to snow (see Tables A.2–A.3). The angles
are much smaller when compared with the results for dry asphalt in Fig-
ure 10.6, implying less load transfer. Note that the scale is different from
Figure 10.6.

Optimization Results in 90 deg Turn—Snow
The initial velocity is v0 = 40 km/h (approximately 11 m/s), which is
smaller than for asphalt. The rest of the variables have the same ini-
tial values as for asphalt. Intuitively the differences between the models
should be suppressed on low friction surfaces compared with high friction
surfaces, because load transfer has less impact on low-friction surfaces.
Figure 10.8 displays the time-optimal pitch and roll angles for TTFE and
TTWF, and it verifies this claim; the angles are smaller than those for
asphalt in Figure 10.6. Hence, the load transfer has less impact on snow
than on asphalt, as expected.

Figures 10.9 and 10.10 show corresponding optimal trajectories and
control inputs, respectively, for the 90 deg turn on snow. For OTWF and
TTWF, the differences are suppressed for most variables. Both the lon-
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gitudinal velocities and the yaw rates are virtually inseparable for most
parts of the maneuver, and the body-slip angles are more similar than in
Figure 10.4. This is, however, not the case for OTFE and TTFE. The differ-
ences are even more pronounced, with, for example, the sideslip angle β
differing with approximately 20 deg. Hence, the difference in body slip be-
tween TTFE and OTFE on snow is actually larger than the peak values for
TTWF and TTFE on asphalt. The reason for this is most probably that the
longitudinal force does not depend on the lateral force for FE; that is, it
is always possible to achieve the desired longitudinal force, irrespective of
the lateral slip. As mentioned earlier, this is an approximation, and when
performing aggressive maneuvering this feature is probably utilized to
achieve large forces.

The yaw rates and velocities are smaller for all models compared with
the solutions for asphalt. The reason is the lower friction coefficients on
snow. The slip behavior for the WF-based models is similar compared with
asphalt. For OTWF, the peaks in β are approximately 10 and 14 deg on
asphalt and snow, respectively, whereas the value for TTWF is 10 deg for
both asphalt and snow.

Figure 10.11 contains the resulting longitudinal and lateral slip for
the rear wheels when using TTWF and TTFE, respectively. It is clear that
FE results in much larger lateral slip. This is consistent with the large
β in Figure 10.9. We see that FE yields less longitudinal slip. However,
this is partly owing to the torque constraints (10.7). These constraints
decrease the possibilities for FE to reach large λ when α is nonzero.
Without them, it is likely that larger λ would be obtained with FE. The
torque constraints do not impose large restrictions for WF, because the
resultant force decreases for combined slip.
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Figure 10.9 Time-optimal solutions in the 90 deg turn for tire parame-
ters corresponding to snow (see Tables A.2–A.3). The models using WF are
more similar than in the corresponding figure for asphalt (Figure 10.4),
which is expected. TTFE and OTFE differ considerably from each other.
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Figure 10.10 Time-optimal control inputs in the 90 deg turn for tire
parameters corresponding to snow (see Tables A.2–A.3). The load-transfer
effect is suppressed compared with asphalt, at least for TTWF and OTWF.
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Figure 10.11 Resultant rear tire forces for TTWF (upper) and TTFE
(lower) in the 90 deg turn for snow (black - left wheel, red - right wheel).
The friction ellipse yields larger lateral slip. The resulting combined slip
is projected in the λα -plane.
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Optimization Results in Hairpin Turn—Surface Comparison
We will now discuss and compare time-optimal vehicle control for asphalt,
snow, and ice, using the hairpin turn as test scenario. FE does not have
parameters that describe combined slip; that is, the behavior for combined
slip is entirely decided by the nominal tire forces. Therefore, the surface
comparison is done using WF as tire model.

The results for the 90 deg turn indicate that the differences between
chassis models when using WF are suppressed on low-friction surfaces
compared with the results for high friction. This is in agreement with
intuition and the pitch and roll angle plots in Figures 10.6 and 10.8.
Consequently, we will perform the comparison using WF in combination
with the one-track chassis model, based on parametrizations as described
on page 208.

Solution Times Table 10.4 shows the solution times for the respective
optimization problems. Asphalt gives the shortest solution times. This is
no surprise, given that asphalt has force characteristics with more pro-
nounced peaks, implying that the gradient search in the interior-point
solver will take larger steps.

Optimal Solutions The start and final positions in the hairpin turn
are set to (pX

0 , pY
0 ) = (−5, 0), (pX

t f
, pY

t f
) = (5, 0) for all three surfaces, and

the heading angles are aligned with the road direction. The initial velocity
is v0 = 25 km/h (approximately 7 m/s). Table 10.5 displays the execution
times for the different surfaces. Obviously, the time for completing the
maneuver is longer for snow and ice than for asphalt. The time-optimal

Table 10.4 Solution times and number of iterations required for solving
the minimum-time control problem in the hairpin turn for the different
surfaces.

Surface Solution Time [s] Iterations
Asphalt 3.7 74
Snow 6.18 103
Ice 47.5 608

Table 10.5 Time for executing the maneuver for the different surfaces,
using OTWF in the hairpin turn.

Surface Maneuver Execution Time t f [s]
Asphalt 8.55 s
Snow 13.88 s
Ice 19.21 s
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Figure 10.12 Time-optimal geometric paths in the hairpin turn for the
different surfaces. The vehicles start in the lower left corner. The dots
indicate the middle of the road.

geometric paths of the respective mass center, shown in Figure 10.12, are
similar for asphalt and snow. All three paths are rather symmetric, but
the vehicle path is wider on ice. A possible explanation is that there is
less available friction on ice. Thus, the vehicle cannot enter the turn as
aggressively as for the other surfaces.

Optimal Trajectories The maneuver execution time differs signifi-
cantly between the surfaces. Thus, for easier comparison, Figure 10.13
visualizes the optimal trajectories as functions of driven distance rather
than time. The differences in velocity and yaw rate are expected since the
friction coefficients, and thus the available forces, are different.

The slip behavior between the different surfaces is fundamentally dif-
ferent. The optimal trajectories have large slip in the critical part of the
maneuver on asphalt and snow, but not on ice. This is coupled to the wide
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Figure 10.13 Time-optimal trajectories in the hairpin turn on different
surfaces, plotted as functions of the driven distance. The slip behavior is
fundamentally different on ice.
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vehicle path on ice; it is easier to approach and exit a turn narrowly if
sliding through it. The reason for the difference can be explained by the
force characteristics of the ice model compared with the other surfaces.
Figures 10.14–10.16 contain the resulting longitudinal and lateral slip for
all three surfaces. The resultant tire forces for ice exhibit a considerably
sharper peak and thus decay faster, with respect to combined slip, than
for both asphalt and snow. Thus, to achieve the desired time optimality on
ice, it is natural to choose a small-slip control strategy. Note that the slip
values are smaller for the front wheels, because the vehicle is rear-wheel
driven.

Optimal Control Inputs The differences between asphalt, snow, and
ice when considering the control inputs are fundamental, as seen in Fig-
ure 10.17. First, the optimal control inputs on snow and ice both apply
braking and use the steer angle δ earlier when approaching the hairpin.
This is most certainly an effect of the much reduced tire forces that can be
realized on these surfaces compared with asphalt. Second, the steer angle
differs between ice and the other surfaces. The reason is that the vehicle
employs counter steering when it starts to slip on asphalt and snow as it
approaches the hairpin.
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Figure 10.14 Resultant tire forces for the front and rear wheel in the
hairpin turn for asphalt, using OTWF. The resulting combined slip is pro-
jected in the λα -plane.
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Figure 10.15 Resultant tire forces for the front and rear wheel in the
hairpin turn for snow, using OTWF. The resulting combined slip is pro-
jected in the λα -plane.
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Figure 10.16 Resultant tire forces for the front and rear wheel in the
hairpin turn for ice, using OTWF. The resulting combined slip is projected
in the λα -plane. The forces decay faster for combined slip when compared
with Figures 10.14 and 10.15.
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Figure 10.17 Time-optimal control inputs in the hairpin turn for OTWF
on asphalt, snow, and ice. The solutions apply braking earlier on snow and
ice. The steer angle is kept rather steady on ice, whereas the solutions on
snow and asphalt apply counter steering.
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Naive Approach to Tire-Model Calibration An integral part of the
vehicle model is the tire characteristics. One approach to account for dif-
ferent surfaces is to only scale the friction coefficients µx and µ y, as done
in, for example, [Chakraborty et al., 2011]. However, the peaks in the
tire-force surfaces occur at different lateral and longitudinal slip combi-
nations, see Figures 10.14–10.16. Also, the sharpness and width of the
maxima and minima differ depending on the surface. Thus, only chang-
ing the friction coefficients will render different force characteristics (and
thus different optimal solutions) compared with when changing the com-
plete set of parameters.

That this can have a large impact on the optimal trajectories is verified
by constructing a tire-force model where the parameters corresponding to
asphalt are used together with the friction coefficients for ice. Solving
the dynamic optimization problem gives that the optimal solution has
significant slip, in contrast to the results obtained for the empirical ice
model. See Figure 10.18 for the geometric path obtained by scaling the
friction coefficients only.

10.7 Concluding Discussions

It is clear from Section 10.6 that the model choice can potentially lead
to fundamentally different control strategies, where the choice between
WF and FE seems crucial, see Figures 10.7 and 10.10. The characteristics
of the two tire models are fundamentally different, where WF results in
much smaller forces for combined slip than when only one of the slip quan-
tities is nonzero. This is in contrast to FE, where the largest forces are
attained for combined slip. The behavior of FE is entirely predetermined
by the nominal force parameters. The characteristics of FE is a result of
that the longitudinal force is not affected by the lateral slip, which is not
reasonable. This results in very extreme maneuvering compared with WF,
especially for low-friction surfaces, see Figure 10.9. WF has been experi-
mentally verified in several independent studies [Pacejka, 2006; Braghin
et al., 2006]. Still, experimental data for large combined slip have large
uncertainties, if available at all, which implies that the tire parameters
are more uncertain in those regions. This makes it difficult to draw any
decisive conclusions. However, WF generally leads to solutions with rela-
tively small body slip. This is consistent with the behavior observed when
monitoring the control strategies exerted by expert drivers [Tavernini et
al., 2013] on asphalt.

Whether to use a one-track or two-track model has large impact on
the resulting control strategy. If good feedback-control performance is an
aim, the obvious choice is to use a two-track model since it is more ad-
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Figure 10.18 Time-optimal paths on ice for two model parametrizations,
scaling of friction coefficients only (left) and empirical tire model (right).
The black bars indicate the vehicle heading each second. When only scaling
the friction coefficients, the solution has significant slip.

vanced. However, the results in this chapter indicate that the two-track
model is highly dependent on the choice of tire model, where the different
characteristics for combined slip has large impact on the solutions. To
exemplify: The one-track model with FE behaves rather similarly to the
models with WF in several aspects, indicating that FE is valid. If FE is
combined with the two-track model, however, the results are fundamen-
tally different, especially on low-friction surfaces. This is not in agreement
with intuition. It also indicates that FE should be used with care, and un-
der situations where nonphysical modes in the vehicle modeling are sure
not to be triggered.

The WF-based vehicle models, OTWF and TTWF, behave similarly in
several key aspects; for example, variables traditionally used for detecting
loss of maneuvering stability, such as the yaw rate and the body-slip angle,
only exhibit minor discrepancies. The input torques and steer angles differ
significantly during parts of the maneuver, but the differences do not have
much impact on the other variables, which is interesting. The minimum-

237



Chapter 10. Dynamic Optimization for Automotive Systems

time optimization problem gives very aggressive control signals and large
resulting slip values; hence, the vehicle variables are likely to be even
more similar for other cost functions.

Regarding tire-force modeling of different road surfaces, a conclusion
is that only scaling the friction coefficients can lead to fundamentally
different solutions compared with adjusting all involved tire parameters.
The tire modeling in this chapter is based on experimental data, gathered
from controlled experiments. Nevertheless, the data have uncertainties,
especially for large slip. In addition, it is not obvious that using scaling
factors is the most sensible way to model different surfaces. Still, the
results show that when large longitudinal and lateral slip are present,
more careful tire modeling might be required. The slip angles are similar
for asphalt and snow, but fundamentally different on ice. However, the
optimal driving techniques—that is, the control actions—are different de-
pending on tire-road characteristics. An example is that the solutions on
low-friction surfaces start to brake earlier.

Consequences for Safety Systems
The results presented in this chapter can be seen as an estimate of
the largest differences that can occur between the models, because a
minimum-time optimization problems typically fully utilize the available
actuation. The problem formulation when considering a safety system is
clearly not a minimum-time formulation. Rather, variables such as veloc-
ity and yaw rate are more likely to be part of the cost function.

The vehicle variables are rather insensitive to the choice of chassis
model when using the weighting functions, even for a minimum-time for-
mulation. The implication of this is that state trajectories may be gen-
erated by optimization using chassis models with low complexity, such
as the one-track model. These state trajectories can then be utilized as
inputs to an allocation algorithm for distributing the desired torque to
the respective wheel.1 This unfortunately does not hold for FE, where the
vehicle variables in parts differ considerably.

The fundamentally different vehicle behavior for different tire-road
characteristics is interesting, because it indicates that to further improve
safety systems, they need to account for the surface interaction in in-
formed ways. Sometimes it is enough to only consider a few of the tire
parameters when modeling different surfaces, but it can also lead to very
different behavior compared with using more of the available tire param-
eters. Many of the safety systems currently in production handle different
surfaces. Even so, there is much to be gained in that respect.

1 Sometimes it is the longitudinal slip that should be distributed, depending on if an ABS
handles the torque control or not.
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10.8 Summary

This chapter investigated time-optimal maneuvers in a 90 deg turn and
a hairpin maneuver. Four different vehicle models were compared in two
different maneuvers, using three different road-surface parametrizations.
The compared models are of the same type that is frequently encountered
in automotive literature. The results were thoroughly analyzed and dis-
cussed. One conclusion was that the optimal control inputs differ con-
siderably between the models, but the corresponding optimal trajecto-
ries have relatively smaller differences. Further, the results showed that
the weighting-functions tire model produces similar behavior between the
chassis models.

The tire-road interaction was parametrized based on experimental
data. We used the hairpin maneuver as a test scenario for the surface
comparison. One conclusion here was that the different parametrizations
gave distinct results; for example, the slip behavior differed between the
surfaces, and braking was initiated earlier on the low-friction surfaces.
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11
Closed-Loop Optimal
Control for Vehicle
Autonomy

Currently, one of the main trends in automotive-related research is im-
proving situation awareness in vehicles, which we saw one example of in
Chapter 9. The enabler for this is, as stated already in Chapter 1, the in-
creased sensing and computing capabilities in modern passenger vehicles
[Lundquist, 2011]. Examples of sensing information are cameras, radar
systems, satellite positioning systems, and inertial sensors. The combi-
nation of improved sensing and actuation capabilities makes it possible
to improve current safety systems for at-the-limit maneuvers, where au-
tonomous, or at least semiautonomous, lane-keeping systems are natural
extensions to ESCs.

