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Success is not final, failure is not fatal: 
it is the courage to continue that counts. 
 
Winston Churchill 
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Abstract  
Many widespread diseases, such as diabetes, various types of cancer, and aggressive 
versions of influenza, are treated or prevented with biopharmaceuticals. 
Biopharmaceuticals are drugs that are based on proteins, peptides, antibodies, 
attenuated viruses (vaccines), and other biomolecules that are synthesized 
predominately in bacteria, yeast, and mammalian cells. The first biopharmaceutical 
was introduced to the market in the early 1980s, and in the past several years, 
approximately 10 new compounds have reached the market annually. If this trend 
continues, rapid development of production processes for these new 
biopharmaceuticals will be required. 
 
One important method by which biomolecules are purified is preparative 
chromatography. Although it is a well-established approach, the phenomena on 
which it is based are still incompletely understood. Knowledge about the effects of 
the process setup and operating conditions is crucial to design new chromatographic 
processes efficiently and streamline existing processes. 
 
In the work presented in this thesis, the influence of the adsorbent and process 
conditions on the chromatographic separation of three insulin variants was 
examined. Two adsorbents each for reversed-phase chromatography (RPC) and 
hydrophobic interaction chromatography (HIC) were tested, and the effects of 
temperature and the concentrations of the two modulators, KCl and ethanol, were 
examined. 
 
The retention of the insulin variants on the RPC adsorbents decreased as the 
temperature and concentrations of the modulators rose. On the HIC adsorbents, the 
retention declined with higher ethanol concentrations and increased with higher KCl 
concentrations. Consequently, KCl caused salting-in at the high ethanol 
concentrations that were required for elution from the RPC adsorbents and induced 
salting-out at the low ethanol concentrations that were needed to achieve retention 
on the HIC adsorbents. These data are consistent with predictions by other groups. 
Due to the severe self-association of insulin molecules in the HIC experiments, these 
two process setups were not examined further. 
 
In a comparison between the solubility data for insulin and its chromatographic 
retention, the influence of ethanol on the latter was significantly stronger and thus 
was attributed not only to its effect on the mobile phase — the most likely 
explanation is that ethanol molecules adsorbed onto the ligands and were displaced 
by adsorbing insulin molecules. A semi-empirical RPC model that was based on 
thermodynamic theories was derived from the adsorption equilibrium. This model 
assumed adsorption of ethanol and included the activity coefficients of all involved 
species. 
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The effect of temperature on the equilibrium constant can be satisfactorily described 
by a linear variation of the change in Gibbs free energy on adsorption — i.e., 
assuming that the changes in enthalpy and entropy are temperature-independent. 
Because the estimated values of the enthalpy and entropy are negative, the 
adsorption must be enthalpy-driven. Apart from the effect of temperature on the 
equilibrium constant, the activity coefficients of the ethanol and insulin variants 
varied significantly with temperature. These effects should be separated if the 
temperature and modulator concentrations are varied and if several combinations of 
adsorbates, adsorbents, and modulators are compared. 
 
A satisfactory model fit was achieved for variations in the concentrations of KCl 
and ethanol with regard to calculation of the linear-range retention and the dynamic 
simulations at high load. The effect of changes in temperature is less well described, 
albeit sufficiently, by the model. Considering that the values of the model 
parameters that are related to the influence of the modulators were not adjusted to 
the data from the temperature study, the fit is impressive. 
 
The applicability of the final model was demonstrated in a model-based multi-
objective optimization study. Pareto fronts, showing the optimal combinations of 
yield and productivity, were generated for both RPC adsorbents. Due to the higher 
selectivity between the insulin variants on the C18 versus C4 adsorbent, the former 
effected greater productivities at a higher yield. The effect of a constraint on the 
Pareto fronts, with regard to the solubility of the insulin variants, was examined by 
comparing Pareto fronts that were based on constrained versus unconstrained 
optimizations. The Pareto fronts diverged when the constraint became active, and 
the productivity was nearly constant, with decreasing yield for the constrained 
optimizations, whereas that for the unconstrained optimizations continued to rise 
steadily. 
 
Due to the halt in increased productivity, an alternative to performing constrained 
optimizations could be to select the operating point from an unconstrained 
optimization that lies just below the solubility limit, which yielded approximately 
the same result in this case study. 
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Populärvetenskaplig sammanfattning  
Att utveckla tillverkningsmetoden för ett nytt läkemedel är dyrt och 
tidskrävande. Det är svårt att hitta en metod som ger ett läkemedel av hög 
kvalitet utan att en stor mängd kemikalier förbrukas. Datorsimuleringar kan 
användas för att effektivisera både nya och redan existerande 
tillverkningsmetoder. Då kan kostnaden för tillverkningen och dess 
miljöpåverkan minskas, utan att säkerheten hos läkemedlet äventyras. 
 
Forskningen som presenteras i den här avhandlingen handlar om att bättre förstå vad 
som händer i ett särskilt steg i tillverkningsmetoden för insulin och liknande 
läkemedel. Resultaten visar hur olika faktorer påverkar läkemedlets kvalitet och hur 
mycket tid och kemikalier som går åt. Den modell som har utvecklats kan användas 
för att förbättra metoden. Då kan tiden och mängden kemikalier som går åt 
reduceras, samtidigt som en hög läkemedelskvalitet bibehålls. Det går också att 
minska den andel av läkemedlet som inte uppfyller kvalitetskraven, och därför 
måste kasseras. På så sätt kan den här sortens läkemedel bli både billigare, säkrare 
och mer miljövänliga. 
 
Varför är detta så viktigt? Mer än var 20:e person i världen lider av diabetes och 
andelen ökar snabbt. Diabetes kan orsaka allvarliga komplikationer, exempelvis 
blindhet, njursvikt eller hjärtattack. Därför är det viktigt med effektiv behandling. 
Det finns olika sorters diabetes och en av de vanligaste, diabetes typ 1, går ännu inte 
att bota. Diabetes typ 1 beror på att kroppen inte producerar insulin, ett protein som 
behövs för att cellerna ska kunna använda sockret i maten som vi äter. Enkelt 
uttryckt svälter man ihjäl om kroppen inte kan utnyttja sockret, samtidigt som det 
gör skada i blodådrorna. 
 
Det vanligaste sättet att behandla diabetes typ 1 är genom att ta sprutor med insulin 
före varje måltid. Tyvärr går det inte att ta insulinet i tablettform, eftersom det skulle 
brytas ner i matsmältningssystemet. När ett läkemedel sprutas rakt in i kroppen är 
det extra viktigt att det är rent, för att undvika att immunförsvaret reagerar på 
föroreningar.  
 
Hur har föroreningarna hamnat där? Många av dagens läkemedel består av proteiner 
eller andra komplexa ämnen som friska människor själva producerar. Proteiner är 
väldigt svåra att tillverka genom att låta olika kemikalier reagera. Därför används 
oftast skräddarsydda mikroorganismer, exempelvis bakterier eller jäst. Deras 
arvsmassa har ändrats så att de producerar proteinet till läkemedlet i fråga. Tyvärr 
måste mikroorganismerna även producera många andra ämnen för att överleva. 
Dessa ämnen kan förorena läkemedlet och flera olika separationsmetoder krävs för 
att rena läkemedelsproteinet från dem. En vanlig sådan metod är kromatografi. 
 



 
 

vii 
 

Kromatografi är en separationsmetod som kan beskrivas med följande liknelse. Anta 
att en stor grupp människor går in samtidigt på ett köpcentrum. Beroende på hur 
mycket de gillar att shoppa, så kommer de att gå in i olika många affärer och stanna 
där olika länge. De som inte gillar shopping lär komma ut först och vi kan på så sätt 
”separera” dem från de som älskar att shoppa. Ungefär så fungerar kromatografi och 
proteinerna separeras utifrån sina egenskaper. Det går dock att påverka hur bra och 
snabb separationen blir, exempelvis genom att ändra temperaturen. Att ändra sådana 
förhållanden motsvarar att exempelvis få människorna att stanna längre i köpcentret 
genom att ha rea, respektive kortare genom att sänka temperaturen till 15°C.  
 
Effekterna i kromatografi är dock svåra att förutsäga. Därför har ett stort antal 
experiment vid olika förhållanden gjorts. Sedan har en modell som beskriver 
kromatografiprocessen utvecklats. Den här sortens modell består av många 
ekvationer som kan användas i datorsimuleringar som förutspår resultatet av olika 
experiment. Genom jämförelse av resultaten från experimenten med dem från 
simuleringarna har modellen anpassats så att den stämmer bra överens med 
verkligheten. Med modellen går det att hitta det bästa sättet att rena 
läkemedelsproteinet. 
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Abbreviations  
AC Affinity chromatography 
act Applied Chromatography Toolbox 
aq In (mainly) aqueous solution 
But Butyl (ligands) 
CV Column volume 
FVM Finite volume method 
HIC  Hydrophobic interaction chromatography  
IEX Ion-exchange chromatography 
IMAC Immobilized metal ion affinity chromatography 
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ODE Ordinary differential equation 
pcs Preparative Chromatography Simulator 
PDE Partial differential equation 
Ph Phenyl (ligands) 
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RPC  Reversed-phase chromatography 
s Solid state 
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SMA Steric mass-action 
VLE Vapor–liquid equilibrium 
WENO Weighted essentially non-oscillatory 

Symbols  
a Activity [-] 
A  Thermodynamic retention factor [-]  
A0 Constant part of thermodynamic retention factor [-] 
A’

0 Lumped parameter with constants for thermodynamic retention 
 factor [-] 
c Concentration in solution or mobile phase [mol/m3] 
ctot Total molarity of solution or mobile phase [mol/m3] 
Cp Heat capacity [J/(mol∙K)] 
dp Particle diameter [m] 
Dapp Apparent axial dispersion coefficient [m2/s] 
Dax Axial dispersion coefficient [m2/s] 
E Internal energy [J/mol] 
Ei,j Binary interaction parameter for species i and j [-] 
E0,i,j Reference value for binary interaction parameter for species i 
 and j [-] 
fcal Objective function for calibration 
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fcon Constraint function for optimization 
fobj Objective function for optimization 
F Faraday’s number [C/mol] 
G Gibbs free energy [J/mol] 
H Enthalpy [J/mol] 
k Retention factor [-] 
kads Adsorption rate [s-1] 
kD Exclusion factor [-] 
kdes Desorption rate [s-1] 
kkin Kinetic constant for adsorption/desorption process [-] 
K Association equilibrium constant [-] 
Kads Adsorption equilibrium constant [-] 
Ksol Dissolution equilibrium constant [-] 
L Column length [m] 
N Number of adsorbate types, grid points, process conditions, or 
 data sets 
NA Avogadro’s number [mol-1] 
p (Set of) decision variables 
P Productivity [kg/(m3∙h)] 
Pe Péclet number [-] 
q Concentration in stationary phase [mol/m3] 
qmax Saturation capacity of adsorbent [mol/m3] 
Q Volumetric flow of mobile phase [m3/s] 
R Ideal gas constant [J/(mol∙K)] 
S Entropy [J/mol] 
t  Time [s] 
T Temperature [K] 
TH Reference temperature for change in enthalpy [K] 
TS Reference temperature for change in entropy [K] 
Ui,j Parameter for temperature dependence of binary interaction 
 parameter for species i and j [-] 
vsup Superficial velocity of mobile phase [m/s] 
V Volume [m3] 
V0  Residence volume of mobile phase [m3]  
Vcol  Column volume [m3]  
Vm Molar volume [m3/mol] 
VNR  Non-retained volume [m3]  
Vpore Pore volume (in stationary phase) [m3] 
VR  Retention volume [m3]  
w Weight fraction [-] 
x Amount-of-substance fraction in liquid [-] 
x (Set of) process conditions 
X (Product) purity [-] 
yexp Experimental result 
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z Axial coordinate in column [m] 
 
α Lumped parameter for simplified Wilson’s equation [-] 
β Valence of ion [-] 
γ Activity coefficient [-] 
δ Lumped parameter for simplified Wilson’s equation [-] 
Δ Difference [-] 
ε0  Permittivity of vacuum [C2/(N∙m2)] 
εc  Interstitial column porosity [-]  
εD  Permittivity [F/m=C2/(N∙m2)]  
εp  Particle porosity [-]  
ζ  Lumped parameter for simplified Wilson’s equation [-] 
η Salting-in parameter related to adsorbate size and dipole 
 moment [C2/m3] 
κ Inverse of the Debye length [m-1] 
Λ Ligand density [mol/m3] 
ν Stoichiometric coefficient, ligands per protein molecule [-] 
ξ Stoichiometric coefficient, modulator molecules per ligand [-] 
σ Shielding factor [-] 
τ Salting-in parameter related to adsorbate size [m2] 
ϕ Phase ratio [-] 
χ Lumped parameter for simplified Wilson’s equation [-] 
ψ Lumped salting-in parameter related to adsorbate size and 
 dipole moment [C2m] 
ω Weight factor for multi-objective optimization [-] 

Indices 
c First cut point, pooling begins 
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Chapter 1  
Introduction 
The first scientifically documented application for chromatography was the 
separation of plant pigments, performed by the botanist Mikhail Tswett, at the start 
of the 20th century [1]. Tswett used a primitive type of column chromatography, in 
which separation was based on the tendency of substances to adsorb to porous 
particles, called the adsorbent, or to dissolve in the liquid that was passing through 
the column [2]. Tswett also coined the term chromatography — a combination of 
the Greek words for color and to write [1]. Tswett’s work, however, was not 
recognized by his contemporaries, in part because it was only published in Russian. 
Consequently, the development of chromatographic technology stalled for three 
decades, until Kuhn and Lederer demonstrated its value in separating carotenes and 
pigments [3]. 
 
