
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Early Vision Optimization: Parametric Models, Parallelization and Curvature

Strandmark, Petter

2010

Link to publication

Citation for published version (APA):
Strandmark, P. (2010). Early Vision Optimization: Parametric Models, Parallelization and Curvature. [Licentiate
Thesis, Mathematics (Faculty of Engineering)]. Centre for Mathematical Sciences, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/8626f0fe-0e95-421a-b851-a18e1d182088

EARLY VISION OPTIMIZATION

PARAMETRIC MODELS, PARALLELIZATION AND CURVATURE

PETTER STRANDMARK

Faculty of Engineering
Centre for Mathematical Sciences

Mathematics

Mathematics
Centre for Mathematical Sciences
Lund University
Box 118
SE-221 00 Lund
Sweden

http://www.maths.lth.se/

Licentiate Theses in Mathematical Sciences 2010:1
ISSN 1404-028X

ISBN 978-91-7473-068-5
LUTFMA-2033-2010

c© Petter Strandmark, 2010

Printed in Sweden by MediaTryck, Lund 2010

Abstract

Early vision is the process occurring before any semantic interpretation of an image
takes place. Motion estimation, object segmentation and detection are all parts
of early vision, but recognition is not. Many of these tasks are formulated as opti-
mization problems and one of the key factors for the success of recent methods is
that they seek to compute globally optimal solutions. This thesis is concerned with
improving the efficiency and extending the applicability of the current state of the
art. This is achieved by introducing new methods of computing solutions to image
segmentation and other problems of early vision. The first part studies parametric
problems where model parameters are estimated in addition to an image segmenta-
tion. For a small number of parameters these problems can still be solved optimally.
In the second part the focus is shifted toward curvature regularization, i.e. when
the commonly used length and area regularization is replaced by curvature in two
and three dimensions. These problems can be discretized over a mesh and special
attention is given to the mesh geometry. Specifically, hexagonal meshes are com-
pared to square ones and a method for generating adaptive methods is introduced
and evaluated. The framework is then extended to curvature regularization of
surfaces. Thirdly, fast methods for finding minimal graph cuts and solving related
problems on modern parallel hardware are developed and extensively evaluated.
Finally, the thesis is concluded with two applications to early vision problems:
heart segmentation and image registration.

iii

iv

Preface

My studies of image processing and computer vision started with an undergrad-
uate project about wavelets in Lund, but it was the course in image processing
lectured by Kalle Åström which really started my interest in the field. My other
undergraduate contact with the Mathematical Imaging Group was a course in
linear and combinatorial optimization by Fredrik Kahl. Despite these positive
experiences I had completely different plans after spending one semester as an
exchange student at the University of Illinois. I took a great course in numerical
methods for atmospheric sciences, which led me to apply to a PhD position in
fluid mechanics at Chalmers University, which I was offered. At that time, however,
I had realized that I enjoyed my stay abroad too much and decided to stay for the
full year. This meant taking a course in computer vision held by David Forsyth in
the spring. After finishing the course, which, ironically, was the course with the
lowest grade in my transcript, I took a position as an assistant at Chalmers under
the supervision of Irene Gu to write my master’s thesis. Ultimately, I ended up
back in Lund as a PhD student in the Mathematical Imaging Group.

Most of the work collected in this thesis is the result of collaboration with my
colleagues at Lund University. Without them, this thesis could not have come
into existence. First, and foremost, I would like to thank my supervisor, Fredrik
Kahl, for his help and collaboration on several papers. The chapters on curvature
in this thesis has been done in collaboration with Thomas Schoenemann, who
co-authored the 2009 paper which became my introduction to the topic. Linus
Svärm and I developed the ideas in the very last chapter in this thesis about a
year ago. The material about medical imaging, heart segmentation specifically,
is more recent, and ongoing with Johannes Ulén as the principal investigator.
Niels-Christian Overgaard was of great help for the very first paper. I am grateful
to be able to collaborate with such professional people. Everyone at the Centre for
Mathematical Sciences has my thanks for providing great company, courses and
seminars.

v

vi

Contents

1 Introduction 1
1.1 Overview of the Thesis . 2
1.2 Previous Publications . 6

2 Optimization Methods 7
2.1 Convex Functions . 7
2.2 Dual Decomposition . 9
2.3 Branch and Bound . 13
2.4 Minimum Cut of a Graph . 16
2.5 Pseudo-Boolean Optimization 17
2.6 Beyond Boolean Variables . 19

3 Markov Random Fields 23
3.1 Maximum A Posteriori Estimation 23
3.2 Binary Images . 24
3.3 General Discrete Fields . 26

I Parametric Models 31

4 Optimizing Parametric Total Variation Models 33
4.1 The Mumford-Shah Functional 33
4.2 Parametric Binary Problems 37
4.3 Two-Phase Mumford-Shah Functional 42
4.4 Ratio Minimization . 47
4.5 Gaussian Distributions . 49

vii

4.6 Conclusion . 51

II Curvature Regularization 53

5 Curvature Regularization in the Plane 55
5.1 Background . 55
5.2 Length-Based Regularization 56
5.3 Incorporating Curvature . 57
5.4 Types of Meshes . 63
5.5 Experimental Results . 66
5.6 Conclusions . 71

6 Surface Completion and Segmentation with Curvature 73
6.1 Curvature of Surfaces . 73
6.2 Experiments . 76

III Parallel and Distributed Optimization 79

7 Parallel and Distributed Graph Cuts 81
7.1 Previous Approaches to Graph Cuts in Vision 82
7.2 Decomposition of Graphs . 84
7.3 Experiments on a Single Machine 90
7.4 Splitting across Different Machines 95
7.5 Conclusions . 96

8 Parallel Labeling on a GPU 99
8.1 Splitting the Graph . 100
8.2 Dynamic Programming . 101
8.3 Boolean Formulation and Updating of Weights 103
8.4 Linear Programming Relaxation 104
8.5 Experiments . 104
8.6 Coordinate Ascent . 107
8.7 Conclusion . 109

viii

IV Applications 111

9 Multiple Regions for Heart Segmentation 113
9.1 Multi-Region Segmentation 113
9.2 Solving by Duality . 116
9.3 Data Term . 117
9.4 Regularization . 118
9.5 Experiments . 120

10 Shift-Map Image Registration 121
10.1 Problem Formulation . 121
10.2 Registration Energy Terms . 123
10.3 Experiments . 125
10.4 Conclusion and Further Work 126

Bibliography 131

Index 141

ix

x

Chapter 1

Introduction

Eyes have evolved independently in at least forty groups of animals (Coyne, 2009).
Despite considerable complexities and evolutionary hurdles, the camera-type eye,
with a lens focusing the image onto the retina, has evolved in very different
groups: from vertebrates to crustaceans and jellyfish (Nilsson, 1999). This is a
testament to the importance of vision for life on earth and a suggestion that artificial
vision systems, if constructed properly, will be immensely useful to machines for
navigation, interaction and measurement. The construction of such artificial
vision systems may therefore be seen as a subfield of artificial intelligence, and
is commonly referred to as computer vision. It is a relatively recent subfield of
artificial intelligence; recent because it usually involves processing large quantity of
data – even very small images could exhaust the best computers in the 70s. The
history of artificial intelligence itself goes back to at least 1950, when Alan Turing
concluded his seminal paper with the following paragraph, suggesting two lines of
future research:

We may hope that machines will eventually compete with men in all purely
intellectual fields. But which are the best ones to start with? Even this is a
difficult decision. Many people think that a very abstract activity, like the
playing of chess would be best. It can also be maintained that it is best to
provide the machine with the best sense organs that money can buy, and
then teach it to understand and speak English. This process could follow the
normal teaching of a child. Things would be pointed out and named, etc.
Again I do not know what the right answer is, but I think both approaches
should be tried.

Half a century later, the first possibility has turned out to be overwhelmingly
successful, whereas the second has had little success. “The best sense organs that
money can buy” are indeed stunningly powerful today, but any sense organ, visual
ones certainly not excluded, need a powerful computational system to process and
interpret the data. One of the ultimate goals of computer vision is precisely this.

1

CHAPTER 1. INTRODUCTION

Ω

Γ

γ

Figure 1.1: Segmentation of an image. The region Γ has the curve γ as its boundary.

Of course, the goal of this thesis is much more modest. I will describe
methods for solving certain optimization problems commonly arising in computer
vision. One of the goals will be globality, that is, the solution obtained should
be guaranteed to be the best possible. Two other goals will be parallelization to
make use of modern microprocessors and memory efficiency, since solving computer
vision problems can be prohibitively expensive in terms of memory requirements.

The state of the art of computer vision highly depends on what applications
one has in mind. Computers are able to estimate the scene depth from a pair of
images with great accuracy and absolute precision and to recover the 3D struc-
ture of an entire city just from arbitrarily downloaded images from the Internet
(Agarwal et al., 2009). On the other hand, computers are still unable to perform
tasks which humans perform effortlessly, such as determining whether an image
contains a chair or not. Recognition is an example of high-level vision and is very
difficult for computers. In contrast, my thesis will focus on low-level vision – tasks
which humans perform subconsciously in every waking second, but still provide
challenges for designers of artificial vision systems. These tasks are also commonly
referred to as tasks of early vision.

1.1 Overview of the Thesis

A major part of my thesis is devoted to image segmentation. A segment of an
image is described by a simple closed curve γ enclosing an area Γ ⊆ Ω in such a
way that the area represents something significant about the image, e.g. foreground
or an interesting object, see Fig. 1.1. The segmentation task is to find the best
(closed) curve γ given an image I , or more precisely,

maximize
γ

P(γ | I), (1.1)

2

1.1. OVERVIEW OF THE THESIS

where P(γ | I) is the posterior probability of γ given the image I : Ω → R3

(or R if the image is black and white). This thesis will discuss various as-
pects of solving (1.1). Using Bayes’ rule, this expression becomes P(γ | I) =
P(γ) P(I | γ)/P(I). If the log-likelihood is denoted `(γ) = log P(γ),

`(γ | I) = `(γ) + `(I | γ) −`(I)︸ ︷︷ ︸
independent
of γ

. (1.2)

In computer vision and image analysis the probabilistic interpretation is sometimes
dropped and `(γ | I) is simply referred to as the energy of γ. The reason for this is
the influence from the calculus of variations used in physics. Consequently, image
segmentation and other tasks are ofter referred to by computer vision researchers as
energy minimization problems. The prior `(γ) is often called the regularizing term,
or smoothness term and `(I | γ) is called the data term. I will use this vocabulary
throughout the thesis. Letting Esmooth(γ) = −`(γ) and Edata(γ) = −`(I | γ),
we have finally arrived at the optimization problem

minimize
γ

Esmooth(γ) + Edata(γ). (1.3)

It is equivalent to (1.1), but more similar to how these problems are commonly
presented in the computer vision community. The data term is the likelihood of
an image given a particular segmentation and is commonly written as

Edata(γ) =

∫
Γ
−`(x is foreground | I(x))dx+∫

Ω\Γ
−`(x is background | I(x))dx. (1.4)

Chapter 3 describes briefly how smoothness and regularizing terms arise in the con-
text of conditional independence between image pixels (the Markov property). The
data term require likelihoods `(x is foreground | I(x)) and `(x is background | I(x))
for each position x in the image. These are highly application-dependent. A
typical simple application uses some known or estimated color histogram to model
the two regions. Mumford and Shah (1989) describe various forms `(γ) and
`(I | γ) can take.

Maximizing (1.3) with data term (1.4) becomes very easy under the assumption
that all possible curves γ are equally likely a priori, i.e. `(γ) is constant. Regrettably,

3

CHAPTER 1. INTRODUCTION

the resulting model is often not good enough. Each point in the image can under
this assumption be classified independently of the others, which is unrealistic. This
assumption can be removed and a more complicated prior is then imposed on the
curve γ. Several chapters in this thesis will discuss the aspects of the optimization
problems arising for different classes of regularizing terms.

Chapter 4 This chapter considers the case where the prior of the curve γ is a
linear function of its length:

`(γ) = −ρ length(γ), ρ ≥ 0. (1.5)

The theory developed can also handle slight variations thereof, such as anisotropic
length (Olsson et al., 2009). This optimization problem is well-known to be
solvable and I will describe methods to simultaneously find the best possible data
term under some conditions. As a simple example, one might wish to model
an image as having foreground and background pixels drawn from two different
Gaussian distributions with (unknown) means but equal variance. The techniques
developed in Chapter 4 enable the efficient computation of the optimally estimated
means simultaneously with the optimal segmentation.

Chapter 5 After covering length-based regularization, the focus is shifted to
more general functionals involving curvature:

`(γ) = −ρ length(γ)− σ
∫
γ
|κ(s)|pds, ρ, σ ≥ 0, (1.6)

where the curvature κ(s) = ||γ ′′(s)|| for a curve γ parametrized by its arc length
s. Functionals with such terms can be discretized with a grid and subsequently
solved with linear programming, as was shown recently by Schoenemann, Kahl
and Cremers (2009). Chapter 5 will build upon their work and extend the method
in several ways. A new set of constraints will be introduced which fixes an issue
in the original formulation. The framework is then extended in two directions:
It is shown that the square grid naturally arising from the image pixels is not as
efficient as hexagonal grids. Complementary to this, a method for adaptive grid
generation is discussed and tested experimentally.

Chapter 6 Whereas the previous chapter expanded upon the existing framework
for functionals involving the curvature of plane curves, Chapter 6 will introduce

4

1.1. OVERVIEW OF THE THESIS

a new framework for minimizing the curvature of surfaces. Applications include
three-dimensional segmentation and surface completion, for example within stereo
vision.

Chapter 7 Image segmentation with length regularity may also be converted
into the graph theoretical problem of finding the minimum cut in a directed
graph. The introductory third chapter will describe how this is done for Markov
random fields. Many other types of problems can also be formulated as minimum
cut problems. Fast algorithms for solving these problems are therefore of utmost
importance in computer vision. Chapter 7 will introduce a method for solving the
minimum cut problem in parallel, solving small problems faster and making larger
problems tractable by distributing them across multiple computers. This will be
achieved by dual decomposition, a technique which is summarized in Chapter 2.

Chapter 8 I could walk down to the store today and, for a modest amount of
money, buy a graphics card capable of performing more than a trillion arithmetic
operations per second. The highly parallel graphical processing units (GPUs) have
in the last decade found their way into computing, with manufacturers like Nvidia
diverting more and more die space from gaming to computing. This chapter
continues the search for fast algorithms for graph cuts and other more general
labeling problems by exploring possible GPU algorithms. An algorithm based
on dual decomposition and dynamic programming is introduced, similar to one
presented by Komodakis, Paragios and Tziritas (2007).

Chapter 9 The penultimate chapter considers an application of dual decomposi-
tion to the 3D segmentation of the human heart. While this problem has many
interesting aspects, I will focus on describing a multi-region model of the heart
and how dual decomposition can be used to avoid the costly (w.r.t. memory) use
of quadratic pseudo-Boolean optimization (QPBO).

Chapter 10 Finally, the last chapter considers an application of multi-label
energy minimization to image registration. With both the number of variables and
the number of labels ranging in the millions, the size of the search spaceis too large
for any guarantee of globality or approximations thereof.

5

CHAPTER 1. INTRODUCTION

1.2 Previous Publications

The material presented in this thesis is largely based on previous publications:

• Petter Strandmark, Fredrik Kahl and Niels Chr. Overgaard, Optimizing
Parametric Total Variation Models, International Conference on Computer
Vision (ICCV), Kyoto, 2009.

• Petter Strandmark and Fredrik Kahl, Parallel and Distributed Graph Cuts by
Dual Decomposition, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), San Francisco, 2010.

• Linus Svärm and Petter Strandmark, Shift-map Image Registration, Interna-
tional Conference on Pattern Recognition (ICPR), Istanbul, 2010.

• Petter Strandmark, Fredrik Kahl and Thomas Schoenemann, Parallel and
Distributed Vision Algorithms Using Dual Decomposition, submitted 2010.

• Petter Strandmark and Fredrik Kahl Curvature Regularization for Curves and
Surfaces in a Global Optimization Framework, submitted 2010.

Various parts of this work have also been presented at the Swedish Symposium
on Image Analysis (SSBA) 2009 and 2010.

6

Chapter 2

Optimization Methods

This chapter will provide an overview of optimization techniques used throughout
this thesis. My view of the field of convex optimization comes from the books
by Boyd and Vandenberghe (2004), Bertsekas (1999) and Nesterov (2004). Dual
decomposition is a technique for splitting up an optimization problem into smaller
and, hopefully, easier subproblems. These subproblems are solved iteratively to
obtain a solution to the original problem. Another widely used method is branch
and bound, which solves hard optimization problems by searching the spaces of
feasible solutions in a clever way, thereby eliminating the need for an exhaustive
search. The second half of this chapter will cover methods from combinatorial
optimization, which are of utmost importance for modern low-level vision.

2.1 Convex Functions

The minimization of a differentiable function f ∈ C1(Rn) is in general an
intractable task. The class of differentiable functions is too large and has too little
structure for there to exist any method to minimize them all in any reasonable
amount of time. The best one can expect from gradient descent schemes is the
convergence to a local minima in general, not the global minimum. One might
then ask for a class of functions which are possible to minimize globally in a
reasonable amount of time. What would be a suitable definition of such a class
F ⊆ C1(Rn)?

We must be able to tell whether we have reached the global optimum. Further-
more, since we cannot search the entire domain, such a certificate must be possible
to compute locally. Therefore, since the functions in F are only assumed to be
differentiable it is natural to require that

f ∈ F , ∇f(x∗) = 0 =⇒ f(x∗) is the global minimum. (A)

7

CHAPTER 2. OPTIMIZATION METHODS

The class F consists of the functions that are “easy” to minimize. We should expect
that if f and g are easy to minimize, so is the function f + g:

f, g ∈ F =⇒ f + g ∈ F . (B)

Lastly, we require that the affine functions are members of F . They are certainly
easy to minimize over Rn.

aTx+ b ∈ F . (C)

It turns out that the requirements A–C are enough to derive a simple character-
ization of the functions in F . Let f ∈ F and x0 ∈ Rn be fixed. Consider the
function g defined by

g(x) = f(x)−∇f(x0)Tx. (2.1)

Assumptions B and C tells us that g ∈ F . We have that ∇g(x0) = ∇f(x0)−
∇f(x0) = 0. Therefore, x0 is the global minimizer to g according to assumption
A which means that for any x ∈ Rn,

g(x) ≥ g(x0) = f(x0)−∇f(x0)Tx0 (2.2)

and thus,

f(x) ≥ f(x0) +∇f(x0)T(x− x0). (2.3)

This is the definition of differentiable convex functions on Rn. Conversely, it
is easily seen that A and B hold for convex functions. This argument (Nesterov,
2004) shows the importance of convex functions in optimization. In general,
convex functions are defined by the inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), t ∈ [0, 1]. (2.4)

If instead the reverse inequality holds for all x,y ∈ Rn, the function is said to be
concave.

Convex functions need not be differentiable. Still, it is always possible to find
a tangent plane completely below the function graph at any point. More precisely,
for any x0 it is always possible to find a vector g ∈ Rn such that

f(x) ≥ f(x0) + gT(x− x0), for all x. (2.5)

8

2.2. DUAL DECOMPOSITION

g is then called a subgradient of f at x0. The analogue for concave functions with
a reversed inequality are supergradients, shown in Figure 2.1. If f is differentiable,
g = ∇f(x0) and is unique. If not, the set of all g satisfying (2.5) is denoted
∇f(x0). This set is convex. One can observe that 0 ∈ ∇f(x0) if and only if x0

is the global optimum.

2.2 Dual Decomposition

This section introduces dual decomposition (Bertsekas, 1999), a general technique
in optimization to split a large problem into two or more smaller, better manageable
ones. The technique of decomposing problems with dual variables was introduced
by Everett (1963) and it has been used in many different contexts, e.g. in control
(Rantzer, 2009). The application within computer vision that bears the most
resemblance to that of this thesis is the work of Komodakis, Paragios and Tziritas
(2007) where dual decomposition is used for computing approximate solutions
to general Markov random field (MRF) problems, see Chapter 3. Consider the
following optimization problem:

inf
x∈X

E(x), (P)

where X and E are arbitrary. As mentioned in the preceding section, this problem
is in general very hard to solve. Sometimes the function E can be split up into two
parts: E(x) = E1(x) +E2(x), where the functions E1 and E2 are much easier
to minimize. We will see later that this is the case with many energy functions
associated with MRFs. Now let us consider the equivalent optimization problem

inf
x,y∈X

E1(x) + E2(y)

subject to x = y.
(2.6)

The dual function (Bertsekas, 1999; Boyd and Vandenberghe, 2004) of this opti-
mization problem is

d(λ) = inf
x,y∈X

(
E1(x) + E2(y) + λT(x− y)

)
= inf
x∈X

(
E1(x) + λTx

)
+ inf
y∈X

(
E2(y)− λTy

)
.

(2.7)

9

CHAPTER 2. OPTIMIZATION METHODS

Figure 2.1: Two different supergradients of a concave function represented as two
tangent planes.

From the last two rows we see that evaluating the dual function is equivalent to
solving two independent minimization problems. If minimizing E1 and E2 is
much easier than minimizingE, the dual function can be evaluated quite efficiently.
Since the value of the dual function d(λ) is a lower bound on the solution to (P)
for every λ, it is of great interest to compute the optimal such bound, i.e. solve
the dual problem:

sup
λ
d(λ). (D)

The dual function is concave, since it is the infimum over a set of concave
(affine) functions of λ. Furthermore, it is also easy to find a supergradient to d, as
stated by the following lemma:

Lemma 2.1. Given a λ0, let x∗ be an optimal solution to

d(λ0) = min
x

(
f(x) + λT

0 g(x)
)
. (2.8)

Then g(x∗) is a supergradient to d at λ0.

Proof. The following inequality hold for any λ:

d(λ) ≤ f(x∗) + λTg(x∗)

= f(x∗) + λT
0 g(x∗) + (λ− λ0)Tg(x∗)

= min
x

(
f(x) + λT

0 g(x)
)

+ (λ− λ0)Tg(x∗)

= d(λ0) + (λ− λ0)Tg(x∗),

(2.9)

10

2.2. DUAL DECOMPOSITION

which is the definition of a supergradient.

Maximizing the dual function d can then be done with subgradient methods
as described by Bertsekas (1999). Given a λ, one takes a step in the direction of a
supergradient x− y ∈ ∇d(λ):

Start with λ = 0
repeat

Update x and y by evaluating d(λ)
λ← λ+ τ(x− y), for some τ

until x = y

During the maximization of the dual function, we have access to a lower bound
d(λ) of the optimal function value, and also to two feasible solutions x and y
of the original problem. An upper bound on the optimal function value is then
given by min(E(x), E(y)). We can compute the relative duality gap which gives
an indication of how close we are to the optimum:

r =
min(E(x), E(y))− d(λ)

min(E(x), E(y))
. (2.10)

If X is a convex set and E a convex function, the optimal duality gap is generally
zero. However, in subsequent chapters I consider non-convex sets consisting of a
finite set of points with integral coordinates. In Chapter 7 an optimal gap of zero
is nonetheless guaranteed as it corresponds to solving an integer linear program
whose linear programming relaxation represents the convex hull of the feasible
integral solutions.

2.2.1 Choices of Step Sizes and Their Limitations

A step size τk needs to be chosen in each iteration k. One of the simplest ways of
doing this and still ensuring convergence is to pick τk = T/k, with T a constant
(Bertsekas, 1999). In fact, all step sizes chosen such that τk → 0 and

∑∞
k=1 τk =

∞ guarantee convergence. The step sizes for subgradient minimization can be
chosen in more sophisticated ways (Bertsekas, 1999), but minimizing a non-
differentiable convex function is still much harder than minimizing a differentiable
convex function. This somewhat disappointing result is a consequence of the
following theorem which describes a worst-case scenario:

11

CHAPTER 2. OPTIMIZATION METHODS

Theorem 2.2. For any k > 0 and L,R > 0, there exists a convex function f ,
Lipschitz continuous with constant L with a minimizer x∗ such that

f(xk)− f(x∗) ≥ LR

2(1 +
√
k + 1)

, (2.11)

for any optimization scheme with ||x0 − x∗|| ≤ R generating its points from subgra-
dients g of f in the following way:

xk ∈ x0 + span{g(x0), . . . , g(xk−1)}. (2.12)

The proof can be found in the book by Nesterov (2004, p. 138). The con-
sequence of this theorem is that O(1

ε2) iterations are needed to get within ε of
the optimal function value for any optimization method generating its iterates as
(2.12). This is much worse than for differentiable convex functions, since there
are first-order methods requiring O(1√

ε
) iterations.1

Despite this, we will sometimes see fast convergence for the applications in
this thesis. The problems in Chapter 7 converge quickly, but the convergence in
Chapter 8 is much slower.

2.2.2 Projected Supergradient Method

Let us instead consider a minimization problem with an inequality constraint:

inf
x∈X

E(x)

subject to g(x) ≤ 0.
(2.13)

The dual function of this problem is d(λ) = infx∈X(E(x) + λTg(x)), but
its domain is now {λ ≥ 0}, which turns the dual problem into a constrained
maximization problem. The updating of λ in the algorithm on page 11 is changed
into:

λ← [λ+ τg(x)]+ , (2.14)

where [·]+ is the orthogonal projection onto the feasible set {λ ≥ 0}.
1Close to the optimal point, first-order methods may display linear convergence, which require

O(logC/ε) iterations. Newton’s method require O(log logC/ε) iterations once sufficiently close
to the optimal point (Nesterov, 2004, p. 36).