More autonomy is not only desirable for reducing fatalities. Autonomy
can also decrease the number of light collisions—for example, caused by
nondeterministic or inattentive driving behavior. In total there are about
10 million (in the USA alone) traffic-related accidents every year [NHTSA,
2011], of which approximately 30 000 are fatal. This implies that auton-
omy under normal driving conditions is also an important area. Another
area is highway driving, where platooning and advanced cruise-control
techniques can improve fuel efficiency [Alam et al., 2010].

In this chapter we outline a hierarchical, high- and low-level optimal-
control approach to lane keeping and trajectory generation for road vehi-
cles, which already at the high level takes into account nonlinear chassis
and tire dynamics. In the previous chapter, one of the main conclusions
was that one-track and two-track models have similar behavior when us-
ing the weighting functions for tire modeling, but that the input torques
and steer angles are significantly different. This conclusion is utilized
here, where a high-level trajectory-generation problem is cast as a dy-
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namic optimization problem over a horizon that is dependent on the road
curvature. More specifically, the dynamics is already at the high level
based on a nonlinear vehicle model, unlike other approaches. We use the
one-track model combined with the experimentally verified weighting-
functions tire model, which incorporates combined-slip behavior. The low-
level control-input allocator is formulated as a nonlinear model predictive
control (NMPC) problem [Del Re et al., 2010; Mayne et al., 2000] over a
part of the high-level references. Nonlinear optimization problems have
the disadvantage that they sometimes fail to converge, or the convergence
is slow. By combining the approach with linear MPC (LMPC), we provide
a suboptimal control solution in the cases for when the NMPC fails to
converge in a timely manner.

11.1 Related Work

Application of optimal control in automotive systems is a popular research
topic. In [Gao et al., 2010], a hierarchical approach for automated high-
way driving was introduced. In that approach, the trajectory-generation
problem is solved with an LMPC at the high level. The references are
then allocated to the wheels via a low-level NMPC. The approach in [Gao
et al., 2010] uses a simple point-mass representation of the vehicle at the
high level. Although this might work well for steady-state conditions, the
reference trajectories that are generated may not be feasible in more ag-
gressive maneuvering, because there is little physical coupling between
the high-level and low-level controllers. Moreover, the low-level NMPC al-
locates forces to the wheels. This means that the dynamics of the torque
actuation is neglected. Other work on MPC in vehicle dynamics control is
[Falcone et al., 2008], where an MPC was used for path following. MPC
was also used in [Ali et al., 2013] for predictive prevention of loss of ve-
hicle control, where the operation was restricted to the linear region of
the vehicle dynamics. MPC has also been used for idle-speed control [Di
Cairano et al., 2012].

Mitigation of collision impact has been explored in a series of papers,
see [Chakraborty et al., 2011; Chakraborty et al., 2013] for two examples.
Optimization of emergency maneuvers have also been treated in the lit-
erature, see [Dingle and Guzzella, 2010; Frasch et al., 2013; Shiller and
Sundar, 1998] for three examples. A framework for threat assessment and
trajectory planning was described in [Anderson et al., 2010]. A method for
optimal control allocation in yaw stabilization of automotive vehicles was
proposed in [Tøndel and Johansen, 2005], and an expansion of the work
comprising a two-level strategy for active steering and adaptive control
allocation was presented in [Tjønnås and Johansen, 2010]. In [Schofield,
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2008] a convex formulation of the brake-force allocation problem was de-
rived, which extended the work in [Härkegård, 2003]. Further, an optimal
yaw control law was discussed in [Esmailzadeh et al., 2003].

11.2 Assumptions

We assume that the vehicle’s position and velocity are known. The road
geometry and distance to surrounding vehicles are also assumed known;
that is, road-preview information is available. In addition, all necessary
vehicle parameters are assumed available. The position and velocity can
be estimated using wheel-speed measurements, an accelerometer, and
measurements from a global positioning system (GPS). The road geome-
try and information of surrounding vehicles can be estimated using radar
measurements and cameras in combination with GPS information. Esti-
mates of vehicle parameters on different surfaces are possible to obtain,
as discussed already, [Braghin et al., 2006; Svendenius, 2007; Schofield,
2008]. The results in Chapter 9 in combination with [Ray, 1997; Carlson
and Gerdes, 2005; Imsland et al., 2006; Solmaz et al., 2008; Lundquist,
2011] indicate that these assumptions are reasonable.

Regarding actuation, the assumption is that individual wheel torques
and steer angle can be controlled. This is a reasonable assumption: ABS,
ASR1, and steer-by-wire have these capabilities [Johansen et al., 2003;
Rajamani, 2006; Schofield, 2008; Berntorp, 2008; Tjønnås and Johansen,
2010; Jonasson et al., 2011].

11.3 Vehicle Modeling

The models we use in this chapter are a subset of those discussed in
Chapter 4 and used in Chapter 10, and are summarized next. The main
differences are that we in this chapter model wheel-torque and steer actu-
ation dynamics, in addition to having individual drive and brake actuation
on all wheels.

To account for that the internal vehicle controllers for the steer an-
gle and brake/drive torques do not achieve instantaneous tracking, we
incorporate first-order models from reference to achieved value for this
dynamics in both the high- and low-level models according to

Tδ̇ = −δ + δ ref, (11.1)

and similarly for the torques, where T in (11.1) is the time constant of
the respective control loop. The parameter values that are used here cor-

1 ASR: Anti-slip regulation.
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Figure 11.1 Resultant tire force Fres for the weighting-functions tire
model used in this chapter. The parameters are given in Table A.5. The
level curves are shown in the λα -plane for Fres = 0.

respond to a medium-sized passenger car on asphalt. They differ from
those that were used in Chapter 10 in that the considered car is smaller,
with less stiff suspension dynamics. In addition, the tire parameters are
slightly different. The parameter values are summarized in Tables A.4
and A.5. The resultant force of the tire model is shown in Figure 11.1.
When comparing with the parameters used in Chapter 10, see Figure 10.2,
there are now four maxima, shifted in α and λ . Hence, if maximum force
for some reason is desired, a nonzero α should be chosen.

High-Level Model
For the high-level trajectory generator, we use the nonlinear one-track
model (4.12) in combination with the Magic formula (4.8) (see also (10.3))
for computing the tire forces under pure slip, with the longitudinal slip de-
fined as in (4.2). Similar to what was done in Chapter 10, the alternative
lateral slip definition

α̇
σ
vx +α i := − arctan

(
vy

vx

)
is used. For combined slip, we use the weighting functions (4.11). The
motivation for using this vehicle model on the high level is that it provides
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a few-state vehicle model that still captures the relevant characteristics
of more complex models, as long as the wheel-torque and steer inputs
are not used directly as control inputs. There are two reasons for using
the weighting functions instead of the model based on the friction ellipse.
First, the results in Chapter 10 indicate that the weighting functions
give more predictable optimization results. Second, Tables 10.1 and 10.4
suggest that the weighting functions give more predictable—and often
also shorter—solution times, which is crucial in an online implementation.

Low-Level Model
The model used in the low-level control layer is the two-track model, which
consists of (4.22)–(4.27). Naturally, we use the weighting-functions based
tire model here as well, with the same definition of wheel slip as for the
high-level model.

11.4 Proposed Control Structure

The suggested control structure is shown in Figure 11.2. It consists of a
high-level optimizer that uses information about the road geometry and
surrounding vehicles as inputs, as well as estimates of the position p,
velocity v, yaw angle ψ , and yaw rate ψ̇ . Based on this information the
high-level optimizer computes reference trajectories for the position, veloc-
ity, yaw angle, and yaw rate. These references are then fed to an NMPC,
which computes desired wheel torques τ and steer angle δ . If the NMPC
fails to converge, or if the convergence is deemed too slow, the references
are instead sent to an LMPC. The LMPC uses a linearization of the two-
track model, and computes desired wheel torques and steer angle. We will
next go through the high-level optimizer.

High-Level Trajectory Generation
The goal of the high-level optimizer is to find a path and corresponding
state trajectories that minimize a suitable cost function J while staying
in lane. In a lane-keeping scenario it is natural to introduce the deviation
e from the middle of the lane as a part of the cost function. A common
measure of vehicle stability is the vehicle sideslip angle β , defined in
(4.13) and repeated for convenience:

β := arctan
(

vY

vX

)
.

A large β indicates poor maneuverability for the average driver. It is
traditionally used as a performance measure in ESCs. In theory, an
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High-Level Optimizer

NMPCLMPC

pref, vref, ψ ref, ψ̇ ref

Vehicle

δ ref, τref

p, v, ψ , ψ̇

if failed

Road-Preview information

Figure 11.2 The proposed control structure. The high-level optimizer
finds velocity and position references over the considered horizon, which
is dependent on the road geometry and the available information. The
inputs are measurements and/or estimates of the relevant vehicle states.
Based on the high-level trajectories, the NMPC aims to find wheel torques
and steer angle. If the NMPC fails to converge in time, according to some
predefined rule, the references are instead sent to an LMPC. The LMPC
uses a linearized version of the two-track model dynamics.

optimization-based safety system does not suffer from a large β , because
it by definition finds the optimal solutions and can thus operate in the un-
stable regions of the tire-ground interaction. In practice, however, model
errors will lead to deviations from the computed trajectories. Therefore,
it is still desired to keep the vehicle in the small-slip region, if possible.
Furthermore, a large β is a measure of driver and passenger discomfort.
Thus, we let the cost function depend on the mid-lane deviation e and the
body-slip angle β according to

J :=
∫ t f

t0

(κ1e2 + κ2β 2)dt,

where κ1 and κ2 are positive, constant scalar weights, t0 is the given start
time, and t f is the free final time. This cost function is a tradeoff between
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lane following and body slip.
The prediction horizon, or look-ahead, is chosen depending on the road

geometry and sample periods. It must be chosen such that the reference
trajectories span over the control horizon of the MPC, for the sample
periods of the MPC, before a new high-level optimization is performed.
However, the horizon cannot be made arbitrarily large. First, a larger
horizon implies longer optimization times. Second, if the road curvature is
steep, the available look-ahead information prevents a prediction horizon
that is too large. In practice the prediction horizon is determined by the
terminal constraint on the mass center’s position.

Constraints on input torques and the steer angle are also introduced.
The single-track dynamics (4.12) in combination with the tire dynamics,
consisting of (4.8), (4.11), and the slip definitions, can be written as an
index-one system of differential-algebraic equations (DAEs) (in a similar
fashion to (10.1)) according to

f (ẋ, x,w,δ ref,τ f ,ref,τ r,ref) = 0, (11.2)

where x contains the differential (state) variables, w contains the alge-
braic variables, and τ f ,ref, τ r,ref are the desired wheel drive/brake torques
on the front and rear axle, respectively. The dynamic optimization prob-
lem is then formulated over the time horizon t ∈ [t0, t f ], with free final
time, as

minimize
δ ref,τ f ,ref,τ r,ref

∫ t f

t0

(κ1e2 + κ2β 2)dt

subject to f (ẋ, x,w,δ ref,τ f ,ref,τ r,ref) = 0
pτ i,refp ≤ τ i,max, ∀i ∈ { f , r}
pδ refp ≤ δ max

qp(t f ) − pf q ≤ ε

Γ(p) ≤ 0
x(t0) = x0.

(11.3)

where x0 is the initial state and pf is the terminal position constraint.
Further, Γ(p) is a mathematical description of the road constraint for
the vehicle’s mass center and its endpoints. Note that it is possible to
express collision-avoidance tasks in Γ(p). We have introduced a slack ε
in the terminal constraint for the position, since exact tracking is typi-
cally not crucial. Moreover, it improves convergence since exact terminal
constraints are harder to fulfill. To generate an initial guess for the non-
convex problem (11.3), we simulate the system with a constant steer angle
and zero input torques.

When (11.3) has been solved, the optimal trajectories for p, v, ψ , ψ̇ , are
sent to the low-level layer for allocation to the wheel and steer actuators.
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The optimization problem (11.3) is solved repeatedly, with a sampling
period of Ts,h s. The idea is that a new optimization is started directly
after sending the trajectory references to the low-level layer.

Low-Level Control-Input Allocation
The aim of the low-level controller is to track the state references, which
are computed by the high-level trajectory generator. This is done by allo-
cating appropriate wheel-torque and steer-angle references to the vehicle’s
internal controllers using an MPC.

To this end, introduce the notation

r =
[
pT

ref vT
ref ψ ref ψ̇ ref

]T
(11.4)

for the (time varying) references to the MPC. Further, let

u =
[
δ ref τ1,ref τ2,ref τ3,ref τ4,ref

]T
(11.5)

denote the control input vector to the vehicle, which the MPC will com-
pute. The references in (11.4), on the other hand, are computed from the
high-level optimal-control problem. Note that there are four torque refer-
ences in (11.5), since we use a two-track model for torque allocation.

The chassis dynamics for the two-track model and the tire dynamics
are, in a similar way to (11.2), formulated as the DAE system

f (ẋ, x,w,u) = 0, (11.6)

where x are the state variables for the combined two-track and tire model
and w are the corresponding algebraic variables. Note that the function
and variables in (11.6) are not the same as in (11.2).

For the low-level control-input allocation, the aim is to track the ref-
erences computed by the high-level trajectory generator. Hence, the refer-
ence vector (11.4) must be a part of the cost function. For better tracking,
it is typically advantageous to include a specific cost term on the termi-
nal position. In addition, we include a terminal constraint on the position.
Tracking of state references is not the only objective, since driver comfort
also needs attention. This is accommodated by introducing a penalty on
the control signals as well. The low-level NMPC problem formulation is
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in each time step k stated as (with a slight abuse of notation)

minimize
u

∫ t̄ f

t̄0

(
qx− rq2

Wx + quq
2
Wu
)

dt+ qp(t̄ f ) − p̄f q
2
Wf

(11.7a)

subject to f (ẋ, x,w,u) = 0 (11.7b)
− umax ≤ u ≤ umax (11.7c)
qp(t̄ f ) − p̄f q ≤ ε (11.7d)
Γ(p) ≤ 0 (11.7e)
x(t̄0) = x̄0 (11.7f)

where t̄0 = t0 + (k+ 1)Ts,l is the initial time, t̄ f = t0 + (k+ Hl)Ts,l ≤ t f
is the final time, Ts,l is the sampling period of the MPC, and Hl is the
prediction horizon of the MPC. Moreover, Wx, Wu, and Wf in (11.7a) are
the weight matrices, qxq2

Wx = x
TWxx, p̄f in (11.7a) and (11.7d) is the

position reference at time t̄ f , umax contains the input-reference bounds,
and x̄0 in (11.7f) is the initial state vector at time t̄0, given by estimates
and/or measurements. Note that the path constraints are also included
at the low level, in (11.7e). In each time step, we solve (11.7) with the
constraint that the control-input vector is piecewise constant over the
sampling periods. To generate an initial guess for (11.7), we simulate the
system with optimal control inputs from the previous time step. When
(11.7) has been solved, the control inputs from the first sampling period
are sent to the internal vehicle controllers.