In the 1940s and 1950s, this technology was further developed by Archer Martin 
and Richard Synge, who received the Nobel Prize in Chemistry in 1952 “for their 
invention of partition chromatography" [4]. At that time, research in the field of 
chemistry was focused on the extraction and characterization of substances, such as 
peptides and proteins, from living organisms. Martin and Synge reported that filter-
paper chromatography was an excellent method for analyzing complex mixtures 
from various plants, animals, and microorganisms. In filter-paper chromatography, 
the substances in a sample form separate bands, based on their tendency to travel 
with liquid that is drawn up by the paper [4]. 
 
Martin and Synge, however, did not invent filter-paper chromatography but proved 
its value in studies of biomolecules. Their theory on partition chromatography — 
that substances are separated because they partition between water and the other 
solvent in the liquid, which are drawn up at disparate speeds — earned them the 
Nobel Prize. Using this method, Frederick Sanger determined the structure of 
insulin, for which he received the Nobel Prize in Chemistry in 1958 [4]. In 1982, 
human insulin, produced in genetically modified microorganisms, was the first 
biopharmaceutical to be approved for clinical treatment [5]. 
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If insulin-based pharmaceuticals were to be formulated as tablets, the insulin would 
be digested, like any other protein that passes through the digestive system. 
Therefore, to achieve a sufficiently high dose, these pharmaceuticals are generally 
administered as subcutaneous injections, often into the stomach or thigh. Any 
remaining impurities — e.g., other proteins that are produced by the microorganism 
— thus remain intact and might cause adverse effects. Consequently, purification is 
a vital step in the production of biopharmaceuticals, and column chromatography is 
an essential separation method for purifying the active ingredients. Generally, 
several types of chromatography are included in this process [6]. 
 
To ensure the safety of all pharmaceuticals, they must be approved by certain 
regulatory bodies, such as the US Food and Drug Administration (FDA), the 
European Medicines Agency (EMA), and the Medical Products Agency in Sweden, 
before they are introduced to the market. Traditionally, the strategy for producing a 
safe and efficacious pharmaceutical has been to develop a process that yields the 
desired quality, using the same operating conditions for each batch. This 
homogeneity does not necessarily guarantee the same behavior by the 
microorganisms, and the purification process is designed to handle the smaller 
variations that arise. However, these fixed processes are generally designed to effect 
a higher quality of the final product in most cases, in order for it to be sufficient in 
the worst cases. This design approach results in an unnecessarily high proportion of 
active ingredient ending up in the waste stream. 
 
In the past several decades, a new strategy has emerged that focuses on 
understanding and modeling the process and using control strategies to counteract 
variations in the feed for each process step, thereby ensuring a product that meets 
the quality criteria. Naturally, processes that are based on this approach must also 
aim to exceed the required product quality, but the ability of the process to adapt 
mitigates this need. The adaptive strategy is encouraged by the International Council 
for Harmonisation (ICH), a cooperative project between regulatory bodies in 
Europe, Northern America, and Japan [7]. 
 
The use of models for process development, optimization, and robustness analysis 
can save time and resources. An experiment that takes several hours to perform can 
be simulated in minutes, or even seconds, without the consumption of chemicals 
and depreciation of equipment. A model can be used to study the effects of many 
process parameters, for example, on yield and productivity under certain constraints. 
Based on the optimization or robustness analysis in silico, the theoretical optimum 
or correlations between process conditions and product quality can be verified or 
rejected experimentally. 
 
Experimental validation and verification are especially important if extrapolations 
are made — i.e., if the process conditions of interest are outside of the intervals that 
are used to estimate the process parameters. Most phenomena in chromatography 
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can be modeled, but all models are simplifications of reality, and the assumptions 
that are made affect their predictive ability. Black box models are models that only 
describe a simplified correlation between inputs, such as process conditions, and 
outputs, such as product quality. These models provide limited information about 
the process properties and merely describe the types of changes for which they have 
been calibrated. However, models that are based on knowledge of the mechanisms 
that cause such phenomena could allow one to extrapolate, and for these models, 
there is often a clear connection between a parameter and the related physical 
properties. Mechanistic modeling is thus a more robust approach than black box 
modeling for creating a representation of the process in silico. 
 
With a mechanistic model, it is possible to separate the effects of the properties of 
adsorbates (the substances that are to be separated), the adsorbent (what adsorbates 
adsorb to), and modulators (the substances that are used to tune the adsorption)2 [8-
10]. If only the parameters that are affected by the modulators or adsorbent must be 
re-estimated when either is exchanged, this type of model would be useful for 
screening of new purification processes. Existing models for RPC tend to 
incorporate parameters that are difficult to estimate from experimental data [11] or 
are not clearly linked to the properties of the adsorbate, adsorbent, and modulators 
[12]. 

1.1 Aim and Scope 
The aim of the work described in this thesis was to examine the combined effects 
of a salt and an organic solvent, as modulators, on hydrophobic interaction 
chromatography (HIC) and reversed-phase chromatography (RPC) and explore the 
possibilities to develop a model that combines these types of chromatography, 
focusing on the effects on the retention of and selectivity between adsorbates. The 
criteria for the model were that it had to: 1. be based on thermodynamics; 2. describe 
the effect of changes in modulator concentrations, temperature, and the type of 
adsorbent; and 3. be sufficiently simple for use in process development in the 
biopharmaceutical industry. Data from chromatographic experiments were to be 
combined with supplementary data, primarily from solubility experiments, to 
discriminate between phenomena and facilitate the estimation of parameters.  
 
The secondary goals were to determine whether the organic modulator adsorbed to 
the stationary phase and demonstrate the applicability and value of the final model 
in a multi-objective optimization study. 
 
The model combined existing thermodynamic theories with suitable modifications 
and thus was not a completely new theory. A mixture of three insulin variants — 
insulin aspart, desB30 insulin, and an insulin ester — were used to represent the 

                                                      
2 The terms adsorbate, adsorbent, and modulator are properly defined in Chapter 2. 
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typical feed in a purification step during the production of a biopharmaceutical. Four 
adsorbents were used — two for HIC with butyl and phenyl functionalities3 and two 
for RPC with C4 and C18 functionalities. Ethanol and potassium chloride (KCl) were 
used as modulators for all adsorbents, and a range of temperatures was tested. This 
separation problem was not drawn from an existing industrial process, but it 
resembles one of the final steps in the purification of insulin from genetically 
modified yeast [13]. The development of the model focused on the linear adsorption 
range, but the model was extended to preparative load levels. 
 
The calibrated model was used to perform multi-objective optimization, in which a 
set of weighted combinations of productivity and yield were maximized. By varying 
the weight factor, a Pareto front4 was created for each adsorbent. The Pareto front 
shows the optimal combinations of productivity and yield for various prioritizations 
between these two objectives. The decision variables were the load factor and the 
concentrations of ethanol and KCl in the elution buffers. In addition to the purity 
constraint and the upper limits of the impurity levels, the solubility of the insulin 
variants in the product pool was applied as a constraint. The effect of the solubility 
constraint on the shape of the Pareto front was studied by comparing the results of 
the optimization with and without this constraint. Also, an alternative to traditional 
constrained optimization was evaluated. 

1.2 Outline of Thesis  
This thesis consists of nine chapters and the four papers on which it is based. The 
first four chapters after the introduction provide background information for this 
thesis and briefly describe the theory and methods that are applied in this work. 
Chapter 2 summarizes the fundamentals and explains the important concepts of 
chromatography, and Chapter 3 presents various applications for this technology. 
Modeling of chromatography is described in Chapter 4, and Chapter 5 discusses 
how models are calibrated and how they can be used for simulation and 
optimization. Chapter 6 contains the results of the HIC experiments, and Chapters 
7 and 8 present the findings from the modeling and optimization, respectively, of 
the RPC separations. The thesis closes with conclusions, a brief evaluation of the 
certainty of those conclusions, and suggestions for future work in Chapter 9. 
  

                                                      
3 The more general term ‘functionality’ is used here, instead of ligand, because this concept 
is introduced and defined in Chapter 2. 
4 The term ‘Pareto front’ is explained more thoroughly in Chapter 5. 
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Chapter 2  
Fundamentals of Chromatography 
Chromatography is a separation method that is based on the variation in the 
distribution equilibria of different compounds between two phases — the stationary 
phase and the mobile phase. It can be used for preparative and analytical purposes, 
as described and exemplified in the next chapter. A schematic of a chromatography 
system is shown in Figure 2.1. The stationary phase consists of porous particles, 
typically 10-100 µm in diameter, which are made from silica, a polymer, or a gel, 
such as agarose. The surface of these particles, most of which lie inside of the pores, 
is covered with ligands (brown lines in lower right part of Figure 2.1) [14]. 
 

 
 

Figure 2.1: Basic equipment for chromatography. Sample injection is performed by stopping the 
flow of the mobile phase and adding feed mixture at the inlet of the column. 

 
The ligands are functional groups that are bound covalently to the particle surface, 
and their functionality — e.g., electric charge or hydrophobicity — mediates their 
interaction with adsorbates — i.e., the compounds that are being separated. The 
strength of this interaction determines the distribution equilibrium; one exception is 
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size-exclusion chromatography (SEC), in which the distribution equilibrium 
depends on the size of the substances that are to be separated. A stronger interaction 
results in a longer retention time — the adsorbate spends more time in the stationary 
phase and exits the column (i.e., is eluted) later [14, 15].  
 
In Figure 2.1, the beige adsorbate is most weakly retained by the stationary phase 
and has thus been eluted first, into the vial on the left. The blue adsorbate is 
intermediately retained and is just being eluted into the vial in the middle, whereas 
the green adsorbate is the most strongly retained and has not begun to be eluted. The 
collection of eluted mobile phase into different containers is called fractionation or 
pooling. The point at which the pooling into one container ends and that into the 
next container starts is determined by the cut points, which can be fixed or calculated 
using a control strategy and based on, for example, the eluted volume or detector 
signal. Most of the eluted liquid, however, is collected as waste. 
 