12

2.3. BRANCH AND BOUND

2.3 Branch and Bound

Let us now once again consider the problem of minimizing a functionE(x), where
x takes values in an arbitrary set X . If X is partitioned into X = {S1, . . . , Sn},
we clearly have:

inf
x∈X

E(x) = inf
i=1...n

inf
x∈Si

E(x). (2.15)

Let E∗S be the optimal value of E on the set S. In general, E∗S is hard to compute.
Now assume that we can compute bounds of E∗S much more efficiently than
computing E∗S itself. With a method to compute E∗S and E∗S such that

E∗S ≤ E∗S ≤ E∗S , (2.16)

we can compare the set S to other parts of the search space X . To see this, assume
we have computed these bounds for two sets S and T . If E∗S < E∗T , we can
disregard the set T from further processing, since it is guaranteed to not contain
the global minimum of E. An upper bound is usually easy to compute, since it is
possible to choose E∗S = E(x) where x is any point in S. Finding good ways to
compute lower bounds is harder and completely problem-specific. As an example
of a lower bound, consider the minimum cut problem. If there is a path from s to
t, the lowest arc cost in that path is a lower bound of the minimum cut value.

The process of minimizing E consists of two steps which are iterated. First,
bounds are computed for every set in the partition after which sets known not to
contain the global minimum are removed. Second, any remaining sets are further
subdivided. This is the branch step. Formally, the algorithm starts with X = {X}
and proceeds as shown in Figure 2.2.

2.3.1 Example

As an example, consider the following pseudo-Boolean optimization problem:

minimize
x

xTAx+ cTx

subject to x ∈ {0, 1}n,
(2.17)

where A is a symmetric positive definite matrix. In the terminology of the previous
section, E(x) = xTAx+ cTx and

X = {0, 1}n. (2.18)

13

CHAPTER 2. OPTIMIZATION METHODS

X = {X}
repeat

E∗ ← minS∈X E∗S
E∗ ← maxS∈X E

∗
S

foreach S ∈ X do
if E∗ < E∗S then

Remove S from X
else

Replace S in X by a partition of S
end

end
until E∗ − E∗ is small enough

Figure 2.2: Branch and bound algorithm to minimize E over the set X.

One simple way of branching (dividing the search space) is to use the following
partition {S0, S1} of X :

S0 = X ∩ {x |x1 = 0}
S1 = X ∩ {x |x1 = 1}. (2.19)

This can be continued for more variables:

S00 = X ∩ {x |x1 = 0, x2 = 0}
S01 = X ∩ {x |x1 = 0, x2 = 1}.

...

(2.20)

Both {S0, S1} and {S00, S01, S10, S11} are partitions of X , and so on for higher
numbers of fixed elements of x. A lower bound can be computed by replacing
the set X with X̃ = [0, 1]n and so on for S̃0, S̃1 etc. We clearly have X ⊂ X̃ ,
S0 ⊂ S̃0 etc. which means that minimizingE over these larger sets will give a lower
bound of the optimum values of the Boolean sets. For an upper bound, we can
round the real-valued solution vector and evaluate E(x) for the resulting Boolean
vector. The following numerical example will further explain the procedure. Let

14

2.3. BRANCH AND BOUND

S0 : E∗ = −34.9, E∗ = −19

�� ((QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ S1 : E∗ = 1.3, E∗ = 19

S00 : E∗ = −23.4, E∗ = −19

�� ((QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ S01 : E∗ = −20, E∗ = −20

S000 : f∗ = −3.7, f∗ = 0 S001 : E∗ = −21.4, E∗ = −19

��vvmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

S0010 : E∗ = −8, E∗ = −8 S0011 : E∗ = −19, E∗ = −19

Figure 2.3: The branch and bound tree for the boolean optimization problem
(2.17), (2.21). The optimal value is -20. Each line is one outer iteration in Fig. 2.2

us take

A =



46 3 16 −15 −12

3 59 −10 −8 −12

16 −10 39 −10 16

−15 −8 −10 27 8

−12 −12 16 8 46


c =



−6

−24

−47

−18

−16


. (2.21)

The complete optimization procedure is shown as a tree in Figure 2.3. It
starts by computing bounds for S0 and S1. This immediately results in S1 to be
discarded. S0 is split into S00 and S01. For S01 the optimal value is known since
the relaxed and the rounded values are equal. Further branching down the tree
shows that it is in fact globally optimal for X .

15

CHAPTER 2. OPTIMIZATION METHODS

ONMLHIJK1
1

2

ONMLHIJK4
1

1

ONMLHIJK7
1

2
1

????????
ONMLHIJK10

1

1

ONMLHIJK13

1

ONMLHIJKs
3

3

????????
ONMLHIJK2

1

1
2

????????
ONMLHIJK5

1

1

ONMLHIJK8
1

1

ONMLHIJK11
1

2

ONMLHIJK14

1

5 ONMLHIJKt

ONMLHIJK3
1 ONMLHIJK6

1 ONMLHIJK9
2 ONMLHIJK12

2 ONMLHIJK15

Figure 2.4: Example of an undirected graph. One minimum cut in this graph is S =
{s, 1 . . . 6} and T = {t, 7 . . . 15}. Another is S′ = {s, 1 . . . 12, 15} and T′ = {t, 13, 14}.
Both have the value 3.

Branch and bound is a very general method and its efficiency highly depends
on the quality of the computed bounds. I will use branch and bound in chapter 4
to compute optimal solutions to a special class of segmentation problems.

2.4 Minimum Cut of a Graph

Let G be a graph with n nodes (or vertices) in addition to two special nodes s and
t. A non-negative weight wi,j is associated to each pair (i, j) of nodes, which is
greater than 0 if there is an edge between i and j. Because no self-loops are allowed
in the graph, wi,i = 0 is true for all i.

A cut is a partition of the nodes of G into two sets S and T , such that s ∈ S
and t ∈ T . The value of a cut is the sum of all weights of edges leading from S to
T . If all these edges are removed, there is no path from s to t, hence the name “cut”.
The minimum cut of G is the cut with the smallest possible value. Figure 2.4
shows an example of an undirected graph (wi,j = wj,i) and its minimum cuts.

Now introduce indicator variables x = (x1, . . . xn) where xi is equal to 0 if
node i is in S and 1 otherwise. For convenience, let Ni denote the neighborhood
of i, that is, the set of all nodes j 6= s, t such that there is an edge between i and j.
For example, N5 = {2, 4, 6, 8} in Figure 2.4. With this notation the problem of
finding the minimum cut is to

minimize
x∈{0,1}n

n∑
i=1

∑
j∈Ni

wi,j(1− xi)xj +

n∑
i=1

ws,i(1− xi) +

n∑
i=1

wi,txi. (2.22)

16

2.5. PSEUDO-BOOLEAN OPTIMIZATION

There are efficient methods for solving this optimization problem if wi,j ≥ 0 for
all i, j ∈ {1 . . . n}. The algorithm by Boykov and Kolmogorov (2004) is used
extensively by the computer vision community.

2.5 Pseudo-Boolean Optimization

The optimization problems (2.17) and (2.22) are examples of pseudo-Boolean
optimization problems, i.e. problems where a function f : {0, 1}n → R is
minimized. These optimization problems are thoroughly treated by Boros and
Hammer (2002). With the introduction of auxiliary variables, minimizing f is
always reduced to minimizing a polynomial g of degree 2.

Some pseudo-Boolean functions can be minimized by computing the minimal
cut of a graph. Consider a function of two Boolean variables;2 it can be written as
a polynomial of degree two:3

E(x1, x2) = E11x1x2 + E10x1(1− x2)

+ E01(1− x1)x2 + E00(1− x1)(1− x2),
(2.23)

or, ignoring constant terms:

E(x1, x2) =
(
E11 − E10 − E01 + E00

)
x1x2

+ E10x1 + E01x2 − E00(x1 + x2).
(2.24)

This expression can be written on the form (2.22) if and only if the coefficient in
front of x1x2 is non-positive (since wi,j is required to be non-negative). Written
out, this requirement is

E00 + E11 ≤ E01 + E10. (2.25)

This property of the function E is called submodularity. The fact that submod-
ular functions can be efficiently minimized by computing a minimum cut was
introduced by Ivănescu (1965) for quadratic functions and Billionnet and Minoux
(1985) for cubic functions. Kolmogorov and Zabih (2002, 2004) brought this
work to the attention of the computer vision community.

2Such functions are often called cliques of size 2.
3E(0, 0) is abbreviated as E00 etc. E is defined by the four values in its range: E00, . . . E11.

17

CHAPTER 2. OPTIMIZATION METHODS

2.5.1 General Quadratic Pseudo-Boolean Functions

The problem of minimizing a quadratic pseudo-Boolean function covers, as men-
tioned in the previous section, all pseudo-Boolean functions by possible introduc-
tion of auxiliary variables. Therefore, it is enough to consider

minimize
x

c0 +
n∑
i=1

cixi +
∑

1≤i<j≤n
ci,jxixj

subject to x ∈ {0, 1}n.
(2.26)

This is known as a quadratic pseudo-Boolean optimization problem or QPBO.
By introducing new variables yi,j to represent the product xixj , (2.26) can be
reformulated as an integer linear program:

minimize
x,y

c0 +

n∑
i=1

cixi +
∑

1≤i<j≤n
ci,jyi,j

subject to

yi,j ≥ xi + xj − 1,
yi,j ≥ 0

}
, ci,j > 0,

yi,j ≤ xi,
yi,j ≤ xj

}
, ci,j < 0,

x ∈ {0, 1}n.

(2.27)

Relaxing the constraint x ∈ {0, 1}n to x ∈ [0, 1]n results in a linear program.
It can be shown by looking at the determinant of all submatrices of the linear
constrains and employing Cramer’s rule that there always exists an optimal solution
x̂ ∈

{
0, 1, 1

2

}n
to the relaxation of (2.27).

Given the solution of the linear programming relaxation, one can often say a
lot about the solution to the original problem (2.26). This is due to the following
persistency result:

Theorem 2.3. Let x̂ ∈
{

0, 1, 1
2

}n
be a solution to (2.27) and L =

{
i |xi 6= 1

2

}
.

Then there exists a solution x∗ to (2.26) with x∗i = x̂i for all i ∈ L.

This motivates the following terminology: If i 6= 1
2 the linear programming

relaxation is said to have labeled variable i, otherwise xi is said to be unlabeled,
which is sometimes written i = ∅. Thus, the solution of the relaxation is in

18

2.6. BEYOND BOOLEAN VARIABLES

{0, 1,∅}n. Linear programs can be solved in polynomial time, but there are even
more efficient algorithms. A solution satisfying Theorem 2.3 with the same lower
bound of the optimal value as in (2.27) can be computed as a minimum cut in a
graph with 2n nodes (Boros and Hammer, 2002).

If the solution contains several unlabeled variables, it can sometimes be im-
proved with a technique called probing. The idea is to pick an index i with
i = ∅. Then two problems are solved, with xi fixed to 0 and 1, respectively. If
a previously unlabeled variable xj is equal to the same value (not ∅) in both of
the new solutions, then xj is permanently fixed to this value, as it is known to
be optimal. The process is then repeated. Probing is sometimes very effective in
finding globally optimal solutions.

The persistency results of the linear programming relaxation were introduced
by Hammer, Hansen and Simeone (1984). Later, Boros, Hammer and Sun (1991)
solved the linear program efficiently as a minimum cut in a graph. The probing
technique is due to Boros, Hammer and Tavares (2006). Their work was made
popular in the computer vision community due to an efficient implementation
by Rother et al. (2007a; 2007b), which is available for download. In this context,
“QPBO” often refers to solving the linear programming relaxation with a minimum
cut.

2.6 Beyond Boolean Variables

In image processing and early vision, for example segmentation, two labels for each
pixel are often not enough. While optimization problems with a finite number of of
possible values for each variable can be converted into Boolean problems by binary
encoding, this is normally not the preferred method as the resulting optimization
problems tend to be very hard to solve. Instead, an approximate minimization
method can be employed, known as α-expansion. It is a method in which each
iteration, given an estimate x(t) ∈ {1 . . .K}n for a problem with K labels, gives
a better estimate x(t+1). The improvement is computed by picking one of the
possible pixel values α ∈ {1 . . .K} and computing the optimal expansion of that
value.

Definition 2.4. An image x(t+1) is an α-expansion of an image x(t) if for every
pixel i:

x
(t+1)
i = α or x

(t+1)
i = x

(t)
i . (2.28)

19

CHAPTER 2. OPTIMIZATION METHODS

The complete algorithm is to perform expansion moves iteratively for different
pixel values:

x(0) ← 1
t← 0
while function value is improved do

foreach α ∈ {1 . . .K} do
Set x(t+1) to the optimal α-expansion of x(t)

t← t+ 1
end

end

An expansion for every pixel value is performed until the function value does
not decrease for any value of α. This usually happens within a few loops through
the set of pixel values. While reaching the global optimum is not guaranteed, it
is possible to prove (Boykov, Veksler and Zabih, 2001, Theorem 6.1) that the
α-expansion algorithm will end up within a constant of the optimal function value.
The constant depends on the type of pairwise interactions between the variables
and is under favorable circumstances equal to 2.
Computing the optimal α-expansion can often be done exactly. Let z be a Boolean
vector and let

x
(t+1)
i =

{
x

(t)
i , if zi = 0

α, if zi = 1.
(2.29)

The problem of finding the optimal expansion is with this notation a Boolean
optimization problem over z. With the correct assumptions on the interactions
between the variables, all pseudo-Boolean problems will be submodular and can
be solved readily as minimum cut problems. The graph construction by Boykov,

Veksler and Zabih (2001, Section 5) uses additional nodes where α 6= x
(t)
i 6=

x
(t)
j 6= α and j ∈ Ni, although the construction can be done without extra nodes

(Kolmogorov and Zabih, 2004).
In addition to α-expansion the related α/β-swap (Boykov, Veksler and Zabih,

2001) may also be used. Instead of considering a single value α and expanding it
as much as possible, the swap considers two possible labels α, β ∈ {1 . . .K} and
computes the optimal swap between the two. It can handle more general functions
than expansion while still ensuring submodularity. The downsides are the lack of

20

2.6. BEYOND BOOLEAN VARIABLES

any guarantee to end up close to the optimum and the fact that each full iteration
now consists of solving

(
K
2

)
= (K2 −K)/2 Boolean problems instead of K.

2.6.1 Geometric Constraints

Often x represents the individual pixels of an image and the set L = {1 . . .K}
contains the labels assigned to each pixel. The function f is in this setting
often called the energy of the labeling. Several recent papers have extended the
framework for multi-label energy minimization for which global solutions are
tractable. If there is a geometric relationship between the labels (e.g. the image
region number 2 is contained in region number 1) the energy can sometimes still
be minimized exactly (Delong and Boykov, 2009). This framework will be put to
use in Chapter 9.

21

CHAPTER 2. OPTIMIZATION METHODS

22

Chapter 3

Markov Random Fields

One of the main topics in this thesis is graph theoretical optimization problems. I
will spend this chapter describing how these optimization problem arise in vision
when solving inference problems with Markov random fields (MRFs). This can be
done by reformulating the optimization problems into graph theoretical problems
which can be solved very fast. The reader is assumed to be familiar with MRFs, see
for example the book by Lindgren (2006). These methods are not new and I am
in this chapter summarizing methods with which most researchers of computer
vision are intimately familiar. Influential work in this field has been conducted
by several authors and groups and I have found the work by Greig, Porteous and
Seheult (1989); Kolmogorov and Zabih (2004) and Boykov, Veksler and Zabih
(2001) particularly useful.

3.1 Maximum A Posteriori Estimation

Consider a random field x ∼ p(x) with n points that each take K different
values.1 In many situations we do not observe x directly. Instead we observe
another field y of the same size. A typical assumption is that all components of y
are conditionally independent given x with known probability density functions
pi(yi|x) = pi(yi|xi). One possible model is y = x+ ε, where ε is independent
noise.

Given our measurements, we are interested in the maximum a posteriori (MAP)
estimate of the “true” field x. That is, we want to find an estimate x̂ such that
p(x̂|y) is maximized. Following Bayes’ rule, p(x|y) = p(x)p(y|x)/p(y), which
means that we want to solve the following optimization problem:

maximize
x̂∈{1...K}n

p(x̂) · p(y|x̂). (3.1)

1x ∼ p(x) means that x is sampled from the distribution with probability density p.

23

CHAPTER 3. MARKOV RANDOM FIELDS

Using our previous assumption about the independence of y, we take the negative
logarithm and rewrite (3.1) as a minimization problem:

minimize
x̂∈{1...K}n

− log p(x̂)−
n∑
i=1

log pi(yi|x̂i). (3.2)

At first glance this seems like a hard optimization problem. Even for a small
100 × 100 binary image, the search space has 210000 ≈ 103010 discrete points.
This chapter will use the methods described in the previous chapter to solve the
binary case exactly within milliseconds even for large images and approximate the
solution strongly when the number of pixel labels K > 2.

3.2 Binary Images

The work by Greig, Porteous and Seheult (1989), upon which this section is based,
seems to have passed largely unnoticed for many years until graph methods were
reintroduced to the vision community in the mid-90s. Since then, graph-based
methods have had an enormous success in solving problems in low-level computer
vision, much thanks to fast minimum cut solvers, e.g. Boykov and Kolmogorov’s
(2004).

We follow the presentation and notation of MRFs of Lindgren (2006, Section
4.3) and restrict the presentation in this chapter to cliques of size 2. The graph
construction becomes more complicated with larger cliques, as additional nodes
may have to be added (Section 2.5). To make the presentation easier to follow I
also omit cliques of order 1, but the optimization method works just as well with
them included. We can now write the probability function for x as

p(x) ∝ exp

1
2

n∑
i=1

∑
j∈Ni

Vi,j(xi, xj)

 . (3.3)

We use a homogeneous and isotropic model such that

Vi,j(xi, xj) =

{
ρ, xi = xj , ρ > 0

0, xi 6= xj .
(3.4)

The argument will also hold without homogeneity and isotropy. We cannot,
however, allow any potential and still use graph cuts for optimization. The

24

3.2. BINARY IMAGES

condition ρ > 0 is required. Let us write down the optimization problem (3.2)
explicitly:

minimize
x∈{0,1}n

− 1
2

n∑
i=1

∑
j∈Ni

I(xi = xj) · ρ

−
n∑
i=1

I(xi = 1) · log pi(yi|xi = 1)−
n∑
i=1

I(xi = 0) · log pi(yi|xi = 0).

(3.5)

Here I is the indicator function equal to 1 whenever its argument is true and 0
otherwise. We may in the above expression rewrite−I(xi = xj) = I(xi 6= xj)−1
and the −1 can be ignored as it does not depend on x. This means that solving
(3.5) is equivalent to problem (2.22), because in this case j ∈ Ni ⇐⇒ i ∈ Nj
i.e. the graph is undirected. We create a graph with edge weights

wi,j = ρ, j ∈ Ni
ws,i = − log p(yi|xi = 1)

wi,t = − log p(yi|xi = 0).

(3.6)

The minimum cut in this graph is the MAP estimate of the Markov random field.

3.2.1 Example

We adopt the following model for our observation: p(yi 6= xi) = e and p(yi =
xi) = 1−e. The constant e should be interpreted as the error rate – the probability
that we will observe the opposite of the true value xi. This observation model is
equivalent to

p(yi|xi = 1) = e(1− yi) + (1− e)yi
p(yi|xi = 0) = eyi + (1− e)(1− yi).

(3.7)

Figure 3.1 shows an experiment with this model. The image used is similar to
one of the examples by Greig, Porteous and Seheult (1989) and of the same
size. It is interesting to note that the optimization required hundreds of seconds
in 1989, while hundreds of microseconds is enough in 2010. The algorithm
scales well with image size; Fig. 3.2 shows an example with a 2000× 2000 pixel
image. The resulting optimization problem has 4 million binary variables, but was

25

CHAPTER 3. MARKOV RANDOM FIELDS

(a) original (b) observation (c) estimate (d) ICM estimate

Figure 3.1: MAP estimation for a 64× 64 binary image. A 4-connected neighbor-
hood was used with ρ = 0.7 and e = 25%. Computation time ranged between 923
and 1043 µs. The non-optimal ICM estimate is shown for comparison.

nevertheless solved exactly in less than 3 seconds. For comparison, an estimate was
also produced with iterated conditional modes (ICM) (Lindgren, 2006, 4.4.1).
The ICM solution (Fig. 3.1d) is far from optimal, which is in accordance with
Greig, Porteous and Seheult’s (1989) results.

3.2.2 General Case

While graph cuts can be used to minimize a large class of pseudo-Boolean functions,
they cannot be used for any function. In the previous example ρ was required to
be positive. Without this requirement, the graph is not guaranteed to have positive
weights. If negative weights are allowed, the resulting optimization problem is
NP-hard. This is easily seen by observing that a maximum-cut problem, known
to be NP-hard, can be transformed into a minimum-cut problem by replacing all
weights with their negatives. Section 2.5 briefly describes methods to deal with
such optimization problems.

3.3 General Discrete Fields

In this section we will look beyond binary MRFs. Unfortunately, the optimization
problems we then need to solve are NP-hard, but there are efficient approximation
methods that work well in practice, which were briefly described in Section 2.6.

The optimization problem for MAP estimation is derived in the same way as
in section 3.2, with the difference that we now allow each pixel to take K values

26

3.3. GENERAL DISCRETE FIELDS

(a) original (b) observation (only red frame in (a)
shown)

(c) ρ = 0.3 estimate (d) ρ = 0.7 estimate

Figure 3.2: MAP estimation for a 2000× 2000 binary image. A 4-connected neigh-
borhood was used with e = 40%. Computation times ranged between 2.41 and
2.99 s. The optimization problem with 4 million binary variables was solved exactly.

27

CHAPTER 3. MARKOV RANDOM FIELDS

instead of 2:

minimize
x∈{1...K}n

− 1
2

n∑
i=1

∑
j∈Ni

I(xi = xj) · ρ

−
n∑
i=1

K∑
k=1

I(xi = k) · log p(yi|xi = k). (3.8)

In general, ρ may depend on i, j, xi and xk, but the above formulation will be
sufficient for our purposes.

3.3.1 Example

Let x be a random field with 3 possible values: {1, 2, 3}. The observation y has
its pixels independently Gaussian distributed with mean x and variance 2. The
field x can be seen in Fig. 3.3a and the observation in Fig. 3.3b. Applying α-
expansion to minimize (3.8) converged in 3 cycles. A good solution was obtained
already after the first cycle. For this experiment, I used an 8-neighborhood and
ρ = 4. Larger neighborhoods give smoother borders.

3.3.2 Dense Stereo Estimation

Without going into any details, we can study another common application of
α-expansion: stereo estimation. The problem is to estimate the image depth
at every pixel given two images of the same scene, see Fig. 3.4. The images
have been captured form slightly different positions and can therefore be used to
recover the depth of the scene. The depth map is assumed to be an MRF with 16
possible depth values and the MAP estimate is computed using α-expansion. The
probability that a pixel has a specific depth is calculated from the photo-consistency
between the images. If a pixel in the left image e.g. has depth 13, its position in
the right image can be calculated and the pixel values compared. The paper by
Kolmogorov and Zabih (2006) contains a more thorough description of how the
interaction potential can be computed and better results than the simple model
(3.8) I use here.

28

3.3. GENERAL DISCRETE FIELDS

(a) original (b) observation

(c) 0 changes (d) 46104 changes (e) 21771 changes

(f) 248 changes (g) 0 changes (h) 22 changes

(i) 4 changes (j) 0 changes (k) 0 changes

Figure 3.3: Demonstration of α-expansion for a 248× 250 image. The algorithm
proceeded in alphabetical order (c)–(k). Each row is one complete cycle over the
pixel values 1,2,3. Column 1 shows 1-expansions, etc. After the third complete cycle
there were no more changes.

29

CHAPTER 3. MARKOV RANDOM FIELDS

(a) left image (b) right image

(c) left stereo ground truth (d) left stereo estimation

Figure 3.4: Dense stereo estimation from two photos using a MRF with 16 possible
values and α-expansion.

30

Part I

Parametric Models

Chapter 4

Optimizing Parametric Total
Variation Models

In the introduction, I presented the segmentation problem as finding an optimal
curve γ enclosing a region Γ ⊂ Ω. Alternatively, this can be formulated as finding
a function θ : Ω → {0, 1}, such that θ(x) = 1 ⇐⇒ x ∈ Γ. The optimal
function then defines the region of interest directly.

The data term (1.4) is constructed from an observation model, which normally
contains one or several unknown parameters that either must be known a priori or
estimated together with the segmentation itself. This estimation is a minimization
problem, where the optimal parameters depend on the proposed segmentation θ̂.
The work upon which this chapter is based has been done in collaboration with
Fredrik Kahl and Niels Christian Overgaard (Strandmark, Kahl and Overgaard,
2009) and we have investigated special cases of these functionals, where the image
to be estimated is binary and the number of unknown parameters is relatively
small.

4.1 The Mumford-Shah Functional

The functional introduced by Mumford and Shah (1989) is a widely used func-
tional for image segmentation. As a special case, Chan and Vese (2001) proposed a
segmentation method where an image is approximated with a function taking only
two values. By minimizing an energy consisting of a smoothness term added to
the squared distance between the original and the approximation, a large variety
of images can be segmented correctly. However, the exact minimization of this
energy functional is a difficult problem and this chapter will describe new results
on this topic obtained by generalizing recent results by Chambolle (2005) and
Chan, Esedoglu and Nikolova (2006).

33

CHAPTER 4. OPTIMIZING PARAMETRIC MODELS

We consider optimization problems over images, where without loss of gener-
ality the image I : R2 ⊃ Ω→ R is assumed to take values on [0, 1].
Our main contribution is that we show how one can evaluate real-valued functions
of the following type:

m(t) = min
θ,s

E(θ, s, t), (4.1)

where E is a functional depending on the binary valued function θ : Ω→ {0, 1},
the one-dimensional parameter s ∈ R as well as some additional vector of real
parameters t. The ability to evaluate such functions allows us to efficiently optimize
parametric, binary total variation models including several variants of the Mumford-
Shah functional. The standard way of solving such problems is by alternating
optimization:

1. Keep the real parameters fixed and solve for θ.

2. Keep θ fixed and solve for the real parameters.

By including one additional parameter in the first step, the neighborhood search is
enlarged and the risk of getting trapped in local minima is reduced.