The highly nonlinear dynamics (11.7b) will sometimes cause the con-
vergence of (11.7) to be too slow, or even fail. To address this, we design an
additional control-input allocator, an LMPC, which is based on repeated
linearizations of the dynamics. The resulting LMPC formulation becomes
a quadratic program with linear dynamics on the form (2.10), for which
several efficient solvers exist. To reduce the problem size and thereby in-
crease efficiency, we start with noting that (11.6) is a DAE system that
can be reformulated as an ordinary differential equation (ODE) system.
The algebraic variables w arise from the longitudinal slip and the tire-
force equations (4.8) and (4.11). These can be solved for, see Section 11.5,
and the result is the set of ODEs

ẋ = f (x,u). (11.8)
By discretizing (11.8) using a forward-difference approximation, we end
up with the system

xk+1 = �(xk,uk). (11.9)
Now, by introducing

Ak =
��

�x

∣∣∣∣
xk,uk

, Fk =
��

�u

∣∣∣∣
xk,uk

, (11.10)

248



11.4 Proposed Control Structure

the resulting LMPC formulation becomes

minimize
Uk

Hl∑
m=1
qxk+m − rk+mq

2
Wx +

Hl−1∑
m=1

quk+mq
2
Wu + qpk+Hl − p̄ f q

2
Wf

subject to xk+m+1 = Ak+mxk+m + Fk+muk+m

umin ≤ uk+m ≤ umax

∆umin ≤ uk+m − uk+m−1 ≤ ∆umax

m = 1, . . . , Hl − 1
xt̄0 = x̄0,

(11.11)
where Uk := {uk+1, . . . ,uk+Hl−1} is the set of control inputs to be deter-
mined, p̄ f is the terminal position reference, and x̄0 is the measured
and/or estimated initial position. Compared with (11.7), (11.11) involves
a discretized and linearized version of the dynamics, which introduces
approximation errors. Hence, (11.11) is only executed when (11.7) fails to
converge or when the convergence rate is too slow. The weight matrices
in (11.11) need not be the same as those in (11.7). Note that the control
input at time step k+1 is applied to the vehicle, because the computation
time is in the order of the sampling period.

The complete algorithm is summarized in Algorithm 11.1, where conv
is an indicator of whether the NMPC has converged or not and where Hh
is the resulting horizon of the high-level optimal-control problem.

Algorithm 11.1
Input: State estimates x(t0) and road-preview information.

1: Solve (11.3) and form

r =
[
pT vT ψ ψ̇

]T
for the time period t ∈ [t0, t f ].

2: Set j = 1.
3: while j ≤ lTs,h/Ts,ln do
4: Solve (11.7).
5: if conv ,= True then
6: Compute (11.9) and (11.10).
7: Solve (11.11).
8: end if
9: Apply u(t0 + (k+ j)Tl).

10: Set j = j + 1.
11: end while
12: Go to step 1.
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Line 1 in Algorithm 11.1 executes with the sampling period Ts,h s, and
the while-loop executes with the sampling period Ts,l s. The convergence
condition conv on line 5 in Algorithm 11.1 is based on an analysis of mean
convergence time of the LMPC: Assume that the mean solution time of
the LMPC is h s. Then the NMPC is terminated and conv is set to false
if the execution time is larger than Tl − h+ ∆, where ∆ is a slack that is
introduced to provide robustness for variations in execution time.

Note that the state estimates are only used in the first iteration of the
high-level optimization problem. Thereafter, the initial state is chosen as
the state of the previous optimal solution at the next sampling instant
(i.e., the optimal solution at Ts,h s forward in time). This approach as-
sumes that the low-level controller manages to keep the vehicle close to
its references, and implies that the high-level state trajectories are con-
tinuous.

11.5 Implementation

Implementation of the high-level trajectory generator and the NMPC are
similar to what was done in Chapter 10 (page 213), and is only briefly
described here.

The high-level trajectory generation and the NMPC are implemented
using the open-source software platform JModelica.org [Åkesson et al.,
2010]. The DAE-constrained optimization problems (11.3) and (11.7) are
first transformed into ODE-constrained optimization problems using the
procedure described in [Magnusson et al., 2014]. They are then discretized
using first-order direct local Radau collocation with the implementation
described in [Magnusson and Åkesson, 2012], where Lagrange polyno-
mials are used for representation of the state profiles in each element
and the location of the collocation points are chosen as the corresponding
Radau points. The results in this chapter are obtained by using Ne = 10
elements and Nc = 2 collocation points for the high-level trajectory gener-
ator, and Ne = 5, Nc = 1 for the NMPC. Since the NMPC has piecewise-
constant control inputs, the number of collocation points can in general
be kept small compared with the cases for continuous control inputs.

The resulting nonlinear program (NLP) is solved using IPOPT
[Wächter and Biegler, 2006] in combination with the linear solver MA27
[HSL, 2014]. JModelica.org uses CasADi [Andersson et al., 2012] to obtain
the relevant first- and second-order derivatives of the NLP functions.

The symbolic transformations to ODE-constrained optimization prob-
lems lead to drastically reduced number of system variables and hence im-
proved convergence speed, as the algebraic variables are eliminated from
the equation system. The high-level optimal-control problem contains ap-
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proximately 700 variables (1250 before the symbolic transformations) in
total, whereas the low-level problem contains 400 variables. Moreover, the
transformations provide solution times that enable online implementa-
tions. For the considered examples, the convergence is much more robust
compared with using a DAE formulation. This is important for an online
implementation. Note, however, that the framework is partly implemented
in Python, and is as such in the current state not optimized for speed.

The LMPC is implemented in C using CVXGEN [Mattingley and Boyd,
2012] and exploits sparsity. To link the LMPC with Python, the ctypes
library [Python Software Foundation, 2014] is used.

11.6 Simulation Study

To show how the method performs under aggressive maneuvering, this
section contains simulation results from a road segment with a road
curvature radius of 30 m. The road is 4 m wide. The initial velocity is
v0 = 70 km/h (approximately 19.5 m/s). The maximum entrance velocity
to be able to stay in the lane is approximately 75 km/h [Lundahl et al.,
2014].2 The input constraints are set to

δ max = 0.5,
τ i,max = Fz

i µx/Rw, ∀i ∈ { f , r} or {1, 2, 3, 4}.

This corresponds to an all-wheel drive vehicle. The constraint values are
similar to the constraints (10.7) in Chapter 10. Note that we model actu-
ator dynamics. Thus, no constraints on the derivatives on the inputs are
used. This differs to the optimization problem (10.6) in Chapter 10.

For the high-level optimization problem (11.3), the weights are κ1 = 1
and κ2 = 15, leading to that large body slip is penalized more than devi-
ation from the mid-road segment. The sampling period of the high-level
optimal-control problem is set to Ts,h = 0.4 s. The look-ahead used in this
example is between 10–20 m, corresponding to a resolution in position of
approximately 0.5–1 m for the high-level control problem.

For the low-level MPCs, the prediction horizons are Hl = 5 samples
and the sampling period is Ts,l = 0.04 s. The choice for when to termi-
nate the NMPC is decided based on estimations of how long execution
time the LMPC needs to converge. With the settings used in this exam-
ple, the LMPC typically converges within 10 ms (corresponding to 15–20
iterations). Thus, when the NMPC has been executing more than approx-
imately 30 ms without converging, the LMPC is turned on. In the actual
implementation, however, to facilitate reproducibility we instead use the
number of iterations as the termination criterion.

2 Achieved by solving an optimization problem where the entrance speed is maximized.
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Figure 11.3 Control inputs as computed from the low-level control ar-
chitecture. The controller tuning is rather conservative, which means that
driver comfort is more emphasized than perfect trajectory tracking.

Results
The control signals for the maneuver are visualized in Figure 11.3. The
choice of controller parameters is a tradeoff between driver comfort and
reference tracking, and here the emphasis is on driver comfort. Figure 11.4
shows which of the MPCs that is active. As seen, the NMPC converges
in the vast majority of the iterations. Nevertheless, there are 13 cases
where the NMPC fails to converge in time for this particular scenario.
By investigating Figures 11.3 and 11.4, it is clear that the NMPC gives
rise to smoother control signals. The horizons and sampling periods are
the same in both MPCs, but the tuning is different. In this example, both
MPCs have been tuned with driver comfort in mind. Still, the LMPC often
(but not always) computes more aggressive control signals. This probably
owes to the choice of discretization method in (11.9) and the linearizations
in (11.10).

Figure 11.5 contains the position references and actual positions.
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0 1 2 3 Time [s]

NMPC
LMPC

Figure 11.4 The figure shows when which MPC is active. The NMPC
converges before the computation-time limit in 62 out of the approximately
75 optimizations.

There is a steady-state error in the position. This is caused by the con-
troller tuning, which penalizes large control signals more than it aims to
achieve good tracking. Moreover, the terminal position constraint slack
in the NMPC is ε = 1, which is conservative. The slack implies that the
optimal solution allows for a predicted error of 1 m.

Figure 11.6 shows some of the state-trajectory references that often are
connected to vehicle stability. These references are tracked closely for most
of the maneuver, except for the discrepancy in ψ̇ between approximately
1.8–2 s. The discontinuities in the references are an effect of the data
extraction.

Aggressive Tuning
To show that the proposed approach is able to track the position references
accurately, Figure 11.7 displays the position references and the actual
positions with a more aggressive controller tuning. The vehicle now tracks
the position references with high precision. The difference compared with
Figure 11.5 is that the bound for the terminal constraint (11.7d) is now
ε = 0.1, whereas it in the previous example was ε = 1. Moreover, the
weights on the control inputs are decreased. This is, of course, a tradeoff
with aggressive control signals and thus comfort. Depending on if the
system is truly autonomous or if it should only intervene when absolutely
necessary, different tunings should be used. The controller tuning could
also be dependent on predictions of how severe the situation is.
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Figure 11.5 Position references (red) from the high-level optimizer and
actual positions (black). The mid-line segment is shown as blue dots, and
the road constraints are the blue dashed lines. The position error is ap-
proximately 1 m at most. Note that the controller tuning is not done with
perfect tracking in mind.
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Figure 11.6 State-trajectory references (red) and actual values (black).
The sampling instants of the high-level trajectory generator are shown
as dashed gray vertical lines. The low-level MPCs track the high-level
references well in most parts. Note that the reference tracking is a tradeoff
with driver comfort, and this tuning corresponds to conservative tracking.
The discontinuities in the references are an effect of the data extraction.

255



Chapter 11. Closed-Loop Optimal Control for Vehicle Autonomy

0 10 20 30

−30

−20

−10

0

X [m]

Y [m]
Actual
Reference

Figure 11.7 Position references (red) from the high-level optimizer and
actual positions (black). When compared with Figure 11.5, the reference
trajectory is more closely tracked, where the only deviation is in the middle
part of the maneuver. This is, of course, a tradeoff with aggressive control
signals and thus comfort. The remaining error is partly owing to the model
discrepancies between the high- and low-level models. However, it is also
dependent on the prediction horizon and the discretization resolution.
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11.7 Discussion

The proposed control structure has been tested using various initial ve-
locities and controller parameters. The typical convergence time for the
high-level problem was approximately 100–150 ms, corresponding to 7–
10 Hz. For other scenarios, the computations might take longer time. To
account for this, we used an update rate of 2.5 Hz in the considered sce-
nario. For the different tested configurations, if using a feasible entry
speed, the high-level trajectory generator never failed to converge. In a
physical setup, however, it has to be accompanied with an additional ref-
erence generator, similar to what we have implemented for the low-level
controller. This could, for example, be done using a point-mass description
of the vehicle, leading to a convex optimization problem.

The low-level controller is executed with a sample rate of 25 Hz. This
corresponds well to the average execution times for the combined MPCs.
An easy-to-use, general-purpose implementation was used. More special-
ized implementations are possible, and it is highly likely that the solution
times can be decreased significantly. A way to reduce the computation
time further is to generate C code for evaluation of the NLP functions
and their derivatives, something which is not done in the current imple-
mentation. Based on experience, this can reduce the solution time with
approximately 30% on average, and sometimes with as much as 50%. Also
the LMPC can be improved in terms of execution time—for example, by
using algorithms custom-tailored for LMPC [Giselsson, 2014].

The parameter tunings of the MPCs differ slightly. The LMPC relies
on repeated linearizations of the dynamics, and the predictions over the
horizon will thus be less reliable than in the NMPC. Using the same tun-
ing for the LMPC as for the NMPC can cause unnecessarily aggressive
control behavior, and perhaps even instability. Hence, the controller tun-
ing is preferably set more conservatively for the LMPC than what is done
in the NMPC.

Autonomous or Semiautonomous Vehicles
We have not discussed whether the system is supposed to be active always
(i.e., a truly autonomous system) or only intervene when deemed neces-
sary. If the system is assumed to be autonomous, the algorithm basically
consists of having the MPCs tracking the high-level trajectories in the
same way as was done in Section 11.6.

In the case of a system that only intervenes when necessary, it first
has to be decided what is meant by necessary. In traditional ESCs, driver
commands are compared with a linearized one-track model. When the
driver’s intentions differ significantly from the model behavior, the ESC is
activated to maintain vehicle stability [Berntorp, 2008]. This idea can also
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be used for the proposed architecture. The high-level trajectory generator
minimizes a combination of deviation from the mid-road segment and
body slip. This is also, at least implicitly, what the average driver aims
to do. Moreover, the average driver is typically most comfortable with
the driving experience when the body slip is small.3 Hence, the driver
intention can also here be compared with a reference model, in this case
the high-level trajectory generator.

Future Work
It remains some work before the architecture can be used online in a
physical setup. The first problem is that the framework used for the high-
level trajectory generator and NMPC is neither designed for real-time
scenarios (e.g., the memory footprint is relatively large) nor optimized for
execution speed in the current implementation. Despite this, as we saw
in Section 11.6, the current solver speed is feasible for online implemen-
tation, and as mentioned, there are quite large speed improvements to be
made (30–50%) with relatively little effort.

Another issue is that the high-level trajectory generator is based on
nonconvex optimization, where nonlinear equation systems have to be
solved. As is the case for NMPC, this can sometimes cause convergence
failure, or at least slow convergence. Hence, also the high-level layer
should be accompanied with a backup algorithm that computes feasible
trajectories when necessary. One solution is to compute the trajectories
based on geometric reasoning and closed-loop simulation of the one-track
model, which provides feasible trajectories. Another possibility is to use a
point-mass representation of the vehicle. This allows for a convex problem
formulation, and should be easy to solve in a timely manner [Gao et al.,
2010]. However, such a formulation should only be used in rare cases, be-
cause a point-mass approximation is only suitable in (nearly) steady-state
driving conditions.

