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Abstract. Quantitative investigation of insect activity in their natural habitat is a challenging task
for entomologists. It is difficult to address questions such as flight direction, predation strength,
and overall activities using the current techniques such as traps and sweep nets. A multispectral
kHz remote detection system using sunlight as an illumination source is presented. We explore
the possibilities of remote optical classification of insects based on their wing-beat frequencies
and iridescence features. It is shown that the wing-beat frequency of the fast insect events can be
resolved by implementing high-sampling frequency. The iridescence features generated from the
change of color in two channels (visible and near-infrared) during wing-beat cycle are presented.
We show that the shape of the wing-beat trajectory is different for different insects. The flight
direction of an atmospheric insect is also determined using a silicon quadrant detector. © 2014

Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.8.083503]
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1 Introduction

Insects are the natural service providers of the ecosystem. They comprise approximately 80% of
the animal population on earth.1 They are pollinators, garbage collectors, and natural fertilizer
producers. Insects are responsible for pollinating about 80% of flowering plants, e.g., bees.2,3

They are excellent biomarkers of flowing water purity, pesticide abuse, or climatic change
indicators.4 Generally, insects play a crucial role in attaining the natural balance of the
earth. On the other hand, insects can have a negative impact on agricultural productivity5

and disperse forestry pests.6,7 They can also transfer disease to livestock and humans.8

Various species of mosquitoes can transfer diseases to human beings.9 The study of insects
has so far mainly been dependent on manual counting and analysis using, e.g., light traps, flight
intercepts traps, pitfall traps, water pan trap, beating trays, and sweep nets.10–15 Such methods
have been used for many years, and have made significant contributions to the field of ecological
entomology. However, it remains challenging to investigate fast interaction mechanisms or a vast
number of insects using the conventional techniques in situ. To address those issues, it is impor-
tant to implement more efficient and accurate insect-monitoring techniques. This could give a
detailed understanding of insect activity, and it can help to get a better picture of the environment.
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Wide ranges of remote sensing techniques have been used for environmental monitoring
purposes. Insect monitoring using fluorescence LIDAR (Light Detection and Ranging) tech-
nique was demonstrated by Brydegaard et al.16 in Lund University. This feasibility study con-
firmed that the damselflies (Calopteryx splendens and Calopteryx virgo) exhibit reflectance and
fluorescence properties, which are correlated with structural colors. Fluorescence LIDAR meas-
urement was also performed by the same group.17 The potential of LIDAR as a remote sensing
tool to capture the activity of labeled damselfly species and genders was highlighted. This shows
that the insect-monitoring techniques using fluorescence LIDAR can be used for other insect
species such as mosquitoes, bees, and dragonflies. Some of the pioneering works that have
been done in the area of elastic LIDAR by the Shaws group in Montana State University
are the study of honeybees for sniffing land mines. Some of the techniques are scanning
and polarization LIDAR measurements of bees,18,19 optical detection of bees from their
wing-beat frequency,20 and range-resolved optical measurement of bees.21 In general, the imple-
mentation of an optical remote sensing tool can provide reliable information to study activity and
abundance of insects. Such techniques have the potential to remotely determine species, sex, and
predation strength.22 In the field of optical remote sensing of the atmospheric fauna, remote
classification of nocturnal birds and the investigation of mid-infrared (MIR) iridescence features
of plumage have also been done.23,24 Such investigation demands expensive cooled detectors.
The proposed setup provides complimentary data compared with existing techniques such as
resolving fast wing-beat frequency and their higher harmonics. It enables the retrieval of impor-
tant information such as flight direction and fast insect-insect interaction in situ. It is also in-
expensive compared with entomological LIDARs or radars of comparable efficiency.