Another consequence of (4.1) is that we can obtain globally optimal solutions
to low-order parametric total variation models. We analyze in more detail one of
the main problems in this class of segmentation models, namely the Chan-Vese
model. We want to approximate the image with a function taking only two values
µ0 and µ1, by solving the following optimization problem:

minimize
θ,µ0,µ1

ρJ(θ)

+

∫
Ω

(1− θ(x))(I(x)− µ0)2 + θ(x)(I(x)− µ1)2 dx

subject to θ(x) binary

0 ≤ µ0 < µ1 ≤ 1.

(4.2a)

Here J(θ) is the total variation of θ, J(θ) =
∫

Ω | ∇θ | dx. When θ is binary, the
total variation is the length of the boundary between the two regions defined by θ.
The weight ρ > 0 controls how important a short boundary is. The assumption
that µ1 > µ0 is without loss of generality and it prevents (4.2a) from inherently
having two optima. We show how to find the optimal segmentation as well as the
optimal values of the two parameters µ0 and µ1 by a simple branch and bound
search over a single dimension.

34

4.1. THE MUMFORD-SHAH FUNCTIONAL

(a) µ1 = 0.662, µ0 = 0.005,
E = 614.81

(b) µ1 = 1.00, µ0 = 0.158,
E = 600.05

Figure 4.1: Segmenting a simple image. The result shown in (a) was obtained after
setting µ0 = 0, µ1 = 1 and alternating between minimizing θ and updating µ0,µ1.
In (b), the global minimum is shown.

4.1.1 Related Work

If we keep µ0 and µ1 fixed and only optimize over θ, problem (4.2a) becomes
equivalent to

minimize
θ(x) binary

ρJ(θ) +

∫
Ω
θ(x)

[
(I(x)− µ1)2 − (I(x)− µ0)2] dx . (4.2b)

This problem is still non-convex, because the discrete set {0, 1} is non-convex.
Chan, Esedoglu and Nikolova (2006) showed that globally optimal solutions can
still be obtained by relaxing θ to the interval [0, 1], solving the resulting convex
problem and then thresholding the result. Several algorithms have been developed
to solve this convex minimization problem, e.g. by Bresson et al. (2007). If the
image is discretized, optimal solutions can also be obtained via graph-cuts, with a
suitable J .

On the other hand, if one wants to also optimize over µ0 and µ1 simultaneously
the problem is no longer convex. In practice, this is solved by alternating between
minimizing over θ with µ0, µ1 fixed and minimizing µ0, µ1 with θ fixed (Bresson
et al., 2007; Chan, Esedoglu and Nikolova, 2006; Chan and Vese, 2001). The
latter step is very simple, it just consists of taking the means of the two regions
defined by θ (Mumford and Shah, 1989). This procedure does not guarantee that
the final solution obtained is globally optimal. Indeed, Fig. 4.1 shows an image

35

CHAPTER 4. OPTIMIZING PARAMETRIC MODELS

where this procedure fails. The result with initial values of µ0 = 0 and µ1 = 1 is
shown in Fig. 4.1a, which is only a local optimum, because the segmentation in
Fig. 4.1b has a lower energy.

Another method is of course to perform an exhaustive search over the param-
eters µ0 and µ1, solving (4.2b) for each possible pair. This is done by Darbon
(2007), where a maximum-flow formulation of (4.2b) is solved for every pair of
the two levels. The size of the graphs are reduced with a method that bears some
resemblance to the one described here. An alternative approach was pursued by
Lempitsky, Blake and Rother (2008) where branch and bound was applied over µ0

and µ1 for a discretized version of (4.2a). The main advantage with our approach
is that we reduce the problem with one dimension, and branch-and-bound is only
necessary in the remaining dimension. Another possible advantage is that our work
is based on continuous optimization methods and hence metrication errors are
smaller which Klodt et al. (2008) have demonstrated. Moreover, our algorithm is
amenable to GPU acceleration as described by Pock et al. (2008a).

Our work is also applicable to other variants of the Mumford-Shah family of
segmentation methods. Alternating minimization is used, for example, by Grady
and Alvino (2008) for a discretized version of Mumford-Shah and by Cremers
and Soatto (2005) for motion segmentation of a parametric optical flow model.
Kolmogorov, Boykov and Rother (2007) give applications of parametric max-flow
problems, including ratio minimization and incorporation of global constraints in
the optimization. Instead of solving a series of max-flow problems, we show how
the same applications can be solved via a single convex variational problem.

4.1.2 Example: Existence of Local Minima

We now explicitly construct an image for which (4.2a) has a non-optimal local
minimum. Let Ω = [0, 4] × [0, 1]. Let I(x) consist of three regions separated
by the two vertical lines described by x = 1 and x = 2, respectively. The three
regions have gray values 1, 0.5 and 0. The areas of the three regions are:

A1 = 1

A2 = 1

A3 = 2.

(4.3)

For symmetry reasons, the optimal segmentation will always be a vertical line. We
consider the simplest case where ρ = 0. If the line x = 1 is chosen the optimal

36

4.2. PARAMETRIC BINARY PROBLEMS

values of the mean values are µ0 = 0.5A2+0A3
A2+A3

= 1
6 and µ1 = 1, for a total energy

of

A1(1− 1)2 +A2

(
0.5− 1

6

)2

+A3

(
0− 1

6

)2

=
1
6
. (4.4)

And for these values of µ0 and µ1 the segmentation is optimal since |0.5− µ0| <
|0.5− µ1| makes the pixels valued 0.5 be optimally assigned to the background.
If the outer boundary is chosen the optimal values of the mean values are µ0 = 0
and µ1 = 1A1+0.5A2

A1+A2
= 3

4 , for a total energy of

A1

(
1− 3

4

)2

+A2

(
0.5− 3

4

)2

+A3(0− 0)2 =
1
8
. (4.5)

Because |0.5− µ0| > |0.5− µ1| the gray pixels are optimally assigned to the
foreground (µ1). Since 1/8 < 1/6, the first segmentation is a non-optimal local
minimum with respect to alternating minimization. Figure 4.1 shows how this can
occur in practice.

4.2 Parametric Binary Problems

For any function v, let v(t) denote the function thresholded at t, i.e. v(t)(x) = 1
if v(x) > t and 0 otherwise. From now on, we require that our smoothness
function J satisfies the following requirements:

1. J(v) is convex and J(v) ≥ 0.

2. J(tv) = tJ(v) for every t > 0.

3. J(v) =
∫∞
−∞ J(v(t))dt (general co-area formula).

For example, the total variation
∫

Ω | ∇v | dx satisfies these three conditions.
We will now define two optimization problems and show that by thresholding

the solution to one, we get a solution to the other. Let f(x, s) be a real-valued
function such that f(x, ·) is continuously strictly increasing for each fixed x ∈ Ω
and f(x, z(x)) = 0 for all x and some bounded function z. Let F be any
function such that ∂F/∂s(x, s) = f(x, s) for all (x, s). Consider the following
discrete problem, defined for a real parameter s:

minimize
θ(x) Boolean

ρJ(θ) +

∫
Ω
θ(x)f(x, s) dx. (Ps)

37

CHAPTER 4. OPTIMIZING PARAMETRIC MODELS

We will need the following property of the solutions to (Ps):

Lemma 4.1. Let s1 > s2. Then the solutions θ1 and θ2 to (Ps1) and (Ps2), respec-
tively, satisfy θ1(x) ≤ θ2(x) (a.e.).

Proof. Define operators ∧ and ∨ by:

(η ∧ θ)(x) = min(η(x), θ(x))

(η ∨ θ)(x) = max(η(x), θ(x)).
(4.6)

Let Es(θ) denote the functional to be minimized in (Ps). Since θ1 and θ2 are
optimal, Es1(θ1) ≤ Es1(θ1 ∧ θ2) and Es2(θ2) ≤ Es2(θ1 ∨ θ2). Summing these
inequalities and using the fact that J(θ1 ∧ θ2) + J(θ1 ∨ θ2) ≤ J(θ1) + J(θ2)
(Chambolle, 2005, Lemma 2.3) results in∫

Ω

(
f(x, s1)(θ1(x)− (θ1 ∧ θ2)(x)) +

f(x, s2)(θ2(x)− (θ1 ∨ θ2)(x))
)
dx ≤ 0 (4.7)

But θ1(x)− (θ1 ∧ θ2)(x) = −(θ2(x)− (θ1 ∨ θ2)(x)), so this is equivalent to∫
Ω

(f(x, s1)− f(x, s2))(θ1(x)− (θ1 ∧ θ2)(x))dx ≤ 0. (4.8)

Since f(x, s1) − f(x, s2) > 0, θ1(x) − (θ1 ∧ θ2)(x) must be equal to 0.
θ1(x) ≤ θ2(x) a.e. follows.

The corresponding convex variational problem to (Ps) is:

minimize
w(x)∈R

ρJ(w) +

∫
Ω
F (x, w(x)) dx . (Q)

Problems (Ps) and (Q) are related, as stated by the following theorem:

Theorem 4.2. A function w solves (Q) if and only if w(s) solves (Ps) for any s ∈ R.

Proof. Define w, for every x ∈ Ω, as follows:

w(x) = sup {s | ∃θ solving (Ps) with θ(x) = 1}.

38

4.2. PARAMETRIC BINARY PROBLEMS

The first task is to show that w is a well-defined real-valued function. If f(x, s) ≤
0 for all x it follows that θ ≡ 1 solves (Ps). Similarly, f(x, s) ≥ 0 implies
that θ ≡ 0 is a solution. From this we see that w is bounded, more precisely
that infy z(y) ≤ w(x) ≤ supy z(y). To see this, choose s′ < infy z(y). By
definition we have w(x) ≥ s′ for all x.

Next, we prove that w(s) solves (Ps). Let s be fixed. If s < w(x), any solution
θ of (Ps) must satisfy θ(x) = 1, while if s > w(x) we must have θ(x) = 0
(Lemma 4.1). Since w(s) satisfies these requirements, we see that w(s) is a solution
to (Ps). If the set where w(x) = s is not a null set, we can consider s′ arbitrary
close to s.

Finally, to show that w is the solution to (Q), we start out by letting s∗ <
infy v(y) for some v and observing that∫ ∞

s∗

v(s)(x)f(x, s) ds =

∫ v(x)

s∗

f(x, s) ds = F (x, v(x))− F (x, s∗).

(4.9)

Now we integrate over problem (Ps) for all s:∫ ∞
s∗

(
ρJ(v(s)) +

∫
Ω
v(s)(x)f(x, s) dx

)
ds

= ρJ(v) +

∫
Ω
F (x, v(x)) dx−

∫
Ω
F (x, s∗) dx .

We have already shown that w(s) minimizes the integrand for every s. This means
that for any function v,

ρJ(v) +

∫
Ω
F (x, v(x)) dx ≥ ρJ(w) +

∫
Ω
F (x, w(x)) dx .

This shows that w is the unique solution of the strictly convex functional in
(Q).

Remark 4.3 Problem (Q) with F (x, w(x)) = 1
2(w(x) − I(x))2 is a well-

studied convex functional for image restoration, (Rudin, Osher and Fatemi, 1992).
We will refer to it as a ROF problem.

Remark 4.4 Chambolle (2005) proved Theorem 4.2 for the special case f(x, s)
= s−G(x) and used the result to approximate the solution to problem (Q) with

39

CHAPTER 4. OPTIMIZING PARAMETRIC MODELS

a series of discrete solutions to (Ps). We will use the result in the other direction,
for solving a one-parameter family of discrete problems by thresholding a single
ROF solution.

Remark 4.5 If f(x, s) = H(x)s−G(x) with H(x) > 0, then

F (x, w(x)) =
1
2

(√
H(x)w(x)− G(x)√

H(x)

)2

. (4.10)

This is the result we will use for the rest of this chapter. We call Problem (Q)
with this data term a weighted ROF problem.

4.2.1 Numerical Method

In our numerical experiments, we will use the following smoothness function:

J(θ) =
M∑
i=0

N∑
j=0

√
(θi+1,j − θi,j)2 + (θi,j+1 − θi,j)2, (4.11)

which can be seen as a discretization of the “true” length of the boundary. Problem
(Q) with (4.10) can be written as

minimize
w

J(w) +
1

2ρ

∫
Ω

(D(x)w(x)−B(x))2 dx , (4.12)

and we solve it by adapting a method in (Chambolle, 2004, 2005). Introduce a
dual field ξ, with which a solution can be found by iterating the following scheme:

w
(n)
i,j =

(
Bi,j + ρ

(
div ξ(n)

)
i,j
/Di,j

)
/Di,j

ξ
(n+1)
i,j =

ξ
(n)
i,j + (τ/ρ)(∇w(n))i,j

max{1, |ξ(n)
i,j + (τ/ρ)(∇w(n))i,j |}

, (4.13)

where τ is the step-length. The initial condition can be set to ξ(0) = 0 and
w(0) = B. A suitable stopping criterion whenD ≡ 1 is also derived by Chambolle
(2005); if w̄ is the true solution we have the following error bound:

||wn − w̄||2 ≤ ρJ(w)− ρ
∑
i,j

ξni,j · (∇wn)i,j . (4.14)

We divide this error bound with the number of pixels in order to get a bound
independent of the size of the image being processed.

40

4.2. PARAMETRIC BINARY PROBLEMS

(a) Solutions to (Q)

(b) Thresholded solutions

0.1 0.2 0.3

0.4

0.6

0.8

1

·104

ν

En
er

g
y

0.4 0.6 0.8
2,000

3,000

4,000

5,000

ν

(c) Energies as functions of ν

Figure 4.2: Finding the globally optimal energy for a fixed δ by thresholding the
solution to problem (Q). The two columns correspond to different values of δ: 0.2
(left column) and 0.6 (right column). Notice the completely different non-convex
energy profiles for the two different values of δ.

41

CHAPTER 4. OPTIMIZING PARAMETRIC MODELS

4.3 Two-Phase Mumford-Shah Functional

We now return to the original problem (4.2a). To formulate our optimization
problem, we perform the following change of variables:{

δ = µ1 − µ0

ν = µ2
1 − µ2

0

⇐⇒

µ1 = ν + δ2

2δ
µ0 = ν − δ2

2δ .
(4.15)

We can now rewrite the energy in (4.2a) as

E(θ, ν, δ) =

ρJ(θ) +

∫
Ω
θ(x)(ν − 2δI(x)) +

(
ν − δ2

2δ
− I(x)

)2

dx . (4.16)

Let the function m(δ) previously introduced in (4.1) denote the minimum energy
possible given a fixed δ,m(δ) = minθ,ν E(θ, ν, δ). The set of parameters (µ0, µ1)
has two degrees of freedom and when we evaluate m(δ) we optimize over one
degree of freedom while keeping the other one fixed.

4.3.1 Optimization with Fixed Difference

The result in Theorem 4.2 implies that m(δ) can be evaluated by thresholding the
solution to the real-valued problem (Q) for all ν and evaluating the energy. This is
because evaluating m(δ) amounts to solving

min
ν

(
min
θ

E(θ, ν, δ)

)
. (4.17)

The inner problem is a special case of (Ps) with f(x, s) = s − 2δI(x). To see
this, recall that the last term of E(θ, ν, δ) does not depend on θ. From Remark 4.5
we see that it can be solved with (4.13). After the solution to (Q) is obtained, the
solution is thresholded and E evaluated for all ν. To summarize, computing m(δ)
consists of the following steps:

1. Solve problem (Q) with F (x, s) = 1
2(s− 2δI(x))2.

2. For each ν, threshold the solution w at ν and evaluate the resulting energy
(4.16).

42

4.3. TWO-PHASE MUMFORD-SHAH FUNCTIONAL

3. The pair (ν∗, θ∗) with the lowest energy is the global solution to prob-
lem (4.2a) with δ fixed.

Step one is a standard ROF problem, for which there exist fast minimization
methods, see (Pock, 2008) for an overview and (Pock et al., 2008a) for a GPU
implementation. Our simple MATLAB implementation performed one (4.13)-
iteration in about 27 ms for ρ = δ = 0.5. The number of iterations required until
convergence is strongly dependent on ρ and δ. The second step does not need as
much attention as it is a very fast procedure and can trivially be parallelized.

Figure 4.2 shows an example where δ has been fixed to 0.2 and 0.6, respectively.
The graphs show that the energy has a lot of local minima as ν varies. The
thresholding process finds the global minimum quickly. It is also interesting to
note that the graph of the energy looks entirely different for different δ, which
suggest that the minimum energy is a complicated function with respect to (δ, ν),
and therefore nontrivial to minimize.

Figure 4.3 shows m(δ) evaluated on the entire interval [0, 1] for ten images.
Note that m(δ) is often very flat around the global optimum, which has two
consequences: (i) it will be difficult to find the optimum δ∗ with certainty, but
(ii) one evaluation of m(0.5) is often enough to find a good solution, close to the
global solution.

4.3.2 Optimization with Varying Difference

It is also possible to solve problem (4.2a) along another degree of freedom. We can
define another function

m̂(ν) = min
θ,δ

E(θ, ν, δ), θ(x) Boolean. (4.18)

We set s = −δ and see that computing this function means solving

min
s

(
min
θ(x)

ρJ(θ) +

∫
Ω
θ(x)(2I(x)s+ ν) dx

)
. (4.19)

The procedure for calculating m̂(ν) is the same as the one described in the previous
section, with the first step replaced by:

1’. Solve problem (Q) with F (x, s) = 1
2(2I(x)s+ ν)2.

43

CHAPTER 4. OPTIMIZING PARAMETRIC MODELS

0 0.2 0.4 0.6 0.8 1
0

5000

10000

15000

20000

0 0.2 0.4 0.6 0.8 1
0

5000

10000

15000

20000

0 0.2 0.4 0.6 0.8 1
0

5000

10000

15000

0 0.2 0.4 0.6 0.8 1
0

5000

10000

15000

0 0.2 0.4 0.6 0.8 1
0

10000

20000

30000

Figure 4.3: The function m(δ) for 5 images. Note that m is very flat near the
optimum. The dashed line shows the energy after subsequent optimization of
µ0,µ1. The weight ρ = 0.5 was used for these images from (Martin et al., 2001).

0.4 0.6 0.8
2,000

4,000

6,000

En
er

g
y

(a) ν = 0.55

0.5 0.6 0.7 0.8 0.9
4,000

4,500

5,000

5,500

(b) ν = 0.75

Figure 4.4: “Camera man” image. Energies (y-axis) for problem (4.2a) on the curve
µ2

1 − µ2
0 = ν, each obtained by thresholding all possible δ (x-axis).

The resulting minimization problem can be written on the form (4.12). Therefore,
this step can be performed with the method described in Section 4.2.1.

Figure 4.4 shows an example with the “camera man” image. In the experiment
ν was fixed to 0.55 and 0.75. This resulted in two very different energy curves for
the same image.

4.3.3 Obtaining a Lower Bound

We have a method to compute m(δ); the next logical step is to minimize it. To be
able to prove a lower bound, we need a way to obtain a lower bound for m on an
interval [δ1, δ2]. A good lower bound is an essential part of the branch and bound
paradigm.

Finding a lower bound for m(δ) amounts to finding a lower bound for the
energy E(θ, ν, δ) defined in (4.16) for any δ ∈ [δ1, δ2]. This energy can be

44

4.3. TWO-PHASE MUMFORD-SHAH FUNCTIONAL

bounded from below on the interval by:

Ebound
δ1,δ2

(θ, ν) = ρJ(θ) +

∫
Ω
θ(x)(ν − 2δ2I(x)) dx

+ min
δ∈[δ1,δ2]

∫
Ω

(
ν − δ2

2δ
− I(x)

)2

dx . (4.20)

It follows that the minimum of Ebound
δ1,δ2

is a lower bound to the minimum of m on
[δ1, δ2]. The last term does not depend on θ and can be computed by choosing δ
such that ν−δ

2

2δ is as close to the mean of the image as possible. Finding the lower
bound therefore amounts to solving (Ps) with f(x, s) = s− 2δ2I(x) for every
s and computing the minimum of the resulting energies. Just like before, every
solution can be obtained by thresholding the solution to (Q). Denote the obtained
lower bound mbound(δ1, δ2).

4.3.4 Global Optimization

The lower bound can be used to perform a branch and bound search on the interval
[0, 1], splitting each subinterval until it can either be discarded or contains the
optimum. However, obtaining a useful bound for even moderately large intervals
is hard because m is flat (see Fig. 4.3). Since every calculated bound and every
evaluation of m require a solution to (Q), it is essential that previous solutions can
be reused. The number of (4.13)-iterations can then be kept to a minimum. For
memory reasons, we also want to keep the number of cached solutions as low as
possible.

For these reasons, we propose the following method to search for the optimum
δ∗: A feasible region [δL, δH] is maintained, known to contain the optimal value.
This region is initially set to [0, 1]. The goal is to shrink the feasible region from

both ends, i.e. to provide new regions [δ
(n+1)
L , δ

(n+1)
H] ⊂ [δ

(n)
L , δ

(n)
H] containing

δ∗, with the limit of the lengths equal to 0. The algorithm consists of three main
steps: two for shrinking the interval from both endpoints using lower bounds and
one to search the remaining feasible interval after good candidates to the optimal
energy E∗. Good candidates are necessary for the bounds to be useful; fortunately,
good candidates are found very quickly in practice.

The algorithm iterates three main steps, each associated with a cached dual
field ξ for speeding up the (4.13)-iterations. The two bounding steps also store

45

CHAPTER 4. OPTIMIZING PARAMETRIC MODELS

step lengths tL, tH which controls the size of the interval to be removed. The steps
are detailed in the following list:

1. Try to shrink the interval from above

• Using the cached dual field ξH , solve problem (4.10) with G(x) =
2(δH + tH)I(x).

• Evaluate mbound(δH , δH + tH) by thresholding the solution.

• If the bound is greater than the currently best energy, discard the
interval by setting δH ← δH + tH . Otherwise, replace tH by a smaller
step; we used 0.8tH .

2. Similarly, try to shrink the interval from below.

3. Choose δ inside the feasible interval from
〈

1
2 ,

1
4 ,

3
4 ,

7
8 ,

5
8 ,

3
8 ,

1
8 ,

1
16 , . . .

〉
and

evaluate m(δ).

Because the sequence of evaluated δ is dense in [0, 1],mwill eventually be evaluated
arbitrarily close to the optimal value. We also have mbound(δ, δ + t) → m(δ)
as t → 0. From these observations, it is not hard to show that the algorithm is
convergent.

4.3.5 Results

Because m(δ) typically is very flat (Fig. 4.3), the interval cannot be made very
small without substantial computational effort. But an approximate localization of
the global optimum can be computed and proved in reasonable time. Figure 4.5
shows the cumulative number of (4.13)-iterations required to localize the global
optimum for the “camera man” image. The computation of the first bound for
m(δ) required 401 iterations, while the total number of iterations required to
compute the bounds for every subinterval was 1151. The search for the optimal
point within the feasible interval required 302 iterations.

It should be noted that even a single evaluation of m at e.g. δ = 0.5 is enough
for most images in practice, due to the flatness of m and the fact that the solution
will be optimal in the s-direction, which typically has lots of local minima as
shown in Fig. 4.2. Also, after the optimal solution for a particular δ is obtained,
µ0 and µ1 are updated before evaluating the energy. In fact, the first evaluation of
m(0.5) during the test in Fig. 4.5 resulted in a solution that could not be further
improved.

46

4.4. RATIO MINIMIZATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

δ

It
er

at
io

n
s

re
q

u
ir

ed
(c

u
m

u
la

ti
ve

)

Figure 4.5: Iterations required to shrink the interval for the “camera man” image.
A precision of 0.001 was used for the ROF problems. As the intervals grow small,
the cached dual field ξ can be reused, allowing the total number of iterations to
stay reasonable.

4.4 Ratio Minimization

Problem (Ps) appears in (Kolmogorov, Boykov and Rother, 2007) as “parametric
max-flow”, where it is used, among other things, to minimize a ratio of two
functionals. A similar method is used in (Kolev and Cremers, 2009), where instead
a sequence of convex problems is solved. We shall see how one can solve some
problems of the same type by solving a single convex minimization problem. The
ratio of two functionals P and Q with Q(θ) > 0 is considered:

R(θ) =
P (θ)

Q(θ)
. (4.21)

Let s∗ = R(θ∗) be the optimal value of R(θ). We see that P (θ∗)− s∗Q(θ∗) = 0
and

min
θ
P (θ)− sQ(θ) ≥ 0 ⇐⇒ s ≤ s∗

min
θ
P (θ)− sQ(θ) ≤ 0 ⇐⇒ s ≥ s∗.

(4.22)

This means that we can solve problems for different values of s until we have
come arbitrarily close to the optimal value s∗ using bisections. This is done in
(Kolmogorov, Boykov and Rother, 2007) with repeated max-flow problems.

47

CHAPTER 4. OPTIMIZING PARAMETRIC MODELS

With the result in Theorem 4.2, we are able to minimize functionals of the
following form:

P (θ)

Q(θ)
=
ρJ(θ) +

∫
Ω θ(x)g(x) dx∫

Ω θ(x)h(x) dx+K
, h(x) > 0. (4.23)

To compute the minimizer of P (θ)/Q(θ), we formulate the problem of finding
the minimizer of P (θ)− sQ(θ), which amounts to solving

minimize
θ(x) Boolean

ρJ(θ) +

∫
Ω
θ(x) (h(x)(−s) + g(x)) . (4.24)

By solving (Q) once and thresholding the result at −s we find minimizers to
P (θ)− sQ(θ). Searching for s∗ is now reduced to thresholding the solution w at
different levels and evaluating an energy, which can be performed very fast. Define
Es(θ) = P (θ)− sQ(θ) and

1. Start with smin, smax

2. s← (smin + smax)/2.