11.8 Summary

This chapter presented a novel two-level approach to robust, optimal
trajectory generation for vehicles. The high-level layer computes state-
trajectory references. These references are then used in the low-level con-
troller, which allocates control inputs. The first novelty was the use of
a nonlinear vehicle model with tire modeling in the optimization prob-
lem at the high level. This provides for better coupling with the low-level

3 With small β we mean values somewhere in the range of approximately 3–5 deg, de-
pending on road surface and vehicle type.
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control-input allocator, especially for aggressive maneuvering. The second
novelty was a low-level control structure that uses an NMPC for allocat-
ing the torques to the wheels, incorporating a nonlinear two-track model
with suspension dynamics as well as rotations in space. To increase ro-
bustness we combined this with an LMPC, to be used in those cases when
the NMPC fails to find a solution within a prescribed time limit. Results
showed that the control structure is robust and that viable computation
times are achieved, even when using a general framework for implemen-
tation.
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12
Path Tracking and Obstacle
Avoidance: A Design Flow

Path planning and trajectory generation have been studied for several
decades in robotics. Trajectory generation deals with finding state trajec-
tories between two given points in space. In some cases only the endpoints
are of interest in the task specification. However, in many situations the
path between the points is important in itself—for example, in laser cut-
ting, milling, and for transporting goods in factories using mobile robots.
It is common that a high-level path planner provides the geometric path.
Thenceforth, a subsequent trajectory generation is made. To this purpose,
the decoupled approach to trajectory generation has been established in
literature [LaValle, 2006; Van Loock et al., 2013]. Naturally, reliable path
tracking is essential. In addition, to react upon environmental uncertain-
ties, real-time obstacle avoidance is a desired feature of the path tracker
[Khatib, 1986]. As mentioned already in Section 1.2, for high productivity
a near time-optimal solution to the path-tracking problem is desired.

This chapter describes a hierarchical design flow for performing on-
line, minimum-time trajectory generation for four-wheeled vehicles, com-
bined with real-time obstacle avoidance. A hierarchical control structure,
which combined nonconvex and convex optimization problems, was used
in the previous chapter for feedback-based control in automotive applica-
tions. There, the motivation for using nonconvex methods was that the
relatively complex vehicle dynamics do not allow for a convex formula-
tion without resorting to severe model simplifications. Mobile robots have
similar kinematics as automotive systems. However, since the velocities
typically are smaller in robotic applications in combination with the ex-
clusion of complex suspension systems, the dynamics can be accurately
captured using simple models that, for example, do not model load trans-
fer or nonlinear tire characteristics. These simplifications enable convex
and efficient formulations of the optimal-control problems. Another dif-
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ference with the method in Chapter 11 is that we in this chapter assume
that the path is given. The control structure is validated both in simula-
tion and in an experimental setup, where the simulation study focuses on
the impact of the model simplifications that are made.

12.1 Motivation

Using a dynamic model of the robot, [Verscheure et al., 2009c] showed
how the time-optimal path-tracking problem for stationary robot manip-
ulators, see [Shin and McKay, 1985], can be reformulated as a convex
problem. In this chapter we show that the theory in [Verscheure et al.,
2009c] can be extended to the case of four-wheeled vehicles, especially
pseudo-omnidirectional mobile robots,1 which have fundamentally differ-
ent dynamics and kinematics compared with stationary robots. In par-
ticular, scenarios are considered where a nominal path to be tracked is
planned using the available static map information. High-level feedback
from the estimated position and orientation of the vehicle is achieved
using linear MPC [Mayne et al., 2000; Maciejowski, 2002]. Moreover, ob-
stacles that are detected during runtime are avoided by using online local
reoptimizations of the trajectories with a scheme that is integrated in the
MPC.

Another feature with the method proposed here is the implementation
in an integrated framework. To reduce the complexity of the programming
phase, large efforts have been put in developing software services for mo-
bile robots. Two examples of software services are the Robot Operating
System (ROS) [ROS, 2014] and Orocos [Orocos, 2014]. Our implementa-
tion utilizes ROS for easy integration with different algorithms, such as
simultaneous localization and mapping (SLAM) algorithms and the in-
ternal robot controllers.

Trajectory generation and online collision avoidance for mobile robots
have been studied before, see [Khatib, 1986; Quinlan and Khatib, 1993;
Fox et al., 1997; Qu et al., 2004; Iagnemma and Dubowsky, 2004; Choi et
al., 2009; Anderson et al., 2012] for a few examples. However, there seems
to be few, if any, approaches to time-optimal path tracking based on con-
vex optimization for wheeled vehicles. In addition, some of the previously
proposed methods are only based on the kinematic relations of the robot,
and do not consider a nonlinear dynamic model incorporating friction.
Moreover, differential-drive mobile robots are often considered in liter-
ature, yielding less complex models. The characteristics of differential-
drive robots are considerably different compared with four-wheeled ve-
hicles with independent steering; for example, significant constraints are

1 The mobile robot in Chapter 6 is an example of a pseudo-omnidirectional mobile robot.
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enforced on the maneuverability and the required slip modeling for the for-
mer. The trajectory-tracking controller in this chapter incorporates both
predicting and optimizing characteristics in a convex optimization for-
mulation, allowing fast real-time solutions even when operating at high
sample frequencies. In addition, constraints derived from dynamic obsta-
cles and map information can be introduced during runtime, owing to the
receding-horizon principle of the MPC.

12.2 Previous Work

The solution to the time-optimal path-tracking problem was derived al-
ready in the 1980’s [Bobrow et al., 1985; Shin and McKay, 1985; Pfeiffer
and Johanni, 1987] for industrial manipulators. By utilizing the special
structure of the dynamic model and a parametrization of the spatial path
in a path coordinate, the minimum-time problem was reformulated to an
optimal-control problem with fixed horizon for the independent variable
and significantly reduced number of states. Further investigations, for ex-
ample, with respect to model parameter uncertainties, were made in [Shin
and McKay, 1987; Chen and Desrochers, 1989; Shiller and Lu, 1992]. Note
that solutions to these optimal-control problems were found offline. The
obtained trajectories were combined with feedback, thus taking care of
model uncertainties and disturbances in the online task execution [Dahl
and Nielsen, 1989; Dahl, 1992].

Utilizing recent advancements in convex optimization [Boyd and Van-
denberghe, 2008], [Verscheure et al., 2009c] showed how the time-optimal
path-tracking problem for stationary industrial manipulators can be
solved efficiently using convex optimization techniques. However, certain
constraints on the dynamic model, such as neglecting the viscous friction
in the joints, need to be imposed. [Verscheure et al., 2009b] proposed an
online path-tracking algorithm. In this algorithm, the path to be tracked
is delivered online to the trajectory generator, which computes the tra-
jectories in real time. Further investigation of the method in [Verscheure
et al., 2009c] was presented in [Lipp and Boyd, 2014], and [Ardeshiri et
al., 2011] outlined a method for approximation of velocity-dependent con-
straints in the convex optimization formulation. This has been further
elaborated on for convex-concave constraints using sequential convex pro-
gramming in [Debrouwere et al., 2013] and using a convex relaxation in
[Reynoso-Mora et al., 2013].

MPC for trajectory tracking is not new, see, for example, [Kanjanawan-
ishkul and Zell, 2009; Howard et al., 2009; Klančar and Škrjanc, 2007].
However, these approaches do not combine the MPC with a time-optimal
trajectory-generation procedure and the trajectories are assumed known
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a priori. Nonlinear MPC for obstacle avoidance in the case of autonomous
vehicles has been investigated in [Norén, 2013]. Another approach to tra-
jectory generation in robotics is the Reflexxes motion library, see [Kröger,
2011].

12.3 Modeling

The enabler for the convex, high-level trajectory generator is a dynamic
model that captures the relevant characteristics while not being too com-
plex. Neither the one-track model nor the two-track model in Section 4.2
fulfill the necessary criteria. The one-track model fails in that it models
the vehicle as having two wheels, which is not enough for the considered
application. Moreover, the two-track model is too complex. Hence, we in
this section derive a third chassis model. In the spirit of the original for-
mulations of the path-tracking problem, the derivation is done using an
Euler-Lagrange modeling approach. The section also contains a derivation
of the inverse kinematics.

Deriving the Chassis Model
For modeling the vehicle, the first assumption is that the motor dynam-
ics can be neglected. This is motivated by that the motor dynamics is
inherently fast compared with the other dynamics of the vehicle. Also,
the motor-current controllers, which operate at the lowest level, ensure
fast torque tracking. We assume planar movement, thus neglecting verti-
cal dynamics and rotational coupling such as roll dynamics. Figure 12.1
contains a sketch of the vehicle.

Given a set of generalized coordinates {qi}
n
i=1, the Euler-Lagrange

equations, [Spong and Hutchinson, 2006], state that

d
dt
�L

�q̇i
−
�L

�qi
= Fi, ∀i ∈ {1, . . . , n}, (12.1)

where Fi is the ith external torque and L = T − V is the difference
between the kinetic and potential energy (the Lagrangian). We assume
planar movement, implying that V = 0. The kinetic energy is the sum of
the translational and rotational velocities in the system—that is,

T =
1
2

m
(
(ṗX )2 + (ṗY)2

)
+ IZ Zψ̇ 2 +

4∑
j=1

(
Iϑω 2

j + Iδ δ̇ 2
j
), (12.2)

where Iϑ is the wheel moment of inertia in the drive direction and Iδ
is the wheel moment of inertia in the steer direction, see Figure 12.2. A
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Figure 12.1 The four-wheeled vehicle and the coordinate systems used
for modeling. The vehicle has inertia IZ Z about the ZV -axis and mass m.

y ϑ i

z

δ i

vx
i

Figure 12.2 An illustration of the wheels’ rotational degrees of freedom.
The drive angle is introduced. Since ω denotes the wheel’s angular velocity
in the drive direction, ϑ̇ = ω .
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natural choice of generalized coordinates would be

q =
[
pX pY ψ ϑ 1 ⋅ ⋅ ⋅ ϑ 4 δ 1 ⋅ ⋅ ⋅ δ 4

]T .

A more convenient choice, however, is to express the dynamics in the
vehicle’s coordinate system using the base velocities, because velocity ref-
erences and torque commands are by convention given in this frame. To
this end, we make use of the following set of generalized coordinates:

q∗ =
[
vV ,X vV ,Y ψ ϑ 1 ⋅ ⋅ ⋅ ϑ 4 δ 1 ⋅ ⋅ ⋅ δ 4

]T ,

where a coordinate transformation between ṗ = v and vV is given by

vV =
[
cos(ψ ) − sin(ψ )
sin(ψ ) cos(ψ )

]
ṗ = RIV ṗ. (12.3)

The following transformation from global to local coordinates can be es-
tablished:

�T

�ṗX =
�T

�vV ,X cos(ψ ) − �T

�vV ,Y sin(ψ )

�T

�ṗY =
�T

�vV ,X sin(ψ ) + �T

�vV ,Y cos(ψ ).
(12.4)

Insertion of (12.4) into (12.1) and premultiplying with

RVI = (RIV )
−1 = (RIV )

T

gives that the following two modified Euler-Lagrange equations are ob-
tained:

d
dt

�T

�vV ,X − ψ̇
�T

�vV ,Y = F X

d
dt

�T

�vV ,X + ψ̇
�T

�vV ,Y = F Y .
(12.5)

Using the partial derivatives of the kinetic energy and (12.5), the follow-
ing set of dynamic equations are found:

mv̇V ,X −mψ̇ vV ,Y = F X , (12.6a)
mv̇V ,Y +mψ̇ vV ,X = F Y , (12.6b)

IZ Zψ̈ = Fψ , (12.6c)
Iϑ ,iϑ̈ i = Fϑ

i , (12.6d)
Iδ ,iδ̈ i = Fδ

i , ∀i ∈ {1, . . . , 4}. (12.6e)
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α

vw

Figure 12.3 An illustration of the forces and torques acting on each
wheel (left), and the wheel together with its coordinate system seen from
above (right).

The forces and torques that act on the wheels are shown in Figure 12.3.
We also model friction forces Ff and a friction torque τ f in addition to the
standard tire forces. The reason is that the forces and torques are much
smaller than in automotive systems. The motor torques acting on each
wheel are modeled as two independent torques for driving and steering, τϑ

and τ δ , respectively. Hence, the forces acting along the robot’s longitudinal
and lateral directions, corresponding to the right-hand sides in (12.6a)–
(12.6b), are

F X = F X =
4∑

i=1

(
cos(δ i)(Fx

i − Fx
f ,i) − sin(δ i)(Fy

i − Fy
f ,i)
)

F Y = FY =
4∑

i=1

(
sin(δ i)(Fx

i − Fx
f ,i) + cos(δ i)(Fy

i − Fy
f ,i)
)

.

(12.7)

The generalized torque Fψ is equal to the yaw moment M Z and is
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straightforwardly computed as

M Z = (l1 sin(δ 1) −w1 cos(δ 1))(Fx
1 − Fx

f ,1)

+ (l1 sin(δ 2) +w2 cos(δ 2))(Fx
2 − Fx

f ,2) − (l1 sin(δ 3) +w2 cos(δ 3))(Fx
3 − Fx

f ,3)

− (l1 sin(δ 4) −w1 cos(δ 4))(Fx
4 − Fx

f ,4) + (l1 cos(δ 1) +w1 sin(δ 1))(Fy
1 − Fy

f ,1)

+ (l1 cos(δ 2) −w2 sin(δ 2))(Fy
2 − Fy

f ,2) − (l1 cos(δ 3) −w2 sin(δ 3))(Fy
3 − Fy

f ,3)

− (l1 cos(δ 4) +w1 sin(δ 4))(Fy
4 − Fy

f ,4). (12.8)

Moreover, the generalized forces in the wheels’ drive and steer directions,
(12.6d) and (12.6e), are

Fϑ
i = τϑ

i − Rw(Fx
i − Fx

f ,i)

Fδ
i = τ δ

i − τ f ,i, ∀i ∈ {1, . . . , 4}.
(12.9)

Wheel-Force Modeling
The friction forces are modeled using Coulomb friction. This means that

Fx
f = Fx

Csign(vx)

Fy
f = Fy

Csign(vy)

τ f = τ Csign(δ̇ ),
(12.10)

where Fx
C, Fy

C, and τ C are the Coulomb-friction constants. The reason
for only considering Coulomb friction is that velocities necessary for, for
example, viscous friction to dominate will not be reached under normal
operating conditions for the considered type of vehicles. For large velocities
air drag becomes a factor, and will typically dominate over Coulomb and
viscous friction. This is straightforwardly modeled within this framework,
as pointed out in [Lipp and Boyd, 2014].