The strength of the adsorbate–ligand interaction, and thus the retention time, can be 
tuned using mobile phase modulators. In most cases, the mobile phase that is used 
in chromatographic separation is a liquid, consisting primarily of water. The mobile 
phase can also be a gas (gas chromatography), which is often the case for analytical 
purposes, or a supercritical fluid, such as highly compressed carbon dioxide; but 
non-liquid mobile phases are rarely used in preparative chromatography. In addition 
to water, the mobile phase usually contains a buffering agent to maintain the pH and 
one or more mobile phase modulators to adjust the retention [14]. One exception is 
the normal-phase chromatographic (NPC) mode, in which the mobile phase is a 
weakly polar organic solvent that has a more polar organic solvent as the modulator 
[16]. 
 
The mobile phase modulator is often a salt, an organic solvent, or an acid or base 
(Table 2.1). If isocratic elution is applied, the modulator concentration is constant 
during the elution. Elution is commonly performed with a gradient or by stepwise 
changes in the modulator concentration. The gradient is usually linear and is 
achieved by mixing two buffer solutions with different modulator concentrations 
but otherwise identical compositions (Figure 2.1) [15]. 
 
Isocratic elution yields wider peaks at higher retention times, due to band-
broadening that is caused by the mixing effects of dispersion, film mass transfer, 
and pore diffusion. Gradient elution counteracts band-broadening by gradually 
decreasing the adsorbate–ligand interaction, thus increasing the desorption rate [15, 
17]. Gradient elution is also faster than isocratic elution, resulting in higher 
productivity. Occasionally, step elution is more suitable, for example, if the 
adsorbates differ significantly in binding strength. More advanced nonlinear 
gradients with many stepwise changes, such as the M-shaped elution curves that 
were introduced by Sellberg, Holmqvist, and colleagues [18, 19], can further 
optimize the elution. 
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2.1 Adsorbate–Ligand Interactions 
The nature of the modulator depends on the chromatographic mode — i.e., the type 
of interaction between adsorbates and ligands. Table 2.1 lists the most common 
modes and the corresponding type of adsorbate–ligand interaction and modulator. 
The curious term ‘reversed-phase chromatography’ stems from its opposing nature 
to normal-phase chromatography: the mobile phase consists primarily of water, 
which is more polar than the modulator, which should be slightly hydrophobic. NPC 
was termed “normal” because it was common in the early history of chromatography 
[16]. 
 
Table 2.1: Common chromatographic modes, the interactions on which they are based, and the type 
of mobile phase modulator used [14]. 
 
Chromatographic mode Interaction Modulator 
Size-exclusion (SEC) None None 
Normal phase (NPC) Polar Organic solvent 
Reversed-phase (RPC) Hydrophobic (strong) Organic solvent 
Hydrophobic interaction (HIC) Hydrophobic (weak) Salt  
Ion-exchange (IEX) Electrostatic Salt 
Immobilized metal ion affinity 
(IMAC) 

Metal ion–protein pH/chelating 
agent/etc. 

Affinity (AC) Functional pairs Varying 
 
As discussed, size-exclusion chromatography differs significantly from the other 
modes, because it does not involve any interaction. The stationary phase lacks 
ligands, and separation in SEC is mediated by differences in adsorbate size — larger 
adsorbates access a smaller quantity of pores in the stationary phase and thus are 
eluted earlier, because they pass through a smaller volume. Conversely, affinity 
chromatography is based on specific interactions, such as that between an antibody 
and antigen, inhibitor and enzyme, or hormone and receptor [20]. A recent advance 
is mixed-mode chromatography, in which adsorbents with both HIC and IEX 
functionalities are used. This property significantly increases the possibility of 
separating similar adsorbates, and the number of studies on mixed-mode 
chromatography [21-25] and its applications is increasing rapidly [26, 27]. 

2.1.1 HIC and RPC 
There are two chromatographic modes that are based on hydrophobicity — HIC and 
RPC — but the hydrophobic interactions in each differ in strength. The ligand 
density of RPC adsorbents is 5-100 times higher than that of HIC adsorbents [28-
31], potentially forming an organic phase on the particle surface. With the 
possibility of developing a two-phase system, the mechanism in RPC might be 
partitioning rather than adsorption [32]. No consensus, however, has been reached 
regarding this issue [33], and the mechanism might vary between different 
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adsorbates and adsorbents. Due to the strongly hydrophobic interactions in RPC, an 
organic solvent, such as ethanol and acetonitrile, must be used as the modulator. The 
retention declines with increasing modulator content, because the mobile phase 
becomes more hydrophobic. RPC is not always appropriate for separating proteins, 
because the high content of organic solvent can denature the protein; HIC can be 
applied as an alternative, because it does not require an organic solvent [34]. 
 
Due to the low hydrophobicity of HIC adsorbents, it is sufficient to use a salt as the 
modulator. As opposed to most modes, retention increases with higher modulator 
concentrations, via the salting-out phenomenon. Salting-out generally refers to the 
decrease in protein solubility with rising salt concentrations that is observed at high 
salt contents. The concomitant increase in salt concentration and retention in HIC 
has been attributed to the salting-out effect, as supported by published comparisons 
of protein retention and solubility [10, 35, 36]. The retention in HIC is thus mediated 
by the repulsion between the adsorbate and mobile phase, rather than by the 
attraction between the adsorbate and ligands. At very low salt concentrations, the 
opposite effect is seen — termed salting-in — and the opposing effects of salting-
in and salting-out cause a maximum in the solubility, corresponding to a minimum 
in retention in HIC [6]. 

2.2 Isotherms 
The association equilibrium for a combination of an adsorbate and adsorbent is often 
described by an isotherm. An isotherm describes the equilibrium between the 
concentrations of adsorbate in the mobile (c) and stationary phases (q). As its name 
implies, the correlation is valid for constant temperature, but constant mobile phase 
composition, pH, and pressure are also presumed, because all of these factors affect 
the equilibrium [14]. The most common type of isotherm has a concave curvature 
(Equation 1), which is often referred to as the Langmuir isotherm, having first been 
described by Irving Langmuir in 1918 [37]: 
 
ݍ  = ௤೘ೌೣ௄௖ଵା௄௖  (1) 
 
K is the association equilibrium constant, and qmax is the saturation capacity — i.e., 
the highest achievable concentration of adsorbate in the stationary phase. Examples 
of concave isotherms, with various values for K and qmax, are given in Figure 2.2. 
 
The other primary model is the convex isotherm, which has a negative sign in front 
of the second term (Kc) in the denominator (Equation 1) and is thus a mirror image 
of the concave isotherm. A combination of concave and convex intervals, forming 
several plateaus, can be observed if multilayers are formed or if saturation occurs 
[15]. Isotherms exist in other shapes, such as the Toth and Freundlich isotherms 
[38], but the Langmuir isotherm is the most commonly applied model for protein 
chromatography, which is the focus of this thesis. 
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Figure 2.2: Concave isotherms for different values of a) adsorption equilibrium constant and b) 
saturation capacity. If not specified, the value of the parameter is unity. 

2.2.1 Chromatograms and Peak Shapes 
The course of a chromatographic run is often depicted by a chromatogram — 
reflecting the detector response (generally UV absorbance for proteins) as a function 
of time or the volume that has passed through the column. The response is 
proportional to the concentration of each adsorbate, according to the Lambert-Beer 
law, and the chromatogram can be decomposed into individual peaks — for 
example, skewed Gaussian peaks — using a suitable fitting algorithm [39] (Figure 
2.3a). 
 

 
 
Figure 2.3: a) Chromatogram of low-load separation of insulin variants on an RPC adsorbent (blue 
dotted curve), decomposed into skewed Gaussian peaks (red dashed curves) that together yield the 
yellow solid curve. Adapted from Paper I [40]. b) Chromatogram of separation of insulin variants on 
an RPC adsorbent at varying adsorbate loads. The injection volumes have been subtracted. 
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At low adsorbate loads, the eluted peaks should assume a Gaussian shape. The peaks 
in Figure 2.3a exhibit slight tailing — i.e., they are skewed to the left. This pattern 
indicates that the adsorption kinetics or the mass transfer between, on the surface 
of, or inside of the particles is slow compared with the bulk flow of the mobile phase 
[15]. Another explanation is adsorption to secondary sites [41]. Tailing can also be 
caused by a high adsorbate load (Figure 2.3b), and for concave isotherms, the peaks 
generally have a common trailing edge, whereas the leading edge moves farther to 
the left with increasing adsorbate loads.  
 
For convex isotherms, the peaks move in the opposite direction, resulting in fronting 
peaks and a mirror image of Figure 2.3b. Double-layer isotherms, generated by self-
association of adsorbates, show more complex high-load behavior with peaks that 
become increasingly fronting at low to medium loads and exhibit tailing behavior 
at medium to high loads [15]. Examples of this pattern are found in Paper I [40]. 
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Chapter 3  
Applications of Chromatography 
As discussed, chromatography can be divided into two categories based on its 
application — analytical and preparative. Analytical chromatography is used to 
analyze the composition of a sample. The adsorbate load is relatively low in 
analytical chromatography. Thus, there are no effects of capacity on the position or 
shape of the peaks, enabling identification of the adsorbates based on retention 
volume, and minimizing overlap between peaks. Because the aim is to identify and 
quantify adsorbates, widely separated Gaussian peaks are preferred, and the 
adsorbate load need only be sufficiently high to ensure the required precision [1, 3]. 
 
The goal of preparative chromatography is to purify one or more target adsorbates 
from various impurities in a sample, with minimal loss of target adsorbates. 
Productivity is an important factor in preparative chromatography; thus, the 
adsorbate load is relatively high. Because maximum recovery of the product is 
desired, preparative chromatography should not damage the target adsorbate, 
whereas the remains of the sample in analytical chromatography are discarded [1, 
3]. Because the scope of this work was limited to preparative chromatography, 
analytical applications are not presented. 

3.1 Applications of Preparative Chromatography 
Based on its versatility and unique separation power, preparative chromatography 
has many industrial applications, ranging from the purification of high-value 
products, such as active ingredients for pharmaceuticals, food additives, and rare-
earth elements using designed adsorbents, to potable and waste water treatment 
using activated carbon and bentonites [3, 42]. The applicability of advanced types 
of chromatography, however, is limited by the high investment and operating costs 
for complex equipment, expensive adsorbents with a limited life span, and high 
solvent consumption. Consequently, in the past several decades, purification 
processes for enantiomers, peptides, and proteins have been the focus of research 
and development efforts, primarily in the pharmaceutical industry [3, 43, 44]. 
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3.1.1 Separation of Biopharmaceuticals 
Preparative chromatography is a crucial technology for the production of 
biopharmaceuticals, and most purification processes for such substances include 
several chromatographic steps [45]. A biopharmaceutical is a drug that is based on 
an active ingredient that is partly or entirely produced by cells, such as bacteria, 
yeast, and mammalian cells — not from chemicals. This term encompasses blood, 
tissues, and living cells but usually refers to pharmaceuticals that are based on 
proteins, peptides, or antibodies. Besides insulin, other examples include growth 
hormones, vaccines, blood factors for the treatment of hemophilia, and monoclonal 
antibodies for cancer and autoimmune diseases [46, 47]. 
 
The cells for biopharmaceutical production, which are generally genetically 
modified to synthesize the desired substance, are grown in large tanks that are filled 
with aqueous solutions of the required nutrients. This initial step in the production 
process is called cultivation, or sometimes fermentation, regardless of whether it is 
performed anaerobically. When the batch cultivation is completed, the tank contains 
a dilute solution of the active ingredient and numerous impurities, such as product 
aggregates, host cell proteins, and residual nutrients [48]. It is crucial that the final 
purity of the active ingredient is high and that the concentration of certain impurities 
is below specified limits. Any remaining impurities, especially host cell proteins 
and product aggregates, might cause side effects by triggering the immune system. 
Because most biopharmaceuticals would be digested if they were to be administered 
orally, the standard route of administration is injection. Due to lower bioavailability, 
oral administration would also require a dose that is several times higher [49]. By 
circumventing the digestive system, the risk of degradation is mitigated, but the risk 
of the side effects of impurities might increase, because they are also protected from 
digestion. 
 