3. θ ← w(−s).

4. If Es(θ) > 0 set smax ← s. Otherwise, set smin ← s.

5. Repeat from step 2.

This scheme will rapidly converge to s∗. Figure 4.6 shows an example. More
examples of ratio minimization are found in (Kolmogorov, Boykov and Rother,
2007).

4.4.1 Constrained Optimization

It is interesting to note that the minimizing a ratio of two functionals bears some
similarities to constrained minimization. Consider the following problem, where
in addition to an energy functional, the area of the resulting foreground (where
θ(x) = 1) is also required to be larger than a predetermined minimum value:

minimize
θ

E(θ, µ0, µ1)

subject to θ(x) Boolean∫
Ω
θ(x) dx ≥ A .

(4.25)

48

4.5. GAUSSIAN DISTRIBUTIONS

(a) Minimizing P(θ) (b) Minimizing P(θ)/Q(θ)

Figure 4.6: Minimizing a ratio of two functions. Q(θ) =
∫
Ω
θ(x)h(x) dx, where h(x) is

chosen to be larger in the center of the image domain, which makes θ(x) = 1 more
favorable.

The dual function d(s) (Boyd and Vandenberghe, 2004) of this problem is:

min
θ

(
E(θ, µ0, µ1) + s

(
A−

∫
Ω
θ(x) dx

))
. (4.26)

For any s ≥ 0 we have d(s) ≤ E∗, where E∗ is the optimal energy for (4.25).
The best lower bound is given by d∗ = maxs≥0 d(s), which can be computed by
thresholding a solution to (Q), since computing d(s) is equivalent to solving

minimize
θ

E(θ, µ0, µ1) +

∫
Ω
θ(x) s dx , (4.27)

followed by an evaluation of (4.26). However, since θ is constrained to be Boolean,
strong duality does not generally hold (Boyd and Vandenberghe, 2004), that is,
d∗ < E∗ in general.

4.5 Gaussian Distributions

Many variants of the two-phase Mumford-Shah functional have been used for
image segmentation. For example, ultrasound images can be segmented using a

49

CHAPTER 4. OPTIMIZING PARAMETRIC MODELS

maximum-likelihood formulation with the assumption that the image pixels are
Rayleigh distributed (Sarti et al., 2004). To emphasize the difference to (4.2a), we
will instead use a model where all pixels have equal expected values. This problem
has previously been treated in (Rousson and Deriche, 2002) with local methods.
Consider the following observation model, were the image pixels comes from two
Gaussian distributions with zero mean and different variance:

I(x) ∼
{

N(0, σ2
1), θ(x) = 1

N(0, σ2
0), θ(x) = 0 .

(4.28)

Given that θ(x) = i, the log-likelihood for the image pixel is

`i(I(x)) = log

(
1

σi
√

2π
exp

(
I(x)2

2σ2
i

))
. (4.29)

Given an observed image, we want to recover θ, so we want to solve the following
minimization problem:

minimize
θ,σ0,σ1

ρJ(θ) +

∫
Ω
θ(x) [−`1(I(x))]

+
(
1− θ(x)

)[
− `0(I(x))

]
dx . (4.30)

Following the same approach as in Section 4.3.1, we remove the term which
does not depend on θ. After rearranging the factors inside the logarithms of the
functional, we obtain:

ρJ(θ) +

∫
Ω
θ(x)

(
log

σ1

σ0
+ I(x)2

(
1

2σ2
1
− 1

2σ2
0

))
dx .

This suggests the following change of variables:{
r = log σ1

σ0

t = 1
2σ2

1
− 1

2σ2
0

⇐⇒

σ1 =

√
−2t(e2r−1)

2t

σ0 =

√
−2t(e2r−1)

2ter .

We can now solve problem (4.30) for t = constant. First, we solve a ROF problem
with (w(x)+I(x)2t)2 as data term. Then we threshold the solution at all possible
levels r, evaluating the energy in (4.30) and choosing the lowest energy. A result
with this segmentation model can be seen in Fig. 4.7.

50

4.6. CONCLUSION

10

20

30

40

50

60

70

80

90

100

(a) Original image with σ1 = 6 and
σ0 = 10

10

20

30

40

50

60

70

80

90

100

(b) Resulting segmentation. Recov-
ered σ: 6.07 and 10.35

Figure 4.7: Segmentation of an image composed of two Gaussian distributions
with zero mean.

4.6 Conclusion

We have shown that the two-phase, binary Mumford-Shah functional can be
effectively optimized by solving a continuous problem followed by thresholding.
The method works if the difference between the two levels is fixed. To solve the
general case, we give a branch and bound-like method which is shown to perform
quite efficiently. It is interesting to note that a single evaluation of m(δ), which
is optimal along one dimension, often seems to be enough to find the global
optimum. The two main contributions of this chapter are:

1. We have defined m(δ) in (4.1) and shown how it can be computed effi-
ciently.

2. This allows us to solve the problem in (4.2a) using branch and bound in a
single dimension.

In addition, we have briefly discussed some connections to the parametric max-
flow problems (Kolmogorov, Boykov and Rother, 2007) and optimization under
constraints. We have also extended the numerical method given by Chambolle
(2004; 2005) for the weighted ROF problem (Q).

51

CHAPTER 4. OPTIMIZING PARAMETRIC MODELS

52

Part II

Curvature Regularization

Chapter 5

Curvature Regularization in the
Plane

The previous chapter involved finding the optimal curve with respect to its contents
and its length. This chapter adds a curvature term, which requires radically different
methods. The discussions I have had on this topic with Thomas Schoenemann
have been very useful, and his source code have been essential for my work in
this area. As this chapter builds upon the framework by Schoenemann, Kahl and
Cremers (2009), familiarity with their paper will be useful.

5.1 Background

The problem we are interested in solving amounts to minimizing the following
energy functional:

E(Γ) =

∫
Γ
g(x) dx+

∫
γ

(ρ+ σ|κ(s)|p) ds, (5.1)

where γ is the boundary curve of Γ, parametrized by its arc length s. Here g(x) is
the data term, which may take many different forms depending on the application,
ρ is a positive weighting factor for length regularization, and σ controls the amount
of curvature regularization.

Second order priors like curvature are important for many vision applications,
for example, stereo (Woodford et al., 2009). In image segmentation, experiments
have shown that curvature regularization is able to capture thin, elongated struc-
tures (El-Zehiry and Grady, 2010; Schoenemann, Kahl and Cremers, 2009) where
standard length-based regulators would fail. Curvature has also been identified
as a key factor in human perception based on psychophysical experiments on
contour completion (Kanizsa, 1971). Still, most segmentation based approaches

55

CHAPTER 5. CURVATURE REGULARIZATION IN THE PLANE

in computer vision do not use curvature information. This is contrast to length or
area regularity which do play an important role. One of the reasons for this fact is
that curvature regularity is harder to incorporate in a global optimization frame-
work. Note that curvature regularity is fundamentally different from length or area
regularity. While, for example, length regularization prefers shorter boundaries,
there is no such bias in curvature regularization. In fact, due to a famous theorem
of Werner Fenchel, the integral of the absolute curvature for any closed convex
plane curve is equal to 2π.

This chapter proposes several improvements to the current state-of-the-art
of curvature regularization. This gives both faster running times and smaller
memory requirements, and hence important steps are taken to make curvature
regularization more practical. More specifically, we solve an identified issue with
extraneous arcs while keeping the relaxation tight. Dual decomposition is applied
to curvature problems to reduce memory. We also show how to obtain better
suited tessellations of the domain, and higher resolution by using adaptive meshes.

There are number of application problems that can be modeled by the energy
functional in (5.1). This chapter concentrates on improving the methodology for
optimizing the functional and we compare with current state-of-the-art methods
(Schoenemann, Kahl and Cremers, 2009; El-Zehiry and Grady, 2010). Experi-
mental results are given for segmentation, but other applications include surface
completion (Kawai, Sato and Yokoya, 2009), which will be discussed in the next
chapter, and inpainting (Schoenemann, Kahl and Cremers, 2009; Masnou, 2002).

5.2 Length-Based Regularization

The basis for this work is the discrete differential geometry framework developed
by Sullivan (1990) and Grady (2010) for computing minimal surfaces and shortest
paths. The goal is to compute a discrete approximation of the continuous func-
tional in (5.1). We will recast the problem as an integer linear program and solve
it via LP relaxation. In this section we limit the exposition to the standard case
without the curvature term (corresponding to σ = 0). Interestingly, this integer
linear program can be shown to be totally unimodular and hence the LP relaxation
will be tight.

The method is based on tessellating the domain of interest into a so-called
cell complex, a collection of non-overlapping basic regions whose union gives
the original domain. Several different kinds of tessellations are possible. Some

56

5.3. INCORPORATING CURVATURE

two-dimensional examples are given in Fig. 5.3. Typical choices are square meshes
(2D), resulting in 4-connectivity. To mimic 8-connectivity, pixels are subdivided
into four triangular regions each. This issue will be elaborated upon in Section 5.4.

The boundaries of 2D regions are called edges. It is necessary to consider both
possible orientations of each edge and facet. In the integer linear program, there
are two sets of Boolean variables, one reflecting regions and the other related to
boundaries. For each basic region, a binary variable reflects whether the region
belongs to the foreground or the background. Let xi, i = 1, . . . ,m denote these
binary variables, where m is the number of basic regions. The region integral
in (5.1) is now easily approximated by a linear objective function of the form∑m

i=1 gixi.
In this chapter we let xi denote region variables and yi boundary variables.

The length term in (5.1) is then represented with ρ
∑

i `iyi, where `i denotes the
length of edge i. To enforce consistency between the region and boundary variables,
surface continuation constraints (Schoenemann, Kahl and Cremers, 2009) are
used:

Surface continuation constraints. Assume we know that a basic region is part
of the foreground. Then, for each of its edges we can have two valid configurations:
either the associated basic region on the other side of the edge is also part of
the foreground — or the foreground regions terminates here in an appropriately
oriented boundary element. These constraints, together with the cases where the
considered basic region is background, can be phrased as a linear equation system,
with one constraint for each edge k:∑

i

bk,ixi +
∑
i

bk,iyi = 0, (5.2)

where bk,i indicates whether region i is positive (1), negative (−1) or not incident
(0) to edge k. bk,i indicates the incidence (±1 or 0) of yi to the edge k. Two terms
in each sum will be nonzero.

5.3 Incorporating Curvature

To be able to handle curvature regularization, pairs of boundary variables are
introduced. We denote these pairs by yi,j . Schoenemann et al. (Schoenemann,
Kahl and Cremers, 2009) described how to introduce boundary continuation

57

CHAPTER 5. CURVATURE REGULARIZATION IN THE PLANE

constraints to ensure that an actual boundary curve is formed. Without this
constraint, only straight line pairs would be used.

Boundary continuation constraints. If a pair of line segments (l1, l2) is part of
the boundary line, there must be another pair of line segments (l2, l3) that is also
part of the boundary line. Furthermore, there must be a pair (l0, l1) that likewise
belongs to the boundary line. Again, these constraints can be phrased as a linear
equation system for each oriented edge `:∑

i,j

c`,i,jyi,j = 0, (5.3)

where

c`,i,j =


1 if ` = i

−1 if ` = j

0 otherwise.

(5.4)

Having introduced the line pair variables, the last term in (5.1) may also be
represented as a linear function: σ

∑
i,j bi,jyi,j . The coefficients bi,j used by

Bruckstein, Netravali and Richardson (2001) and Schoenemann et al. were

bi,j = min{`i, `j}
(

α

min{`i, `j}

)p
, (5.5)

where α is the angle difference between the two lines. This chapter uses p = 2
exclusively.

5.3.1 Avoiding Extraneous Arcs

The constraints introduced by Schoenemann, Kahl and Cremers admit too many
feasible solutions. This is illustrated in Fig. 5.2a, where sharp corners are avoided
by introducing large, extra curves which due to the nonexistent length penalty
have low cost. This solution is integral and optimal in the original formulation,
because along the spurious large arcs both yi,j and yj,i are active.

The solution seems simple: to add constraints yi,j + yj,i ≤ 1. This would
indeed solve the problem if the variables could be restricted to be integral, but we
have found these constraints in practice gives a fractional solution with even more
spurious arcs (Fig. 5.2b). Therefore, the additional linear constraints we propose
are of a different type:

58

5.3. INCORPORATING CURVATURE

xc

xd

xa

xb

yi,j

(a)

xcxa

xb = xd

(b)

Figure 5.1: The line pair variable yi,j and its four incident region variables xa, xb, xc

and xd. The four region variables may coincide for some edge pairs.

(a) Using the original con-
straints from (Schoene-
mann, Kahl and Cremers,
2009). The small black re-
gions to the right have
their boundary costs re-
duced by the large arcs of
extra boundaries.

(b) Simply requiring that
yi,j + yj,i ≤ 1 would work
if the variables were inte-
gers, but causes the LP re-
laxation to output a frac-
tional solution.

(c) Result using the ad-
ditional constraints (5.7).
The LP-relaxation output
an integral solution.

Figure 5.2: Segmentation with and without region consistency constraints. A very
crude mesh was used to make the visualization clearer. Gray scale polygons indicate
region variables and red lines indicate edge pair variables. Gray lines show the
mesh used. Parameters: ρ = 0, σ = 300000. The time to solve the problem decreased
by adding the extra constraints: 0.251s vs. 3.402s for the original problem.

59

CHAPTER 5. CURVATURE REGULARIZATION IN THE PLANE

Region consistency constraints. Consider a line pair variable yi,j and call its
four incident regions xa, xb, xc and xd, located as shown in Fig. 5.1a. If xa =
xb = 1 or xa = xb = 0, the region pair should not be active. Similarly for xc and
xd. This can be linearly encoded as

xa + xb + yi,j + yj,i ≤ 2

−xa − xb + yi,j + yj,i ≤ 0.
(5.6)

Similar constraints hold for xc and xd. All in all, four new constraints are intro-
duced for each pair of edges. It might be the case that xa and xc or xb and xd
coincide, c.f. Fig. 5.1b. The constraint (5.6) still looks the same. To reduce the
total number of constraints, the constraints can be combined into four constraints
per edge k:

xk1 + xk2 +
∑

(k,j) a pair

yk,j ≤ 2

−xk1 − xk2 +
∑

(k,j) a pair

yk,j ≤ 0

xk1 + xk2 +
∑

(j,k) a pair

yj,k ≤ 2

−xk1 − xk2 +
∑

(j,k) a pair

yj,k ≤ 0.

(5.7)

Here xk1 and xk2 denote the two regions adjacent to edge k. The first two
constraints sum over all line pairs starting with edge k and the last two sum over
all pairs ending with edge k.

Fig. 5.2c show the result with these additional constraints where the boundary
now is consistent with the region variables. As a bonus, the new constraints reduced
the time required to solve the problem to about 7%. We can also see from Fig. 5.2
that both before and after the additional constrains, the optimal solution has its
region variables equal or very close to 0 or 1.

5.3.2 QPBO Optimization

Solving the discrete optimization problem does not have to be done using a linear
program. It is also possible to use discrete optimization methods such as QPBO.

60

5.3. INCORPORATING CURVATURE

(a) Square mesh with 4-
connectivity. Each cell has
1 region and 2 lines (on
average).

(b) Hexagonal mesh with
6-connectivity. Each cell
has 6 regions and 9 lines.

(c) Square mesh with 8-
connectivity. Each cell
has 4 regions and 6 lines.

(d) Square mesh with 16-
connectivity. Each cell
has 31 regions and 52
lines.

(e) Square mesh with 12-
connectivity. Each cell
has 21 regions and 44
lines.

(f) Hexagonal mesh with
12-connectivity. Each cell
has 12 regions and 18
lines.

Figure 5.3: Different types of grids. The maximum angle between the possible
straight lines is 90◦ in (a), 60◦ in (b) and 45◦ in (c). The last three (d), (e) and (f) all
have 30◦ as their maximum angle.

61

CHAPTER 5. CURVATURE REGULARIZATION IN THE PLANE

Each edge pair is represented as a 3- or 4-clique in the energy minimization. This
formulation has the advantage that it readily carries over to three dimensions.
El-Zehiry and Grady (El-Zehiry and Grady, 2010) used 3-cliques for minimizing
curvature functionals and their formulation is equivalent to (Schoenemann, Kahl
and Cremers, 2009) for 4-connected grids. This is because in a 4-connected grid,
only configurations of the type in Fig. 5.1b are present. If one wants to go to higher
connectivities, configurations as shown in Fig. 5.1a are present and 4-cliques are
required. We will now see why.

3-cliques. An edge pair connected to three region variables is shown in Fig. 5.1b.
The edge pair adds a cost to the total energy of the segmentation if xa = xc = 1
and xb = 0 or the opposite: xa = xc = 0 and xb = 1. If ω is the cost of the edge
pair (length and curvature), the terms added to the total energy are:

ω
(
xaxc(1− xb) + (1− xa)(1− xc)xb

)
. (5.8)

It is noted in (El-Zehiry and Grady, 2010) that this expression, although technically
a 3-clique, does not need an extra node to be handled correctly. This is because it
is actually equal to

ω
(
xaxc − xaxb − xbxc + xb

)
, (5.9)

and this can be represented with only pairwise interactions between the three
variables.

4-cliques. For all connectivities higher than 4, many edge pairs are adjacent to 4
regions, see Fig. 5.1a. Just as before, this can be represented as

ω
(
xaxc(1− xb)(1− xd) + (1− xa)(1− xc)xbxd

)
. (5.10)

Representing this, however, requires extra nodes to be added, because the above
expression simplifies to

ω
(

2xaxbxcxd + xaxc − xaxbxc−

xaxcxb + xbxd − xaxbxd − xbxcxd
)
,

(5.11)

62

5.4. TYPES OF MESHES

where the high-arity factors have not canceled each other out. How to handle
energy terms like this is described by Ishikawa (2009) and we mention that
representing the above 4-clique requires 10 extra nodes and 24 edges. This is much
worse than the three clique which required no extra nodes and only 3 edges.

5.4 Types of Meshes

The mesh used for the segmentation can be created in a number of ways. The
quality of the approximation depend on how many different possible straight lines
that can be represented by the mesh, since a larger possible choice of line slopes
allows the mesh to approximate a continuous curve more closely. Fig. 5.3 shows
some possible meshes and the straight lines they admit. If a mesh allows n possible
straight line directions, it is referred to as n-connected.

5.4.1 Hexagonal Meshes

Hexagonal meshes have long been studied for image processing (Middleton and
Sivaswamy, 2005). One characterizing fact of hexagons is that they are the optimal
way of subdividing a surface into regions of equal area while minimizing the
sum of the boundary lengths (Hales, 2001). The fact that is more important
to us is the neighborhood structure. In a hexagonal lattice every region has 6
equidistant neighbors. When approximating curvature we would like to represent
as many different straight lines as possible and we would like the maximum angle
between them to be small, as that gives us a better approximation of a smooth
curve (Bruckstein, Netravali and Richardson, 2001). The neighborhood structure
of the hexagonal mesh allows for similar performance (number of lines and angle
between them) while using fewer regions. This is illustrated in Fig. 5.3, where
three crude meshes and three finer meshes are shown. All three fine meshes have
the same maximal angle between the possible straight lines, but the hexagonal
mesh achieves this with fewer regions due to the favorable intersection pattern of
the lines. This suggests that hexagonal meshes can achieve the same accuracy as
the mesh (d) used by Schoenemann, Kahl and Cremers (2009) with a significantly
smaller linear program.

Calculating the data term. With the introduction of the hexagonal grid, every
region is no longer contained within a single pixel. Some regions will partly overlap

63

CHAPTER 5. CURVATURE REGULARIZATION IN THE PLANE

more than one pixel. The data term for the region Rk is the integral of g over that
region:

gk =

∫
Rk

g(x)dx. (5.12)

The data term is a function on a continuous domain. However, because it arises
from a measured image, it will be piecewise constant on the n×m square image
pixels. If each pixel is subdivided into regions, the data term for each region is
simply the area of the region multiplied with the data term for the pixel. In the
general case, the data term for Rk is computed as:

gk =
m−1∑
i=0

n−1∑
j=0

g

(
i+

1
2
, j +

1
2

)
· area(Rk ∩ pi,j), (5.13)

where pi,j is the square representing pixel (i, j):

pi,j = {(x, y) | i ≤ x ≤ i+ 1, j ≤ y ≤ j + 1}. (5.14)

Calculating this sum requires a large number of polygon intersections to be com-
puted. For this we used the General Polygon Clipper library (GPC) from the The
University of Manchester.

5.4.2 Adaptive Meshes

The memory requirements for solving the linear programs arising from the dis-
cretizations are very large. Each pair of connected edges introduce two variables.
Linear programs are typically solved using the simplex method or interior point
methods, both of which require a substantial amount of memory for our prob-
lems. As one example, a problem with 131,072 regions and 1,173,136 edge pairs
required about 2.5 GB of memory to solve using the Clp solver.

For this reason, it is desirable to keep the size of the mesh small. However, a
fine mesh is needed to be able to approximate every possible curve. The solution
to this conflict of interest is to generate the mesh adaptively, to only give it high
resolution where the segmentation boundary is likely to pass through. Adaptive
meshes have previously been considered for image segmentation in the level-set
framework (Xu, Thompson and Toga, 2004) and in combinatorial optimization
of continuous functionals (Kirsanov and Gortler, 2004).

64

5.4. TYPES OF MESHES

(a) 16-connectivity by subdividing rect-
angles

(b) 12-connectivity by subdividing trian-
gles

Figure 5.4: Adaptive meshes can be constructed by recursively subdividing basic
shapes into several similar shapes and finally adding the extra connectivity.

The mesh is refined using an iterative process. First, a single region is put
into a priority queue. Then regions are removed from the priority queue and
subdivided into smaller regions which are put back into the queue. The region
which most urgently needs to be split is removed first from the priority queue.
This is determined by a score which is computed for each region as follows.

Start with q an empty priority queue
R← (0, 0, w, h)
Add R to q with priority = score(R)
while size(q) < L do

Remove R from q
Split R into R1 . . . Rk
Add R1 . . . Rk to q with score(R1) . . . score(Rk)

end while

Both square and triangular basic shapes can be split up into four identical
shapes similar to the original one. Thus, for all adaptive meshes we use k = 4.
The score function can be chosen in many different ways. One way is to use the

65

CHAPTER 5. CURVATURE REGULARIZATION IN THE PLANE

squared deviation from the mean of each region, i.e.:

score(R) =

∫
R

(I(x)− µ(R))2dx, (5.15)

where µ(R) = 1
|R|
∫
R I(x)dx. This way, regions where the data term vary a lot

will be split before regions which have a uniform data term. The score is not
normalized, because otherwise many very small regions would tend to have a big
score. The integrals may be computed in the same manner as (5.13) for images
with square pixels, resulting in the computation of polygon intersections.

5.5 Experimental Results

This chapter does not focus on how to model the data term and we will use a
simple, two-phase version throughout all our experiments:

g(x) = (I(x)− µ1)2 − (I(x)− µ0)2, (5.16)

where µ0 and µ1 are two fixed mean values and I is the image.

5.5.1 Hexagonal Meshes

In our first experiment we evaluate hexagonal vs. square meshes. We are comparing
three types of meshes, the 8- and 16-connected square mesh and the 12-connected
hexagonal mesh, shown in Fig. 5.3 (c), (d) and (f). We fixed a data term of a
256× 256 image (cameraman) and lay meshes of various types and sizes on top of
it and calculated the optimal energy.

The result is shown in Fig. 5.5, where the optimal energy is plotted as a
function of the number of regions used. This is reasonable, since the number of
regions is a good indicator of the total size of the linear program. The analogous
plots using the number of line pairs or edges look the same. We see that the
8-connected grid converges quickly, but to a suboptimal energy. The hexagonal
mesh consistently outperforms the 16-connected grid. If we were to let the number
of regions grow very large, the 16-connected grid would probably achieve a lower
energy than the hexagonal, due to it having 2 more possible straight lines. We have
not been able to observe this in practice, though, due to the memory requirements.

66

5.5. EXPERIMENTAL RESULTS

0.4 0.6 0.8 1 1.2 1.4
·105

2

2.01

2.01

2.02

2.02

2.03

2.03
·108

Number of regions

En
er

g
y

Hexagonal mesh (12-connectivity)
Square mesh (16-connectivity)
Square mesh (8-connectivity)

Figure 5.5: Optimal energy vs. the total number of regions. The best accuracy
obtained by the square mesh was achieved by the hexagonal mesh with about
half the number of regions. This experiment used ρ = σ = 10000. The energy
difference might seem small, but differences of these magnitudes often correspond
to significant changes in segmentation, cf. Fig. 5.6.

67

CHAPTER 5. CURVATURE REGULARIZATION IN THE PLANE

(a) Regular grid (b) Adaptive grid

Figure 5.6: Results with regular and adaptive 16-connected grids. The number of
regions used were 32,768 in both cases and the number of edge pairs were 291,664
and 285,056, respectively. The adaptive mesh gives a smoother curve and correctly
includes the hand of the camera man. The optimal energy for the regular mesh
was 2.470 · 108 and 2.458 · 108 for the adaptive. This experiment used ρ = 30000
and σ = 1000.

5.5.2 Adaptive Meshes

To evaluate the effect of adaptive meshes, we performed a number of experiments.
Firstly, we evaluated the visual quality of the segmentation for regular and adaptive
16-connected meshes with the same number of regions. The result can be seen
in Fig. 5.6. There is a significant visual difference. The fact that the adaptive
mesh achieved a smoother curve is also reflected in the optimal energy, which is
lower. The results for 8-connected meshes are shown in Fig. 5.7 and yield the same
conclusion.