For the types of maneuvers the considered class of four-wheeled ve-
hicles perform in general, it is safe to assume that the longitudinal and
lateral tire forces are proportional to the respective slip quantity.2 The
wheel forces caused by wheel slip are then computed as in (4.6), together
with the slip definitions (4.3) and (4.4). This yields

Fx = Cλ λ
Fy = Cαα ,

(12.11)

where Cλ , Cα are the (constant) longitudinal and lateral stiffness, re-
spectively, found from experiments, dependent on the robot mass, wheel

2 Vehicles performing under extreme conditions are excluded since they require detailed
tire-force and slip modeling in the case of time-optimal maneuvers, see Chapter 10.
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material, and surface conditions. With this wheel-force modeling, the dy-
namic equations of the vehicle are constituted by (12.6)–(12.11). Note that
(12.10)–(12.11) hold for each wheel individually.

Model for Optimization
Two options exist for formulating the time-optimal path-tracking prob-
lem. Either the tracking is enforced at the Cartesian level, similar to
what was done at the high level in Chapter 11. Then these Cartesian
forces and torques have to be used together with the mobile platform dy-
namics and inverse kinematics for determining the wheel inputs. Another
possibility is to use the wheel dynamics (12.6d)–(12.6e) directly with the
wheel torques as inputs. Since the actuator constraints are formulated on
the wheel level (originating from motor constraints), it is advantageous to
formulate the problem based on the wheel dynamics and is consequently
the choice made here.

For simplification, we invoke the no-slip assumption. This implies that
the applied wheel torques directly influence the vehicle movement. Hence,
the wheel dynamic equations, derived from (12.6d)–(12.6e) and (12.9) by
assuming that the longitudinal forces are zero, are written as[

τϑ

τ δ

]
= τρ = I(ρ)ρ̈+ Fρ,Csign(ρ̇), (12.12)

where
ρ =

[
ϑ 1 ⋅ ⋅ ⋅ ϑ 4 δ 1 ⋅ ⋅ ⋅ δ 4

]T ,

I(ρ) is the inertia matrix, and Fρ,C is the Coulomb-friction vector.

Kinematics
The geometric vehicle path is, by convention, determined in Cartesian
space by a high-level path planner. A method is therefore needed for trans-
ferring Cartesian path coordinates {p,ψ } to wheel-space coordinates ρ.
Thus, we want to find a transformation

Ω : {p,ψ } → ρ.

Because wheels exhibit slip, a closed-form transformation is in general
not possible. To derive analytic expressions, we again impose the no-
slip assumption, which means that vx = Rwω , vy = 0. This assumption
does not hold during acceleration and deceleration, but the deviations
are suppressed using high-level feedback, see Section 12.5, and the low-
level wheel control loops. Conceptually, the transformation for the drive
angles can be derived as follows: We are given a path for the geometric
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center (CoG) of the robot for K grid points as {p(k),ψ (k)}K
k=1. This im-

plies knowledge of the path at the wheel center point {pw(k)}K
k=1, for all

wheels. Thus, given the Cartesian wheel position pw(k) and pw(k− 1) in
two neighboring elements, the wheel drive angle for each wheel at each
grid point k is found as

ϑ (k) = ϑ (k− 1) + q∆p(k)
wq

Rw
, (12.13)

for small enough ∆pw(k) = pw(k)− pw(k−1). To find the steer angles we
apply trigonometry, yielding

δ (k) = arctan2
(
∆pw,Y(k), ∆pw,X (k)

)
−ψ (k), (12.14)

where arctan2 is the four-quadrant inverse tangent function. Relations
(12.13) and (12.14) hold for small enough differences—that is, for large
enough number of grid points K . Note that ψ k is subtracted since we want
to know δ k with respect to the vehicle.
REMARK 12.1
The inverse kinematics derivation assumes that the vehicle velocity ex-
pressed in the inertial frame is positive and that pψ p ≤ π /2. The other
cases are straightforward but tedious to derive and are omitted here. 2

12.4 Trajectory Generation

This section describes the approach for generating time-optimal trajecto-
ries given a nominal geometric path. In addition, this section considers the
discretization of the continuous-time optimization problem for enabling
online numerical solutions.

Time-Optimal Trajectory Generation
The trajectory generation problem is formulated as a convex optimization
problem, given a geometric path f . This is different from the approach in
Chapter 11, where the path and trajectories were found simultaneously.
The formulation considers the constraints on the actuators in terms of
realizable torques. We neglect slip, as discussed on page 268, which means
that the considered dynamic system is given by (12.12). The path to be
tracked is parametrized in a path coordinate s := s(t), according to3

f (s) =
[

f1(s) ⋅ ⋅ ⋅ fn(s)
]T , s ∈ [s0, s f ], (12.15)

3 The derivation in this section is performed using the more general assumption on n
vehicle coordinates. For the dynamic model that is considered in Section 12.3, it holds
that n = 8.
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where n is the dimension of ρ, and s0 and s f are the path coordinates at
the path’s endpoints, respectively. From the relation ρ(t) = f (s(t)), which
should hold for all t, the following relations are established by using the
chain rule:

ρ̇ = f ′(s)ṡ(s)
ρ̈ = f ′(s)s̈(s) + f ′′(s)ṡ(s)2,

(12.16)

where

f ′(s) := d
ds f (s).

Utilizing the derivatives in (12.16), the dynamic equations in (12.12) can
be reformulated in the path coordinate, [Bobrow et al., 1985; Shin and
McKay, 1985; Pfeiffer and Johanni, 1987; Dahl, 1993], according to

τρ(s) = Γ1(s)s̈(s) + Γ2(s)ṡ(s)2 + Γ3(s), (12.17)

where

Γ1(s) = I(ρ(s))f ′(s),
Γ2(s) = I(ρ(s))f ′′(s),
Γ3(s) = Fρ,Csign(f ′(s)).

The aim of the trajectory generation is to minimize the execution time of
the path tracking. The optimal-control problem is thus formulated over
the time horizon t ∈ [0, t f ], with the cost function chosen as the final
time t f . Utilizing the path coordinate and its time derivatives, the cost
function is reformulated as

t f =

∫ t f

0
1 dt =

∫ s f

s0

dt
ds ds =

∫ s f

s0

1
ṡ ds.

The state variable β (s) and the algebraic variable w(s) are introduced as

β (s) = ṡ(s)2,
w(s) = s̈(s).

Moreover, the relation

β̇ (s) = 2w(s)ṡ
β̇ (s) = β ′(s)ṡ

=[ β ′(s) = 2w(s)
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holds. The continuous-time optimal control problem to be solved is now
stated in a similar way to [Verscheure et al., 2009c] as

minimize
α (s),β (s),τ(s)

∫ s f

s0

(
1√
β (s)

+ κ
n∑

i=1

∣∣∣(τ ρi )′ (s)∣∣∣
)

ds (12.18a)

subject to τρ(s) = Γ1(s)w(s) + Γ2(s)β (s) + Γ3(s) (12.18b)
β (s0) = β (s f ) = 0 (12.18c)
β ′(s) = 2w(s) (12.18d)
β (s) ≥ 0 (12.18e)
τρmin ≤ τ

ρ(s) ≤ τρmax, (12.18f)

where (12.18c) uses the assumption that the vehicle starts and stops in
rest. The cost function (12.18) utilizes regularization of the torque deriva-
tives. The weight κ is a tuning parameter that decides the impact of the
torques in the cost function. An explicit time dependency is recovered from
the solution by using the relation

t(s) =
∫ s

s0

1√
β (ζ )

dζ , s0 ≤ s ≤ s f ,

which is used for determining the input trajectories as functions of time.
The cost function (12.18a) is a convex function of the state variable and

the input torques, and the model dynamics (12.18b) is affine in the opti-
mization variables and control inputs. Hence, the optimal control problem
(12.18) is a convex problem (see (2.9) on page 43). If the control problem
would have been stated in the time domain, the model variables would
have been decision variables, as is the case for the problems in Chapter 10
(see, e.g., page 212). Here, however, only one state (i.e., β (s)) and one al-
gebraic variable, w(s), are required for formulation of the optimal control
problem, in contrast to originally 2n states required for the dynamics in
(12.12).

Discretization and Numerical Solution
For numerical solution of the trajectory-generation problem, we discretize
the continuous-time optimization problem (12.18) using direct transcrip-
tion (see page 40) according to the procedure in [Verscheure et al., 2008;
Verscheure et al., 2009c], where it is assumed that w(s) is piecewise con-
stant. With this assumption, it follows from (12.18d) that β (s) is piecewise
linear. Using a grid with L elements in the interval [s0, s f ], setting κ = 0,
and eliminating the torques τρ(s) and the algebraic variable w(s) from
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(12.18), results in the convex optimization problem

minimize
β 1,...,β L−1

L−1∑
k=0

2∆sk+1√
β k+1 +

√
β k

(12.19a)

subject to β k ≥ 0, ∀k ∈ {1, . . . , L − 1} (12.19b)
τρmin ≤ �(sk+1/2) ≤ τ

ρ
max, ∀k ∈ {0, . . . , L − 1}, (12.19c)

where

�(sk+1/2) = Γ1(sk+1/2)
β k+1 − β k

2∆sk+1
+ Γ2(sk+1/2)

β k+1 + β k
2 + Γ3(sk+1/2),

with ∆sk = (sk−sk−1) and sk+1/2 = (sk+1+sk)/2. The cost function (12.19a)
is found by analytic integration of (12.18a) with β (s) piecewise linear as:∫ sk+1

sk

1√
β (s)

ds =
∫ sk+1

sk

1√
β k +

∆β k+1
∆sk+1

(s− sk)

ds

= 2
(√

β k+1 −
√

β k

)
∆sk+1
∆β k+1

,

which gives (12.19a).

Implementation It is straightforward to solve (12.19) for the values of
β (s) at the discretization points sk, k ∈ {0, . . . , L − 1}, using general-
purpose tools for convex optimization, such as CVX [Grant and Boyd,
2014]. However, to find the solution online in a real-time setting, we com-
pute an approximate solution to (12.19). This is done using a method in-
spired by the approach suggested in [Verscheure et al., 2009a; Verscheure
et al., 2009b; Wang and Boyd, 2010], where an unconstrained approxi-
mate version of (12.19) is formulated by employing logarithmic barrier-
functions [Boyd and Vandenberghe, 2008] for the constraints in the cost
function. This gives that (12.19) approximates to

minimize
β 0,...,β L−1

L−1∑
k=0
�̄(β k, β k+1), (12.20)

where

�̄(β k, β k+1) =
2∆sk+1√

β k+1 +
√

β k

−
µ

2nL

n∑
i=1

(
log
(
τ i,min − �i(sk+1/2)

)
+ log

(
�i(sk+1/2) − τ i,max

) )
.
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The parameter µ is the log-barrier parameter. With the unconstrained
optimization problem (12.20), we determine an approximate globally op-
timal solution using Newton’s method. This requires computation of the
first- and second-order derivatives (Jacobian and Hessian) related to the
problem. For our model, the problem structure allows for analytic expres-
sions of these quantities, which are used in the implementation. The Hes-
sian in the Newton iterations is tridiagonal, which follows from that the
Hessian only depends on β k−1, β k, and β k+1. Hence, the time complexity
for solving the inherent linear equation system is linear in the number of
discretization elements [Golub and Van Loan, 1996], which enables fast
solutions also in the case when high grid density is required—for example,
for intricate geometric paths where high resolution is important.

12.5 High-Level Feedback Controller

We assume that both static and dynamic obstacles, which are not encoded
in the map a priori, are present. Hence, an online obstacle-avoidance
scheme is required. This section outlines a scheme for obstacle avoidance
that is integrated with a linear MPC. The considered approach provides
feedback from global coordinates for robustness to the model uncertainties
that are present, both when determining the time-optimal trajectories in
the optimization and when executing the trajectory generator. Naturally,
it also accounts for disturbances such as uneven ground, slippery floor,
and doorsteps.

Obstacle Avoidance
The trajectory generator described in Section 12.4 computes time-optimal
trajectories given a geometric path. The path is predetermined and is
based on a static map of the environment. When objects that are not part
of the map—for example, humans, other vehicles, open/closed doors, and
moving obstacles—are present, the given path may not be collision free
during runtime. One alternative to remedy this is to plan a new path
once new sensor data are available, thus taking the obstacles into ac-
count. There are two problems with this approach. First, the dimension
and shape of the object might be uncertain depending on the available
sensor data, and the replanned path will thus possibly also render a col-
lision. Second, if the object is moving, several replanning and reoptimiza-
tion steps are required. This hinders smooth vehicle movement and most
certainly increases path-traversal time. Moreover, in certain applications
where a mobile platform carries a robot manipulator that performs a task,
two examples being milling and painting, it is important to maintain the
nominal path for the manipulator tool even when perfect tracking of the
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platform path is impossible. The aim is then to deviate from the vehi-
cle’s nominal path when dictated by dynamic obstacles, and subsequently
rejoin in a graceful manner.

Local Replanning of Trajectory
For the obstacle avoidance we assume that online range measurements
are available, stemming from laser scanners, sonar sensors, or online vi-
sion data. The goal of the obstacle-avoidance scheme is to enforce that
the vehicle is outside the obstructed area. Note that for an optimization
problem, the constraint that the vehicle path should be outside of the
obstacle is nonconvex. Thus, to approximate the object’s shape, we use a
linearization around the N closest points on the obstacle seen from the
vehicle. Consequently, if the distance to an object (that is not modeled in
the predefined static map) is decreasing and reaches a predefined thresh-
old, we compute a hyperplane π o from the N closest points of the object
edge, see Figure 12.4 for N = 1. Then the normal vector v⊥, which is
orthogonal to the vector between the object plane π o and the N closest
points on the vehicle’s hull, vo, is determined as

v⊥ = ±vo $
[
0 0 1

]T . (12.21)

The velocity vector’s sign is determined based on the relative position
between vehicle and obstacle, aiming to keep the deviation from the nom-
inal path small. The idea for determining the velocity vector is similar to
the convex-concave procedure (also known as sequential convex program-
ming) for solving optimization problems [Yuille and Rangarajan, 2003],
where the concave part of the constraint is approximated using a lin-
earization about the current solution. With the proposed approach, the
obstacle avoidance scheme then computes a new normal vector v⊥ at each
time step. Note that the shape of the object is not important, since the
velocity vector is recomputed in each sample based on the new sensor
data. The norm of the velocity vector v⊥ is chosen as the corresponding
norm of the time-optimal velocity trajectory, qvoptq, for the point on the
path that is closest to the vehicle.