To obtain the required purity, the purification of the active ingredient for 
biopharmaceuticals entails many steps — broadly categorized into recovery, 
purification, and polishing. The first step is sometimes termed capture or isolation, 
and polishing is not always distinguished from purification. During recovery, most 
of the water and impurities that differ significantly from the target product are 
removed. This step can be accomplished by flow-through chromatography, in which 
the active ingredient adsorbs strongly to the column, whereas most impurities flow 
through it. Alternative separation technologies include solvent extraction, 
ultrafiltration, and precipitation [6, 50]. 
 
The goal of the second category, purification, is to remove product-similar 
impurities — for example, host cell proteins and other versions of the target product. 
The purification is expensive and generally requires more than one chromatographic 
step in combination with, for example, crystallization [6, 13]. HIC, IEX, and affinity 
chromatography are the most commonly applied modes.  
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The final steps, called polishing, prepare a substance for formulation — i.e., the 
process in which the active ingredient is packaged as a pharmaceutical, such as 
tablets, capsules, and solutions for injection. Crystallization and spray-drying are 
frequently used methods for polishing [6]. 

Insulin 
Type I diabetes has long been known to be caused by the inability of the body to 
metabolize sugar, due to pancreatic dysfunction, but the missing link between the 
metabolism of sugar and the pancreas was not found until insulin was discovered 
by Frederick G. Banting and John Macleod in 1921. Banting and Macleod showed 
that this type of diabetes could be managed, but not cured, with daily injections of 
insulin — a protein and hormone [51]. For several decades, insulin was acquired as 
a by-product from the meat industry, but it became evident that this supply would 
fail to meet the future demand of diabetic patients [5]. Today, over 400 million 
people suffer from diabetes [52], many of whom are dependent on insulin-based 
pharmaceuticals to survive. 
 
Two of the largest insulin producers, Novo Nordisk A/S and Eli Lilly & Co., use 
genetically modified Saccharomyces cerevisiae (yeast) and Escherichia coli, 
respectively, for fermentation. The process that is used by Novo Nordisk A/S to 
recover insulin precursor that is produced by yeast cells, transform it into human 
insulin, and purify the final product is described below. Because the yeast cells 
excrete insulin precursor into the fermentation broth, the first step in recovery is 
thus cell removal, which is performed by centrifugation. The insulin precursor is 
then captured by cation exchange chromatography, and the remaining cell debris is 
subsequently removed by filtration. Most residual impurities are removed by 
crystallization and precipitation, and in the final recovery step, a purity that exceeds 
90% is achieved by crystallization of the insulin precursor [13]. 
 
The purification begins with two chemical reactions that transform the insulin 
precursor into an insulin ester and then into human insulin, each of which is 
followed by two chromatographic steps to remove the enzyme from the first reaction 
and by-products from both reactions. RPC, followed by anion exchange 
chromatography, and two RPC steps are used to purify the product after the first and 
second reactions, respectively [13]. Insulin is one of the few proteins that can 
tolerate the high concentrations of organic solvent that are required for RPC, 
primarily due to its small size and globular shape. The purification processes for 
other proteins are thus generally combinations of IEX and HIC steps. The impurities 
that are removed in the AIEX and second RPC steps include desB30 insulin and an 
insulin ester. Both of these variants were used in the work presented in this thesis. 
Finally, human insulin is crystallized, resulting in a purity above 99.5%, and freeze-
dried before formulation [13]. 
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3.1.2 Separation of Small Molecules and Ions 
Preparative chromatography is also used to purify non-biological active ingredients, 
such as pharmaceuticals that are based on substances that are synthesized without 
cells or other organisms. One common application in this area is the separation of 
enantiomers — molecules that are mirror images of each other. When substances 
that have enantiomers are synthesized through chemical reactions — not by an 
organism — a mixture of the two enantiomers is often obtained. However, only one 
of them is the desired active ingredient, and the other might have undesirable side 
effects [43, 44].  
 
An example of such side effects is the teratogenicity of an enantiomer of 
thalidomide. Thalidomide was the active ingredient of a drug that was commonly 
prescribed to pregnant women in the 1950s to treat sleeplessness and nausea. 
Unfortunately, the effects of thalidomide had not been properly investigated and the 
otherwise inactive enantiomer caused birth defects, primarily severe deformities in 
the limbs and internal organs. More than 10,000 children were affected worldwide 
[53]. 
 
Preparative chromatography is also used for separation in the food industry, such as 
the continuous separation of fructose and glucose, using a simulated moving bed 
(SMB). In SMB, several columns are connected in series and switch places 
sequentially, achieving the apparent effect of countercurrent motion of the 
stationary and mobile phases [54].  
 
Secondary metabolites from plants are a class of substances that can be used as 
active ingredients in pharmaceuticals and food additives. Secondary metabolites are 
substances that organisms produce, although they are not essential to their survival, 
such as carotene, menthol, and lignin. Analytical chromatography is often used to 
identify the secondary metabolites in various plants in the search for new active 
ingredients for pharmaceuticals or suitable food colorants and flavorings. However, 
the high cost of large-scale preparative chromatography limits its use for 
production-scale separation of these substances, at least in the food industry [55, 
56]. 
 
Another application of preparative chromatography that is being commercialized is 
AC for the separation of rare-earth elements from dissolved ore. Rare-earth elements 
are metals that are used in many high-tech products, such as batteries, monitors, and 
superconductors [57]. IEX was used to separate rare-earth elements in the 
Manhattan Project in the 1940s, but this method never passed the pilot stage [3]. 
The separation process that is generally applied in industry comprises a multi-step 
liquid–liquid extraction and a final chromatographic step for polishing. 
Replacement of the extraction steps with chromatography-based stages significantly 
reduces the number of steps that is required and the consumption of solvent [57-59]. 



 
 

15 
 

 

Chapter 4  
Modeling of Preparative Chromatography 
In the studies on which this thesis is based, retention is assumed to occur due to 
adsorption, not partitioning. To avoid confusion with the thermodynamic retention 
factor and because all adsorbates in these studies are proteins, the adsorbate is 
henceforth assumed to be a protein and is denoted P or adsorbate i. Adsorption 
means that the protein (P) is reversibly bound to a number of ligands (L), forming a 
protein–ligand complex (PLν), as described by Equation 2a, where ν denotes the 
stoichiometric coefficient between ligands and protein molecules. Equation 2b 
describes the process when ξ modulator molecules (M) competitively adsorb to the 
ligands and are displaced by the adsorbing protein. 
 
 ܲ + ܮߥ ⇄  ఔ (2a)ܮܲ
 ܲ + కܯܮߥ ⇄ ఔܮܲ +  (2b) ܯߦߥ
 
The adsorption equilibria for these two cases are given by Equation 3, where Kads is 
the equilibrium constant for the adsorption, a is the activity, γ is the activity 
coefficient, and x is the amount-of-substance fraction — all of the species that are 
specified by the index. 
 
௔ௗ௦ܭ  = ௔ುಽഌ௔ು௔ಽഌ = ఊುಽഌఊುఊಽഌ ௫ುಽഌ௫ು௫ಽഌ = ఊುಽഌఊುఊಽഌ ௤ು௖ು ௅ିݔ ఔ (3a) 

௔ௗ௦ܭ  = ௔ುಽഌ௔ಾഌ഍௔ು௔ಽಾ഍ഌ = ఊುಽഌఊಾഌ഍ఊುఊಽಾ഍ഌ ௫ುಽഌ௫ಾഌ഍௫ು௫ಽಾ഍ഌ = ఊುಽഌఊಾഌ഍ఊುఊಽಾ഍ഌ ௤ು௖ು ቆ ௫ಾ഍௫ಽಾ഍ቇఔ
 (3b) 

 
The equilibria in Equation 3 can be used directly to calculate the retention volume 
(VR) for each adsorbate, but estimating the peak shapes and thus the degree of 
separation requires a dynamic simulation, including the mass transport and the 
kinetics of the adsorption/desorption.  
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4.1 Retention Factors 
The retention volume of an adsorbate is defined as the first moment of the 
corresponding peak in the chromatogram, starting from the outset of elution. If the 
peaks are symmetrical, the first moment coincides with the position of the peak 
maximum. The most commonly used normalized measure of retention is the 
retention factor k, which is calculated from experimental data per Equation 4 [15]. 
 
 ݇௉ = ௏ೃ,ುି௏బ௏బ = ௏ೃ,ುି௏೎೚೗൫ఢ೎ା(ଵିఢ೎)ఢ೛൯௏೎೚೗൫ఢ೎ା(ଵିఢ೎)ఢ೛൯  (4) 

 
V0 is the residence volume of the mobile phase — i.e., the total void volume of the 
column — and Vcol is the total column volume. εc is the interstitial column porosity 
— i.e., the void fraction between the particles — and εp is the particle porosity. k is 
easy to determine and is suitable for small molecules that can access the same 
fraction of pore volume as the mobile phase. For proteins and other macromolecules, 
however, the thermodynamic retention factor A [10, 60, 61] might be more suitable 
(Equation 5). 
 
௉ܣ  = ௏ೃ,ುି௏ಿೃ,ು௏೛೚ೝ೐,ು = ௏ೃ,ುି௏೎೚೗൫ఢ೎ା(ଵିఢ೎)ఢ೛௞ವ,ು൯௏೎೚೗ቀ(ଵିఢ೎)ఢ೛௞ವ,ುቁ  (5) 

 
VNR,P is the non-retained volume — i.e., the residence volume under non-adsorbing 
conditions — and Vpore,P is the accessible pore volume, both for the protein. By 
introducing the exclusion factor kD,P, the limitations in the accessible pore volume 
due to the shape and size of the protein are taken into consideration. Thus, 
comparisons between adsorbates and adsorbents are based solely on the adsorption 
equilibria and are unaffected by shape or size. 
 
The retention factor kP (Equation 6) is directly proportional to the equilibrium 
constant for the adsorption but also depends on the phase ratio ϕ, which is the ratio 
between the volumes of the stationary and mobile phases [62]. The exact definition 
varies between theories [63, 64]. For the thermodynamic retention factor (Equation 
7), the relationship with the equilibrium constant depends on the adsorption 
mechanism and can be derived from the corresponding equilibrium expression — 
e.g., Equation 3a or b. The definition of A is based on the adsorption isotherm and 
is equal to its initial slope — i.e., the qP/cP ratio at infinite dilution [65]. 
 
 ݇௉ ≡  ௔ௗ௦,௉߶ (6)ܭ
௉ܣ  ≡ lim௤ು→଴ ௤ು௖ು  (7) 
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4.2 Thermodynamic Equilibrium Models 
As a consequence of the range in theories on hydrophobicity, there are many models 
that describe the adsorption equilibrium in HIC and RPC. Due to the high ligand 
density of RPC adsorbents [28, 29, 66], the mechanism of retention in RPC can be 
viewed as adsorption [11, 12, 33] — i.e., a reaction in which adsorbate molecules 
and ligands associate reversibly — or as partitioning [12, 32, 33, 67], similar to the 
phenomenon that underlies liquid–liquid extraction. As discussed in the 
introduction and earlier in this chapter, in this project, the retention mechanism is 
regarded as adsorption. For smaller molecules, partitioning might also mediate 
retention in RPC. However, I find it unlikely that large molecules, such as peptides 
and proteins, can partition into an organic phase that is formed by ligands due to 
their sheer size. A selection of equilibrium models that assume adsorption are 
presented below. 

4.2.1 Modulator Effects 
The most famous and widely applied [68-70] thermodynamic descriptions of HIC 
and RPC are the adaptations of the solvophobic theory by Horváth, Melander, and 
colleagues [11, 35, 71]. The main feature of these models is that the effect of the 
modulator is attributed primarily to its effect on surface tension, correlated with the 
change in Gibbs free energy for cavity formation. Van der Waals and electrostatic 
forces are included in the models, but they are assumed to vary negligibly in RPC 
when only the mobile phase composition changes. This model structure yields a 
linear dependence of ln(k) on surface tension with the change in contact area 
between the mobile phase and the adsorbate, ligands, and adsorbate–ligand complex 
on adsorption as a proportionality constant [11]. 