To evaluate the performance more quantitatively, we solve the same segmenta-
tion problem a large number of times for different number of regions. The adaptive
mesh converged to what probably is the optimal energy for that connectivity, while
the regular mesh did not. The regular mesh would have required more than 20
times more regions to achieve the same energy. Fig. 5.8 shows the optimal energies
for the different number of regions and the two types of meshes.

68

5.5. EXPERIMENTAL RESULTS

(a) Regular grid (b) Adaptive grid

Figure 5.7: Results with (a) regular and (b) adaptive 8-connected grids. The optimal
energy for the regular mesh was 2.517 · 108 and 2.481 · 108 for the adaptive. This
experiment used ρ = 30000 and σ = 1000.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·105

2.08

2.1

2.12

2.14

2.16

2.18

2.2
·108

Number of regions

En
er

g
y

Regular mesh
Adaptive mesh

Figure 5.8: Optimal energy vs. the total number of regions for a square 16-
connected mesh. To get the same accuracy as the finest parts of the adaptive
mesh, the regular mesh would need 21 ·105 regions. In contrast, the adaptive mesh
converged using about 1 · 105 regions. This experiment used ρ = σ = 10000.

69

CHAPTER 5. CURVATURE REGULARIZATION IN THE PLANE

Peak memory usage (MB)
Original problem 468

Dual decomposition (2 parts) 279

Table 5.1: Peak memory usage for a 128×128 homogenous 8-connected mesh. The
reduction not as good as 50% because the solvers cache the solutions and system
matrices between iterations.

5.5.3 QPBO Experiments

Our QPBO experiments were disappointing. It seems that the formulation with
higher-order cliques is weaker than the previously discussed linear programming
formulations. In all cases except with a non-negligible value of σ we obtained
75%–95% unlabeled nodes, with no hope of recovering a good solution with e.g.
QPBO-P (Rother et al., 2007a). No 4-cliques are required if the very simple cubic
mesh in Fig. 5.3a is used, and we were in this case able to solve the optimization
problem with QPBO, hence reproducing the results in (El-Zehiry and Grady,
2010). However, such meshes are too coarse to be of any practical use.

5.5.4 Dual decomposition

Chapter 7 will describe a dual decomposition scheme, where the domain is split
into two pieces which are solved separately and constrained to be equal on an
overlap, see Fig. 7.1 on page 85. The same method can be used to split curvature
linear programs to reduce the memory requirements of the linear solver. While
splitting an adaptive mesh into two or more parts takes some care, splitting a
regular square mesh is relatively straightforward. A specialized solver for the
original problem must be able to solve the subproblems as well. Therefore, some
care has to be taken to make sure all edge pairs are counted the correct number
of times in and around the overlap. It is easy to test if the split has been made
correctly. The sum of the minimal energies in the left and right part has to match
the minimal energy of the original problem exactly. The solutions to the two
problems are constrained to be equal for all overlapping regions. We use the exact
same updating scheme as will be described in depth for graph cuts in Section 7.2.3.

To be able to compare the difference in peak memory usage, we ran experiments
using a 128× 128 mesh. The memory reduction with dual decomposition was
significant, see Table 5.1. The achieved memory reduction was slightly less than

70

5.6. CONCLUSIONS

50% since the intermediate states of the solvers are stored between iterations to
increase execution speed. The total time required by dual decomposition (single-
threaded) is usually slightly less than solving the original problem, although this
can vary. The main benefit is the reduced memory consumption.

5.6 Conclusions

The purpose of this chapter has been to discuss the problem of segmentation with
curvature regularization and to enhance the methodology in numerous ways.

First of all, new region consistency constraints (5.7) have been introduced,
which are essential for the method in (Schoenemann, Kahl and Cremers, 2009) to
work well (Fig. 5.2c). These new constraints also reduced the computation time to
less than one tenth of the original time.

I have argued, by studying the angles between straight lines and the number of
regions in different meshes that hexagonal meshes are more suitable than square
meshes with the same number of regions. Experiments have confirmed this
conclusion as well (Fig. 5.5).

Another way of reducing the memory requirements is to allow an adaptive
generation of the mesh. Generating the mesh adaptively by examining the changes
of the data term results in far better segmentations, both quantitatively (Fig. 5.8)
and qualitatively (Figs. 5.6 and 5.7). Finally, dual decomposition may be used to
split the linear program in smaller, more manageable pieces.

I have included a discussion of Boolean optimization with higher-order terms.
Unfortunately, experiments have shown that this formulation is not an attractive
alternative (except for 4-connectivity which does not have 4-cliques and was
introduced by El-Zehiry and Grady (2010)). This is unfortunate, since this
formulation easily generalizes to three dimensions. A three-dimensional framework
for surface completion and segmentation will be the topic of the next chapter.

71

CHAPTER 5. CURVATURE REGULARIZATION IN THE PLANE

72

Chapter 6

Surface Completion and
Segmentation with Curvature

We have seen that it in many cases is possible to minimizes functionals involving the
curvatures of plane curves. This chapter will describe the work I conducted together
with Fredrik Kahl on extending the framework to surfaces in three dimensions.
The problem we are interested in solving amounts to minimizing the following
energy functional:

E(R) =

∫
R
g(x) dx+

∫
∂R

(
ρ+ σκ(x)2) dA(x), (6.1)

where R is a volume with boundary ∂R. Here κ(x) is the mean curvature of the
surface ∂R at x. g(x) is the data term, which may take many different forms
depending on the application. It is typically present in segmentation problems and
not present in surface completion problems. ρ and σ controls the amount of area
and curvature regularization, respectively.

In differential geometry, energy functionals of the type in (5.1) have been
studied for a long time. The functional is known as the Willmore energy (Willmore,
1965). It gives a quantitative measure of how much a given surface deviates from
a round sphere. Local descent techniques have been derived for minimizing
(5.1) (Hsu, Kusner and Sullivan, 1992), but they are very dependent on a good
initialization. This chapter will introduce a framework for minimizing these
functionals globally.

6.1 Curvature of Surfaces

Each facet in our 3D mesh is associated with a variable y = (y1, . . . , y2n) of
areas a = (a1, . . . , a2n). There are twice as many variables as facets, because

73

CHAPTER 6. SURFACE COMPLETION AND SEGMENTATION

each facet is associated with two variables, one for each orientation. The two are
distinguished by (arbitrarily) assigning a normal to each face in the mesh. The
optimization problem for surface completion with area regularization is

minimize
y

ρaTy

subject to By = 0

y ∈ {0, 1}2n

yk = 1, k ∈ K.

(6.2)

K is the set of facets that are supposed to be part of the minimal surface a priori.
The matrix B is defined by Grady (2010) as:

Be,yi =


+1, if edge e borders yi with coherent orientation

−1, if edge e borders yi with coherent orientation

0, otherwise.

(6.3)

We now extend this formulation to support curvature by introducing face pairs.
Each pair of facets in the mesh with an edge in common are associated with two
variables {yi,j} (one for each orientation). Enforcing consistency between the face
variables and the variables corresponding to the pairs of faces can be done with
linear constraints:

Surface continuation constraints. For each oriented facet k and each one of its
edges e we add the following constraint:

yk =
∑

(i,j) with edge e

dk,i,jyi,j . (6.4)

The sum is over all pairs ij with edge e in common. The indicator dk,i,j is 1 if
facet k is part of the pair (i, j).

Having introduced the facet pairs, we follow Wardetzky et al. (2007) and
associate them with a cost bi,j , approximating the mean curvature (compare with
(5.5) on page 58):

bij =
3||eij ||2

2(ai + aj)

(
2 cos

θij
2

)2

, (6.5)

74

6.1. CURVATURE OF SURFACES

(a) One unit cube. (b) Eight unit cubes in
a 2× 2× 2 mesh.

Figure 6.1: Each unit cube is split into 5 tetrahedrons. This is the type of mesh
used for our experiments in 3D. When stacking several, every other cube has to be
mirrored in order to fit.

where θij is the dihedral angle between the two facets in the pair. ||eij || is
the length of their common edge. The objective function we are minimizing
is then ρ

∑
i aiyi + σ

∑
i,j bi,jyi,j , subject to the constraints in (6.2) and (6.4).

This approximation is far from perfect; for example, it will not give the correct
approximation for saddle points. However, it measures how much the surface
bends and fulfills a couple of requirements listed by Wardetzky et al. (2007).

Segmentation, as opposed to surface completion, require variables for each
volume element in order to incorporate the data term. Let xi be variables associated
with the volume elements. Additional consistency constraints are then required:

Volume continuation constraints. For each facet k,

∑
i

bk,iyi +
∑
i

gk,ixi = 0, (6.6)

where bk indicates whether the facet yk is positively or negatively incident w.r.t.
the chosen face normal. gk,i is 1 if the volume element xi is positive incident (the
face normal points towards its center), −1 if it is negative incident and 0 otherwise.
Both sums have two non-zero terms.

75

CHAPTER 6. SURFACE COMPLETION AND SEGMENTATION

(a) Area regularization (b) Curvature regularization

Figure 6.2: Surface completion on a 16 × 16 × 16 mesh with area and curvature
regularization and volume element variables. The data term and the optimal
surface using area regularization coincide. The radius of the volume in (b) is
constrained by the mesh size. Otherwise, a minimal surface would not exist for the
continuous problem.

6.2 Experiments

For our experiments in three dimensions we generated a mesh where each unit
cube was split into 5 tetrahedrons, see Fig. 6.1. We then create the set K as two
circular surfaces at z = 0 and z = zmax, with nothing in between. The analytic
solution with area penalty is the catenoid, one of the first minimal surfaces found.
Fig. 6.3a show the discrete version obtained with ρ = 1 and σ = 0. If instead
the mean curvature is chosen as the regularizer, the optimal surface instead bends
outwards. The solution to this problem is shown in Fig. 6.3b and is the global
optimum, since all variables ended up integral in the LP relaxation of (6.2). We
used Clp as our LP solver.

In another experiment we also used variables for the volume elements. The
data term was a 3D ‘cross’ where the volume elements were forced to be equal
to 1, whereas the volume elements at the boundary were forced to be 0. The
optimal segmentation when the area was minimized coincided with the data term
and is shown in Fig. 6.2a. When instead minimizing the curvature the optimal

76

6.2. EXPERIMENTS

(a) Area regularization on a 40 × 40 × 15 mesh (491k variables, 398k constraints
and 447 seconds). A 25× 25× 7 mesh required 91k variables and 5 seconds.

(b) Curvature regularization on a 25×25×7 mesh (637k variables, 441k constraints
and 178 seconds).

Figure 6.3: Surface completion with area and curvature regularization. Two flat,
circular surfaces at the top and bottom were fixed to 1. The surface in (a) bends
inwards to approximate a catenoid and in (b) it correctly bends outwards to
minimize the curvature.

77

CHAPTER 6. SURFACE COMPLETION AND SEGMENTATION

segmentation should resemble a sphere, which is observed in Fig. 6.2b.
This chapter has introduced constraints for 3D surface completion and segmen-

tation. Experiments are encouraging with exclusively globally optimal solutions.
To my knowledge, this is the first time the mean curvature of surfaces has been
optimized globally. The next step would be to apply this method to e.g. the partial
surfaces obtained by stereo estimation algorithms. Another line of further research
is how to be able to cope with finer discretizations of the 3D volume.

78

Part III

Parallel and Distributed
Optimization

Chapter 7

Parallel and Distributed
Graph Cuts

Many problems in low-level computer vision can be formulated as labeling prob-
lems using Markov Random Fields (MRFs). Among the examples are image
segmentation, image restoration, dense stereo estimation and shape estimation
(Greig, Porteous and Seheult, 1989; Boykov and Kolmogorov, 2004; Boykov,
Veksler and Zabih, 1998; Rother, Kolmogorov and Blake, 2004; Lempitsky and
Boykov, 2007). I showed in chapter 3 that when the number of labels is equal to 2,
the problem can sometimes be formulated as a maximum flow or a minimum cut
problem (Kolmogorov and Zabih, 2004). For problems with three or more labels
α-expansion and other approximation methods (Komodakis, Paragios and Tziritas,
2007; Komodakis and Tziritas, 2007; Carr and Hartley, 2009) are available.

In this and the next chapter I will describe how the technique of dual decompo-
sition from chapter 2 applies to these and related optimization methods. The focus
for this chapter will be graph cuts. We will see that it is a valuable tool to parallelize
existing algorithms to make them run faster on modern multi-core processors. We
will also see that prohibitively large memory requirements can be made tractable
on both desktop computers and supercomputer clusters. Examples of optimization
problems with huge memory requirements are segmentation problems in three or
more dimensions and curvature regularization problems. Finally, we will see that
dual decomposition also provides an interesting way of implementing algorithms
on parallel hardware, such as graphical processing units (GPUs).

The next section reviews other approaches to parallel graph cuts. I will begin
with an overview of the contributions of this chapter, which is based on a paper
previously published at CVPR (Strandmark and Kahl, 2010).

81

CHAPTER 7. PARALLEL AND DISTRIBUTED GRAPH CUTS

Decomposition of graph cuts The contribution of this chapter is a parallel
implementation of the graph cuts method by Boykov and Kolmogorov (2004),
which henceforth is referred to as “BK”. The approach has a number of advantages
compared to other parallelization methods:

1. The BK-method has been shown to have superior performance compared to
competing methods for a number of applications (Boykov and Kolmogorov,
2004), most notably sparse 2D graphs and moderately sized 3D graphs.

2. It is possible to reuse the search trees in the BK-method (Kohli and Torr,
2005, 2007) which makes the dual decomposition approach attractive.
Further, we show that the dual function can be optimized using integer
arithmetic. This makes the dual optimization problem easier to solve.

3. Perhaps most importantly, we demonstrate good empirical performance
with significant speed-ups compared to single-threaded computations, both
on multi-core platforms and multi-computer networks.

Naturally, there are also some disadvantages:

1. There is no theoretical guarantee that the parallelization will be faster for
every problem instance. Already for the BK-method no polynomial time
guarantee is known, and we cannot give one for the number of iterations,
either. In practice this matters little.

2. Our current implementation is only effective for graphs for which the
BK-method is effective. The underlying dual decomposition principle can
however be applied in combination with any graph cut algorithm.

7.1 Previous Approaches to Graph Cuts in Vision

Our work builds on the following two trends: the ubiquity of maximum flow
computations in computer vision and the tendency of modern microprocessor
manufacturers to increase the number of cores in mass-market processors. This
implies that an efficient way of parallelizing maximum flow algorithms would be of
great use to the community. Due to a result from Goldschlager et al. (Goldschlager,
Shaw and Staples, 1982), there is little hope in finding a general algorithm for
parallel maximum flow with guaranteed performance gains. However, the graphs
encountered in computer vision problems are often sparse with much fewer edges

82

7.1. PREVIOUS APPROACHES TO GRAPH CUTS IN VISION

than the maximum n2 − n in a graph with n vertices. The susceptibility to
parallelization depends on the structure and costs of the graph.

There are essentially three types of approaches used in computer vision for
solving the maximum flow/minimum cut problem:

Augmenting paths The most popular method due to its computational effi-
ciency for 2D problems and moderately sized 3D problems with low connectivity
(i.e., sparse graphs) is the BK-method using augmenting paths (Boykov and Kol-
mogorov, 2004). However, as augmenting path algorithms use non-local opera-
tions, they have not been considered as a viable candidate for parallelization. One
way of making multiple threads cooperate is to divide the graph into disjoint parts.
This is the approach taken by Liu, Sun and Shum (2009), in which the graph is
split, solved and then split differently in an iterative fashion until no augmenting
paths can be found. The key observation is that the search trees of the subgraphs
can be merged relatively fast. The more recent work by Liu and Sun (2010) splits
the graph into many pieces which, in turn, multiple threads solve and merge until
only one remains and all augmenting paths have been found. In this chapter the
graph is also split into multiple pieces, but our approach differs in that we do not
require a shared-memory model, which makes distributed computation possible.

Push-relabel The push-relabel algorithm (Goldberg and Tarjan, 1986) is an
algorithm suitable for parallelization. The implementation by Delong and Boykov
(2008) has been tested for up to 8 processors with good results. There have been
attempts to implement this method on a GPU, the latest being CUDA cuts by
Vineet and Narayanan (2008; 2009), but our tests of the (freely available) imple-
mentation only gave the correct result for graphs with low regularization. Another
attempt was made by Hussein, Varshney and Davis (2007), which performed all
experiments on generated images with a very low amount of regularization. Solving
such graphs essentially reduces to trivial thresholding of the data term. The earliest
reference I was able to find was the paper by Dixit, Keriven and Paragios (2005)
which does not report any speed-up compared to sequential push-relabel.

Convex optimization Another approach to parallel graph cuts is to formulate
the problem as a linear program. Under the assumption that all edges are bidi-
rectional, the problem can then be reformulated as an `1 minimization problem.
The work by Bhusnurmath and Taylor (2008) attempts to solve this problem with

83

CHAPTER 7. PARALLEL AND DISTRIBUTED GRAPH CUTS

Newton iterations using the conjugate gradient method with a suitable precondi-
tioner. Matrix-vector multiplications can be highly parallelized, but this approach
has not proven to be significantly faster than the single-threaded BK algorithm
for any type of graph, even though Bhusnurmath and Taylor used a GPU in their
implementation.

Convex optimization based on a GPU has also been used to solve continuous
versions of graph cuts, e.g. (Klodt et al., 2008). However, the primary advantage
of continuous cuts has been to reduce metrication errors due to discretization.

Graph cuts is also a popular method for multi-label problems using, e.g.,
iterated α-expansion moves. Such local optimization methods can naturally be
parallelized by performing two different moves in parallel and then trying to fuse
the solutions, as done in (Lempitsky et al., 2009).

7.2 Decomposition of Graphs

Section 2.2 on page 9 gave an introduction to dual decomposition. This section
describes how the graph is split and how the dual variables enter the two subgraphs.
The next two sections provide extensive experiments for graphs in 2, 3 and 4
dimensions, both multi-threaded and distributed across many computational
nodes in a supercomputer.

7.2.1 Graph Cuts as a Linear Program

Finding the maximum flow, or, by duality, the minimum cut in a graph can
be formulated as a linear program. Let G = (V, c) be a graph where V =
{s, t}∪{1, 2, . . . , n} are the source, sink and vertices, respectively, and c the edge
costs. A cut is a partition S, T of V such that s ∈ S and t ∈ T . The minimum
cut problem is finding the partition where the sum of all costs of edges between
the two sets is minimal. It can be formulated as

minimize
x

∑
i,j∈V

ci,jxi,j

subject to xi,j + xi − xj ≥ 0, i, j ∈ V
xs = 0, xt = 1, x ≥ 0.

(7.1)

The variable xi indicates whether vertex i is part of S or T (xi = 0 or 1, respec-
tively) and xi,j indicates whether the edge (i, j) is cut or not. The variables are

84

7.2. DECOMPOSITION OF GRAPHS

ONMLHIJK1 oo 1 //
OO
2
��

ONMLHIJK−1 oo 1 //
OO
1
��

ONMLHIJK2 oo 1 //
OO
2
��

__
1

��????????
ONMLHIJK−3 oo 1 //
OO
1
��

ONMLHIJK−1

OO
1
��ONMLHIJK2 oo 1 //

OO
1
��

__
2

��????????
ONMLHIJK−1 oo 1 //
OO
1
��

ONMLHIJK1 oo 1 //
OO
1
��

ONMLHIJK−1 oo 1 //
OO
2
��

ONMLHIJK0

OO
1
��ONMLHIJK2 oo 1 //

OO
1
��

ONMLHIJK1 oo 1 //
OO
1
��

ONMLHIJK3 oo 2 //
OO
3
��

ONMLHIJK0 oo 1 //
OO
1
��

ONMLHIJK2

OO
1
��ONMLHIJK1 oo 1 //ONMLHIJK0 oo 1 //ONMLHIJK1 oo 3 //ONMLHIJK0 oo 2 //ONMLHIJK1

(a) Original graph.

ONMLHIJK1 oo 1 //
OO
2
��

ONMLHIJK−1 oo 1 //
OO
1
��

ONMLHIJK1+λ1

OO
1
��ONMLHIJK2 oo 1 //

OO
1
��

__
2

��????????
ONMLHIJK−1 oo 1 //
OO
1
��

ONMLHIJK1
2 +λ2

OO
1
2
��ONMLHIJK2 oo 1 //

OO
1
��

ONMLHIJK1 oo 1 //
OO
1
��

ONMLHIJK3
2 +λ3

OO
3
2
��ONMLHIJK1 oo 1 //ONMLHIJK0 oo 1 //ONMLHIJK1

2 +λ4

ONMLHIJK1−λ1 oo
1 //

OO
1
��

__
1

��????????
ONMLHIJK−3 oo 1 //
OO
1
��

ONMLHIJK−1

OO
1
��ONMLHIJK1

2−λ2
oo 1 //

OO
1
2
��

ONMLHIJK−1 oo 1 //
OO
2
��

ONMLHIJK0

OO
1
��ONMLHIJK3

2−λ3
oo 2 //

OO
3
2
��

ONMLHIJK0 oo 1 //
OO
1
��

ONMLHIJK2

OO
1
��ONMLHIJK1

2−λ4
oo 3 //ONMLHIJK0 oo 2 //ONMLHIJK1

(b) Subproblems with vertices in M and N, respectively.

Figure 7.1: The graph decomposition into sets M and N. The pairwise energies
in M ∩ N are part of both EM and EN and has to be weighted by 1/2. Four dual
variables λ1 . . . λ4 are introduced as s/t connections.

85

CHAPTER 7. PARALLEL AND DISTRIBUTED GRAPH CUTS

not constrained to be 0 or 1, but there always exists one such solution, according
to the duality between maximum flow and minimum cut. Let DV denote the
convex set defined by the constraints in (7.1).

7.2.2 Splitting the Graph

Now pick two sets M and N such that M ∪N = V and {s, t} ⊂M ∩N . We
assume that when i ∈ M \N and j ∈ N \M , ci,j = cj,i = 0. That is, every
edge is either within M or N , or within both. See Fig. 7.1.

We now observe that the objective function in (7.1) can be rewritten as:∑
i,j∈V

ci,jxi,j =
∑
i,j∈M

ci,jxi,j +
∑
i,j∈N

ci,jxi,j −
∑

i,j∈M∩N
ci,jxi,j . (7.2)

Define

EM (x) =
∑
i,j∈M

ci,jxi,j −
1
2

∑
i,j∈M∩N

ci,jxi,j

EN (y) =
∑
i,j∈N

ci,jyi,j −
1
2

∑
i,j∈M∩N

ci,jyi,j .

(7.3)

This leads to the following equivalent linear program:

minimize
x∈DM
y∈DN

EM (x) + EN (y)

subject to xi = yi, i ∈M ∩N.
(7.4)

Here x is the variable belonging to the set M (left in Fig. 7.1b) and y belongs to
N . The two variables x and y are constrained to be equal in the overlap. The dual
function of this optimization problem is:

d(λ) = min
x∈DM
y∈DN

(
EM (x) + EN (y) +

∑
i∈M∩N

λi(xi − yi)
)

= min
x∈DM

(
EM (x) +

∑
i∈M∩N

λixi

)

+ min
y∈DN

(
EN (y)−

∑
i∈M∩N

λiyi

)
.

(7.5)

86

7.2. DECOMPOSITION OF GRAPHS

(a) 2× 2 (b) 2× 2× 2

Figure 7.2: Splitting a graph into several components. The blue, green and red
parts are weighted by 1/2, 1/4 and 1/8, respectively.

We now see that evaluating the dual function d amounts to solving two
independent minimum cut problems. The extra unary terms λixi are shown in
Fig. 7.1b. Let x∗,y∗ be the solution to (7.4) and let λ∗ maximize d. Because
strong duality holds, we have d(λ∗) = EM (x∗) + EN (y∗) (Bertsekas, 1999).
Each subproblem may in general have multiple solutions, so to obtain a unique
solution we always set our optimal x∗ and y∗ equal to 1, wherever possible.

Splitting a graph into more than two components can be achieved with the
same approach. The energy functions analogous to (7.3) might then contain terms
weighted by 1/4 and 1/8, depending on the geometry of the split. See Fig. 7.2.

7.2.3 Implementation

Solving the original problem (7.4) amounts to finding the maximum value of
the dual function. It follows from Lemma 2.1 that xi − yi, for i ∈ M ∩ N , is
a supergradient to g. In order to maximize d, the iterative scheme described in
Section 2.2 can be used. This scheme requires the dual function to be evaluated
many times. To make this efficient we reuse the search trees as described by Kohli
and Torr (2007). Only a small part of the cost coefficients is changed between
iterations and our experiments show that the subsequent max-flow computations
can be completed within microseconds, see Table 7.1.

The step size τ needs to be chosen in each iteration. One possible choice is
τ = 1/k, where k is the current iteration number. For this particular application,
we have found that this scheme and others appearing in the literature (Bertsekas,
1999; Komodakis, Paragios and Tziritas, 2007) are a bit too conservative for our

87

CHAPTER 7. PARALLEL AND DISTRIBUTED GRAPH CUTS

/.-,()*+s
1

��======
_ _ _ _ _�
�
�
�
�
�

�
�
�
�
�
�

_ _ _ _ _

�������� oo 1 // �������� oo 1 // • oo 1 // �������� oo 1 // ��������
1

��======

/.-,()*+t

(a) Original graph

/.-,()*+s
1

��======

�������� oo 1 // �������� oo 1 // •
λ��/.-,()*+t

(b) Left part

/.-,()*+s
λ
��
• oo 1 // �������� oo 1 // ��������

1

��======

/.-,()*+t

(c) Right part

Figure 7.3: Convergence problem. The original graph (a) has multiple solutions,
i.e., multiple minimum cuts. If λ 6= 1, the solutions for the two graphs (b) and (c)
will not agree.

purposes. Instead of using a single step length τ , we associate each vertex in the
overlap with its own step length τi. This is because different parts of the graph
behave in different ways. In each iteration, we ideally want to choose λi so that
xi = yi; therefore, if xi − yi changed sign, then step length was too large and we
should move in the opposite direction with a reduced step length.

foreach i ∈M ∩N do
if xi − yi 6= 0 then

λi ← λi + τi(xi − yi) ;
if xi − yi 6= previous difference then

τi ← τi/2 ;
end

end
end

To handle cases like the one shown in Fig. 7.8, we also increase the step
length if nothing happens between iterations. Empirical tests show that keeping
an individual step length improves convergence speed for all graphs we tried. The
extra memory requirements are insignificant.