2 Equipment and Method

2.1 Dark-Field Spectroscopy

Remote dark-field spectroscopy was employed to investigate wing-beat frequencies and irides-
cence features of atmospheric insects in situ. We have used a Newtonian telescope
(focal length ¼ 1200 mm) coupled with silicon (Si) and Indium Gallium Arsenide (InGaAs)
detectors and a CCD spectrometer to collect the backscattered signal from insect events crossing
the field-of-view (FOV) (see Fig. 1). A cylindrical dark termination cavity was used to attain a

Fig. 1 Experimental setup. D1: detector 1 [silicon (Si) quadrant in part I and spectrometer in part
II]; D2: Si/InGaAs sensors; F: fiber patch cable; Spect: spectrometer; DAQ: sampling device; BS:
beam splitter; T: telescope; D: dark termination; PC1 and PC2: laptops for data collection; HD1
and HD2: data storing external hard drive. The distance between the telescope and dark termi-
nation is 200 m southwards, Jan Marias nature reserve, Stellenbosch, South Africa.
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very low background signal.22 The probe volume is the space between the receiving telescope
aperture (T) and FOVat the dark termination (D). The air volume between T and D is the inter-
rogated atmosphere, which we have monitored during a measurement. The object plane at ter-
mination for the quadrant and dual-band detectors is ø 60 cm, and the total air volume monitored
is 92 m3. The overall aim of this experiment is to be able to collect backscattered light from any
event crossing the FOV. In the context of this work, an improved signal-to-background ratio can
be achieved by keeping the termination box very dark or designing the termination box in such a
way that it absorbs all incoming light. Ideally, the background signal is minimal, but there will
still be scattering from the atmosphere itself and Rayleigh scattering even from pure air.

The concept of dark-field spectroscopy is more popular in microscopy, where dark field and
fluorescence experiments provide better image contrast capabilities.25–28 This is due to the fact
that the signal rises from 0% rather than decreases from 100%, which is the case in, e.g., trans-
mission measurements.

2.2 Detector Setup and Spectral Band

The experimental setup uses three detectors to cover the three bands: visible (VIS, 0.32 to
0.68 μm), near-infrared (NIR, 0.66 to 1 μm), and shortwave IR (SWIR, 1 to 2.4 μm). One detec-
tor is a Si photodiode, while the other two are Si photodiode and InGaAs photodiode, integrated
into a layered package. This triple-band passive remote sensing tool is intended to determine
wing-beat frequency, absolute optical cross-section (OCS) and iridescence features. The incom-
ing light is gathered by the telescope and goes to the beam splitter (see Fig. 2). The beam splitter
is a cold mirror, which is designed to reflect VIS light to the Si detector and transmit IR light to
the Si/InGaAs detector. The beam walk displacement of the transmitted light was deviated by
1.6 mm from the optical axis due to the refraction in the cold mirror. To compensate for this, the
dual-band detector was shifted by 1.6 mm using an external adaptor (off-set).

The resolution of the detectors covering the above bands is determined by the full-width half-
maximum (FWHM) of individual bands. This crude spectral discrimination offers three bands
with bandwidths from 0.3 to 1 μm FWHM (0.4 μm for the VIS, 0.3 μm for the NIR, and 1 μm
for the SWIR) (see Fig. 4). Detector 1 is an Si quadrant detector which is sensitive in the VIS
range, and Detector 2 is sensitive in the NIR and SWIR ranges. The second setup was designed
to detect the spectral signature of insects using a spectrometer (Ocean Optics) and the wing-beat
frequency using a Si/InGaAs detector. The Si quadrant was replaced by the spectrometer for the
second part of the experiment. Some known insects such as dragonflies, damselflies, carotenoid
beetles, and carpenter bees were released during the experiment into the FOV. The release time-
stamp was recorded in a logbook for latter lookup in the data stream. The second setup enables
the retrieval of spectral information, wing-beat frequency, and OCS of insects concurrently.

Fig. 2 Schematic plot of detector alignment for the first and second parts of the experiment.

Gebru et al.: Investigation of atmospheric insect wing-beat frequencies and iridescence features. . .