HIC Models 
For HIC, the electrostatic forces are given by a salting-in term per Debye and Hückel 
and a salting-out term that is related to the dipole moment of the adsorbate. The 
former is negligible at relevantly high salt concentrations, and the latter is 
proportional to the molality of the salt, and so is the surface tension. This results in 
a linear dependence of ln(k) on the molality of the salt. In this case, the 
proportionality constant is the difference between the term for the contact area and 
surface tension increment, and the term for the dipole moment [35]. Despite the 
success of adaptations of the solvophobic theory with regard to chromatography, 
these models have received significant criticism [72-75] — for example, claiming 
that the changes in surface tension are not the only source of the dependence of the 
retention in HIC on salt concentration. 
 
Another well-known and popular HIC model [76, 77] is the adaptation of the 
preferential interaction theory [72, 78]. This model is also based on the salting-in 
and salting-out phenomena but does not correlate them with surface tension. Instead, 
the variation in the effects of various salts on the retention in HIC is attributed to 
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the nature of their interaction with the protein. If the interaction is preferential, the 
salt causes salting-in as the ions cluster around the protein molecules, decreasing 
unfavorable interactions with water molecules. If the interaction is not preferential, 
salting-out is observed as the protein molecules reduce the hydrophobic surface area 
that is exposed to the mobile phase by adsorbing to ligands [72]. The preferential 
interaction and solvophobic theories are similar but differ, in that they attribute 
salting-in and salting-out to protein–salt interactions and the salt effects on surface 
tension, respectively. 
 
Because neither of these models has been generally accepted, a different approach 
for modeling salt effects was used in this work (see Chapter 7) — an adaptation of 
Kirkwood’s electrostatic theories on macromolecules in solution by Mollerup and 
colleagues [10]. This model also assumes that salting-in and salting-out, as well as 
the retention in HIC, are caused by the same phenomena. In this case, however, the 
effects of salt are described by the changes in electrostatic potentials. 

RPC Models 
There are few thermodynamic models that describe the retention in RPC. The 
solvophobic theory was discussed above, and models that are based on partitioning 
are not considered in this thesis. In many cases, empirical first- or second-degree 
polynomials of the modulator concentration are used to describe its effect on the 
natural logarithm of the retention factor [79-81]. This approach is simple and useful 
for case studies with a certain adsorbate–modulator–ligand system but does not 
allow for extrapolation and does not provide any information about the underlying 
phenomena. Quantitative structure–retention relationships can be used to correlate 
the retention RPC to various physical properties [82] but not to make conclusions 
on the adsorption mechanism. Molecular dynamics simulations can give insights 
into the adsorption mechanism in all types of chromatography, but the results cannot 
be linked directly to retention [83, 84]. 
 
A semi-thermodynamic approach has been introduced by Nikitas, Pappa-Louisi, et 
al. [12, 80], who assumed that the modulator is competitively adsorbed and that 
solvent molecules cluster on the ligands and are displaced when adsorbate or 
modulator molecules adsorb. The retention factor is correlated to the modulator 
concentration per the equilibrium equation, and power series of the amount-of-
substance fractions of the various species describe the changes in activity 
coefficients. This approach results in a set of polynomials of the amount-of-
substance fraction of the modulator with more parameters than can be determined 
from retention data. However, qualified assumptions can prompt simplifications to 
be made that yield useful models. 
 
In this work, the changes in activity coefficients with shifts in modulator content are 
described by Wilson’s equation [85]. Supplementary solubility data for the proteins 
and vapor–liquid equilibrium data for the modulator and water were used together 
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with the retention data to estimate the binary interaction parameters. More 
information on the RPC model can be found in Chapter 7. 

4.2.2 Temperature Effects 
Although the temperature also influences A indirectly — e.g., as a consequence of 
changes in density, permittivity, and interactions between species in the mobile 
phase — the temperature dependence is generally attributed primarily to that of the 
adsorption equilibrium constant (Equation 8). 
 
௔ௗ௦,௉ܭ  = exp ቀ− ୼ீೌ೏ೞ,ುோ் ቁ ⇒ ln ௔ௗ௦,௉ܭ = − ୼ீೌ೏ೞ,ುோ்  (8) 
 
ΔGads,P is the change in Gibbs free energy on adsorption, which in turn can be 
divided into changes in enthalpy (ΔHads,P) and entropy (ΔSads,P) on adsorption. A 
common assumption is that these parameters vary insignificantly with temperature, 
rendering ln(Kads,P) linearly dependent on the inverse of the temperature (Equation 
9).  
 
 ln ௔ௗ௦,௉ܭ = − ୼ுೌ೏ೞ,ುோ் + ୼ௌೌ೏ೞ,ುோ  (9) 
 
If the Van’t Hoff plots — i.e., ln(kP) versus 1/T — are curved, the variations in 
enthalpy and entropy with temperature can be included using Equation 10a [62] 
instead of Equation 9. Because the viscosity varies with temperature, the column 
pressure drop (pdrop) does, as well. To account for the effects of pdrop on Kads,P, 
Equation 10b [86] can be used. 
 

 ln ௔ௗ௦,௉ܭ = − ୼஼೛,ೌ೏ೞ,ು೚ோ ቀ்ಹ,ು் − ln ቀ்ೄ,ು் ቁ − 1ቁ (10a) 

 ln ௔ௗ௦,௉ܭ = − ୼ாೌ೏ೞ,ುோ் − ௣೏ೝ೚೛୼௏೘,ುோ் + ୼ௌೌ೏ೞ,ುோ  (10b) 
 
ΔC°p,ads is the change in heat capacity on adsorption, and TH,P and TS,P are reference 
temperatures for the changes in enthalpy and entropy, respectively. ΔEads,P is the 
change in internal energy on adsorption, and ΔVm,P is that of the molar volume. 

4.3 Dynamic Models 
Whereas equilibrium models are used to calculate the retention time or volume of 
an adsorbate as a function of process conditions, generally within the linear 
adsorption range, dynamic models are used to simulate an entire chromatographic 
run, generating the concentration of the adsorbate(s) as a function of time (t) and 
position in the column (z) as the output. There are 3D models that include wall 
effects [87, 88], but most models assume radial homogeneity of the column packing 
and negligible radial concentration gradients; thus, the position is only specified by 
the axial coordinate. Another common assumption is that the porosities, the 
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temperature, and all physical properties are homogeneous throughout the column. 
These models require a mathematical description of the adsorption process and the 
transport phenomena that affect the adsorbate inside of the column, such as 
dispersion and pore diffusion [89]. 
 
The most complex models — general rate models — include at least two mass 
transfer effects regarding the transport of adsorbates to or inside of the particles. The 
transport phenomena that are generally considered are adsorption kinetics, diffusion 
in the liquid and on the surface inside of the particle pores, and mass transfer through 
the stagnant film that surrounds the particles. Lumped rate models are slightly less 
detailed chromatography models that include only one of these mass transfer effects. 
Because lumped rate models neglect concentration gradients inside of the particles, 
the mass transfer rate is modeled as adsorption kinetics or diffusion through the film 
around the particles. In this work, the reaction-dispersive model — a lumped rate 
model that incorporates adsorption kinetics [90] — has been used. 
 
A lumped rate model was chosen, because this work focused on the effects on the 
adsorption equilibrium, not on transport phenomena or kinetics. Also, general rate 
models are only needed for complex cases, and estimating all of their parameters 
requires extensive experimental data or calculations from correlations that are based 
on dimensionless numbers [90]. These tasks were beyond the scope of the studies 
on which this thesis is based. The reaction-dispersive model has been used to 
successfully describe the chromatographic purification of insulin [81, 91], and 
because the mobile phase velocity and particle size do not vary in this work, this 
model was considered to be suitable [41]. 

4.3.1 Transport Phenomena in the Mobile Phase 
The transport of species i (adsorbate or modulator) in the mobile phase is governed 
by three overarching phenomena, described by the right-hand side of Equation 11: 
convection (first term), dispersion (second term), and transport into the stationary 
phase. 
 
 డ௖೔డ௧ = − ௩ೞೠ೛ఢ೟,೔ డ௖೔డ௭ + ௔௣௣ܦ డమ௖೔డ௭మ − (ଵିఢ೎)ఢ೛௞ವ,೔ఢ೟,೔ డ௤೔డ௧  (11) 
 
vsup is the superficial velocity of the mobile phase, and Dapp is the apparent axial 
dispersion coefficient. The axial dispersion coefficient (Dax) describes deviations 
from plug flow, caused by the packed bed, and can be estimated from the Péclet 
number, given by Equation 12, where dp is the particle diameter. 
 
 ܲ݁ = ௗ೛௩ೞೠ೛஽ೌೣఢ೎  (12) 
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The apparent axial dispersion coefficient is a lumped parameter that also includes 
pore diffusion and mass transfer through the liquid film on the adsorbent particles. 
Because the equilibrium, not the kinetics, is the focus of this work, the Péclet 
number correlation was assumed to provide a sufficient estimation of Dapp. 
 
∂qi/∂t is the adsorption rate for species i, which in this model was assumed to be 
rate-limiting for transport into the stationary phase. The factor in front of it depends 
on the choice of the model for retention. In the work summarized in this thesis, the 
factor is related to the accessible pore volume for species i inside of adsorbent j, 
because the thermodynamic retention factor (A) was used as the measure of retention 
(Equation 5). The use of total porosity for species i as the denominator in the 
convection and adsorption terms does not imply convective flow through the 
particles but is merely a consequence of the selection of the model. Because the 
reaction-dispersive model lacks a description of the transport inside of the particles, 
the column model (Equation 11) must include the particle void to yield the correct 
residence volume. 

4.3.2 Adsorption 
The expression for the adsorption rate can be derived from the equilibrium equation 
for the reaction as the difference between the driving forces for the adsorption and 
desorption. Assuming a concave isotherm, the adsorption rate is often described as 
in Equation 13. 
  
 డ௤೔డ௧ = ݇௔ௗ௦,௜Λ஝౟ ቀ1 − ∑ (ఔೖାఙೖ)௤ೖஃே௞ୀଵ ቁ஝౟ ܿ௜ − ݇ௗ௘௦,௜ݍ௜ (13) 
 
kads,i and kdes,i are the adsorption and desorption rate constants, respectively. Λ is the 
ligand density of the adsorbent, σk is the shielding factor — i.e., the number of 
ligands that are covered by but not adsorbed to protein k — and N is the number of 
adsorbate types that are present. The expression in parentheses yields the fraction of 
available adsorption sites. Equation 13 also assumes that the activity coefficients 
are unity, or at least constant, because concentrations, not activities, are used to 
calculate the driving forces. Substitution of concentrations by activities and division 
of the right-hand side of Equation 13 by kdes,i results in the form that is given by 
Equation 14, with the adsorption equilibrium constant and only one rate constant 
(kkin,i). The relationships between Ai, Kads,i, kads,i, kdes,i, and kkin,i are given by Equation 
15. 
 
 డ௤೔డ௧ = ݇௞௜௡,௜ ቀܭ௔ௗ௦,௜ ቀஃఊಽ௖೟೚೟ቁఔ೔ ቀ1 − ∑ (ఔೖାఙೖ)௤ೖஃே௞ୀଵ ቁ஝౟ ܿ௜γ୧ −  ௉௅ഌቁ (14)ߛ௜ݍ
 
 ݇௞௜௡,௜ = ݇ௗ௘௦,௜ ௔ௗ௦,௜ܭ      = ௞ೌ೏ೞ,೔௞೏೐ೞ,೔ ௜ܣ      ∝  ௔ௗ௦,௜ (15)ܭ
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The exact correlation between the thermodynamic retention factor and equilibrium 
constant depends on the adsorption mechanism, and Equation 14 is strictly valid 
only for the mechanism that is described in Equation 2a. If the modulator adsorbs 
to the ligands, as described by Equation 2b, Equation 16 should be used instead of 
Equation 14. 
 