88

7.2. DECOMPOSITION OF GRAPHS

Convergence Some graphs may have problems converging to the optimal so-
lution. This can occur for graphs admitting multiple solutions. Fig. 7.3 shows
an illustrative example. While the proposed scheme will converge toward λ = 1
for this graph, it will not reach it in a finite number of iterations. If λ 6= 1, the
two partial solutions will not agree for the vertex marked black. In practice, we
observed this phenomenon for a few pixels when processing large graphs with
integer costs.

One possible solution is to add small, positive, random numbers to the edge
costs of the graph. If the graph only has integer costs, this is not a problem.
Increasing edge costs only increases the maximum flow, so the global maximum
flow in the original graph is the integer part of the flow in the modified graph
provided the sum of all values added is less than 1. However, there is an alternative
way of handling graphs with integer costs.

Theorem 7.1. If all the edge costs ci,j are even integers, then there is an integer vector
λ maximizing the dual function (7.5).

Proof. The constraint sets DM and DN in (7.4) can be described by Az ≥ b,
where A is an (integer) matrix, z = (x,y) and b is an (integer) vector. Therefore,
the optimization problem (7.4) can be written as:

minimize
z

aTz

subject to Az ≥ b

xi − yi = 0, i ∈M ∩N.
z ≥ 0.

(7.6)

Here, a is an integral vector describing the objective function in (7.4). We also
write Bz = 0 for the equality constraints. Forming the dual function, we get:

d̃(w,λ) = min
z

{
aTz +wT(b− Az) + λTBz

}
.

The dual is also a linear program,

maximize
w,λ

bTw

subject to ATw + BTλ ≤ a

w ≥ 0.

(7.7)

89

CHAPTER 7. PARALLEL AND DISTRIBUTED GRAPH CUTS

Since A is totally unimodular (TUM) (c.f. (Papadimitriou and Steiglitz, 1998, Sec-
tion 13.2)), so is AT. Also B is TUM and a is integral, and thus the dual function
g̃ has an integer optimum (w∗,λ∗). Since we have d(λ) = maxw≥0 d̃(w,λ),
we are done.

Remark. The theorem does not necessarily hold if the costs are integers. The

graph s
∞ // �������� 1 // �������� 1 // t , split at the second node, provides a counterexample. The

subproblems are s
∞ // �������� 1 // ��������1/2+λ// t and s

λ // ��������1/2// t . We have d(0) = d(1) = 1/2,
but d(1/2) = 1.

For a general graph with integer costs split into two pieces, we multiply each
edge by 2 and obtain an equivalent problem with an integer maximizer λ. The
graph may be split in more than two pieces in such a way that smaller costs than
1/2 are used, as in Fig. 7.2. When setting up these problems we multiply every
cost by 4 and 8, respectively, to ensure integer maximizers.

7.3 Experiments on a Single Machine

In this section we describe experiments performed in parallel on a single machine
executed across multiple threads. We used the BK-method (v3.0 available for down-
load) both for the single-threaded experiments and for solving the subproblems.
All timings of the multi-threaded algorithm include any overhead associated with
starting and stopping threads, allocation of extra memory etc. In all experiments
we have only considered the time for actual maximum flow calculations, which
means that the time required to construct the graphs is not taken into account. We
note, however, that graph construction trivially benefits from parallel processing.

Image segmentation We applied our parallel method for the 301 images in the
Berkeley segmentation database (Martin et al., 2001), see Fig. 7.4 for examples.
The segmentation model used was a piecewise constant model (the pixel values
were normalized to [0, 1]) with the boundary length as a regulating term:

E(x) = ρ
∑
i

∑
j∈N (i)

wij |xi − xj |+
∑
i

xi

(
(Ii − c1)2 − (Ii − c0)2

)
. (7.8)

The boundary length is here approximated using a neighborhood N (i) of edges
around each pixel, usually of sizes 4, 8 or 16 in the two-dimensional case. See

90

7.3. EXPERIMENTS ON A SINGLE MACHINE

Cameraman (256×256)
Iteration 1 2 3 4 5

Number of Differences 36 17 3 3 0
Time (ms) 6.8 0.141 0.078 0.071 0.447

Tree (1152× 1536, shown in Fig. 7.7)
Iteration 1 2 3 4 5 8 9 10 11

Differences 108 105 30 33 16 · · · 16 9 9 0
Time (ms) 245 1.5 1.2 0.1 0.08 · · · 0.15 0.06 0.07 0.47

Table 7.1: The processing time for each iteration for two example images. The
number of overlapping pixels (M ∩ N) was 256 and 1536, respectively (one column).
Deallocating memory and terminating threads is the cause of the processing time
increase in the last iteration. Note the short processing times after the first iteration
due to the reuse of search trees.

(Boykov and Kolmogorov, 2003; Kolmogorov and Boykov, 2005) for details on
how to choose wij . The overall influence of the boundary length is specified with
the parameter ρ, where larger values usually correspond to harder optimization
problems (longer s/t paths). The two constants c1 and c0 specify the intensity
of the foreground and background. They were estimated in an alternating EM
fashion for each image separately before the experiments.

The relative times (tmulti-thread/tsingle) using two computational threads are
shown in Figs. 7.5 and 7.6. Since the images in the database are quite small, the
total processing time for a single image is around 10 milliseconds. Even with the
overhead of creating threads and iterating to find the global minimum, we were
able to get a significant speed improvement for almost all images.

Table 7.1 shows how the processing time varies with each iteration. In the
last steps, very few vertices change and solving the maximum flow problems can
therefore be done very quickly within microseconds.

It is very important to note that the problem complexity depends heavily
on the amount of regularization used. That is, segmentation problems with low
penalties on boundary length are easy to solve and parallelize. In the extreme case
where no regularization is used, the problem reduces to simple thresholding, which
of course is trivial to parallelize. Therefore, it is relevant to investigate how the
algorithm performs with different amounts of regularization. We have done this
and can conclude that our graph decomposition scheme performs well for a wide
range of different settings, see Fig. 7.7. We see that the relative improvement in

91

CHAPTER 7. PARALLEL AND DISTRIBUTED GRAPH CUTS

Figure 7.4: Examples from the Berkeley database (Martin et al., 2001).

0.25 0.5 0.75 1 1.25

20

40

60

Relative time

Fr
eq

u
en

cy

Figure 7.5: Relative times with 2 (red) and 4 (dotted blue) computational threads
for the 301 images in the Berkeley segmentation database, using 4-connectivity.
The medians are 0.596 and 0.455.

speed remains roughly constant over a large interval of different regularizations,
whereas the absolute processing times vary by an order of magnitude.

When the number of computational threads increase, the computation times
decrease as shown in Fig. 7.5.

Stereo problems The “Tsukuba” data set, which we obtained from University
of Western Ontario (UWO), consists of a sequence of max-flow instances corre-
sponding to the first iteration of α-expansions (Boykov, Veksler and Zabih, 1998).
First, we solved the 16 problems without any parallelization and then, with two
computational threads. The relative times ranged from 0.51 to 0.72, with the
average being 0.61.

Three-dimensional graphs We used the graph construction described by Lem-
pitsky and Boykov (2007) with data downloaded from UWO to evaluate the
algorithm in three dimensions. For the “bunny” data set from UWO the relative
time was 0.67 with two computational threads.

92

7.3. EXPERIMENTS ON A SINGLE MACHINE

0.25 0.5 0.75 1 1.25

20

40

60

Relative time

Fr
eq

u
en

cy

Figure 7.6: Relative times using 8-connectivity and 2 computational threads. The
median is 0.628.

ρ

R
el

at
iv

e
sp

ee
d

Figure 7.7: Relative improvement in speed with two computational threads when
the regularization parameter changes. Although the processing time ranged from
230 ms to 4 seconds, the relative improvement was not affected.

93

CHAPTER 7. PARALLEL AND DISTRIBUTED GRAPH CUTS

Figure 7.8: “Worst-case” test. The left and right side of the image is connected
to the source and sink, respectively. The edge costs are determined by the image
gradient. All flow must be communicated between the two computational threads
when splitting the graph vertically.

Limitations We have tried to explore the limitations of the method by examining
cases with poor splits and poor speed-ups.

To see how our algorithm performs when the choice of split is very poor, we
took a familiar image and split it in half from top to bottom as depicted in Fig. 7.8.
We attached the leftmost pixel column to the source and the rightmost to the
sink. Splitting horizontally would have been much more preferable, since splitting
vertically severs every possible s-t path and all flow has to be communicated
between the threads. Still, the parallel approach finished processing the graph 30%
faster than the single-threaded approach. This is a good indication that the choice
of the split is not crucial.

Figs. 7.5 and 7.6 contain a few examples (< 1%) where the multi-threaded
algorithm actually performs slower or almost the same as the single-threaded
algorithm. The single example in Fig. 7.5 is interesting, because solving one of
the subgraphs once takes significantly longer than solving the entire original graph.
This can happen for the BK algorithm, but is very uncommon in practice. We
have noted that slightly perturbing any of the problem parameters (regularization,
image model, split position etc.) makes the multi-threaded algorithm faster also
for this example.

The other slow examples have a simpler explanation: there is simply nothing

94

7.4. SPLITTING ACROSS DIFFERENT MACHINES

Figure 7.9: Splitting a graph across many computers. Colors indicate nodes that
should be equal.

interesting going on in one of the two halves of the graph, see e.g. the first image in
Fig. 7.4. Therefore, the overhead of creating and deallocating the threads and extra
memory gives the multi-threaded algorithm a slight disadvantage. The approach
by Liu and Sun (2010) (using smaller pieces) is better suitable for these graphs.

7.4 Splitting across Different Machines

We now turn to another application of graph decomposition. Instead of assigning
each part of the graph to a computational thread, one may assign each subgraph to
a different machine and let the machines communicate the flow over a network.
Fig. 7.9 shows a diagram of the setup.

Memory is often a limiting factor for maximum flow calculations. Using
splitting we were able to segment 4-dimensional (space+time) MRI heart data with
95× 98× 30× 19 = 5.3M voxels. The connectivity used was 80, requiring 12.3
GB memory for the graph representation. By dividing this graph among 4 (2-by-2)
different machines and using MPI (Snir and Otto, 1998) for communication,
we were able to solve this graph in 1980 seconds. Since only a small amount of
data (54 kB in this case) needs to be transmitted between machines each iteration,

95

CHAPTER 7. PARALLEL AND DISTRIBUTED GRAPH CUTS

this is an efficient way of processing large graphs. On the system we used1, the
communication time was about 7-10 ms per iteration, for a total of 68 iterations
until convergence.

We also evaluated the algorithms for some of the big problems available from
the University of Western Ontario. The largest version of the “bunny” data set
is 401 × 396 × 312 = 50M with 300M edges was solved in 7 seconds across
4 machines. As a reference, a slightly larger version of the same data set (not
publicly available) was solved in over a minute with an (iterative) touch-and-
expand approach in (Lempitsky and Boykov, 2007).

The largest data set we used was a 512 × 512 × 2317 = 607M voxel CT
scan with 6-connectivity. Storing this graph required 131 GB of memory divided
among 36 (3 × 3 × 4) machines. We are not aware of any previous methods
designed to handle graphs of this magnitude. The regularization used was low,
which ensured convergence in 38 seconds with fairly even load distribution. Even
with low regularization, the computation required 327 iterations.

Splitting graphs across multiple machines also saves computation time, even
though the MPI introduces some overhead. For the small version of the “bunny”
data set, a single machine solved the problem in 268 milliseconds, while two
machines used 152 ms. Four machines (2-by-2) required 105 ms. For the medium
sized version the elapsed times were 2.3, 1.34 and 0.84 seconds, respectively.

It should be noted that in many cases the BK algorithm is not the fastest
possible choice, especially for graphs with higher dimensionality than 2 and con-
nectivity greater than the minimum (Boykov and Kolmogorov, 2004). However,
the method described in this chapter could just as easily be combined with a
push-relabel algorithm better suited for graphs with 3 or 4 dimensions. Using a
method optimized for grid graphs with fixed connectivity instead of the general
BK would also reduce memory requirements significantly.

7.5 Conclusions

We have shown that it is possible to split a graph and obtain the global maxi-
mum flow by iteratively solving subproblems in parallel. Two applications of this
technique were demonstrated:

• Faster maximum flow computations when multiple CPU cores are available

1 LUNARC Iris, http://www.lunarc.lu.se/Systems/IrisDetails

96

http://www.lunarc.lu.se/Systems/IrisDetails

7.5. CONCLUSIONS

(Section 7.3).

• The ability to handle graphs which are too big to fit in the computer’s RAM,
by splitting the graph across multiple machines (Section 7.4). This is in
contrast to other approaches (Liu and Sun, 2010; Liu, Sun and Shum, 2009)
where shared memory is required.

Good results were demonstrated even if the split severs many, or even all s-t paths of
the graph (Fig. 7.8). Experiments with different amounts of regularization suggest
that the speed-up is relatively insensitive to regularization (Fig. 7.7). The technique
was applied to different graphs arising in computer vision. Our experiments
included surface reconstruction, stereo estimation and image segmentation with
two, three and four dimensional data. Methods based on push-relabel generally
perform better than BK for large, high dimensional and highly connected graphs
as discussed in (Boykov and Kolmogorov, 2004). Therefore, using our approach
with push-relabel should be investigated in the future.

97

CHAPTER 7. PARALLEL AND DISTRIBUTED GRAPH CUTS

98

Chapter 8

Parallel Labeling on a GPU

I will now shift the focus from two-label problems to multi-label segmentation
problems. The goal is to use dual decomposition for a highly parallel algorithm
which can be run on hardware such as a field-programmable gate array (FPGA) or
a graphics processing unit (GPU). The energy function to be minimized is

E(x) =

n∑
i=1

Ti(xi) +

n∑
i=1

∑
j∈Ni

Eij(xi, xj), (8.1)

where x ∈ L = {1 . . . L}n and the functions Ti and Eij are arbitrary. Ti(y)
denotes the cost of assigning label y to node i and Eij(y, z) is the cost of jointly
assigning labels y and z to nodes i and j. The set Ni is the neighborhood of
i, that is, all nodes that are directly dependent on i. This chapter focuses on
4-connectivity, but the ideas readily carry over to higher connectivities.

While this chapter does not offer any new theoretical insights, I will offer
a practical way to parallelize previous approaches with good performance. The
method me and my coauthors developed uses dual decomposition and dynamic
programming similar to Komodakis, Paragios and Tziritas (2007), but our sub-
problems are simpler and therefore easily solved on massively parallel architectures.
The potential for parallelization was not explored by Komodakis et al. and we
show that these methods are useful to greatly increase the speed of algorithms for
which other fast methods already are available, such as submodular minimum cut
problems (Boykov and Kolmogorov, 2004).

GPU optimization Graphical processing units (GPUs) have been used exten-
sively to facilitate the often very computationally expensive tasks in low-level vision.
Segmentation with total variation models (e.g. problem (Q) considered in chap-
ter 4 on page 38) has successively been implemented and can be performed in real

99

CHAPTER 8. PARALLEL LABELING ON A GPU

time (Pock et al., 2008b; Unger et al., 2008). Computing the optical flow between
two images (Werlberger et al., 2009) and stereo estimation have also benefited
greatly from the parallelization offered by a multi-processor GPU.

Solving discrete labeling problems such as minimum cuts and its generaliza-
tions on a GPU has proven to be harder. Often the speed-up is not great compared
to algorithms that run on a CPU or the method might work well for only a
restricted amount of regularization. In my experience, existing approaches do not
work well, as mentioned in the previous chapter on page 83 regarding push-relabel.
Fig 8.3 shows one of my experiments.

8.1 Splitting the Graph

The first thing to do is to split the energy function E in (8.1). The approach
is simple: instead of considering a single graph, we consider two graphs, one of
which contains all vertical connections and one contains all horizontal connections.
The two new energy functions are

E1(x) =
1
2

n∑
i=1

Ti(xi) +

n∑
i=1

∑
j∈Hi

Eij(xi, xj),

E2(x) =
1
2

n∑
i=1

Ti(xi) +

n∑
i=1

∑
j∈Vi

Eij(xi, xj),

(8.2)

whereHi and Vi denotes the horizontal and vertical neighbors of i, respectively.
The factor 1/2 is needed to have E(x) = E1(x) + E2(x). Figure 8.1 illustrates
this splitting of the energy function.

Having split the graph, we may solve the dual problem (2.7) on page 9. Not
only are the two subproblems in (2.7) independent, but each also consists of
many one-dimensional subproblems, completely independent of each other. Such
(acyclic) one-dimensional problems can always be solved exactly in polynomial
time using dynamic programming.

100

8.2. DYNAMIC PROGRAMMING

�������� �������� �������� �������� ��������
�������� �������� �������� �������� ��������
�������� �������� �������� �������� ��������
�������� �������� �������� �������� ��������

=

�������� �������� �������� �������� ��������
�������� �������� �������� �������� ��������
�������� �������� �������� �������� ��������
�������� �������� �������� �������� ��������

∪

�������� �������� �������� �������� ��������
�������� �������� �������� �������� ��������
�������� �������� �������� �������� ��������
�������� �������� �������� �������� ��������

Figure 8.1: The graph decomposition. An edge between two nodes i and j indicate
that j ∈ Ni so that the two nodes are directly dependent upon each other. Note
that the two subproblems each consists of many independent one-dimensional
problems.

8.2 Dynamic Programming

It is well-known that one-dimensional energy functions of the type (8.1) can be
minimized exactly. We want to minimize

E(x) =
n∑
i=1

Ti(xi) +
n−1∑
i=1

Ei(xi, xi+1), (8.3)

where x ∈ L = {1 . . . L}n and the functions Ti and Ei are arbitrary. Ti(y)
denotes the cost of assigning label y to node i and Ei(y, z) is the cost of jointly
assigning labels y and z to nodes i and i + 1. To solve this problem, we define
Ck(x) to mean be the lowest energy we are able to get if we assign xk = x and
only count all nodes up to k, i.e.

Ck(y) ≡ min
x1...xk=y

(
k∑
i=1

Ti(xi) +

k−1∑
i=1

Ei(xi, xi+1)

)
. (8.4)

The following lemma describes how to compute Ck(y) recursively over k:

Lemma 8.2.

Ck(y) =

{
T1(y) k = 1

Tk(y) + minz∈L

(
Ck−1(z) + Ek−1(z, y)

)
k > 1.

101

CHAPTER 8. PARALLEL LABELING ON A GPU

Proof. We can compute C1(y) = T1(y) directly from the definition. For any
k > 1 we have

Ck(y) = min
x1...xk=y

(
Tk(y) + Ek−1(xk−1, y) +

k−1∑
i=1

Ti(xi) +
k−2∑
i=1

Ei(xi, xi+1)

)

= Tk(y) + min
x1...xk−1=z

(
Ek−1(z, y) +

k−1∑
i=1

Ti(xi) +

k−2∑
i=1

Ei(xi, xi+1)

)
= Tk(y) + min

z∈L

(
Ck−1(z) + Ek−1(z, y)

)
. (8.5)

Lemma 8.2 gives an algorithm to efficiently compute Ck(y) for all nodes
k and labels y. An optimal labeling x∗ can be extracted from this information.
Assigning the optimal label to xk can be done given x∗k+1:

Lemma 8.3.

x∗k =


arg min
y∈L

Cn(y) k = n

arg min
y∈L

Ck(y) + Ek(y,x
∗
k+1). k < n

Proof. The case k = n is the definition of Cn(y). If k < n we observe that

x∗k = arg min
y∈L

min
x∈L, xk=y

E(x)

= arg min
y∈L

min
x∈L, xk=y

(
n∑
i=1

Ti(xi) +

n−1∑
i=1

Ei(xi, xi+1)

)

= arg min
y∈L

min
x∈L, xk=y

(
k∑
i=1

Ti(xi) +

k−1∑
i=1

Ei(xi, xi+1)

+

n∑
i=k+1

Ti(x
∗
i) +

n−1∑
i=k

Ei(x
∗
i ,x
∗
i+1)

)

= arg min
y∈L

(
Ck(y) +

n∑
i=k+1

Ti(x
∗
i) + Ek(y,x

∗
k+1) +

n−1∑
i=k+1

Ei(x
∗
i ,x
∗
i+1)

)
= arg min

y∈L
Ck(y) + Ek(y,x

∗
k+1).

(8.6)

102

8.3. BOOLEAN FORMULATION AND UPDATING OF WEIGHTS

Lemmas 8.2 and 8.3 together give an efficient method of minimizing E(x).
The time required for arbitrary energies will be quadratic in the number of labels,
which makes the method described in this chapter prohibitively slow for problems
with a huge number of labels, such as problems arising in (Pritch, Kav-Venaki and
Peleg, 2009).

8.3 Boolean Formulation and Updating of Weights

The problem formulation of minimizing (8.1) such that x ∈ L imposes an
ordering on the labels. This is because a supergradient to d is x∗ − y∗ and
this difference depends on the numerical values of the labels. To avoid this, we
reformulate the optimization problem as a Boolean problem:

Ē(x̄) =

n∑
i=1

∑
`∈L

x̄`,i · Ti(`) +

n∑
i=1

∑
j∈Ni

∑
`1∈L

∑
`2∈L

x̄`1,i · x̄`2,j · Eij(`1, `2),

(8.7)

where now x̄`,i ∈ {0, 1} and x̄`,i = 1 ⇐⇒ xi = `. Minimizing Ē is clearly
seen to be equivalent to minimizing E. The constraint x = y is reformulated
as x̄` = ȳ`, ` ∈ L and each of these is associated with a dual variable λ̄`. The
supergradient is according to Lemma 2.1

(∇d̄(λ̄1, . . . , λ̄`))`,i = x̄`,i − ȳ`,i. (8.8)

If the two solutions disagree for node i, the dual variables will then have to be
updated accordingly:

λ̄`,i ← λ̄`,i + τ ·


1 x̄`,i = 1

−1 ȳ`,i = 1

0 otherwise,

(8.9)

where τ is the step length for the current iteration. Since the dual variables enter
as multiplicative constants in front of {0, 1}-variables, adding a number c to λ`,i
is equivalent to adding c to Ti(`). Therefore, the dual variables need not be stored
explicitly and the data terms are instead modified directly.

103

CHAPTER 8. PARALLEL LABELING ON A GPU

8.3.1 Step Lengths

The step length rule we found to work best in practice was τ = C/k, where
k is the iteration number. To allow for data terms of different magnitudes, we
normalized the step lengths to τ = m/(3k), where m is the maximum value of
the data terms. If the data terms contain hard constraints with infinite cost weights,
these will have to be excluded. We have also tested the primal-dual based rule used
by Komodakis, Paragios and Tziritas (2007), but in this context it was slightly
inferior. Different step size schemes were discussed in section 2.2.1 on page 11
and it was mentioned that no method working with supergradients alone can be
very effective in general, and the problems in this chapter are very general indeed.

8.4 Linear Programming Relaxation

A very relevant question is whether the decomposed problem will solve the original
problem. In general, this is too much to hope for, but how good will the solu-
tion be? This is answered by Komodakis, Paragios and Tziritas (in press). The
combinatorial minimization problem of minimizing E can be relaxed to a linear
programming problem. Problem (2.27) on page 18 is such a relaxation for the
case L = {0, 1}. For the one-dimensional subproblems the relaxation is always
tight, and this fact can be used to show that the optimal value of the decomposed
problem is equal to the value of the relaxed linear program. This is very similar
to what we used to prove that dual decomposition always converges to the global
optimum in the submodular Boolean case in the previous chapter.

8.5 Experiments

All experiments on the CPU were performed with an Intel Core2 Quad 2.5GHz
processor (using a single core only) and for the GPU experiments we used an
nVidia Tesla 2050. Results are given for the standard Potts model for which the
regularizer is simply

Eij(`1, `2) =

{
ρ `1 6= `2

0 `1 = `2
. (8.10)

If the number of labels L = 2, the exact solution can be computed as the minimum
cut in an appropriate graph. If L ≥ 3, we compare our method to two approximate

104

8.5. EXPERIMENTS

ρ Min-cut time CPU time GPU time rel. duality gap iterations
104 0.0108s 0.0691s 0.042s 0.00024 71
105 0.0204s 0.0166s 0.01s 0.00017 16
106 0.4973s 0.0330s 0.017s 0.00046 26

Table 8.1: Boolean segmentation results for the ‘cameraman’ image, Figure 8.2.
We compared the minimum cut algorithm (Boykov and Kolmogorov, 2004) (v.3.01)
to a CPU and GPU implementation of the algorithm described in this chapter. We
note that the dual decomposition algorithm seems to perform best using high
regularizations.

ρ Number of images CPU Relative speed CPU Absolute time (s)
Min. Median Max. Median

104 300 0.45 3.99 9.13 0.0120
5 · 104 293 0.43 2.50 8.69 0.0240

105 279 0.35 1.55 4.18 0.0373
5 · 105 163 0.07 0.31 1.77 0.1548

106 95 0.04 0.13 0.77 0.3483

Table 8.2: Binary segmentation results using (7.8) on page 90 for the images in
the Berkeley segmentation data set (CPU, single thread). If the result was a trivial
(constant) segmentation, we excluded that image, hence the lower number of
images for higher regularization. Two facts can be seen from these figures: (i)
that higher regularization results in far more difficult problems and that (ii) the
row/column decomposition performs much better for those problems and those
problems only.

methods: α-expansion (Boykov, Veksler and Zabih, 2001; Kolmogorov and Zabih,
2004; Boykov and Kolmogorov, 2004) and FastPD (Komodakis and Tziritas,
2007). The results are given in Tables 8.1–8.3 as well as Figures 8.2–8.5. We
tried comparing to CUDA Cuts (Vineet and Narayanan, 2008), but the publicly
available algorithm did not give the correct solution for any of the problems in
Fig. 8.2. For ρ = 105 and 106 the algorithm produced a constant image.