To keep track of the current point along the nominal trajectories, the
path coordinate s is updated based on the path traversal. When activating
the obstacle-avoidance scheme and thus leaving the nominal path, the
point at the nominal path closest to the vehicle’s current point is used
for computing the path coordinate. The modified velocity vector vmod is
thereby computed as a convex combination of the normal velocity vector
v⊥, determined by the obstacle-avoidance scheme, and the nominal time-
optimal velocity vector vopt according to

vmod = θv⊥ + (1− θ )vopt, θ ∈ [0, 1], (12.22)
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vo

v⊥

π o

vopt

vmod

Figure 12.4 A sketch of how the modified velocity reference is generated
in each time step in the case of dynamic obstacles. The robot initially
follows the green line (nominal geometric path). An object, in this case
the red circle, enters the planned path of the vehicle. By estimating the
distance from the vehicle to the object and finding the hyperplane π o, a
new vehicle-motion direction v⊥ is calculated. The modified velocity vector
vmod is then found as a convex combination between vopt (the nominal time-
optimal trajectory) and v⊥. The vector of the minimal distance between the
robot and the object is denoted by vo. The sketch shows the case for when
the modified velocity reference is based on the minimal distance to one
point. In the implementation, we use the N closest points on the object
seen from the robot.

where θ is the weight. The weight θ is increased when the distance from
the obstacle decreases, and vice versa. This also leads to a natural re-
joining procedure after passing the obstacle when the weight is decreased
again and finally, after a certain safety distance, the robot only tracks the
nominal time-optimal trajectory. The position reference pmod correspond-
ing to vmod is straightforward to compute based on the velocity vector.

Model Predictive Controller
The computed time-optimal trajectories for the wheel torques can be ap-
plied directly to the vehicle. However, model uncertainties and sensor
imperfections will lead to deviations from the position and velocity tra-
jectories, which are computed by the time-optimal trajectory generation
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and collision-avoidance schemes, if sent directly to the internal low-level
wheel torque or velocity controllers. In addition, wheel slip will cause a
discrepancy between the wheel coordinates and the corresponding global
Cartesian position and orientation of the vehicle.

We use MPC to introduce feedback from the estimated vehicle pose on
a high level in a hierarchical control architecture. The MPC objective is to
track the computed time-optimal trajectories and suppress disturbances
and model uncertainties. The computed trajectories can here be consid-
ered as time-optimal feedforward control inputs. Consequently, the cost
function in the MPC is chosen as the squared deviations from the desired
trajectory, and the control signal from the MPC is the global velocity of the
vehicle. In practice, these are realized with torque-resolved wheel-velocity
controllers. When no obstacles are present, the MPC computes references
for the global velocity based on the time-optimal trajectories. When there
are no disturbances or model errors, and with appropriate MPC tuning,
this results in the computed time-optimal control.

The MPC approach has the benefit that it naturally admits obsta-
cle avoidance. The velocity references determined by the MPC are sub-
sequently applied on each wheel using the vehicle’s inverse differential
kinematics. The main purpose of the MPC is to account for model errors
and disturbances by minimizing the reference tracking-error; hence, we
consider a kinematic model in discrete time on the form

xk+1 = Axk + Fuk, (12.23)

with

xk =


pk
vk
ψ k
ψ̇ k

 , uk =

[
vk,ref
ψ̇ k,ref

]
,

where uk ∈ R3 contains the corresponding control inputs (reference values
to the internal control loops in the robot). All variables are expressed with
respect to an inertial frame I in line with the notation throughout the
thesis, see Figure 12.1. Moreover,

A =


1 0 η1 0 0 0
0 1 0 η1 0 0
0 0 η2 0 0 0
0 0 0 η2 0 0
0 0 0 0 1 η1
0 0 0 0 0 η2

 , F =


η3 0 0
0 η3 0

η4 0 0
0 η4 0
0 0 η3
0 0 η4

 ,
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where

η1 = −Ts(Tsσ − 1),
η2 = 1− Tsσ ,

η3 =
T2

s σ
2 ,

η4 = Tsσ ,

Ts denotes the sampling period and σ represents the time constant of the
low-level wheel control loops. The rationale behind using (12.23) is that
the wheel control loops ensure accurate velocity-reference tracking (if pos-
sible, depending on the maximum realizable motor torque). In addition,
the assumptions on mechanical properties of the vehicle type imply that
the translational and rotational dynamics are almost independent from
each other. A decoupled, kinematic model is therefore enough on this level.

The quadratic cost function4 is written as

Jk =
Hp∑

m=1
qxk+m − rk+mq

2
Wx +

Hc−1∑
m=0

quk+mq
2
Wu ,

where rm denotes the position and velocity reference vector at time step m,
computed by the time-optimal trajectory generator or the local trajectory
replanner described earlier, starting at page 274. The convex optimization
problem to be solved in the MPC at each sample k > 0 is

minimize
Uk

Hp∑
m=1
qxk+m − rk+mq

2
Wx +

Hc−1∑
m=0

quk+mq
2
Wu (12.24a)

subject to xk+m+1 = Axk+m + Fuk+m (12.24b)
pk+m,min ≤ pk+m ≤ pk+m,max (12.24c)
vmin ≤ vk+m ≤ vmax (12.24d)
ψ̇ min ≤ ψ̇ k+m ≤ ψ̇ max, ∀m ∈ {0, . . . , Hp} (12.24e)
umin ≤ uk+i ≤ umax (12.24f)
∆umin ≤ uk+i − uk+i−1 ≤ ∆umax (12.24g)
xk = x̄ (12.24h)
∀i ∈ {0, . . . , Hc − 1},

4 In the MPC cost function we exclude weights on the final state in the prediction horizon.
This is caused by the nature of the a priori unknown dynamic obstacles. Given the slowly
changing robot motion, this does not imply stability violations. This is in contrast to what
was done in Chapter 11. The terminal constraint is easily added if desired.
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whereUk = {uk, . . . ,uk+Hc−1} is the set of control inputs to be determined,
x̄ is the initial state at time step k, Hp is the prediction horizon, and
Hc is the control horizon. If Hc < Hp, the control signal ui is assumed
to be constant and equal to uk+Hc−1 for all i ≥ k + Hc. In (12.24), the
position constraints (12.24c) are given by rectangular approximations of
the surrounding, a priori known obstacles in the map; (12.24d)–(12.24g)
are implied by the robot’s physical properties; and (12.24h) is estimated
by a particle filter.

12.6 Simulation Study

The outlined method uses torque-resolved velocity controllers at the low-
est level instead of applying the torques found from optimization directly.
The reason for doing this is that even for the slightest error in the dy-
namic model, the torques will propagate in the dynamics and give large
errors in position as, for example, the nonlinear motor dynamics and the
wheel slip are not accounted for in the dynamic model. To illustrate this,
we will discuss results from a simulation study using the dynamic model
with slip, which was derived in Section 12.3. We discuss results from two
simulations; one simulation where the optimal torques found from the
trajectory generator in Section 12.4 are used as inputs, and one simula-
tion where the optimized velocity references from the trajectory generator
are used as inputs to the dynamic model. For the second simulation, cas-
caded PI controllers are designed for wheel position and velocity control,
to mimic the control loops in the experimental setup. The masses and
inertias are set to values reasonable for the mechanical parts involved.
The maximum torques are set to reproduce what can be achieved from
the motors that are mounted on the physical mobile base (see page 281).

Simulation Results
Figure 12.5 shows the torques for wheel 2 generated in the optimization
(red) and the torques generated by the cascaded PI controllers when us-
ing the optimized velocities as inputs (black). Figure 12.6 contains the
desired path (blue), the path followed by using the optimized torques as
inputs (red), and the path followed by using the optimized velocities as
inputs (black). Moreover, Figure 12.7 visualizes the longitudinal and lat-
eral slip for wheel 2 using the torque-resolved velocity controllers. The
longitudinal slip values hardly exceed 0.015, and the lateral slip is at
most roughly 0.5 deg. Thus, for the maneuvers and robot characteristics
considered, neglecting slip in the model aimed at optimization is indeed
a valid assumption. The largest discrepancies in the torques occur where
the robot changes velocity rapidly, and hence where the slip is largest.
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Figure 12.5 Torques for wheel 2 generated by optimization (red) and by
using the optimized velocities (black) as inputs to cascaded PI controllers.
The steer torques are shown as dashed. The torques are similar in shape
and size, but the resulting trajectories differ significantly, see Figure 12.6.
Note that the differences in the torques are largest in the transient phases,
which is expected since it is during acceleration the slip gives the largest
impact.
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Figure 12.6 Simulation results for the path corresponding to Fig-
ures 12.5 and 12.7. The nominal path (blue dashed), the path using
velocity-reference inputs (black), and the path using the torque inputs
(red) are shown. The maximum deviation for the path using velocity ref-
erences is a few centimeters.
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Figure 12.7 The longitudinal and lateral slip for wheel 2 developed by
the torques (black) in Figure 12.5 for the path in Figure 12.6 (black).
The slip values are close to zero throughout the simulation, a verification
that neglecting slip in the optimization model can be justified. The figure
only shows the slip for one wheel, because the considered maneuver gives
similar slip on all wheels.

Although the torques are similar in size and shape (Figure 12.5), the
trajectory when using the torques as inputs quickly deteriorates. This
motivates why using the wheel velocities as references is advantageous.
Because of the model errors in the initial and final transient phases, the
maximum torques used in the optimization are in practical implementa-
tions chosen to be slightly smaller than the physical torque constraints.
Further, it is clear that feeding the velocity PI controllers with the opti-
mal velocity trajectories produces almost the same torques as computed
in the optimization, for most parts of the path. Thus, time optimality is
fulfilled.
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12.7 Experimental Results

This section presents experimental results, using a pseudo-omnidirectional
mobile robot.

Experimental Setup
The robot used for the experimental validation is a four-wheeled pseudo-
omnidirectional mobile robot equipped with eight motors, two for each
wheel realizing the steering and driving, see Figure 12.8. The mobile
robot, which was built and designed at Fraunhofer IPA in Stuttgart, is
the successor to the Care-O-Bot 3 mobile base [Reiser et al., 2009a; Con-
nette et al., 2009]. It is equipped with two SICK s300 laser scanners that
deliver laser-range measurements from the robot’s front and rear corners.
The robot is controlled and sensor data are acquired using the ROS soft-
ware package [ROS, 2014]. The wheel-encoder position and velocity mea-
surements are extracted with a rate of 100 Hz. The individual wheels are
controlled with torque-resolved cascaded position and velocity controllers
executing at 100 Hz (implemented in C++) and executed internally in
ROS. Identification of the required robot parameters is described next.

Parameter Identification To estimate the parameters in the matrix
I(ρ) and Coulomb-friction parameter vector Fρ,C required for the dynam-
ics in (12.12), experimental data were collected. Under the assumption
that the translational motion of the robot is significantly larger than the
rotational motion, the mass matrix can be assumed to be diagonal with
inertia elements

I(ρ) = diag
([

Iϑ ,1 Iϑ ,2 Iϑ ,3 Iϑ ,4 Iδ ,1 Iδ ,2 Iδ ,3 Iδ ,4
])

. (12.25)

The parameters were estimated by linearly increasing the velocity refer-
ences to the wheel controllers, starting at rest. A linearly increasing ve-
locity corresponds to a constant applied torque in the robot model. Hence,
the inertia elements in the mass matrix can be estimated as the ratio
between the applied torque and the corresponding angular acceleration.
The motor-current measurements are accessible within the mobile robot
platform via ROS. For estimating the Coulomb-friction parameters Fρ,C
for the respective wheel, a series of constant low-velocity references, with
different signs, were applied to the wheels while monitoring the motor
torques. Consequently, the robot was moving both forward and backward
at low velocities, thus providing the necessary data for the friction pa-
rameter estimation with a method similar to [Bittencourt et al., 2010].
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Figure 12.8 The mobile platform that is used for the experimental val-
idation, together with one of the items (garbage bin in the background)
that served as obstacles during the experiments. The yellow laser scan-
ners attached to two of the robot’s corners are used for obstacle detection,
localization, and map building.

Implementation and Software Architecture
Figure 12.9 gives a schematic of the control structure. The path plan-
ner generates a feasible geometric path given a predefined static map
of the environment, using Dijkstra’s algorithm [LaValle, 2006]. The map
is determined prior to the experiment based on data from the two laser
scanners, which are attached to the corners of the mobile robot platform,
combined with the wheel odometry. This is here done using the SLAM
algorithm described in [Grisetti et al., 2005; Grisetti et al., 2007], but it is
possible to use other algorithms. The generated path is then sent to the
trajectory generator, which provides time-optimal wheel position trajecto-
ries, velocity trajectories, and input torques. The wheel velocity references
given by the trajectory generator are subsequently transformed to Carte-
sian velocity references using the forward differential kinematics. These
velocity trajectories and the corresponding position trajectories are then
sent to the MPC together with the current estimates of the state vector
(pose and velocity), estimated by a particle filter based on the static map,
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Figure 12.9 A schematic of the control structure. A path planner pro-
vides the trajectory generator (TG) with a desired path. The trajectory gen-
erator computes corresponding time-optimal trajectories, which are sent to
the MPC. The MPC then computes desired velocities in the robot’s coordi-
nate system. The internal wheel controller, C, transforms the Cartesian
velocities to the wheel level. Based on these references, wheel torques are
computed and applied to the robot. Note that the trajectory generator only
computes new trajectories when a new path is available.

the laser-scanner data, and the wheel odometry. The MPC computes the
input sequence Uk. The Cartesian velocities and yaw rate from the first
element in Uk are transformed to local coordinates and then sent to the
internal velocity control loops.

Figure 12.10 shows a schematic representation of the implementation
structure. The path planner is implemented internally in ROS, together
with the torque-resolved velocity controllers (C in Figure 12.9). The ob-
stacle avoidance is implemented in ROSPy, which is a Python abstraction
of ROS.

The log-barrier solver presented in Section 12.4 is implemented in
MATLAB and transformed to C code using the Coder toolbox in MATLAB
and compiled. The MPC is implemented in C using CVXGEN [Mattingley
and Boyd, 2012]. This results in an average solution time of 1 ms for
the model at hand and the prediction and control horizons considered
(Hp = Hc = 10, corresponding to a time horizon of 0.4 s, results in
desired tracking behavior). To link the developed controllers with ROS,
we use ROSPy, which executes with a rate of 25 Hz. The ctypes library
[Python Software Foundation, 2014] is used for executing the trajectory
generator and the MPC, both implemented in C, from Python.

Path-Tracking Scenario
The results originates from experiments in a room with an area of approx-
imately 75 m2. The map of the room, as estimated by the SLAM algorithm,
is shown in Figure 12.11. Based on the map, in this scenario a geometric
path is planned from the coordinate (0, 1.5) m to (7,−1.5) m; the robot’s
orientation along the path is computed such that the robot heading is in
the direction of the tangent of the path. The resulting velocity trajectories
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Figure 12.10 A sketch of the implementation structure. The odometry,
path planner, and torque-resolved velocity controllers can be interacted
with through ROS. They consist of compiled C++ code. We use a Python
abstraction of ROS, named ROSPy, and connect the MPC and log-barrier
solver to ROSPy using compiled C code via the ctypes library. The MPC
executes at 25 Hz, but the trajectory geenrator only executes when a new
path is available.

in global Cartesian coordinates, obtained from the time-optimal trajectory
generation, are displayed in Figure 12.12. The corresponding time-optimal
torques for the drive and steer motors are shown in Figure 12.13. The con-
straints on the drive and steer actuators are τϑ

max = 0.31 and τ δ
max = 0.27,

and symmetrically for the lower bounds. The constraints are chosen based
on the physical properties of the wheel motors in the mobile robot. They
are slightly conservative, to provide actuation capability in the MPC for
handling disturbances during runtime and unmodeled dynamics present
when determining the time-optimal trajectories.