 డ௤೔డ௧ = ݇௞௜௡,௜ ቆܭ௔ௗ௦,௜ ൬ஃఊಽಾ഍௖೟೚೟ ൰ఔ೔ ቀ1 − ∑ (ఔೖାఙೖ)௤ೖஃே௞ୀଵ ቁ஝౟ ܿ௜γ୧  ఔ೔క೔ቇ (16)(ெݔெߛ)௉௅ഌߛ௜ݍ−

 
When the activity coefficients are neglected (Equation 13), the effects of the mobile 
phase modulator(s) are generally given by kads,i and kdes,i [92, 93] and otherwise 
(Equations 14 and 16) by γi [94]. The description of these effects depends on the 
theory that is applied. The adsorption model that is given by Equation 16 is similar 
to the steric mass-action (SMA) model of Brooks and Cramer [95]. The difference 
is that the SMA model describes IEX with salt being displaced by the adsorbate(s) 
and does not include variations in the activity coefficients. 

4.3.3 Initial and Boundary Conditions 
For the dynamic models that are described above, the initial conditions that are 
required are the initial concentrations of all species — i.e., both adsorbates and 
modulators — that are present in the mobile phase (cinit) or that are adsorbed to the 
particles (qinit) (Equation 17) [90]. 
 
 ܿ௜|௧ୀ଴ = ܿ௜௡௜௧,௜ (17a) 
௜|௧ୀ଴ݍ  =  ௜௡௜௧,௜ (17b)ݍ
 
In most cases, all initial adsorbate concentrations are 0, whereas the modulator 
concentration is at a level that promotes adsorption. If the modulator does not 
adsorb, qi = 0 for all species. Boundary conditions are required for the inlet 
(Equation 18) and outlet (Equation 19) of the column [90]. 
 
 ܿ௜|௭ୀ଴ = ܿ௜௡,௜ − ஽ೌೣ௩೔ డ௖೔డ௭ ቚ௭ୀ଴ (18) 

 డ௖೔డ௭ ቚ௭ୀ௅ = 0 (19) 
 
L is the column length, and cin,i is the inlet concentration of species i. The latter 
varies with time, and for the adsorbates, this relationship is generally described by 
a step function that equals the feed concentration during the injection and 0 at all 
other times. If the axial dispersion is low, which is common, the second term on the 
left-hand side of Equation 18 can be neglected, and the concentration at the column 
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boundary is set simply to that of the mobile phase that enters the column [90]. 
Equation 19 is actually a simplification of the more correct boundary condition that 
the outlet concentration must be finite. The finite outlet concentration is generally 
approximated by a concentration that only varies with time; thus, the simplified 
boundary condition is that there is no spatial concentration gradient. 
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Chapter 5  
Implementation and Use of Models 
As discussed in Chapter 4, an ideal chromatogram for linear-range adsorption can 
be constructed using direct calculations with an equilibrium model. This is generally 
insufficient for studies on preparative chromatography, in which the significance of 
transport phenomena between and inside of the particles and the adsorption kinetics 
cannot be neglected. Further, the high adsorbate load will affect the shape and 
position of the peaks — effects that a linear-range model fails to capture — 
necessitating simulations with a dynamic model to produce a realistic 
chromatogram. 
 
Using an algorithm for simulating a dynamic model under various process 
conditions, that process can be optimized. The value of a quality measure, often the 
yield or productivity of the target adsorbate, is then maximized by varying a 
specified set of process conditions, while still fulfilling certain constraints, such as 
a minimum purity of the final product and a maximum level of specific impurities. 
Before the model can be used, it must be calibrated to mimic reality sufficiently well 
by minimizing the difference between the model output and experimental data by 
tuning the parameter values. 

5.1 Simulation 
The dynamic column model that is described by Equation 11 in the previous chapter 
is a partial differential equation (PDE), because it includes derivatives in time and a 
spatial coordinate, along the column axis. Ordinary differential equations (ODEs) 
contain derivatives with respect to only one variable — for example, time — and 
for some ODEs, there are analytical solutions. A solution for a specified interval of 
the independent variable can be estimated for practically any ODE using a suitable 
numerical method that is implemented in a computational program. A PDE in time 
and space can be transformed into a set of ODEs in time by discretization, enabling 
calculation of an approximate solution. 
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5.1.1 Discretization in Space 
The spatial variation of one or more properties of a line, surface, or volume can be 
estimated by dividing it into small pieces and averaging the properties for each 
segment. This technique is called discretization, and the type that is used in this 
work is the method of lines — i.e., discretization is performed along all spatial 
dimensions, leaving only ODEs with respect to time [96]. The finite volume method 
(FVM) was applied, placing N grid points along the column axis, each one centered 
inside of a finite volume (Figure 5.1) [97]. 
 

 
 
Figure 5.1: Division of a line into N cubical cells of equal size, using the finite volume method. 
 
With the FVM, the time derivative of the dependent variable at grid point i is 
approximated as the volume average for the ith cell by an integral along the 
discretized dimensions. The divergence theorem is used to substitute the volume 
integrals for the spatial derivatives for the difference between the values on the 
surfaces against the i+1th and i-1th cells [97, 98]. A one-dimensional example for 
convection inside of a column is given below (Equation 20). 
 
 డ௖೔̅డ௧ = − ௩ೞೠ೛ఢ೟,೔ ଵ୼୸౟ ൬ܿ௜ାభమ − ܿ௜ିభమ൰ (20) 

 
cതi is the volume average of the concentration, and Δzi is the axial length of the ith 
cell. Indices i-1/2 and i+1/2 refer to the surfaces of the neighboring cells before and 
after the ith cell, respectively. There are two main alternatives to FVM: the finite 
differences and finite elements methods. The former approximates the spatial 
derivatives by Taylor series expansion, which is simpler but less accurate than the 
FVM approach. The latter uses simple equations, which are chosen as to minimize 
the error, to represent the PDEs in each element. The finite element method is better 
than the FVM for complex geometries but is more complex [99].  
 
Because the value of the dependent variable — in this example, the concentration 
— is only evaluated at each grid point, the values on the surfaces are unknown. 
Consequently, the surface values (ci+1/2 and ci-1/2) must be approximated from those 
at the grid points. There are many discretization schemes for this purpose, differing 
in the number and location of grid points that are included. For models of 
chromatographic columns (Equation 11), it is common to use a 2-point backward 
approximation (Equation 21) for the first derivative and a 3-point central 
approximation (Equation 22) for the second derivative. For this simple geometry, it 
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is also routine to place the grid points equidistantly, rendering the index on the axial 
cell length superfluous. 
 
 డ௖೔డ௭ ≈ ௖೔ି௖೔షభ୼௭  (21) 

 డమ௖೔డ௭మ ≈ ௖೔శభିଶ௖೔ା௖೔షభଶ୼௭  (22) 
 
For systems with very sudden changes, such as RPC, in which the injection of 
sample and rapid adsorption/desorption cause shockwaves in the adsorbate 
concentration, the approximation of the convection term (Equations 11 and 21) can 
induce oscillations in the solution. Problems that include such systems are called 
stiff. Because the simulation of an RPC system is a stiff problem, a more complex 
approximation than that given by Equation 21 was used in the optimization study 
(Paper IV) — the weighted essentially non-oscillatory (WENO) scheme. The 
WENO scheme uses a weighted polynomial of the concentrations in the included 
cells, and the weights are chosen to smooth the approximation as much as possible. 
The WENO scheme has been detailed by its developers, Liu et al. [100]. The use of 
the WENO scheme instead of 2-point backward approximation in the optimization 
study effected a fourfold reduction in the number of grid points, without any 
increase in numerical dispersion. Consequently, the computational time fell 
significantly. 

5.1.2 Numerical Methods 
When the PDE in Equation 11 has been transformed into a set of N ODEs, N being 
the number of grid points, a simulation can be performed with an ODE solver. There 
are many types of ODE solvers, all of which estimate the value of the dependent 
variable — often, time — for a certain interval of the independent variable — in this 
example, concentration. The estimation is performed stepwise by approximation of 
the time derivative, starting from an initial concentration at the beginning of the time 
interval. The methods differ in the number of steps that are included in the 
approximation of the derivative, the length of the steps (fixed or varying), and the 
formula that is used (explicit or implicit). Further, there are solvers for discrete and 
continuous problems. 
 
In this work, the computational program MATLAB [101] was used for all 
calculations, simulations, and optimizations. The simulations were performed with 
the built-in ODE solver ode15s, which is based on numerical differentiation 
formulas [101, 102]. It is an implicit solver that entails several steps in the 
approximation of derivatives and varies the step length. ode15s was chosen 
primarily because it is suitable for stiff problems — hence, the suffix “s.” 
 
Two MATLAB-based chromatography simulators were used in this work: Applied 
Chromatography Toolbox (act) and Preparative Chromatography Simulator 
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(pcs) [103]. Both were developed by doctoral and master’s students and 
postdoctoral fellows in the Department of Chemical Engineering, Lund University, 
Faculty of Engineering. act is a simulator that uses only the reaction-dispersive 
model and was applied in Papers I-III. pcs is a more advanced simulator in which 
any chromatography model can be implemented and was used for the optimizations 
in Paper IV. pcs was faster in addressing this problem, because WENO is 
implemented in it and because the code is more efficient for complex isotherms and 
many grid points. 

5.2 Optimization 
Optimization aims to minimize the value of an objective function by varying the 
value of a set of decision variables. The decision variables can have upper and lower 
boundaries, and their values can be further restricted by constraints. A mathematical 
description of an optimization problem is given by Equation 23. 
 

 

min ௢݂௕௝(࢖)                                              w. r. t.     ࢖ = ,ଵ݌)  ,ଶ݌ … , ∋ (ே݌  ℝே s. t. ௅࢖          ≤ ࢖ ≤ (࢖)௎             ௖݂௢௡࢖ ≤ 0                             (23) 

 
The objective function (fobj) is minimized with respect to (w.r.t.) the decision 
variables p, and the decision variables are subject to (s.t.) the upper and lower 
boundaries (pU and pL) and the constraint function (fcon). Common objective 
functions in preparative chromatography are the yield Y (Equation 24), productivity 
P (Equation 25), and pool concentration of the target adsorbate, and the optimization 
is often constrained by the minimum purity X of the target adsorbate (Equation 26). 
In addition to the minimum purity of the target adsorbate, there can be maximum 
levels of certain impurities. 
 
 ௧ܻ௔௥௚௘௧ = ொ௡೗೚ೌ೏,೟ೌೝ೒೐೟ ׬ ܿ௧௔௥௚௘௧൫ݐ, ௧೑௧೎ݐ௙൯݀ݖ  (24) 

 ௧ܲ௔௥௚௘௧ = ெ೟ೌೝ೒೐೟௡೗೚ೌ೏,೟ೌೝ೒೐೟௏೎೚೗൫௧೑ା௧ೝ൯ ௧ܻ௔௥௚௘௧ (25) 

 ܺ௧௔௥௚௘௧ = ௡೗೚ೌ೏,೟ೌೝ೒೐೟௒೟ೌೝ೒೐೟∑ ௡೗೚ೌ೏,ೖ௒ೖ൫௧೑൯ೖಿసభ  (26) 

 
Q is the volumetric flow rate of the mobile phase, tr is the time that is required for 
regeneration before the next chromatographic run can be initiated, and tc and tf are 
the cut points for the product. nload,target and Mtarget are the total amount of substance 
that is loaded and the molar weight, respectively, of the target adsorbate. Y and X 
are dimensionless, whereas P, in this case, is expressed as mass target adsorbate per 
unit column volume and unit time. 
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The values of the decision variables are limited by such factors as the process 
equipment, the stability of the product, and the solubility of the modulators. Some 
of these limiting factors can also be formulated as constraints. Equation 23 describes 
a simple optimization problem, and actual problems can have several levels and 
multiple objective functions. 

5.2.1 Multi-Level Optimization 
Optimization problems that concern preparative chromatography have two levels: 
1. the main optimization — i.e., the upper-level optimization with, for example, 
productivity, yield, or pool concentration as the objective function and the process 
parameters p as the decision variables (Equation 23); and 2. the pooling — i.e., the 
lower-level optimization with productivity, yield, or pool concentration as the 
objective function; the cut points as the decision variables; and the minimum purity 
as a constraint [58, 104]. It is common to use yield as the objective function for the 
lower-level optimization, even if the upper-level optimization has another objective 
function [58]. Notably, this results in mixed-objective optimization. If the pooling 
of the actual process is designed to always maximize the yield, then the use of 
different objective functions is correct, but it should be taken into account when 
conclusions are drawn. 