We note that unlike the previous section (Fig. 7.7), we only observe a speed-up
for problems where the amount of regularization is high.

When the number of labels increases, the time until convergence increases
drastically. This is illustrated in Fig. 8.4. Furthermore, for general energies, the
processing time required for a single iteration increases quadratically with the
number of labels. These two facts make the method unattractive for a large
number of labels and inferior to e.g. α-expansion.

105

CHAPTER 8. PARALLEL LABELING ON A GPU

Figure 8.2: Boolean segmentation with different regularizations ρ ∈ {104, 105, 106}.
See Table 8.1.

Figure 8.3: Result using CUDA Cuts (Vineet and Narayanan, 2008) with ρ = 104. The
correct solution is shown in Fig 8.2. For ρ = 105 and 106 the algorithm produces a
constant image.

Figure 8.4: Result using the Potts model with 64 labels. To the left the solution
obtained by α-expansion is shown, followed by the row and column solutions of
Fig. 8.1 after 500 iterations. Running 10000 iterations did not improve the solutions
significantly.

ρ α-expansion FastPD CPU time GPU time rel. gap iters.
5 · 104 0.348s 0.123s 0.149s 0.069s 0.00092 121

105 0.223s 0.148s 0.138s 0.064s 0.00054 111
106 0.500s 0.318s 0.086s 0.027s 0.000035 46

Table 8.3: Multi-label segmentation with Potts model, Figure 8.5. We used the
implementation of α-expansion and FastPD from their authors, respectively.

106

8.6. COORDINATE ASCENT

Figure 8.5: Three class segmentation with the Potts model for different regulariza-
tions ρ ∈ {5 · 104, 105, 106}, respectively. See Table 8.3.

8.6 Coordinate Ascent

I will end this chapter with a comment on the shape of the dual function d in the
Boolean case where x ∈ {0, 1}n. It will be useful to consider the dual function
as a function of only one component of λ, say corresponding to xj , and keep all
other components fixed: λi = µi if i 6= j and we write λj = λ. It is natural to
consider the two parts of the dual function separately:

d1(x, λ) = E1(x) +
∑
i 6=j
µixi + λxj

d2(y, λ) = E2(y)−
∑
i 6=j
µiyi − λyj

(8.11)

and

d1(λ) = min
x∈{0,1}n

d1(x, λ)

d2(λ) = min
y∈{0,1}n

d2(y, λ).
(8.12)

What do d1 and d2 look like? In fact, they are quite simple: Figures 8.6a
and 8.6b show the shape of these functions and the following lemmas prove that
this is the case.

Lemma 8.4. d1 is increasing.

Proof. Let λ′ ≥ λ. We have that d1(λ) ≤ d1(x′, λ) ≤ d1(x′, λ′) for any x′.
Taking the minimum gives d1(λ) ≤ d1(λ′).

107

CHAPTER 8. PARALLEL LABELING ON A GPU

xj = 1 = 0

λ1

(a) d1(λ)

+

= 0 yj = 1

λ2

(b) d2(λ)

=

λ2 λ1

(c) d1(λ) + d2(λ)

Figure 8.6: The dual function value as a function of one of the components in λ.

Lemma 8.5. Let λ′ > λ. If xj = 0 for some solution x to the minimization
problem d1(λ), then

(a) x′j = 0 for all solutions x′ to the problem d1(λ′) and

(b) d1(λ) = d1(λ′).

Proof. Let x be a solution to d1(λ) with xj = 0. To prove statement (a), we
assume that there is a solution x′ to d1(λ′) with x′j = 1. Then d1(x, λ) =
d1(x, λ′) ≥ d1(x′, λ′) > d1(x′, λ), which is a contradiction to the optimality of
x.

To prove (b), we observe d1(λ) = d1(x, λ) = d1(x, λ′) ≥ d1(λ′). Since d1

is increasing this establishes that d1(λ) = d1(λ′).

Lemma 8.6. Let λ′ < λ. If xj = 1 for some solution x to d1(λ), then

(a) x′j = 1 for all solutions x′ to d1(λ′) and

(b) d1(λ′) = d1(λ)− (λ− λ′).

Proof. We proceed in the same manner as in the previous lemma. Let the solutions
to d1(λ′) and d1(λ′) be x and x′, with xj = 1 and x′j = 0. Then d1(x′, λ) =
d1(x′, λ′) ≤ d1(x, λ′) < d1(x, λ), which is a contradiction to the optimality of
x.

For (b), we have d1(λ) − (λ − λ′) = d1(x, λ) − (λ − λ′) = d1(x, λ′) ≥
d1(λ′). On the other hand, d1(λ)−(λ−λ′) ≤ d1(x′, λ)−(λ−λ′) ≤ d1(x′, λ′)
for any x′ ∈ {0, 1}n. Taking the minimum gives the reverse inequality.

108

8.7. CONCLUSION

The previous lemmas show that d1 has at most one breakpoint and is constant
for values larger than the breakpoint and increasing with slope 1 for values smaller.
It is now easy to see that there must be exactly one breakpoint, by letting λ→ ±∞.
Figure 8.6a shows the function d1(λ). The function d2 is of course analogous, as
shown in Fig. 8.6b. We have

Lemma 8.7. d2 is decreasing.

Lemma 8.8. Let λ′ < λ. If yj = 0 for some solution to d2(λ), then y′j = 0 for all
solutions to d2(λ′).

Lemma 8.9. Let λ′ > λ. If yj = 1 for some solution to d2(λ), then y′j = 1 for all
solutions to d2(λ′).

Lemma 8.10. Let λ′ ≤ λ. If y is a solution to d2(λ) with yj = 0, then d2(λ) =
d2(λ′).

Lemma 8.11. Let λ′ ≥ λ. If y is a solution to d2(λ) with yj = 1, then d2(λ′) =
d2(λ)− (λ′ − λ).

If we now consider the full dual function d(λ) = d1(λ) + d2(λ) we know
that it must be constant between the two breakpoints λ1 and λ2 and have slope
±1 outside this interval, c.f. Fig. 8.6c. This holds both if λ1 > λ2 or the other
way around. This gives an ascent method for the dual function. The breakpoints
of d are easily obtained from the dynamic programming scheme seen previously in
this chapter.

8.7 Conclusion

The method of splitting the graph used in the previous chapter is not suitable
for massive parallelization. If a lot of parallelism is desired, the graph needs to
be split in another way, preserving some of the long paths of the original graph.
This chapter has proposed such a decomposition, with the additional benefit of
being able to find approximate solutions for arbitrary energies of number of labels.
While the idea of tree decompositions is not new, the possibilities for parallelism
and GPU implementation have not been previously investigated. However, we
conclude that in general, GPU parallelization of minimum cut algorithms for
vision is still an unsolved problem. Implementing the dynamic programming
schemes on a massively parallel architecture is non-trivial.

109

CHAPTER 8. PARALLEL LABELING ON A GPU

110

Part IV

Applications

Chapter 9

Multiple Regions for Heart
Segmentation

This chapter will describe a method to simultaneously segment the myocardium
and the left and the right ventricles of the human heart imaged by MRI. By
segmenting all regions at the same time the different regions can influence each
other to give a better result. A framework with geometric interactions (Delong and
Boykov, 2009) is used, which for our model gives rise to non-submodular energies.
We will use the now familiar subgradient methods to solve these optimization
problems, instead of using QPBO, allowing us to save a substantial amount of
memory. The purpose of this chapter is to give an overview of a current research
project in medical image analysis and how the techniques used in previous chapters
of this thesis applies to this problem. The principal researcher in this project is
Johannes Ulén and I am grateful for our collaboration.

The heart below the atrioventricular plane is modeled to consist of five different
regions as shown in Figure 9.1. Region 1 is the myocardium surrounding the two
ventricles. Region 2 is the left ventricle and region 3 is the right ventricle. Region
4 is the papillary muscles inside the left ventricle along with other dark regions,
and region 5 is the same for the right ventricle. We will be using the fact that both
the left and right ventricle is contained inside the myocardium to our advantage.

9.1 Multi-Region Segmentation

The five regions of the heart have geometric relationships between each other.
The framework introduced by Delong and Boykov (2009) is ideal for this type of
model. The segmentation is found by finding the minimal value for a constructed
energy function.

Let L be a set of region indices and let P be the set of voxels in an image. Each

113

CHAPTER 9. MULTIPLE REGIONS FOR HEART SEGMENTATION

0

1
3

5

5
2

4 4
4

4
4

Figure 9.1: Left: A constructed short-axis view showing how the heart is modeled.
Each region is numbered. Region 0 is the background, region 1 the myocardium.
Region 2 is the left ventricle and region 3 the right ventricle. Region 4 is papillary
muscles and other darker areas inside the left ventricle, and region 5 ditto for the
right ventricle. Right: An example of a slice from a short-axis image acquired with
MRI where all five regions have been delineated

voxel should be assigned a region rp ∈ L. We introduce x ∈ {0, 1}|L|×|P|. Here
x is indexed as xip with i ∈ L and p ∈ P ; xi represents every Boolean variable
for region i and xp represents every Boolean variable for voxel p. In this way each
voxel in the image is represented by |L| Boolean variables, making it possible to
let the different regions influence each other. Table 9.1 shows the correspondence
between r and x.

When using standard graph-cuts the energy function is built the data term
containing unary terms and the regularizing term containing pairwise interactions.

Region rp Boolean representation xp

0 (0, 0, 0, 0, 0)
1 (1, 0, 0, 0, 0)
2 (1, 1, 0, 0, 0)
3 (1, 0, 1, 0, 0)
4 (1, 1, 0, 1, 0)
5 (1, 0, 1, 0, 1)

Table 9.1: Boolean representation of the 5 regions and background. All other
possible values for the 5 Boolean variables are prevented by inclusion and exclusion
constraints (Table 9.2).

114

9.1. MULTI-REGION SEGMENTATION

i contains j
xi

p xj
q Wij

pq

0 0 0
0 1 ∞
1 0 0
1 1 0

i excludes j
xi

p xj
q Wij

pq

0 0 0
0 1 0
1 0 0
1 1 ∞

Table 9.2: Energy terms for different geometric interactions.

Delong and Boykov (2009) introduced a third kind of interaction – the so-called
geometric interaction which associates a cost between Boolean variables represent-
ing the same voxel but different regions. The energy function to be minimized
is:

E (x) = D(x)︸ ︷︷ ︸
data

+ V (x)︸ ︷︷ ︸
regularizer

+ W (x)︸ ︷︷ ︸
geometric interaction

. (9.1)

The data term associates a cost for each individual pixel to be part of any given
region:

D(x) =
∑
p∈P

∑
i∈L

Di
p (xp) . (9.2)

The regularizing term associate a cost for two pixel p and q connected by some
connectivity N to be part of the same region:

V (x) =
∑
i∈L

∑
(p,q)∈N

V i
p,q

(
xip, x

i
q

)
. (9.3)

The geometric interaction is used to either repel or attract different regions to each
other:

W (x) =
∑
i,j∈L
i 6=j

∑
p,q∈N

W i,j
p,q

(
xip, x

j
q

)
. (9.4)

In our model region 1 should contain both region 2 and region 3. This can be
modeled with the use of geometric interaction terms, see Table 9.2.

The energy in (9.1) can be minimized exactly with graph-cuts as long as all
energy terms are submodular. In our model we would like region 1 to contain

115

CHAPTER 9. MULTIPLE REGIONS FOR HEART SEGMENTATION

4

t

s

1
2 3

5

∞

∞

∞ ∞

µ
1 −

µ
0

µ
2 −

µ
1 µ

4
−

µ
2

µ
3
−
µ

1

µ 5
−
µ 3

Figure 9.2: Graph construction for one voxel. The circled number corresponds to a
vertex associated with the region number. The directed arrows are the directed
edges in the graph. If either of the edges has a negative weight they are simply
flipped to point to the sink with reversed cost. µi is the cost for the voxel to belong
to region i.

region 2 and 3 and at the same time region 2 and 3 to be separated. Unfortunately
this leads to a frustrated cycle and cannot be modeled by a submodular energy
function (Delong and Boykov, 2009). One solution to this is to use the supermod-
ular energy function and hope that the QPBO relaxation will be able to label all
voxels. In our approach we chose another strategy explained in the next section.
All interactions except the separation of region 2 and 3 can be introduced into a
submodular graph, shown for one voxel in Figure 9.2.

9.2 Solving by Duality

A max-flow/min-cut problem can be reformulated into a Linear Program (LP):

minimize
x∈D

cTx, (9.5)

where D is the set of points which fulfill the restrictions of the min-cut problem,
x consists of the edges and vertices of the s − t graph, and c is a cost matrix
associated with the min-cut instance.

By our modeling there exists five different kinds of vertices (x1, . . . ,x5) = x,
where the super-index denote which label they model. The constraint we would
like to enforce is that region 2 and regions 3 should never overlap. This is a linear

116

9.3. DATA TERM

constraint, resulting in the the following LP:

minimize
x∈D

cTx

subject to x2 + x3 ≤ 1. (9.6)

Solving (9.6) with a standard LP solver is not tractable since the number of variables
and constraints is very large. A better approach is to dualize the linear constraints
in (9.6):

maximize
λ≥0

d (λ) (9.7)

where d (λ) = min
x∈D

(
cTx+ λT

(
x2 + x3 − 1

))
.

Let d? denote the optimal solution to (9.7) and p? the optimal solution to
(9.6), by weak duality we then have that d? ≤ p?. Problem (9.7) is solved using
the projected supergradient method from section 2.2.2 on page 12. Just as in
Chapter 7, evaluating d consists of solving a minimum cut problem.

9.3 Data Term

The data term is constructed from the probability of each voxel to be any of the
five regions or the background. For voxel p and region i it is calculated as

µr(p) = − log P (rp = r |vp) . (9.8)

The probability is a function of the voxel location p and the observed image
intensity vp at p. It needs to be estimated from training data. Having estimated
µr, the costs Di

p in (9.2) need to be constructed to reflect Table 9.1:

D1
p(1) = µ1(p)− µ0(p),

D2
p(1) = µ2(p)− µ1(p),

D3
p(1) = µ3(p)− µ1(p),

D4
p(1) = µ4(p)− µ2(p),

D5
p(1) = µ5(p)− µ3(p)

(9.9)

117

CHAPTER 9. MULTIPLE REGIONS FOR HEART SEGMENTATION

and Di
p(0) = 0 for all i and p. For example, region 4 is according to Table 9.1

represented as xp = (1, 1, 0, 1, 0). The cost of this xp is (µ1(p) − µ0(p)) +
(µ2(p)− µ1(p)) + (µ4(p)− µ2(p)) = µ4(p)− µ0(p).

9.4 Regularization

The regularization between two voxels p and q with intensity Ip and Iq is chosen
as described by Boykov and Jolly (2001):

V i
p,q (p, q) =

ρ

dist (p, q)
exp

(
−(Ip − Iq)2

2σ2

)
, (9.10)

where ρ and σ can be used to tweak the regularization and should be estimated
from training data. The neighborhood N is 18-connectivity (8 in-plane, 5+5
off-plane). Since MRI images have anisotropic resolution it is very important to
take that into consideration when calculating the distance between voxels.

Distance prior The thickness of the myocardium surrounding left ventricle is
proportional to the radius of the left ventricle in each short-axis slice. This can be
included in the model by adding more edges of∞ cost from region 2 to region 1
(Delong and Boykov, 2009). But adding all these edges will require too much
memory. Instead, the algorithm is run once without the distance prior and a
rough estimate of the left ventricle is obtained. From this estimate the radius is
approximated and∞-cost edges between region 2 and region 1 are added in a
small circle around the initial approximation of the left ventricle.

Anisotropic regularization The rough estimate of region 2 is also used as an
approximation of the center of the left ventricle in each slice. From the approximate
center the regularization is modified to punish segmentation which do not result
in a rounded edge of the ventricle. Another anisotropic punishment used is weight
the regularization differently dependent on whether voxel p is brighter than q. In
this way the segmentation can prefer to have a border between the left ventricle
and the myocardium where the left ventricle is brighter than the myocardium.

118

9.4. REGULARIZATION

Figure 9.3: Three slices from a segmentation experiment. Top row shows the three
original slices. The colored regions in the bottom row are the segmentation results
and the colored lines are the ground-truth. The projected supergradient method
required five iterations.

119

CHAPTER 9. MULTIPLE REGIONS FOR HEART SEGMENTATION

9.5 Experiments

Our preliminary experiments have been encouraging. The projected supergradient
method often converges relatively fast. For the data set shown in Fig. 9.3, five
iterations were enough to reach a relative duality gap of 0.0000705. The times
required to solve the minimum cut problems were 15, 2, 1, 1 and 1 seconds,
respectively. Subsequent problems require less time because flow can be reused
between iterations (Kohli and Torr, 2007). QPBO found a solution to this problem
in 31 seconds, with 144 unlabeled nodes. Even more important is the memory
consumption, which for QPBO is approximately twice as large. This is a large
issue in medical imaging, as previously discussed in Chapter 7.

120

Chapter 10

Shift-Map Image Registration

This chapter will describe an image processing application to multi-label optimiza-
tion. It is based on previously published material (Svärm and Strandmark, 2010).
I have added a comparison to the similar work by Liu et al. (2008), with which we
were unfamiliar when we wrote the original paper.

Shift-map image processing was recently introduced by Pritch, Kav-Venaki
and Peleg (2009) who applied their framework to image inpainting, content aware
resizing, texture synthesis and image rearrangement. This chapter will extend the
range of applications to image registration.

10.1 Problem Formulation

Registration can be performed using a parametric model, e.g. an affine or a
projective transformation estimated from point correspondences between the two
images. In this chapter, we consider a non-parametric model. We have a base image
B(i, j) and an input image I(i, j). These two imaged need not have the same
size. The goal is to register the pixels of the input image onto the base image using

a shift-map T (i, j) =
(
ti(i, j) , tj(i, j)

)
. The pixel I(i, j) is registered onto

B
(
i+ ti(i, j) , j + tj(i, j)

)
. Figure 10.2 shows the input and base images and

Figure 10.1: Shift-map between two images

121

CHAPTER 10. SHIFT-MAP IMAGE REGISTRATION

(a) Input image I (b) Base image B

(c) Shift-map result (d) Final locations of pixels

(e) SIFT Flow result (Liu et al.,
2008)

(f) SIFT Flow final locations

Figure 10.2: Registration of two images using a shift-map. Each pixel in the input
image is placed on the base image as described by the shift-map.

122

10.2. REGISTRATION ENERGY TERMS

the resulting image obtained by moving all pixels in the input image as specified
by the computed shift-map.

Each possible shift-map is assigned an energy, based on a priori assumptions
on what a good shift-map typically looks like and how well the two images match
each other. The goal is then to find the optimal shift-map, that is, the shift-map
with the lowest energy:

E(T) = ρ
∑

1≤i≤m
1≤j≤n

Eijd (T (i, j))+

∑
1≤i≤m
1≤j≤n

∑
(i′,j′)

Eijs (T (i, j),T (i′, j′)),
(10.1)

where the last summation refers to summations over all (i′, j′) in a neighborhood
N (i, j) of (i, j). Figure 10.1 one such neighbor. We have used 4-connectivity
of adjacent pixels throughout this chapter. Eijd and Eijs are the data terms and
smoothness terms, respectively. They will be described in separate sections below.

10.2 Registration Energy Terms

The framework by Pritch, Kav-Venaki and Peleg (2009) deal with constructing a
new image from an old one and the registration problem is about finding a map
between two existing images. Hence the energy previously used for finding shift-
maps is not suitable for registration and new energy terms must be constructed.

Comparison of pixels A related problem to image registration is dense depth
estimation from two images of the same object with known camera positions. This
problem has been studied extensively, see for example the work by Kolmogorov and
Zabih (2006). Recently a new descriptor, DAISY, was proposed by Tola, Lepetit
and Fua (2009), tailored to dense stereo estimation where the position of the
two cameras differ by a large amount. This descriptor is shown to outperform
other approaches (e.g. SIFT, SURF and pixel differences) in extensive experiments.
Therefore, it seems relevant to try and apply this descriptor to the related problem
of estimating a dense image registration.

Not unlike SIFT (Lowe, 2004), a DAISY descriptor samples the image derivative
in different directions. Eight different directions and three different scales are used.

123

CHAPTER 10. SHIFT-MAP IMAGE REGISTRATION

By sampling these fields at different points around the feature location, a descriptor
of dimensionality 200 is obtained. Since the same fields are used for all image
locations, a dense field of descriptors can be computed in a couple of seconds. The
main goal of the DAISY descriptor was efficient dense computation. In order to
choose relevant parameters, we found the work by Winder, Hua and Brown (2009)
helpful.

Data terms The data terms Eijd were previously used by Pritch, Kav-Venaki and
Peleg to enforce hard constraints on the shift-map. When inpainting an image,
the data term makes sure no pixels in the “hole” are used in the output image by
assigning such shifts a cost of∞.

In this chapter, where image registration is considered, we need to develop
more complex data terms to incorporate the fact that we want to find a mapping
between two images such that similar pixels are mapped to similar pixels The data
terms dictates that similar parts of the images should end up on top of each other.
To measure similarity, dense DAISY is used.

It might only be possible to register parts of the input image, so shifting pixels
outside the base image is permitted, at a constant cost P per pixel. The data terms
are then given by

Eijd (T) =


∣∣∣∣∣∣Î(i, j)− B̂

(
(i, j) + T (i, j)

)∣∣∣∣∣∣
2

P when (i, j) + T (i, j) is outside B,
(10.2)

where Î(i, j) is the DAISY descriptor describing the image I at pixel location (i, j).
If the shift takes pixel (i, j) outside the bounds of the base image, a constant cost is
issued. Otherwise, dissimilarity of the pixels determines the cost of the assignment.
Figure 10.6f shows a heat map of the distance from the circled feature in the first
row to all locations in the image in row 2.

Smoothness terms The smoothness terms are used to enforce global consistency
to the shift-map, while allowing discontinuities at a limited number of places.
Pritch, Kav-Venaki and Peleg’s (2009) smoothness terms compared the color and
gradient pixel-wise. Where a discontinuity in the shift-map occurs, the penalty is
computed as the difference in color and gradients. Our smoothness function takes
the form of the Euclidean distance between the endpoints of the two shifts:

Eijs (T (i, j),T (i′, j′)) = ||(i′, j′) + T (i′, j′)− (i, j)− T (i, j)||2. (10.3)

124

10.3. EXPERIMENTS

Here, (i, j) and (i′, j′) are neighboring pixels, see (10.1). Using the shift difference
||T (i′, j′)− T (i, j)||2 will penalize smoothly varying shift-maps too much, and
hence it is important to compare the end points (as in (10.3)).

Color information The DAISY descriptor does not use color information, yet
intuitively it makes little sense to match pixels of very different colors. Because of
this, we have also made experiments where the color information of the images are
incorporated into the above data terms. The color model used assigned a cost of P
to pixels with large difference in hue, given that the intensity and saturation allowed
a reliable value of the hue. This model improved the result of the registration in
Fig. 10.6. We did not use color information in the experiment shown in Fig. 10.2.

10.3 Experiments

To minimize the energy (10.1), we used α-expansion1 (section 2.6 on page 19).
Each possible shift value T (i, j) ∈ {−m. . .m}×{−n . . . n} is mapped to a 1D
label space. The number of labels for even moderately sized images then becomes
very large. In order to make it tractable, a Gaussian pyramid was used. For the
images in Fig. 10.6, an initial size of 128× 23 was used. The size was doubled 3
times until the final resolution of 1024× 179 was reached. Each doubling of the
image size is followed by a linear interpolation of the shift-map. This shift-map
was used as a starting guess for the optimization at the larger level. At each level
after the first, only 9 possible shifts then need to be considered: {−1, 0, 1} in each
direction.

To verify our implementation, we inpainted an example image used by Pritch,
Kav-Venaki and Peleg (2009), see Fig. 10.4. We tried to follow their implementa-
tion as closely as possible and got different, but qualitatively similar results. We
did not allow the pixels outside the area to be removed to move at all, which is
in contrast to (Pritch, Kav-Venaki and Peleg, 2009), where all pixels except the
border of the image were allowed to be shifted.

Figures 10.2 and 10.3 show shift-map registration results. The bear image in
Fig. 10.2 shows the same object from two different views and is from (Kushal and
Ponce, 2006). The building images in 10.3 register correctly, except for the light
pole, which is very thin and does not have a large enough data term.

1α-expansion requires every pairwise energy terms to be a metric. Pritch, Kav-Venaki and Peleg
(2009) truncated every term not satisfying this constraint. We follow this approach.

125

CHAPTER 10. SHIFT-MAP IMAGE REGISTRATION

We have also conducted an experiment where we used shift-maps to recover a
known image deformation. The results are displayed in Fig. 10.5.

During large-scale reconstruction of a city using images taken with a cylindrical
camera (Hitta.se street view), we have encountered many difficult image pairs where
SIFT is unable to provide useful correspondences. The top two rows in Fig. 10.6
show one of the hardest. Computed SIFT features for the two images (794 and
1019 feature points, respectively) only yielded 3 correct matches. The main reason
for this was the image geometry and large, repetitive patterns. Using shift-map we
obtained a dense, mostly correct map between the images. This was then used as
an aid to compute SIFT correspondences. We then obtained 28 matches, of which
12 were correct. The run time for this image was about 2 minutes.