Journal of Applied Remote Sensing 083503-3 Vol. 8, 2014

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 03/02/2015 Terms of Use: http://spiedl.org/terms



The whole system described in Fig. 2 enables us to monitor VIS scattering, vegetation sub-
illumination, melanization, and iridescence features simultaneously (see Fig. 3). The Si quadrant
detector monitoring the VIS scattering provides information about the insect’s flight direction
and size. The NIR detector gives information about the subillumination of insects by upwelling
radiation from vegetation, which helps to investigate the iridescence features of the insect by

Fig. 3 Insect scattering processes. The passive remote sensing involves three scattering proc-
esses: melanin absorption in the visible (VIS), vegetation subillumination in the near-infrared
(NIR), and thin-film iridescence (interfering waves).

Fig. 4 Plot of sensitivity versus wavelength for the three detectors (data from supplier). VIS-Si
(D1-Quadrant detector): VIS scattering, NIR-Si (D2): vegetation subillumination, and SWIR-
InGaAs (D2): thin-film iridescence.
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comparing the NIR signal with the VIS signal. We have two different effective light sources in
this case: collimated sun emission, which is a 5600-K Planck distribution and incident from
above, and the vegetation, which is the solar spectrum times a step around 700 nm. Further,
it is an omnidirectional source from below. The SWIR detector provides information about
the thin film interference from the spectral fringes of the signal caused in the conditions of specu-
lar reflections, which can be seen as spikes in the time signal.

The triple-band detector covers the wavelength range from 0.32 to 2.4 μm (see Fig. 4).
The main advantage of this system as compared with a spectrometer is its higher sampling
frequency. The extent of resolving wing-beat modulation of fast insect events depends on
the sampling frequency.29,30 The sampling frequency we implemented was 20 kHz, which
is fast enough to resolve harmonic overtones of insects with fast wing-beats such as
mosquitoes.

3 Results

The experimental results presented here are from two sites in Stellenbosch, South Africa [Jan
Marais Nature reserve (33° 55′ 57.8244′′, 18° 52′ 35.7744′′) and Stellenbosch University cam-
pus (33° 55′ 58.9404′′, 18° 51′ 58.3194′′)].

3.1 Wing-Beat Frequency, Flight Direction, and Absolute
Optical Cross-Section

Two of the most important quantities that could be used to identify insects remotely are wing-
beat frequency and absolute OCS. The absolute OCS is the size of the insect times the effective
reflectance for the given band. The quantitative estimate comes from the calibration of the setup
using white diffuse spheres. The calibration was performed by releasing different sized diffuse
white spheres close to the dark termination in the FOV. This means that after subtraction of the
detector dark current and static atmospheric contributions, the absolute OCS is calibrated by
white diffuse spheres with known diameters and an assumed 100% Lambertian reflectance.
For example, a certain insect event with wing-beat frequency of 143 Hz and an absolute
OCS of approximately 20 mm2 was detected (see Fig. 5).

The calculated absolute OCS can in some cases exceed the projected actual size due to
specular reflections. In future, this could be improved by using polarimetric detection for
retrieving the coherent and incoherent scatters separately. Because of the range-dependent
sensitivity or form factor,31 the absolute OCSs in this paper are only accurate close to the

Fig. 5 (a) Wing-beat frequency and OCS (mm2) of a certain insect event. (b) Spectrogram show-
ing body size, fundamental frequency, and harmonic overtones of the same insect event. The DC
level shows the body size. The fundamental frequency at 143 Hz and the higher order harmonic
are shown.
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object plane and the termination where the calibration and controlled releases were performed.
The accuracy of absolute OCS using the proposed setup and range-resolved measurements,
such as LIDAR, could be comparable for positions close to the object plane. However, limited
range information can be extracted from the flank rise and fall times that can be associated with
the event distance from the object plane using the proposed setup. In order to further improve
the accuracy of absolute OCS, one has to look at the steepness of the rise/fall flanks of events,
but this was not fully investigated in this study. An additional uncertainty when relating the
projected absolute OCS to the actual body size is the flight direction and body orientation,
which is also an issue in range-resolved LIDAR measurements. However, limited assessment
of the orientation could be retrieved from the quadrant information and from the relative
strength between odd and even harmonics.32

A pendulum was implemented to determine the flight direction of insects. The calibration
was done by oscillating the pendulum sweeping through the FOV from East to West for about 10
to 20 s at the object plane. This process was repeated every 30 min throughout the measurement
session to quantify the light power impinging on the FOV during the day. From this, we were
able to suggest the orientation of the quadrant and this was then correlated with the flight direc-
tion (see Fig. 6).