5.2.2 Multi-Objective Optimization 
It is not always apparent whether the most desirable process conditions are those 
that maximize the yield, productivity, or pool concentration, and sometimes, a 
compromise is most suitable. In these cases, a weighted combination of multiple 
objectives can be used as the objective function. An example that combines 
productivity and yield is given by Equation 27, where ω is the weight factor for the 
productivity and has a value between 0 and 1. 
 
 ௢݂௕௝ = − ൬߱ ௉೟ೌೝ೒೐೟௉೟ೌೝ೒೐೟,೘ೌೣ + (1 − ߱) ௧ܻ௔௥௚௘௧൰ (27) 

 
Because the productivity can reach any positive value while the yield is limited to 
the interval 0-1, Ptarget is often divided by the maximal productivity (Ptarget,max = fobj(ω 
= 1)) to achieve a fair distribution between the two objectives. By performing 
optimizations for different values of ω, a Pareto front can be created. A Pareto front 
is a plot of the optimal combinations of different objectives [105, 106]. Figure 5.2 
shows a fictitious example, using productivity and yield. 
 
Theoretically, there is no limit to the number of objectives that can be combined, 
but the combination of two objectives is the most common type. Because 
productivity and yield are competing objectives in preparative chromatography, 
they are often combined. There are studies in which, for example, pool 
concentration has been added as a third objective [57, 58, 107], but the use of over 
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three objectives is time-consuming, and the result is difficult to visualize in more 
than three dimensions. 
 

 
 
Figure 5.2: An example of the appearance of a Pareto front with productivity and yield as objectives. 

5.2.3 Optimization Methods 
Optimization methods can be classified according to their strategy for determining 
the values of the decision variables that correspond to a minimum of the objective 
function. All optimization strategies start from a set of initial values of the decision 
variables and move stepwise toward values that give a lower objective function 
output. There are three types of methods: 1. those that only evaluate and compare 
objective function values — e.g., simplex methods and genetic algorithms; 2. those 
that evaluate Jacobians (gradients — i.e., first derivatives of the objective function) 
and move in the direction of the most negative Jacobian — e.g., steepest descent 
methods; and 3. those that evaluate Jacobians and Hessians (second derivatives of 
the objective function) to identify stationary points of the objective function, such 
as Newton’s method [108]. The computational cost for each iteration — i.e., the set 
of calculations that is performed to determine the direction and length of the next 
step — increases with the order of the derivatives that are included, but the number 
of iterations that are required to reach the optimum declines concomitantly. 
 
The MATLAB function fmincon was used for the optimizations in Paper IV. 
fmincon is suitable for nonlinear objective functions and constraints, and it applies 
the third type of method — i.e., it uses Jacobians and Hessians. The specific 
algorithm that was selected is called sequential quadratic programming [101]. 

5.3 Model Calibration 
The objective of model calibration or parameter estimation is to find a set of values 
of the model parameters (p) that minimizes the difference between the model 
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responses (ymod) under process conditions x and the corresponding experimental 
results (yexp) — i.e., calibration is a special case of optimization, using model 
parameters as decision variables and an objective function that is a measure of the 
discrepancy between the model and reality. x should encompass the range of process 
conditions within which the model is to be used, ensuring that the model is valid for 
this range. Calibration can be performed with any of the optimization methods 
above, and its main difference from process optimization is the type of objective 
function that is applied. The most commonly applied objective function for 
calibrations is the least-squares function, which is described below. 
 
There are many methods for analyzing the validity of the model structure and the 
parameter values that are given by the calibration. A comparison of the model 
response and experimental data for process conditions that were not included in the 
calibration can be used to evaluate the predictability of the model. Validation points 
can be chosen inside and outside of the intervals of the process conditions that are 
used for the calibration to test interpolation and extrapolation, respectively. 
Calculating statistics, such as confidence intervals and correlation matrices, for the 
model parameters is useful for determining whether the model is over-parametrized 
— i.e., whether the model describes effects in excess of what is observed in the 
experimental data. A simple example of an over-parametrized model is a fifth-
degree polynomial of parameter p that is fitted to data points for four values of p. 
Simple statistical analyses of the model parameters were performed for the models 
in Papers I, II, and III. 

5.3.1 Least-Squares Function 
Model calibration in the least-squares sense means that the objective function is the 
sum of the squares of the difference between the model response and the 
experimental data for all N process conditions (Equation 28) [109]. 
 
 min࢖ ∑ ൫ݕ௠௢ௗ,௜(࢖, (௜࢞ − ௘௫௣,௜൯ଶே௜ୀଵݕ  (28) 

 
If several data sets of various sizes are used and if the values of the experimental 
data vary widely, some type of weighting might be suitable. Weighting for 
calibration is a special case of multi-objective optimization, in which the sum of 
squares for each data set or data point is an objective. The purpose of weighting is 
to give each data set or data point the same impact on the calibration or to give those 
that are considered to be more important greater impact. Division of the sum of 
squares for each data set with N and the mean value of yexp equalizes the impact of 
the data sets. However, the greater impact of data points that correspond to higher 
values of yexp is retained, because an equally large relative difference results in a 
larger absolute difference for these data points. Division with the mean value of yexp 
for each data point results in the equivalent impact of equally large relative 
differences.  



Chapter 5: Implementation and Use of Models 
 

32 
 

In chromatography, the precision increases concomitantly with retention volume, 
which motivates maintaining the higher impact of data points with greater 
experimental value. Consequently, the objective function that is given by Equation 
29 (fcal) was used for calibration in Papers II and III, in which the retention data and 
solubility data were considered two separate data sets (N = 2). 
 
 ௖݂௔௟(࢖, (࢞ = ∑ ൬ ଵ࢟ഥ࢏ࡺ࢏,࢖࢞ࢋ ∑ ൫ݕ௠௢ௗ,௜,௝൫࢖, ௜,௝൯࢞ − ௘௫௣,௜,௝൯ଶே೔௝ୀଵݕ ൰ே௜ୀଵ  (29) 

 
The calibrations in this work were performed with the MATLAB function 
lsqcurvefit, which is designed for nonlinear curve-fitting in the least-squares 
sense. The optimization algorithm that was chosen was the default option, trust-
region-reflective, which searches for stationary points using first and second 
derivatives of the objective function — i.e., the third type of optimization method 
above [101]. 
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Chapter 6  
Combined Modulator Effects on HIC 
One of the aims of this PhD project was to examine the possibility of developing a 
common model for the effects of salt and organic modulators on HIC and RPC. 
Thus, the first subproject (Paper I) included an experimental study of linear-range 
retention in HIC. The dependence of the retention of three insulin variants on the 
concentration of KCl and ethanol in the mobile phase was studied for two HIC 
adsorbents. The insulin variants were insulin aspart, desB30 insulin, and an insulin 
ester, and the adsorbents were Toyopearl beads from Tosoh Bioscience GmbH 
(Stuttgart, Germany) with butyl (But) and phenyl (Ph) ligands, respectively. Three 
ethanol levels were evaluated — 0, 5, and 10 wt% — and the starting concentration 
of KCl was nearly 0, with an upper limit set by its solubility or the retention of 
desB30 insulin being in excess of 50 column volumes (CV). 

6.1 Effects of KCl on Retention 
The hypothesis was that variations in the retention of a protein in HIC are caused 
solely by changes in the mobile phase properties, altering the activity coefficient of 
the protein in solution. Neither of the species in the stationary phase — i.e., the 
ligands and protein–ligand complexes — were assumed to be significantly affected. 
Consequently, their activity coefficients, or at least their ratio, were constant. A 
constant ratio between the activity coefficients of the species in the stationary phase 
has been suggested and shown to be a fair assumption for HIC of lysozyme [10]. 
Starting from the equilibrium expression in Equation 3a, this assumption yields the 
last simplification in Equation 30. 
 
௔ௗ௦ܭ  = ௅ିݔ ఔ ఊುಽഌఊುఊಽഌ ௤ು௖ು ≈ ቀ௖೟೚೟ஃ ቁఔ ఊುಽഌఊುఊಽഌ ௤ು௖ು  ⇒ ln(ܣ) ≈ ln(ܣ଴) + ln(ߛ௉) (30) 
 
The first simplification is only valid for negligible protein loads, at which point 
approximately all ligands are free. ctot is the total molarity of the mobile phase, and 
the stationary and mobile phases are assumed to be a single phase in the 
thermodynamic sense. The small effect of the salt on ctot in HIC can generally be 
neglected, and the molarity can be approximated to that of water. A0 is a lumped 
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parameter, comprising the constants Kads, ctot, and Λν and the activity coefficient 
ratio. More details on this derivation can be found in Paper II. 
 
If the hypothesis is correct, a specific salt should affect the retention of a certain 
protein on any HIC adsorbent in the same manner. Consequently, plotting ln(A) 
versus the ionic strength of the mobile phase should generate a set of parallel curves 
with disparate intercepts, denoted ln(A0), for different types of ligands, as has been 
shown for lysozyme on seven HIC adsorbents [10]. The aim of the work presented 
in this chapter was to: 1. determine whether this hypothesis is valid for the insulin 
variants that are modulated by KCl; 2. study the effect of ethanol on this system; 
and 3. model the combined effects of KCl and ethanol as mobile phase modulators. 
The influence of KCl on the retention of the insulin variants under ethanol-free 
conditions is shown in Figure 6.1. 
 

 
 
Figure 6.1: Logarithm of the thermodynamic retention factor as a function of KCl concentration for 
the two HIC adsorbents without any ethanol in the eluent. 
 
As expected, ln(A) increased linearly with rising salt concentrations, and the butyl 
ligands effected greater retention than the phenyl ligands, due to their higher 
hydrophobicity. However, there were two unexpected observations: no salting-in 
occurred, and the curves for the same insulin variant were not parallel. Based on 
existing knowledge on the salting-in and salting-out of proteins [10], a minimum in 
ln(A) was anticipated, yielding a curve that would be similar in shape to the Nike 
logotype. Instead, it decreased linearly and concomitantly with the KCl 
concentration, approaching salt-free conditions, at which point it approached 
negative infinity as the retention volume was reduced to the non-retained volume. 
 
The difference in slopes for the same adsorbate on the butyl and phenyl adsorbents 
suggests that the activity coefficients of the ligands or adsorbate–ligand complexes 
changed with the mobile phase composition. There are, however, other possible 
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explanations. Other phenomena, such as self-association and conformational 
changes in the adsorbates, might occur and affect the adsorption. Oscarsson [73] 
and Nunes et al. [110] have shown that conformational changes in proteins and 
peptides, respectively, affect their retention in HIC, and that the same salt can have 
disparate effects in combination with different adsorbents. Similar results for 
peptides on RPC adsorbents have been reported by Purcell et al. [111]. Studies on 
insulin have demonstrated that it forms dimers and hexamers at pH values of 
approximately 7 [112, 113], in the presence or absence of zinc ions [113]. 
Conformational changes and self-association are thus plausible explanations for this 
difference in slopes. 

6.2 Effects of Ethanol on Retention 
The addition of ethanol to the eluents resulted in weaker adsorption at the same salt 
concentration and reduced the retaining effect of the salt (Figure 6.2), consistent 
with a study of the effects of ethanol on lysozyme retention on HIC adsorbents [61]. 
 

 
 
Figure 6.2: Logarithm of the thermodynamic retention factor as a function of KCl concentration for 
the two HIC adsorbents, with 5 and 10 wt% ethanol in the eluents, respectively. 
 
Salting-in was not observed for either ethanol concentration, but the difference in 
slopes between the two adsorbents was reduced at higher ethanol concentrations, 
consistent with the concomitant decline in peak fronting (Figures 6.3-6.4). Thus, 
ethanol lessens the effect of the additional phenomenon — the changes in activity 
coefficients of species in the stationary phase or the conformational changes or self-
association of adsorbates — that influences the retention. 
 