Note that at least one actuator is at the limit at each time instance,
indicating the desired time optimality. In addition, it is clear that the driv-
ing motors are the limiting factors. This is expected, because the geometry
of the path gives relatively small orientation changes. However, there is
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Figure 12.11 The room where the experiments were performed, as esti-
mated by the SLAM algorithm. White color indicates free space and black
indicates objects. The small black marks are reflections from table legs
and the white lines outside of the room are caused by reflections.
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Figure 12.12 Time-optimal velocity-trajectory references obtained from
the trajectory generator, expressed in global coordinates.
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Figure 12.13 Time-optimal motor-torque trajectories, obtained from the
trajectory generator. The torque constraints are indicated by the horizontal
dashed gray lines. Because of the mechanical design of the robot, the wheel
drive torques are pairwise equal. Moreover, the steer torques are equal for
all wheels since the robot’s orientation is fixed along the tangent of the
path.

significant motion perpendicular to the orientation of the platform, re-
sulting in the steer torques observed in the lower plot in Figure 12.13.

Initially, in the absence of dynamic obstacles, the mobile robot tracks
the nominal path and the time-optimal trajectories using the MPC. The
controller parameters (i.e., the weight matrices in (12.24a)) are

Wx = diag
([

1 1 0.1 0.1 0.1 0.1
])

,
Wu = diag

([
0.1 0.1 1

])
.

The constraint on the velocity reference vector from the MPC is

[
vref,max
ψ̇ ref,max

]
=

 1
1

0.05

 ,
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whereas the slew-rate limits are

[
∆vref,max
∆ψ̇ ref,max

]
=

 0.3
0.3
0.05

 .

The lower limits are symmetric to the upper limits. The units are in m/s
and rad/s, respectively.

After the robot has started to move along the nominal path, two new
obstacles are placed such that they cross the nominal geometric path (the
obstacle locations are not encoded in the static map defined previously).
These obstacles are detected during runtime using the laser-scan sensors.
To minimize the path deviation because of the obstacles, the threshold
value where the obstacle-avoidance scheme should be activated is set to
300 mm, which results in a large enough safety zone while not deviating
too much from the nominal path. Figure 12.14 displays the executed path
together with the map. The corresponding Cartesian velocity references
computed by the MPC are shown in Figure 12.15, where also the time in-
stants at which the obstacle-avoidance scheme is activated are displayed.
It is clear that the robot is detecting and subsequently avoiding the new
obstacles and also that when following the nominal path, the time-optimal
velocity trajectories are tracked closely (compare Figure 12.15 with Fig-
ure 12.12). Further, the lower plot in Figure 12.15 indicates that the cou-
pling between translational and rotational movement is small, implying
that the model (12.23) is indeed valid.

12.8 Discussion

A key feature of the proposed method when compared with most ap-
proaches in literature, is that it combines a trajectory-reference gener-
ator (based on a nonlinear model of the vehicle that incorporates friction)
that computes time-optimal trajectories with a feedback controller, where
the problems of finding the references and control signals are posed as
convex optimization problems. This implies that an optimal solution will
be found quickly, thus enabling high sampling frequencies in the control
architecture. Typically, the solution time for the trajectory generator is
well below 1 s for paths of approximately 10 m (corresponding to L = 500
discretization elements in the optimization problem (12.19)), and the so-
lution time for the MPC is almost always within 1 ms (corresponding to
5–10 iterations). Further, considering different optimization criteria than
time, the trajectory generator can be modified to minimize combinations
of path execution time and energy consumption.
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Figure 12.14 The nominal planned path together with the actual tra-
versed path, the latter resulting because of the a priori unknown obstacles
(red). The mobile robot hull is displayed (dashed blue) every other second.
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Figure 12.15 Cartesian velocity commands, measured in global space,
computed by the MPC based on the time-optimal trajectories and the
obstacle-avoidance scheme. The instances at which a switch between path
tracking and obstacle avoidance occur are indicated by the vertical dashed
gray lines. The time-optimal trajectories in Figure 12.12 are closely tracked
when the obstacle avoidance is inactive. The tuning is aggressive, which
can be seen, for example, in the upper plot at 10 s. The yaw-rate constraint
corresponds to approximately 3 deg/s.
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The MPC suppresses the effects of model errors. We showed in Sec-
tion 12.6 that the model errors caused by slip are small. Still, there are
errors present. By combining the proposed approach for generating time-
optimal trajectories, using a model without slip, with an MPC, these er-
rors are suppressed. Moreover, there are other imperfections present as
well, such as uncertainties in the geometry. The MPC uses the global po-
sition and orientation estimates for feedback; thus, it effectively removes
effects of model uncertainties when combined with the low-level wheel
controllers. This is different from the current standard in mobile robotics,
where a reference trajectory is generated and then fed to the low-level
loops without global feedback.

As mentioned before, a motivation for using the online trajectory re-
generation rather than replanning the path when an obstacle is encoun-
tered, is that it is sometimes desired to stay close to the original (nomi-
nal) path. Another motivation is that successive replanning and trajectory
generation prevents task effectiveness. To demonstrate this, we use the
same scenario as considered in Section 12.7, but now executing the robot’s
internal navigation module instead of method proposed in this chapter.
The navigation module has been developed by the robot manufacturer. It
is written in C++ and takes full advantage of the omnidirectional char-
acteristics of the considered robot, but only incorporates constraints on
a kinematic level. Thus, it is not using the full potential of the motors.
Figure 12.16 shows the path traversed by the robot and Figure 12.17 visu-
alizes the Euclidean norm of the velocity vector along the path. The same
scenario that takes approximately 25 s to complete with the proposed ap-
proach now demands about 60 s. The shorter execution time with our
approach is expected since it is time optimal. Furthermore, the velocity
constraints in the internal navigation module are restrictive. It is more in-
teresting that the robot stops and finds new feasible paths three times in
total, with each replanning lasting about 1 s. Thus, it is clear that an ap-
proach that performs online collision avoidance based on local replanning
of the trajectory is advantageous when task effectiveness is desired. By
inspection of Figure 12.16 it is also obvious that the resulting geometric
path using replanning differs significantly from the nominal path, shown
in Figure 12.14. In addition, note that if it really is desired to replan the
path and recompute the trajectories when an obstacle is encountered. This
is easily achievable with the trajectory generator proposed in this chapter,
and enables fast solution times for the reoptimization of the trajectory.
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Figure 12.16 Resulting geometric path for the CoG when using the
robot’s internal navigation module. The locations at which replanning of
the path occurs are marked with red +. The motion is performed from the
coordinate (0, 1.5) m to (7,−1.5) m.
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Figure 12.17 Euclidean norm of the velocity vector when using the
robot’s internal navigation module for the scenario in Figure 12.14. The
robot stops for replanning purposes at t = 8, 15, and 20 s.
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Outlook
Although the trajectory-generation approach was verified on a specific
mobile robot, it is rather general. The algorithm allows for other four-
wheeled vehicle types, as long as they are equipped with independent
steer and drive actuation. This opens up for other applications, not nec-
essarily including mobile robots.

As an example, automated highway driving for automotive systems
is another potential application. In that scenario the path is likely to be
given beforehand, typically based on road-map information. Because the
intended driving scenario is that of traversing a path under normal driv-
ing conditions, the no-slip assumptions that we made in this chapter will
approximately hold. As was shown in Chapter 9 and discussed in Chap-
ter 11, it is not too optimistic to envision scenarios where the vehicle has
knowledge about the relevant states (i.e., enough situation awareness).

12.9 Summary

This chapter outlined a design flow for time-optimal trajectory genera-
tion combined with obstacle avoidance for four-wheeled vehicles with in-
dependent steer and drive actuation. The proposed approach is entirely
based on convex optimization, allowing fast computations both for tra-
jectory generation and online control. To enable the convex formulation,
a number of approximations were made, such as neglecting wheel slip.
We investigated these assumptions in a simulation study, and the ob-
tained results imply that the no-slip assumption is indeed valid. The
obstacle-avoidance scheme was integrated in a high-level feedback con-
troller based on MPC. The proposed method was fully implemented on
a pseudo-omnidirectional mobile platform and evaluated in experiments
in a demanding path-tracking scenario. The method performed well. The
experimental results highlighted several advantages in comparison with
a reference method, especially in terms of traversal time and velocity
smoothness.
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13
Summary and Conclusions

This thesis deals with various key elements in vehicle estimation and
control. The underlying motivation is that the advancements in computing
power and sensing abilities have led to an increased interest in providing
vehicles that do not only react on operator commands, but also perform
real-time decision making by themselves. To enable this, the vehicles need
to be equipped with advanced estimation algorithms that can handle all
available sensing information. In addition, the control algorithms need to
be both advanced and fast enough to make informed decisions based on
the provided information. This chapter summarizes the contributions of
the thesis.

13.1 Estimation

Out-of-Sequence Measurements
Current vehicle systems have much available sensing information. With
the sensors possibly executing at different update rates, it is likely that
the sensor-fusion center will encounter out-of-sequence measurements
(OOSMs).

Chapter 7 outlined a particle-filter method for handling situations
when multiple OOSMs arrive simultaneously. The proposed method
adapted an algorithm that is optimal for linear systems, and integrated
this into an existing OOSM particle-filtering algorithm. The rationale for
this was that the linear algorithm will also yield performance improve-
ments when adapted to nonlinear systems. The results in showed that
for particular sensor setups, there are quite significant estimation im-
provements if utilizing algorithms that specifically handle multiple out-
of-sequence measurements. Hence, for certain applications, the method
should be useful for improved tracking performance. It is likely that the
performance gains will be larger when the uncertainties in the process
dynamics are more significant than the measurement uncertainties.
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It is common that dynamic systems are neither strictly linear nor
nonlinear. Rather, the system consists of a mixture of linear and non-
linear components. One way to describe this is by using mixed Gaus-
sian state-space models. In Chapter 8, two algorithms that utilize the
model structure for improved handling of out-of-sequence measurements
were developed. Both algorithms use approximations. Still, for the three
considered simulation examples, the proposed algorithms always achieve
better tracking performance than those that do not utilize model struc-
ture. In some cases, the performance is similar to what is theoretically
achievable. In addition, an outlier and variance comparison indicate that
the proposed algorithms also generate fewer outliers, and therefore more
predictable behavior. In online tracking systems, it is important to have
few outliers; not only because it improves tracking performance, but also
because it simplifies outlier detection. When compared with a filter that
is based on exact Bayesian recursions, the algorithms provide a notable
speedup. That the computation time is limited implies that the algorithms
are feasible alternatives in online implementations.

Ground-Vehicle Estimation
Chapter 9 derived a model-based combined wheel-slip and motion-
estimation method for four-wheeled ground vehicles. The rationale for
the approach is that, unlike what is traditionally done in the automo-
tive industry, better estimation performance can be achieved by utilizing
that there are coupling effects between different dynamic states. High-
precision slip estimation is imperative for active safety systems, and
improved performance in this respect can also implicitly improve con-
trol performance. We used a Bayesian approach. The model was written
on mixed-Gaussian state-space form, which enabled the use of the Rao-
Blackwellized particle filter.

One feature with the method is that among the 14 estimated states,
several key variables in safety systems, such as wheel slip and roll angle,
are estimated with high accuracy. The enabler for this is that coupling ef-
fects are incorporated into the model. The estimation accuracy is excellent
even in very aggressive maneuvering scenarios, as the results showed.
We compared the performance with a rule-based algorithm, which has
complexity in the order of current slip-estimation schemes in production.
The proposed method drastically improved performance, especially during
heavy cornering.

The method is robust for the considered test scenarios, even without
resorting to individual tuning of the noise parameters. This is interesting,
particularly since the experimental setup contained uncertainties. The
inertial measurement unit, for example, was assumed to be located at the
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mass center, which is not true. The effective wheel radius was estimated
for one of the test scenarios, which was then used in all scenarios. This
also introduces errors.

The algorithm executes in real time, even for a MATLAB implementation
that is not optimized for performance. Thus, the algorithm is certainly
viable in online implementations.

13.2 Vehicle Control

Chapter 6 contained a realistic mobile-manipulation application in which
a stationary manipulator picked up objects and placed them on a mobile
robot. This scenario corresponds to what is desired in a factory setting,
where a stationary robot typically has its own, predefined workstation. It
is then up to the mobile robots to deliver objects across the workstations.
There exist several mobile manipulation systems. However, they all have
limited possibilities for allowing that the mobile base and robot manipula-
tor move at the same time. The example used inertial and wheel-encoder
measurements in combination with a vision system, which resulted in out-
of-sequence measurements. We accounted for the out-of-sequence mea-
surements by adopting a suboptimal linear-estimation algorithm. Owing
to the estimation algorithm, and in combination with force sensing and ap-
propriate controls, the manipulator successfully managed to place objects
on the mobile robot while the mobile based was moving. In the considered
example the vision algorithm had slow update rates, but this is realistic
when there are limited resources. To further improve estimation accuracy
it is necessary to model dynamic coupling effects between mobile base and
robot manipulator. Also, faster update rates in the control loops would be
useful, especially for the mobile base.

Impact of Vehicle Models in Optimal Control
To make sensible choices of which models to use in a specific applica-
tion, proper understanding of the models is essential. This is particularly
important for optimal-control based algorithms, because solutions to op-
timization problems tend to utilize a large portion of the available state
space.

We compared and analyzed different combinations of chassis and tire
models and their behavior in aggressive, time-optimal maneuvering sce-
narios in Chapter 10. In total four different model combinations were
compared on two different maneuvers, on three different surfaces. The
motivation for the study was to gain insight in at-the-limit maneuvers.
Most models have been used in automotive applications before. The re-
sults showed that there are large differences in control inputs (i.e., torques
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and steer angle) between the one-track and two-track models, but that the
high-level variables, such as yaw rate and longitudinal velocity, are more
similar. In particular, when restricting the discussion to assuming the
more complex tire model, the one-track and two-track models are very
similar in key aspects; this observation is even more true for low-friction
surfaces. This has implications for safety systems, where a high-level tra-
jectory generator can use a relatively simple model, which is then propa-
gated to a more complex model for producing the control inputs. For the
simpler (friction-ellipse based) tire model, however, this is not true. On
the contrary, this model gave rise to large differences for low-friction sur-
faces, where the effects of load transfer intuitively should be suppressed.
Another observation was that the behavior of the friction-ellipse based
models is not consistent with that of expert drivers in similar scenarios.