The dynamics of prey and predator interaction is one of the important aspects of entomo-
logical ecology studies. This kind of investigation can give information about predators of a
certain insect, which in turn leads to natural ways of improving conditions for predators in
order to suppress pests or infectious insect species like mosquitoes. It may also help to under-
stand seasonal dynamics and populations;33,34 however, it should be noted that this experiment
mainly focuses on the dynamics with millisecond resolution. In this work, we detected several
chasing events. An example can be seen in Fig. 7. The time difference between the two con-
secutive insects is 0.5 s. A precise description of the interaction strength and the kinetics can be
evaluated through a time-lag correlation of a large number of such events.22 The body absolute
OCS and wing-beat frequency of the first insect (left) are approximately 23 mm2 and 100 Hz,
respectively. For the second insect (right), the body absolute OCS and wing-beat frequency are
approximately 96 mm2 and 50 Hz, respectively. The absolute OCS (size) difference between the
two insect events mentioned in Fig. 7 is 25%. This shows that a bigger (lower wing-beat fre-
quency) was chasing a smaller (higher wing-beat frequency) insect. A number of insect events
similar to this occurred during the field campaign, which leads us to believe that this is predation
and not a simple coincidence.

Fig. 6 (a) Signal recorded by the Si quadrants (Q1, Q2, Q3, and Q4) from pendulum oscillation
(east to west). The time sequence of the signal shows that the pendulum first enters Q1 (east) and
exists at Q3 (west). The quadrant orientation suggestion in this case is: Q1-East, Q2-Down, Q3-
West, and Q4-Up relative to each other. (b) Signal from the insect event detected by the quadrant
detector. (c) Smoothed wing-beat signal [the original signal in (b) is filtered by a zero-phase
Gaussian with the width of the wing-beat periodicity], which helps to see the distribution of the
signal from each quadrant of the insect event in (b). The insect enters Q2→Q1→Q4 sequentially,
but it was not detected on Q3.

Gebru et al.: Investigation of atmospheric insect wing-beat frequencies and iridescence features. . .

Journal of Applied Remote Sensing 083503-6 Vol. 8, 2014

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 03/02/2015 Terms of Use: http://spiedl.org/terms



The chasing insect event in Fig. 7 was recorded in three bands (VIS Si-Quadrant, NIR Si, and
SWIR InGaAs) (see Fig. 8). From this, one can get wing-beat frequency and directional infor-
mation of the insect simultaneously. In reality, it is difficult to know whether the two events in
Fig. 7 happen at the same range or are separated along the monitored path, since we cannot
retrieve range information in this experiment. However, it could be possible to confirm this sit-
uation if we coupled the temporal dynamics with the directional information from the quadrant.
Figure 8(b) shows that the smaller insect (left) enters the FOV from West first before the arrival
of the larger insect (right) and they follow each other. The sequence is the same for both insects
except that the smaller insect was detected flying upward, but not the bigger insect. This means
that it is more likely that the larger insect was following the smaller one at the same location in
the FOV. Therefore, we could say that it is possible to confirm a chasing event by correlating the

Fig. 7 Example of a chasing event likely due to predation. Red arrows: Body sizes of small (left)
and big (right). Blue and green arrows: wing oscillation of the small and big insect, respectively.
The time difference between the two insect events is 0.5 s.