We compared shift-map registration to the recent SIFT Flow algorithm (Liu
et al., 2008). Both algorithms worked well for simple distortions of small magni-
tudes, which can be seen in Fig. 10.5. However, for our other experiments, we
were not able to get any satisfactory results using SIFT Flow. An example is shown
in Fig. 10.2

10.4 Conclusion and Further Work

We have studied the application of shift-maps to image registration. Computing
the smoothness term with color and gradient differences as done by Pritch, Kav-
Venaki and Peleg (2009) did not give satisfactory results when extended to image
registration, but we found a great improvement with the dense DAISY descriptor.
For relatively easy cases (Figs. 10.2 and 10.3), we obtained very good results.
For very hard cases (Fig. 10.6) we obtained results which proved very useful for
obtaining correspondences between the images. One interesting future line of
work would be to investigate whether shift-map inpainting can be improved by
the DAISY descriptor as well. We have also not investigated large rotations in this
chapter, which would require additional considerations.

126

10.4. CONCLUSION AND FURTHER WORK

(a) input image I (b) base image B (c) final location of pixels

Figure 10.3: Registration of two images of a building.

Figure 10.4: Our reimplementation of the inpainting algorithm by Pritch, Kav-
Venaki and Peleg (2009). The complete running time for this example was 3.1415
seconds (pure coincidence!).

127

CHAPTER 10. SHIFT-MAP IMAGE REGISTRATION

(a) Base image (b) Input image

(c) Shift-map result (d) SIFT Flow result (e) Ground truth

Figure 10.5: Recovering a known image distortion. The maximum and mean error
for the shift-map estimation was 7.3 and 0.7 pixels, respectively. Photo by Tristan
Savatier obtained through Flickr.

128

10.4. CONCLUSION AND FURTHER WORK

(a) Input image I

(b) Base image B

(c) Final locations of the pixels in I

(d) Resulting shift-map

(e) DAISY distance between the circled feature in I to all pixel locations in B

Figure 10.6: Registration of 1024×179 Hitta images. We note that we achieved a
dense, highly nonlinear registration. This shift-map allowed us to obtain useful
point-correspondences between the images, which was not possible using SIFT
alone.

129

CHAPTER 10. SHIFT-MAP IMAGE REGISTRATION

130

Bibliography

Agarwal, S., N. Snavely, I. Simon, S. M. Seitz and R. Szeliski. 2009. Building
Rome in a Day. In Int. Conf. Computer Vision. Cited on page 2.

Bertsekas, D. P. 1999. Nonlinear programming. Athena Scientific. Cited on pages 7,
9, 11 and 87.

Bhusnurmath, A. and C. J. Taylor. 2008. “Graph Cuts via `1 Norm Minimization.”
IEEE Trans. Pattern Analysis and Machine Intelligence 30(10):1866–1871. Cited
on pages 83 and 84.

Billionnet, A. and M. Minoux. 1985. “Maximizing a supermodular pseudoboolean
function: A polynomial algorithm for supermodular cubic functions.” Discrete
Applied Mathematics 12(1):1 – 11. Cited on page 17.

Boros, E. and P. L. Hammer. 2002. “Pseudo-boolean optimization.” Discrete
Applied Mathematics 123:155–225. Cited on pages 17 and 19.

Boros, E., P. L. Hammer and G. Tavares. 2006. Preprocessing of unconstrained
quadratic binary optimization. Technical report RUTCOR RRR 10-2006. Cited
on page 19.

Boros, E., P. L. Hammer and X. Sun. 1991. Network flows and minimization of
quadratic pseudo-boolean functions. Technical report RUTCOR RRR 17-1991.
Cited on page 19.

Boyd, S. and L. Vandenberghe. 2004. Convex Optimization. Cambridge University
Press. Cited on pages 7, 9 and 49.

131

BIBLIOGRAPHY

Boykov, Y. and M. Jolly. 2001. Interactive graph cuts for optimal boundary and
region segmentation of objects in ND images. In Int. Conf. Computer Vision.
Vol. 1 pp. 105–112. Cited on page 118.

Boykov, Y., O. Veksler and R. Zabih. 1998. Markov Random Fields with Efficient
Approximations. In Conf. Computer Vision and Pattern Recognition. Cited on
pages 81 and 92.

Boykov, Y., O. Veksler and R. Zabih. 2001. “Fast approximate energy mini-
mization via graph cuts.” IEEE Trans. Pattern Analysis and Machine Intelligence
23(11):1222–1239. Cited on pages 20, 23 and 105.

Boykov, Y. and V. Kolmogorov. 2003. Computing Geodesics and Minimal Surfaces
via Graph Cuts. In Int. Conf. Computer Vision. Cited on page 91.

Boykov, Y. and V. Kolmogorov. 2004. “An Experimental Comparison of Min-
Cut/Max-Flow Algorithms for Energy Minimization in Vision.” IEEE Trans.
Pattern Analysis and Machine Intelligence 26(9):1124–1137. Cited on pages 17,
24, 81, 82, 83, 96, 97, 99 and 105.

Bresson, X., S. Esedoḡlu, P. Vandergheynst, J. Thiran and S. Osher. 2007. “Fast
Global Minimization of the Active Contour/Snake Model.” Journal of Mathe-
matical Imaging and Vision 28(2):151–167. Cited on page 35.

Bruckstein, A. M., A. N. Netravali and T. J. Richardson. 2001. “Epi-convergence
of discrete elastica.” Applicable Analysis, Bob Caroll Special Issue 79:137–171.
Cited on pages 58 and 63.

Carr, P. and R. Hartley. 2009. Minimizing energy functions on 4-connected
lattices using elimination. In Int. Conf. Computer Vision. Cited on page 81.

Chambolle, A. 2004. “An Algorithm for Total Variation Minimization and Ap-
plications.” Journal of Mathematical Imaging and Vision 20:89–97. Cited on
pages 40 and 51.

Chambolle, A. 2005. Total Variation Minimization and a Class of Binary MRF
Models. In EMMCVPR05. pp. 136–152. Cited on pages 33, 38, 39, 40 and 51.

Chan, T. and L. Vese. 2001. Active contours without edges. In IEEE Transactions
on Image Processing. Vol. 10 pp. 266–277. Cited on pages 33 and 35.

132

BIBLIOGRAPHY

Chan, T., S. Esedoglu and M. Nikolova. 2006. “Algorithms for Finding Global
Minimizers of Image Segmentation and Denoising Models.” SIAM Journal on
Applied Mathematics 66(5):1632–1648. Cited on pages 33 and 35.

Coyne, J. A. 2009. Why evolution is true. Oxford University Press. Cited on
page 1.

Cremers, D. and S. Soatto. 2005. “Motion Competition: A variational framework
for piecewise parametric motion segmentation.” Int. Journal Computer Vision
63(3):249–265. Cited on page 36.

Darbon, J. 2007. A Note on the Discrete Binary Mumford-Shah Model. In
MIRAGE, ed. André Gagalowicz and Wilfried Philips. Vol. 4418 of Lecture
Notes in Computer Science Springer pp. 283–294. Cited on page 36.

Delong, A. and Y. Boykov. 2008. A Scalable graph-cut algorithm for N-D grids.
In Conf. Computer Vision and Pattern Recognition. Cited on page 83.

Delong, A. and Y. Boykov. 2009. Globally Optimal Segmentation of Multi-Region
Objects. In Int. Conf. Computer Vision. Cited on pages 21, 113, 115, 116
and 118.

Dixit, N., R. Keriven and N. Paragios. 2005. GPU-Cuts: Combinatorial Opti-
misation, Graphic Processing Units and Adaptive Object Extraction. Technical
Report 05-07 CERTIS. Cited on page 83.

El-Zehiry, N. and L. Grady. 2010. Fast Global Optimization of Curvature. In
Conf. Computer Vision and Pattern Recognition. Cited on pages 55, 56, 62, 70
and 71.

Everett, H. 1963. “Generalized Lagrange Multiplier Method for Solving Problems
of Optimum Allocation of Resources.” Operations Research 11:399–417. Cited
on page 9.

Goldberg, A V and R E Tarjan. 1986. A new approach to the maximum flow
problem. In STOC ’86: Proceedings of the eighteenth annual ACM symposium
on Theory of computing. New York, NY, USA: ACM pp. 136–146. Cited on
page 83.

133

BIBLIOGRAPHY

Goldschlager, L. M., R. A. Shaw and J. Staples. 1982. “The Maximum Flow
Problem is Log Space Complete for P.” Theoretical Computer Science 21(1):105–
111. Cited on page 82.

Grady, L. 2010. “Minimal Surfaces Extend Shortest Path Segmentation Methods
to 3D.” IEEE Trans. on Pattern Analysis and Machine Intelligence 32(2):321–334.
Cited on pages 56 and 74.

Grady, L. and C. Alvino. 2008. Reformulating and Optimizing the Mumford-Shah
Functional on a Graph - A Faster, Lower Energy Solution. In European Conf.
Computer Vision. Marseille, France: pp. 248–261. Cited on page 36.

Greig, D. M., B. T. Porteous and A. H. Seheult. 1989. “Exact Maximum A
Posteriori Estimation for Binary Images.” Journal of the Royal Statistical Society .
Cited on pages 23, 24, 25, 26 and 81.

Hales, T. C. 2001. “The Honeycomb Conjecture.” Discrete & Computational
Geometry 25(1):1–22. Cited on page 63.

Hammer, P. L., P. Hansen and Simeone. 1984. “Roof duality, complementation
and persistency in quadratic 0-1 optimization.” Mathematical programming
28:121–155. Cited on page 19.

Hsu, Lucas, Rob Kusner and John Sullivan. 1992. “Minimizing the squared
mean curvature integral for surfaces in space forms.” Experimental Mathematics
1:191–207. Cited on page 73.

Hussein, M., A. Varshney and L. Davis. 2007. On Implementing Graph Cuts on
CUDA. In Workshop on General Purpose Processing on Graphics Processing Units.
Cited on page 83.

IEEE 11th International Conference on Computer Vision, ICCV 2007, Rio de Janeiro,
Brazil, October 14-20, 2007. 2007. IEEE. Cited on page 136.

Ishikawa, H. 2009. Higher-Order Clique Reduction in Binary Graph Cut. In
Conf. Computer Vision and Pattern Recognition. Cited on page 63.

Ivănescu, P. L. (Hammer). 1965. “Some Network Flow Problems Solved with
Pseudo-Boolean Programming.” Operations Research 13(3):388–399. Cited on
page 17.

134

BIBLIOGRAPHY

Kanizsa, G. 1971. “Contours without gradients or cognitive contours.” Italian
Jour. Psych. 1:93–112. Cited on page 55.

Kawai, N., T. Sato and N. Yokoya. 2009. Efficient surface completion using
principal curvature and its evaluation. In Int. Conf. Image Processing. pp. 521
–524. Cited on page 56.

Kirsanov, D. and S. J. Gortler. 2004. A Discrete Global Minimization Algorithm
for Continuous Variational Problems. Technical Report TR-14-04 Harvard.
Cited on page 64.

Klodt, M., T. Schoenemann, K. Kolev, M. Schikora and D. Cremers. 2008. An
Experimental Comparison of Discrete and Continuous Shape Optimization
Methods. In European Conf. Computer Vision. Cited on pages 36 and 84.

Kohli, P. and P Torr. 2007. “Dynamic graph cuts for efficient inference in
markov random fields.” IEEE Trans. Pattern Analysis and Machine Intelligence
29(12):2079–2088. Cited on pages 82, 87 and 120.

Kohli, Pushmeet and Philip H. S. Torr. 2005. Efficiently Solving Dynamic Markov
Random Fields Using Graph Cuts. In Int. Conf. Computer Vision. Cited on
page 82.

Kolev, K. and D. Cremers. 2009. Continuous Ratio Optimization via Convex Re-
laxation with Applications to Multiview 3D Reconstruction. In Conf. Computer
Vision and Pattern Recognition. Cited on page 47.

Kolmogorov, V. and R. Zabih. 2002. What energy functions can be minimized via
graph cuts? In European Conf. Computer Vision. Cited on page 17.

Kolmogorov, V. and R. Zabih. 2004. “What energy functions can be minimized
via graph cuts?” IEEE Trans. Pattern Analysis and Machine Intelligence 26(2):147–
159. Cited on pages 17, 20, 23, 81 and 105.

Kolmogorov, V. and R. Zabih. 2006. Graph Cut Algorithms for Binocular Stereo
with Occlusions. In Handbook of Mathematical Models in Computer Vision.
Springer. Cited on pages 28 and 123.

Kolmogorov, V. and Y. Boykov. 2005. What Metrics Can Be Approximated by
Geo-Cuts, Or Global Optimization of Length/Area and Flux. In Int. Conf.
Computer Vision. Cited on page 91.

135

BIBLIOGRAPHY

Kolmogorov, V., Y. Boykov and C. Rother. 2007. Applications of parametric
maxflow in computer vision. In Int. Conf. Computer Vision. Cited on pages 36,
47, 48 and 51.

Komodakis, N. and G. Tziritas. 2007. “Approximate Labeling via Graph Cuts
Based on Linear Programming.” IEEE Trans. Pattern Analysis and Machine
Intelligence 29(8):1436–1453. Cited on pages 81 and 105.

Komodakis, N., N. Paragios and G. Tziritas. 2007. MRF Optimization via Dual
Decomposition: Message-Passing Revisited. in Int. Conf. Computer Vision (IEEE
11th International Conference on Computer Vision, ICCV 2007, Rio de Janeiro,
Brazil, October 14-20, 2007, 2007). Cited on pages 5, 9, 81, 87, 99 and 104.

Komodakis, N., N. Paragios and G. Tziritas. in press. “MRF Energy Minimization
and Beyond via Dual Decomposition.” IEEE Trans. Pattern Analysis and Machine
Intelligence . Cited on page 104.

Kushal, A. and J. Ponce. 2006. Modeling 3D objects from stereo views and
recognizing them in photographs. In European Conf. Computer Vision. Cited on
page 125.

Lempitsky, V., A. Blake and C. Rother. 2008. Image Segmentation by Branch-
and-Mincut. In European Conf. Computer Vision. Marseille, France: pp. 15–29.
Cited on page 36.

Lempitsky, V., C. Rother, S. Roth and A. Blake. 2009. “Fusion Moves for Markov
Random Field Optimization.” IEEE Trans. Pattern Analysis and Machine Intelli-
gence . To appear. Cited on page 84.

Lempitsky, V. and Y. Boykov. 2007. Global Optimization for Shape Fitting. In
Conf. Computer Vision and Pattern Recognition. Minneapolis, USA: . Cited on
pages 81, 92 and 96.

Lindgren, F. 2006. Image Modelling and Estimation. Lund University. Available at
http://www.maths.lth.se/matstat/kurser/fms150mas228/book/. Cited
on pages 23, 24 and 26.

Liu, C., J. Yuen, A. Torralba, J. Sivic and W. T. Freeman. 2008. SIFT Flow: Dense
Correspondence across Different Scenes. In European Conf. Computer Vision.
Cited on pages 121, 122 and 126.

136

http://www.maths.lth.se/matstat/kurser/fms150mas228/book/

BIBLIOGRAPHY

Liu, J. and J. Sun. 2010. Parallel Graph-cuts by Adaptive Bottom-up Merging. In
Conf. Computer Vision and Pattern Recognition. San Francisco, USA: . Cited on
pages 83, 95 and 97.

Liu, J., J. Sun and H.-Y. Shum. 2009. “Paint selection.” ACM Transactions on
Graphics 28(3):1–7. Cited on pages 83 and 97.

Lowe, D. 2004. “Distinctive image features from scale-invariant keypoints.” Int.
Journal Computer Vision 20:91–110. Cited on page 123.

Martin, D., C. Fowlkes, D. Tal and J. Malik. 2001. A Database of Human
Segmented Natural Images and its Application to Evaluating Segmentation
Algorithms and Measuring Ecological Statistics. In Int. Conf. Computer Vision.
Cited on pages 44, 90 and 92.

Masnou, S. 2002. “Disocclusion: A variational approach using level lines.” IEEE
Transactions on Image Processing 11:68–76. Cited on page 56.

Middleton, L. and J. Sivaswamy. 2005. Hexagonal Image Processing: A Practical
Approach. Springer-Verlag New York, Inc. Cited on page 63.

Mumford, D. and T. Shah. 1989. Optimal Approximation by Piecewise Smooth
Functions and Associated Variational Problems. In Comm. on Pure and Applied
Mathematics. Cited on pages 3, 33 and 35.

Nesterov, Y. 2004. Introductory lectures on convex optimization: A basic course.
Kluwer Academic Publishers. Cited on pages 7, 8 and 12.

Nilsson, D.-E. 1999. “Vision Optics and Evolution.” BioScience 39(5):298–307.
Cited on page 1.

Olsson, C., M. Byröd, N. C. Overgaard and F. Kahl. 2009. Extending Continuous
Cuts: Anisotropic Metrics and Expansion Moves. In International Conference on
Computer Vision. Cited on page 4.

Papadimitriou, C. H. and K. Steiglitz. 1998. Combinatorial Optimization; Algo-
rithms and Complexity. Dover Publications. Cited on page 90.

Pock, T. 2008. Fast Total Variation for Computer Vision PhD thesis Graz Univer-
sity of Technology. Cited on page 43.

137

BIBLIOGRAPHY

Pock, T., M. Unger, D. Cremers and H. Bischof. 2008a. Fast and Exact Solution
of Total Variation Models on the GPU. In CVPR Workshop on Visual Computer
Vision on GPUs. Cited on pages 36 and 43.

Pock, T., M. Unger, D. Cremers and H. Bischof. 2008b. Fast and Exact Solution
of Total Variation Models on the GPU. In CVPR Workshop on Visual Computer
Vision on GPUs. Cited on page 100.

Pritch, Y., E. Kav-Venaki and S. Peleg. 2009. Shift-Map Image Editing. In Int.
Conf. Computer Vision. Cited on pages 103, 121, 123, 124, 125, 126 and 127.

Rantzer, A. 2009. Dynamic Dual Decomposition for Distributed Control. In
American Control Conference. Cited on page 9.

Rother, C., V. Kolmogorov and A. Blake. 2004. “GrabCut – Interactive Foreground
Extraction using Iterated Graph Cuts.” ACM Transactions on Graphics 23(3):309–
314. Cited on page 81.

Rother, C., V. Kolmogorov, V. Lempitsky and M. Szummer. 2007a. Optimizing
Binary MRFs via Extended Roof Duality. In Conf. Computer Vision and Pattern
Recognition. Cited on pages 19 and 70.

Rother, C., V. Kolmogorov, V. Lempitsky and M. Szummer. 2007b. Optimizing
Binary MRFs via Extended Roof Duality. Technical Report MSR-TR-2007-46
Microsoft. Cited on page 19.

Rousson, M. and R. Deriche. 2002. A variational framework for active and
adaptative segmentation of vector valued images. In In Proc. IEEE Workshop on
Motion and Video Computing. pp. 56–62. Cited on page 50.

Rudin, L.I., S. Osher and E. Fatemi. 1992. “Nonlinear Total Variation Based
Noise Removal Algorithms.” Physica D 60:259–268. Cited on page 39.

Sarti, A., C. Corsi, E. Mazzini and C. Lamberti. 2004. “Maximum likelihood
segmentation with Rayleigh distribution of ultrasound images.” Computers in
Cardiology, 2004 pp. 329–332. Cited on page 50.

Schoenemann, T., F. Kahl and D. Cremers. 2009. Curvature Regularity for Region-
based Image Segmentation and Inpainting: A Linear Programming Relaxation.
In Int. Conf. Computer Vision. Cited on pages 4, 55, 56, 57, 58, 59, 62, 63
and 71.

138

BIBLIOGRAPHY

Snir, M. and S. Otto. 1998. MPI — The Complete Reference: The MPI Core.
Cambridge, MA, USA: MIT Press. Cited on page 95.

Strandmark, P. and F. Kahl. 2010. Parallel and Distributed Graph Cuts by Dual
Decomposition. In Conference on Computer Vision and Pattern Recognition. Cited
on page 81.

Strandmark, P., F. Kahl and N. C. Overgaard. 2009. Optimizing Parametric Total
Variation Models. In Int. Conf. Computer Vision. Cited on page 33.

Sullivan, J.M. 1990. Crystalline Approximation Theorem for Hypersurfaces PhD
thesis Princeton Univ. Cited on page 56.

Svärm, L. and P. Strandmark. 2010. Shift-map Image Registration. In International
Conference on Pattern Recognition (ICPR). Cited on page 121.

Tola, E., V. Lepetit and P. Fua. 2009. “DAISY: An Efficient Dense Descriptor
Applied to Wide Baseline Stereo.” IEEE Trans. Pattern Analysis and Machine
Intelligence . Cited on page 123.

Turing, A. 1950. “Computing Machinery and Intelligence.” Mind LIX(236):433–
460. Cited on page 1.

Unger, M., T. Pock, D. Cremers and H. Bischof. 2008. TVSeg - Interactive Total
Variation Based Image Segmentation. In British Machine Vision Conf. Cited on
page 100.

Vineet, V. and P. J. Narayanan. 2009. Solving Multi-label MRFs using Incremental
alpha-expansion move on the GPUs. In Asian Conference on Computer Vision.
Cited on page 83.

Vineet, V. and P.J. Narayanan. 2008. CUDA cuts: Fast graph cuts on the GPU. In
Computer Vision and Pattern Recognition Workshops, CVPRW. Cited on pages 83,
105 and 106.

Wardetzky, M., M. Bergou, D. Harmon, D. Zorin and E. Grinspun. 2007. “Dis-
crete quadratic curvature energies.” Comput. Aided Geom. Des. 24(8-9):499–518.
Cited on pages 74 and 75.

139

BIBLIOGRAPHY

Werlberger, M., W. Trobin, T. Pock, A. Wedel, D. Cremers and H. Bischof. 2009.
Anisotropic Huber-L1 Optical Flow. In British Machine Vision Conf. Cited on
page 100.

Willmore, T.J. 1965. “Note on Embedded Surfaces.” An. Sti. Univ. "Al. I. Cuza"
Iasi Sect. I a Mat. (N.S.) pp. 493–496. Cited on page 73.

Winder, S., G. Hua and M. Brown. 2009. Picking the best DAISY. In Conf.
Computer Vision and Pattern Recognition. IEEE pp. 178–185. Cited on page 124.

Woodford, O., P.H.S. Torr, I. Reid and A.W. Fitzgibbon. 2009. “Global Stereo
Reconstruction under Second Order Smoothness Priors.” IEEE Trans. Pattern
Analysis and Machine Intelligence 31(12):2115–2128. Cited on page 55.

Xu, M., P. M. Thompson and A. W. Toga. 2004. “An Adaptive Level Set Segmen-
tation on a Triangulated Mesh.” IEEE Trans. on Medical Imaging 23(2):191–201.
Cited on page 64.

140

Index

a posteriori, 23
α-expansion, 19, 28, 81, 105, 125
α/β-swap, 20

Bayes’ rule, 23
Boolean, 17, 26, 57, 103, 104, 114
branch and bound, 13, 43, 44

cell complex, 56
clique, 17, 24, 62
computer vision, 1
concave function, 8
connectivity, see neighborhood
convex function, 8
curvature, 4, 55, 73
cut, 16, 24, 25, 84, 117

data term, 3, 33, 63, 66, 90, 114, 117
dual decomposition, 9, 70, 84
dual function, 9, 12, 117

early vision, iii, 2
edge, 16, 25, 57, 84, 89, 96, 101, 117
energy, 3, 21

GPU, 5, 36, 42, 99
graph, 16
graph cuts, 16

ICM, 26

isotropic, 24

labeling, 18, 21
linear programming, 18, 56, 84

MAP, see maximum a posteriori
Markov random field, see MRF
maximum a posteriori, 23
minimum cut, 16
MRF, 9, 23

neighborhood, 16, 63, 90, 95, 99, 118
node, 16

projected supergradient, 12, 117
pseudo-boolean, 17
pseudo-boolean optimization, 17

QPBO, 18, 60, 115

regularizing term, 3, 91, 115, 118

subgradient, 9, 11
submodular, 17, 104, 115
supergradient, 9, 11, 87
supermodular, 115

undirected graph, 16

vertex, see node

weight, 16

141

	Introduction
	Overview of the Thesis
	Previous Publications

	Optimization Methods
	Convex Functions
	Dual Decomposition
	Branch and Bound
	Minimum Cut of a Graph
	Pseudo-Boolean Optimization
	Beyond Boolean Variables

	Markov Random Fields
	Maximum A Posteriori Estimation
	Binary Images
	General Discrete Fields

	I Parametric Models
	Optimizing Parametric Total Variation Models
	The Mumford-Shah Functional
	Parametric Binary Problems
	Two-Phase Mumford-Shah Functional
	Ratio Minimization
	Gaussian Distributions
	Conclusion

	II Curvature Regularization
	Curvature Regularization in the Plane
	Background
	Length-Based Regularization
	Incorporating Curvature
	Types of Meshes
	Experimental Results
	Conclusions

	Surface Completion and Segmentation with Curvature
	Curvature of Surfaces
	Experiments

	III Parallel and Distributed Optimization
	Parallel and Distributed Graph Cuts
	Previous Approaches to Graph Cuts in Vision
	Decomposition of Graphs
	Experiments on a Single Machine
	Splitting across Different Machines
	Conclusions

	Parallel Labeling on a GPU
	Splitting the Graph
	Dynamic Programming
	Boolean Formulation and Updating of Weights
	Linear Programming Relaxation
	Experiments
	Coordinate Ascent
	Conclusion

	IV Applications
	Multiple Regions for Heart Segmentation
	Multi-Region Segmentation
	Solving by Duality
	Data Term
	Regularization
	Experiments

	Shift-Map Image Registration
	Problem Formulation
	Registration Energy Terms
	Experiments
	Conclusion and Further Work

	Bibliography
	Index