We based the tire models used in the study on optimal-control solu-
tions for different road surfaces on experimental data. A comparison of
solution behavior on three different surfaces showed that there are sig-
nificant differences between the surfaces, where, for example, the slip
behavior differs. In addition, a scenario was given where only the friction
coefficient was adjusted between the surfaces. Solving the optimization
problem using that parametrization gave that the optimal solution had
large slip, contrary to the results obtained for the empirical smooth-ice
model. It is difficult to gather reliable experimental data and for large
combined slip, it is hard to obtain data at all. Nevertheless, the results
indicate that it is crucial how the tire-road interaction is modeled. This
implies that safety systems have to be even more aware of the road con-
ditions than what is typically done in current safety systems.

Closed-Loop Control for Autonomous Vehicles
The conclusions from Chapter 10 came to use in Chapter 11, where we
derived a two-level hierarchical control structure for improved vehicle au-
tonomy. The main idea is that a trajectory generator is responsible for
generating high-level trajectory references to a low-level MPC, which dis-
tributes the corresponding torques and steer angle to the vehicle. Unlike
other two-level approaches, this provides a chain of optimal controllers
with a tight physical coupling in between. Results showed that the method
is robust. In addition, the execution times indicate that it is feasible for
real-time implementations. The low-level controller was able to follow the
trajectory references even in aggressive maneuvering. This implies that
the approach is valid. Moreover, it shows that the conclusions from Chap-
ter 10 hold. Because the low-level layer contained a linear MPC in addition
to the nonlinear MPC, the approach is robust to slow convergence, or even
lack of convergence, in the nonlinear MPC.
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The last contribution treated a design flow (Chapter 12), from model-
ing to implementation, for online path tracking with obstacle avoidance.
We proposed a hierarchical control structure similar to that in Chapter 11.
The main difference with Chapter 11 is that the approach in Chapter 12
assumes that the path is given. Also, it only uses convex problem formu-
lations, which is possible since the intended application is path tracking
under normal driving conditions. The convex formulations of the optimal-
control problems give control structures that are possible to use with up-
date rates of approximately 100 Hz. The validation was done on a specific
robot, but it is easy to envision other scenarios for other types of vehicles,
for example, automated highway driving for passenger cars.
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14
Directions for Future Work

The aim with this chapter is to give directions for future work, both short
term and long term. We divide the discussion into four categories:

1. Mobile robotics and manipulation

2. Out-of-sequence measurement processing

3. Vehicle localization and perception

4. Optimal control in automotive systems

Obviously, there are many ways to provide improvements in these four
areas. We will only mention a few things that are tightly connected to the
topics in this thesis.

14.1 Mobile Robotics and Manipulation

Chapters 6 and 12 discussed mobile robotics from two slightly different
views. Chapter 6 was concerned with the localization and manipulation
approach. The navigation of the mobile robot was not mentioned. Instead,
the stationary manipulator was given responsibility for controlling the
behavior. In contrast, Chapter 12 assumed a strict navigation problem.
Thus, the obvious extension is to combine the two. By doing this, several
issues immediately arise.

First, the motion of the two robots must be coordinated in a sensible
way. One way is to do what we did in Chapter 6: allocate full responsi-
bility to the manipulator. Intuitively, this is not the best way coordinate
movements. One reason is that the mechanical construction is not fully
utilized with this approach. Another reason is that the mobile robot’s work
space is much larger than that of the stationary robot. Hence, better per-
formance is possible if allowing both robots to react on references, and
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how to do this coordination is a path of research that is by no means fully
explored.

Second, the approach to trajectory generation and obstacle avoidance
in Chapter 12 is in the current state only designed for wheeled vehicles.
However, the convex approach to trajectory generation was originally de-
signed for stationary robots, and it would be interesting to investigate the
simultaneous trajectory-generation and collision-avoidance problem.

14.2 Out-of-Sequence Measurement Processing

One of the things that remains doing is to actually use the OOSM algo-
rithms in an online, physical setup. The results indicate that the algo-
rithms are robust and provide good tracking performance. Nevertheless,
that the algorithms perform well in simulation does not automatically
mean that the same is true in experimental setups, so this has to be
verified.

An obvious extension of the algorithms in Chapter 8 is to adapt them
to the multi-OOSM problem. Currently, the algorithms only update the
most recent estimate. For the backward-simulation approach, a straight-
forward approximate solution is to compute the updated weights and lin-
ear estimates at each time step. A problem with this approach is that
it is computationally heavy; therefore, more efficient methods should be
derived.

14.3 Vehicle Estimation

The combined slip and motion estimation scheme in Chapter 9 would be
interesting to test in other vehicle setups as well. The method directly
applies to four-wheeled mobile robots. Thus, it could be useful for, for
example, mobile robots on outdoor, low-traction terrain.

It would be particularly interesting to see whether the improved slip
estimation also leads to improved performance of existing safety systems.
The control performance of braking systems, for example, is typically de-
ficient when the road conditions change rapidly. Typical cases are when a
subset of the wheels encounter ice patches.1 It is possible, or even likely,
that the proposed method can at least partly remedy this.

There are several ways to extend the method. In its current state,
the method assumes flat ground. On banked roads, it is an advantage to
separate the vehicle’s roll angle from the road bank angle. Currently, this
is not done in the method. An extension in this direction would therefore

1 µ-split, or split friction.
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be useful. Another extension is to allow for translations and rotations in
three-dimensional space. This could be useful for, for example, planetary
exploration, where the vehicles typically encounter different terrain types.

14.4 Optimal Control in Automotive Systems

The type of investigatory studies that were discussed in Chapter 10 can be
adapted to other scenarios—for example, using other cost functions and
maneuvers, in addition to other models. We only discussed results for a
small subset of the available models, so there is much more to be done in
terms of model comparisons.

The study in Chapter 10 on the impact of different road surfaces relied
on a specific set of tire parameters. As mentioned several times, the tire-
road interaction is complex, and it is likely that the parameters will be
different for other tire configurations. An indication of this is that the
force surfaces in Chapter 11 differ from those in Chapter 10. Hence, more
studies have to be done using other experimental data, to investigate
whether the results can be generalized.

Regarding the closed-loop vehicle control in Chapter 11, real vehi-
cle trials have not been carried out. For allowing real tests, a real-time
friendly implementation is necessary. In addition, the high-level trajectory
generator should be accompanied with a method that steps in when the
nonconvex optimization problem fails to converge. Although the method
seems to be robust, a backup is needed for when it fails to converge.

The path tracking and obstacle avoidance in Chapter 12 is also suited
for automotive systems, if assuming that the slip is small. How the method
performs in automated highway driving scenarios, such as platooning, is
an open question. In those cases, the path is extracted from road-map
data. Extensions of the method in terms of velocity-dependent constraints
is important for this to work, but this can easily be merged into the pro-
posed method. The combination of the methods in Chapters 11 and 12
could also be investigated. One possibility is to use the convex trajectory
generator in Chapter 12 as a backup for the trajectory generator in Chap-
ter 11.
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A
Coordinate Systems and
Automotive Parameters

This appendix provides descriptions of the coordinate frames that are
used throughout the thesis. In addition, it contains the parameters that
are used for the automotive applications in Chapters 10 and 11.

A.1 Coordinate Systems

The thesis employs three moving coordinate systems throughout, see Fig-
ure A.1. The first coordinate system, V , is rotated with an angle ψ , the
yaw, about the Z-axis of the inertial, earth-fixed frame I , yielding the
rotation matrix

RIV =

cos(ψ ) − sin(ψ ) 0
sin(ψ ) cos(ψ ) 0

0 0 1

 .

Moreover, the pitch angle θ is defined as a rotation about the Y-axis of
V , giving the coordinate system C , with the rotation matrix

RVC =

 cos(θ ) 0 sin(θ )
0 1 0

− sin(θ ) 0 cos(θ )

 . (A.1)

Finally, the third coordinate system B is defined by a rotation of an angle
φ , the roll, about the X -axis of C :

RCB =

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

 . (A.2)

Let pB denote a position p ∈ R3 expressed in and with respect to B. The
expression in the earth-fixed frame I is pI = RIV R

V
C RCBpB .
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X
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Figure A.1 An illustration of the three principal coordinate axis, where
the rotations are taken in the order ψ –θ–φ . Note that the rotations are
made with respect to the moving axes.

Table A.1 Vehicle-model parameters that are used in Chapter 10.

Parameter Value Unit
l f 1.3 m
lr 1.5 m
w 0.8 m
m 2 100 kg

IX X 765 kgm2

IYY 3 477 kgm2

IZ Z 3 900 kgm2

Rw 0.3 m
Iw 4.0 kgm2

σ 0.3 m
� 9.82 ms−2

h 0.5 m
Kφ 178 000 Nm(rad)−1

Dφ 16 000 Nms(rad)−1

Kθ 363 540 Nm(rad)−1

Dθ 30 960 Nms(rad)−1

A.2 Tire and Vehicle Parameters

The tire and vehicle parameters that are used in Chapter 10 are given in
Tables A.1–A.3. The chassis parameters correspond to a car of sedan type.
Tables A.4–A.5 contain the parameters that are used for the automotive
application in Chapter 11. The parameters are slightly different to those
in Chapter 10, but correspond to approximately the same surface and
vehicle type.
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A.2 Tire and Vehicle Parameters

Table A.2 Front-wheel tire-model parameters, which are used in Chap-
ter 10. The parameters correspond to asphalt, snow, and ice.

Parameter Asphalt Snow Ice
µx 1.20 0.407 0.172
Bx 11.7 10.2 31.1
Cx 1.69 1.96 1.77
Ex 0.377 0.651 0.710
µ y 0.935 0.383 0.162
By 8.86 19.1 28.4
Cy 1.19 0.550 1.48
Ey -1.21 -2.10 -1.18
Cα 1.09 1.09 1.02
Bα 1 12.4 15.4 75.4
Bα 2 -10.8 -10.8 -43.1
Cλ 1.08 1.08 0.984
Bλ1 6.46 4.19 33.8
Bλ2 4.20 4.20 42.0

Table A.3 Rear-wheel tire-model parameters, which are used in Chap-
ter 10. The parameters correspond to asphalt, snow, and ice.

Parameter Asphalt Snow Ice
µx 1.20 0.409 0.173
Bx 11.1 9.71 29.5
Cx 1.69 1.96 1.77
Ex 0.362 0.624 0.681
µ y 0.961 0.394 0.167
By 9.30 20.0 30.0
Cy 1.19 0.550 1.48
Ey -1.11 -1.93 -1.08
Cα 1.09 1.09 1.02
Bα 1 12.4 15.4 75.4
Bα 2 -10.8 -10.8 -43.1
Cλ 1.08 1.08 0.984
Bλ1 6.46 4.19 33.8
Bλ2 4.20 4.20 42.0
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Table A.4 Vehicle-model parameters that are used in Chapter 11. The
parameters approximately correspond to a medium-sized passenger car.

Parameter Value Unit
l f 1.2 m
lr 1.5 m
w 0.75 m
m 1600 kg

IX X 900 kgm2

IYY 2000 kgm2

IZ Z 2700 kgm2

Rw 0.32 m
Iw 1 kgm2

σ 0.3 m
� 9.81 ms−2

h 0.29 m
Kφ 120 000 Nm(rad)−1

Dφ 8 000 Nms(rad)−1

Kθ 165 000 Nm(rad)−1

Dθ 14 000 Nms(rad)−1

T 0.1 s

Table A.5 Tire-model parameters that are used in Chapter 11. The pa-
rameters correspond to asphalt.

Parameter Value
µx 1.06
Bx 19.7
Cx 1.63
Ex 0.5
µ y 0.92
By 13.06
Cy 1.28
Ey -1.1
Cα 1.13
Bα 1 9
Bα 2 -8.6
Cλ 1.16
Bλ1 6.4
Bλ2 7.91
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B
Code

Listing B.1 contains the MATLAB code that is used for Example 3.1 in Chap-
ter 3. Note that the code is neither written with efficiency nor generality
in mind, but only serves to give hands-on experience. The resampling
scheme that is used here is the systematic resampling algorithm, see
[Arulampalam et al., 2002].

Listing B.1 RBPF example code used in Example 3.1.
1 function [xmean,xparts] = RBPF(N,y,xp,w,P,A,B,C,R,Q,Tfinal)
2 xmean = zeros(4,Tfinal);
3 xparts = zeros(2,N,Tfinal);
4 for t=1:Tfinal
5 for i=1:N %PF measurement update
6 e = y(:,t) - [0.1*xp(4,i)^2*sign(xp(4,i));0] ...
7 - C*xp(1:3,i);
8 S = C*P(:,:,i)*C’ + R; Sinv = S\eye(2);
9 w(i) = w(i)/sqrt(det(S))*exp(-0.5*(e’*Sinv*e));

10 end
11

12 w = w/sum(w); %Normalize weights
13 xparts(2,:,t) = w;
14 xparts(1,:,t) = xp(4,:);
15 if 1/sum(w.^2) < 0.67*N %Conditional Resampling
16 index = resample(w,N);
17 xp = xp(:,index); P = P(:,:,index); w = ones(1,N)/N;
18 end
19 xf = xp;
20 xmean(4,t) = sum(w.*xf(4,:),2); %Weighted mean estimate
21 for i=1:N %KF Measurement update
22 e = y(:,t) - [0.1*xf(4,i)^2*sign(xf(4,i));0] ...
23 - C*xp(1:3,i);
24 S = C*P(:,:,i)*C’ + R; Sinv = S\eye(2);
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25 K = P(:,:,i)*C’*Sinv;
26 P(:,:,i) = P(:,:,i) - K*S*K’;
27 xf(1:3,i) = xp(1:3,i) + K*e;
28 end
29 xmean(1:3,t) = sum(repmat(w,length(xf(1:3,1)),1)...
30 .*xf(1:3,:),2); %Weighted mean estimate
31 for i=1:N %PF Time Update
32 xp(4,i) = atan(xf(4,i) ) + B*xf(1:3,i)...
33 + sqrt(B*P(:,:,i)*B’ + Q(4,4))*randn(1);
34 end
35 for i=1:N %KF Time Update
36 M = B*P(:,:,i)*B’ + Q(4,4); Minv = 1/M;
37 L = P(:,:,i)*B’*Minv;
38 e = xp(4,i) - atan(xf(4,i)) - B*xf(1:3,i);
39 xp(1:3,i) = A*(xf(1:3,i) + L*e);
40 P(:,:,i) = A*(P(:,:,i) - L*M*L’)*A’ + Q(1:3,1:3);
41 end
42 end
43 function i=resample(w,n) %Systematic resampling
44 wc = cumsum(w); i = zeros(1,n); k = 1;
45 u = (0:n-1+rand(1))/n;
46 for j=1:n
47 while (wc(k)<u(j))
48 k = k + 1;
49 end
50 i(j) = k;
51 end
52 end
53

54

55 end
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