Fig. 8 (a) Triple-band signal of five insect events in the VIS, NIR, and SWIR. (b) Smoothed signal
(Gaussian filtered) of the chasing event. This is a signal only from the quadrant detector, which
shows the time sequence of the insect entering different segments of the detector. The smaller
insect (left) enters Q3, Q2, and Q1 sequentially and the bigger insect (right) follows similar path
after 0.5 s.
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millisecond time dynamics with directional information, even though we cannot retrieve range
information and verify the spatial co-occurrence using the proposed setup.

3.2 Iridescence Features

Iridescence refers to a change of spectral signature with a change of angle of detection or illu-
mination of a certain object. This concept has been used to study the structural color of biological
samples, e.g., the iridescence in the neck feathers of pigeons shows that cyan feathers change
color to magenta at large viewing-illumination angles.35,36 Many investigations have also been
done to investigate the nature of the structural color of insects, which show stable patterns in
different insect species.37–41 In this work, we have remotely investigated the iridescence features
of insects. This is a situation where an object changes its spectral signature when illuminated by
different colors (see Fig. 9).

We have used a Si quadrant and a two-color detector (Si/InGaAs). The Si quadrant detector
monitors the VIS range. The Si part within the two-color detector monitors the NIR, and the
InGaAs part monitors the SWIR. All backscattered light was collected simultaneously from any
insect event crossing the FOV. We have used only two-bands for this investigation. We did this in
order to study the difference in the shape of the waveform in the VIS and NIR [see Fig. 9(a)]. The
temporal signal of a certain insect in the VIS and NIR is found to be different as expected [see
Fig. 9(b)]. The ratio of NIR and VIS is not constant, since there is a difference in the temporal
signal. This difference in waveform of the temporal signal could be due to wing melanization42

on the slow part of the wing-beat in the VIS and vegetation subillumination in the NIR. Melanin
is the most common chromophore43 of all insects, which is responsible for dull black and brown-
ish colors. The membrane thickness should manifest as a spectral modulation in the temporal
signal at instances of the specular reflection. This was not fully investigated in this study. The
trajectory in a VIS-NIR color space of the insect event in Fig. 9 has shown specific features (see
Fig. 10). These features will be discussed more in the next section.

Investigation of the trajectory in a VIS-NIR-SWIR color space is one useful aspects of insect
studies. It should be noted that this is an extension of the well-known Red-Green-Blue (RGB)
color space concept. This is directly related to the waveform of a wing-beat cycle. Each temporal
waveform has a different amplitude, harmonic content, and phase.23 These quantities can be
exploited to generate trajectories in a two-dimensional (2-D) color plane (see Fig. 10). The tra-
jectories for different insect species are different because of differences in terms of position,
phase, modulation size, and direction of the temporal waveform. This seems to be species spe-
cific, but it requires a controlled experiment with known insects to verify this. A comparison of

Fig. 9 Iridescent properties: (a) spectral difference in the VIS and NIR ranges. (b) Ratio of VIS and
NIR. Note the entirely different waveform.
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wing-beat trajectories among different insect species is given in the next section. As noted, the
trajectory in color space is one way of visualizing the difference in the temporal waveform of the
insect and this can be used for remote identification of insect species. To illustrate this, we can
consider the chasing event22 (see Fig. 11).

The two insects have different sizes and wing-beat frequencies (see Fig. 11). By looking at
this specific event, one can guess that they are different species. However, it is interesting to see if
there is a difference between the trajectories in color space of both insects. The trajectory of the
smaller insect has a smaller modulation size than the bigger insects and this could be due to their
size differences. The reason why the shape of the trajectory is different could be due to a varia-
tion of wing melanization in the VIS and vegetation subillumination in the NIR. We have made a
comparison of three different insects and analyzed the differences in order to enrich and support
the aforementioned concept. It is found that this analysis is also in agreement with the above
discussion. This result shows that the trajectory in the 2-D color plane is different for the three

Fig. 10 Trajectory in color plane during five wing-beat cycles. This representation could help to
distinguish insect species.

Fig. 11 Trajectory in color space for chasing insect event. NIR OCS: near-infrared optical cross-
section and VIS OCS: visible optical cross-section.
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insect species (see Fig. 12). The slope of oscillation and off-set are related to the wing and body
melanization, respectively. In this case, a large angle means more body or wing melanization of a
certain insect. The assessment of the degree of melanization could improve species selectivity.
This could also be reproducible for other similar insect species, and it could help to map insects
based on their wing-beat trajectories. The result in Fig. 12 is inspired by laboratory work done in
Ref. 23, which presented significantly different MIR signatures for a list of bird species. The
trajectories for the six species showed significant differences.

3.3 Insect Release

The purpose of this experiment was to detect reflecting color marked insects concurrently using a
spectrometer and a two-color detector. We have made known insect releases during this

Fig. 12 Trajectory in two-dimensional (2-D) VIS-NIR color plane for three insects with different
sizes and wing-beat frequencies. NIR OCS: near-infrared optical cross-section and VIS OCS: vis-
ible optical cross-section. Wing melanization is related to the slope of oscillation and body mela-
nization is related to the off-set. Melanin is the most common chromophore of all insects, which is
responsible for colors.

Fig. 13 Released green powder-labeled dragonfly: (a) wing-beat frequency of dragonfly using Si-
NIR detector. (b) Spectral signatures of dragon fly using spectrometer.

Gebru et al.: Investigation of atmospheric insect wing-beat frequencies and iridescence features. . .

Journal of Applied Remote Sensing 083503-10 Vol. 8, 2014

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 03/02/2015 Terms of Use: http://spiedl.org/terms



experiment to verify the capability of the technique. This setup enables us to retrieve spectral
signature, wing-beat frequency, and absolute OCS information simultaneously (see Fig. 2). One
of the released insects was a green powdered dragonfly and we detected the event with the spec-
trometer and Si (NIR) part of the two-color detector (Si/InGaAs) (see Fig. 13). Figures 13(a) and
13(b) show the backscattering signal from the dragonfly which contains wing-beat frequency
information and the spectral signature, which has predominantly green features due to the pow-
der, respectively. The wing-beat frequency is 71 Hz, which is in the expected range for a dragon-
fly. This was detected with the NIR detector. This event was not detected by the SWIR detector.
The reason for this could be because the dragonfly hits the edge of the FOV, since the size of the
Si (NIR) is slightly bigger than that of the InGaAs (SWIR). However, we can confirm that the
SWIR detector works well and we have detected some insect events, e.g., 66 Hz insect (see
Fig. 14). A few other insects (e.g., damselfly, carpenter bee, honey bee, and moths) were released
during our experiment, but some of them did not enter the FOVand others produced relatively a
weak backscattered signal. We found that there was a difference in signal strength among the
different insect species. This could be due to insect size differences, flight headings, and detec-
tion range.

4 Discussion and Conclusion

We have developed and tested a multispectral kHz remote detection system, capable of resolving
the wing-beat frequency of fast insect events. This technique enables us to get a rough estimation
of the absolute OCS. It should be noted that the improvements can be made by considering the
distance from the focus and the rise times. This technique can also be used to remotely inves-
tigate the iridescence features of insects. Simultaneous remote monitoring of insects on three
bands is presented. It is shown that this technique can be used for species classification and
to determine the flight direction of an atmospheric insect. The uncertainty of chasing events
can also be minimized by correlating information from the quadrant and the two-color detector.
We discussed the possibility of estimating wing-membrane thickness remotely using the current
technique. Generally, this remote detection system has shown potential for future studies of
insect activities and we can say that wing-beat frequency, absolute OCS, spectral signature,
and iridescence features could provide a means to remotely identify insects. In the future,
we plan to investigate this farther using the concepts of thin films44–50 to estimate the membrane
thickness of insect wings.

Fig. 14 Insect event detected by the SWIR detector. Wing-beat frequency and size of the insect
are 66 Hz and 30 mm2, respectively.
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