Comparing the chromatograms in Figures 6.3 and 6.4, the separation of the insulin 
variants declined with increasing ethanol content, a trend that was confirmed on 
closer inspection of the curves in Figures 6.1-6.2. The conformation of proteins is 
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affected by the presence of an organic solvent, and ethanol impedes the self-
association of proteins [114]. The difference in slopes for ln(A) versus salt 
concentration between adsorbents and the fronting peaks that were observed in this 
study thus might be attributed to conformational changes in or self-association of 
the adsorbates. Fronting per se does not effect a difference in slopes, because the 
retention factor is calculated from the first moment of each peak in the decomposed 
chromatogram — not from the peak maximum. 
 

 
 
Figure 6.3: Transition from fronting to near-Gaussian peaks eluted from the butyl adsorbent as the 
ethanol content of the mobile phase increases. The chromatograms in this comparison were chosen 
based on their similar retention volume and were generated from experiments at various KCl 
concentrations. 
 

 
 
Figure 6.4: Transition from fronting to near-Gaussian peaks eluted from the phenyl adsorbent as the 
ethanol content of the mobile phase increases. The chromatograms in this comparison were chosen 
based on their similar retention volume and were generated from experiments at various KCl 
concentrations. 
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6.3 Cause of Fronting and Different Slopes for ln(A) 
The cause of peak fronting and the difference in the effects of KCl on retention was 
examined in a number of experiments at high adsorbate load. The resulting 
chromatograms for the butyl and phenyl adsorbents are shown in Figures 6.5-6.6, 
respectively. 
 

 
 
Figure 6.5: Change in peak shape with increasing adsorbate load of desB30 insulin on the butyl 
adsorbent. The adsorbate load per column volume is shown in the legend. 
 

 
 
Figure 6.6: Change in peak shape with increasing adsorbate load of desB30 insulin on the phenyl 
adsorbent. The adsorbate load per column volume is shown in the legend. 
 
This peak shape is characteristic of S-shaped isotherms [61, 115], which arises due 
to self-association of the adsorbate — through aggregation in the mobile phase prior 
to adsorption or the formation of a second layer on adsorbates that have already 
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adsorbed. The initial flat slope for both adsorbents is similar to several experimental 
and simulated chromatograms for dimer-forming insulin in the literature [61]. 
Consequently, the fronting and the different slopes for ln(A) can most likely be 
attributed to self-association of the adsorbates. 
 
One of the aims of this project was to examine the possibility of developing a 
common model for the effects of KCl and ethanol on the chromatographic retention 
of insulin on hydrophobic adsorbents — i.e., the adsorbents that are used in HIC 
and RPC. The main differences that affect the adsorption between these two types 
of adsorbents are the hydrophobicity and coverage of ligands; thus, the same 
modulator should influence them similarly. However, only salting-out was observed 
for the HIC adsorbents, and for the RPC adsorbents, only salting-in occurred. 
Because these two phenomena are independent, there is no advantage in creating a 
combined model and no possibility of verifying that the same phenomenon has the 
same effect on both types of adsorbents. 
 
Additionally, the unexpected fronting that was observed for both HIC adsorbents 
prevented the effect of KCl on the retention factor from being quantified, because 
the influence of these two phenomena cannot be separated based solely on retention 
data. It might be possible to discriminate between effects by fractionizing and 
analyzing the peaks. Nevertheless, there is a significant chance that the ratio of 
monomers to dimers and hexamers changes as a function of time and sample 
composition, rendering offline measurements impossible. Examination and 
modeling of the self-association of insulins were beyond the scope of this project; 
thus, modeling of HIC retention was not pursued further. 
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Chapter 7  
Modeling of Modulator and Temperature 
Effects on RPC 
In addition to studying the effects on the HIC adsorbents, the influence of the 
concentrations of KCl and ethanol (Papers I-II) on the adsorption to two RPC 
adsorbents was evaluated. The temperature dependence of these two systems was 
also studied (Paper III). The same insulin variants (insulin aspart, desB30 insulin, 
and an insulin ester) as in the HIC study were used, and the two adsorbents were 
silica particles from Novo Nordisk Pharmatech A/S (Køge, Denmark) with C18 and 
C4 ligands. Although the retention at low adsorbate load — i.e., the equilibrium for 
linear-range adsorption — was the primary focus, the effects at high adsorbate load 
were also examined. Because there were no indications of self-association or 
conformational changes in the RPC studies, with near-Gaussian peaks for the C18 
adsorbent and slightly tailing peaks for the C4 adsorbent, these systems were 
considered to be suitable for modeling (Papers II-III). A linear-range equilibrium 
model and a dynamic model for varying levels of adsorbate load were developed, 
but the emphasis was placed on the former. 

7.1 Retention at Low Adsorbate Load 
The trends in retention factor for the three adsorbates with changing modulator 
concentrations was examined thoroughly in a series of isocratic experiments, with 
mobile phase compositions of 0.1–0.7 mol KCl/kg solution and 23–32 wt% ethanol. 
A less extensive study of the combined effects of temperature and modulator 
concentrations was performed in the range of 10–40°C. 

7.1.1 Effects of Modulator Concentrations 
As shown in Figures 7.1-7.2, the retention of all three adsorbates clearly decreased 
with rising concentrations of KCl and ethanol. The latter observation was expected, 
because ethanol increases the hydrophobicity of the mobile phase, the phenomenon 
that underlies separation by RPC. A shift from salting-in — i.e., increasing solubility 
and thus declining retention of the insulins with higher salt concentrations — toward 
salting-out was anticipated but did not occur in these concentration ranges. The 



Chapter 7: Modeling of Modulator and Temperature Effects on RPC 
 

40 
 

stronger tendency of salting-in in RPC and of salting-out in HIC, however, was 
consistent with predictions of the effects of ethanol on protein retention and 
solubility by Mollerup [61], based on Kirkwood’s electrostatic theories on 
macromolecules in solution. According to this model, ethanol turns the entire Nike 
logotype-shaped salting-in and salting-out curve clockwise, resulting in more 
pronounced salting-in and less distinct salting-out [61]. 
 

 
 
Figure 7.1: Results from isocratic runs on C18 (filled markers) and C4 (open markers) adsorbents for 
insulin aspart at varying mobile phase compositions. The KCl concentrations are shown in the legend. 
 

 
 
Figure 7.2: Results from isocratic runs on C18 (filled markers) and C4 (open markers) adsorbents for 
a) desB30 insulin and b) the insulin ester at varying mobile phase compositions. The KCl 
concentrations are shown in the legend in Figure 7.1. 
 
To determine whether salting-out of the insulin variants occurred at combinations 
of KCl and ethanol concentrations within the soluble range, a series of experiments 
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were performed at 27 wt% ethanol on the C18 adsorbent (Figure 7.3). The KCl 
concentration was maintained below 80% of its maximum solubility (1.5 kmol 
KCl/kg) at this ethanol concentration. 
 

 
 
Figure 7.3: a) Results from isocratic runs on the C18 adsorbent at 27 wt% ethanol and b) solubility of 
KCl as a function of ethanol content [116]. The dashed lines indicate 80% of the maximum solubility 
of KCl at the specific ethanol content. The light blue area and asterisks in plot b represent the 
combinations of KCl and ethanol concentrations in the study in Paper II and the search for salting-out, 
respectively. 
 
According to the results for HIC of lysozyme [61], the addition of 7.5 vol% ethanol 
caused a parallel shift in ln(A) versus ionic strength by -2, whereas the clockwise 
turn toward salting-in was barely detectable. Combining the parallel shift with the 
decrease in ln(A) at a certain ionic strength with higher ethanol content, caused by 
the clockwise turn presented by Mollerup [61], the change in ln(A) when shifting 
from salting-out to salting-in should be immense. Naturally, conclusions for another 
protein on HIC adsorbents cannot be applied directly to the insulin variants on RPC 
adsorbents. However, ethanol has a strong influence on ln(A) for these adsorbate–
adsorbent systems, too, which supports the validity of making qualitative 
generalizations. Based on the results in Figure 7.3 and the discussion above, salting-
out was concluded to have been unlikely to occur at an ethanol concentration that 
was sufficiently high to promote elution in a reasonable time (less than 100 CV). 
The KCl concentration that would be required to achieve salting-out under these 
conditions would likely exceed its solubility limit. 
 
As shown in Figures 7.1-7.2, a change in KCl concentration merely induced a 
parallel shift in the curve, indicating that the synergistic effects of the modulator 
concentrations are small relative to the individual effects. Although the curves for 
the C4 adsorbent appear to be slightly more linear than those for the C18 adsorbent, 
their slopes are similar, suggesting that the effect of the type of adsorbent can be 
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separated from the influence of the modulators. However, the data do not indicate 
whether exchange of adsorbed ethanol and adsorbate molecules occurred. 

7.1.2 Effects of Temperature 
The influence of temperature on the retention of the insulin variants was studied for 
a specific mobile phase composition, the set point, and for lower concentrations of 
KCl and ethanol. The set point for each adsorbent was chosen as the midpoint 
relative to the concentration ranges in the study of the effects of the modulators — 
28.4 and 25.6 wt% ethanol for the C18 and C4 adsorbents, respectively, and 0.4 mol 
KCl/kg for both adsorbents. Two other mobile phase compositions were tested: one 
with less KCl (0.1 mol KCl/kg) and one with less ethanol (27.5 and 24.7 wt% for 
the C18 and C4 adsorbents, respectively). Figures 7.4-7.5 show the results of the 
temperature study. 
 

 
 
Figure 7.4: Results from isocratic runs on the C18 (filled markers) and C4 (open markers) adsorbents 
for insulin aspart at varying temperatures. The difference in mobile phase composition between the 
three series is shown in the legend. 
 
The series in Figures 7.4-7.5 appear to be linear, but there is a trace of concavity. 
Also, temperature has a stronger influence on retention on the C4 adsorbent for all 
three insulin variants, regardless of the mobile phase composition, and the effects 
of modulators and adsorbents differ between adsorbates. For insulin aspart, the least 
hydrophobic adsorbate, reductions in the concentrations of KCl and ethanol affect 
the retention on each adsorbent similarly. For the two more hydrophobic adsorbates, 
the effects of less KCl and ethanol differ between adsorbents, albeit less extensively. 
Without information on the hydrophobic patches on the insulin molecules, with 
which they bind to the ligands, and on how they are affected by the mobile phase 
composition, it is impossible to determine whether this finding is a coincidence or 
an effect of the increasing hydrophobicity of the insulin variants. 
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Figure 7.5: Results from isocratic runs on the C18 (filled markers) and C4 (open markers) adsorbents 
for a) desB30 insulin and b) the insulin ester at varying temperatures. The difference in mobile phase 
composition between the three series is shown in the legend in Figure 7.4. 

7.2 Solubility of desB30 Insulin 
To discriminate between the effects of changes in the activity coefficient of the 
insulin variants and those of potential adsorption of ethanol, two minor studies on 
the solubility of desB30 insulin were performed. The first study focused on the 
influence of ethanol content, and the second study examined the influence of 
temperature. Dissolution of a protein can be described by Equation 31, where (s) 
and (aq) denote solid state and dissolved in a primarily aqueous solution, 
respectively. 
 
(ݏ)ܲ  ⇄  (31) (ݍܽ)ܲ
 
Equation 31 is a simplified description of the actual process, because proteins are 
electroneutral only at their isoelectric point, and even then, they have point charges 
with varying signs and magnitudes. Depending on the pH, insulin participates in 
various dissociation reactions, and the development of a model that includes all such 
reactions would require an unreasonably large effort compared with the resulting 
increase in accuracy. Further, the rise in salt concentration due to the dissolution of 
desB30 insulin is negligible, based on an initial concentration of at least 0.1 mol 
KCl/kg. Consequently, the activity coefficient of the salt will also be approximately 
constant. In this simplified dissolution model, the equilibrium constant for this 
process (Ksol,P) is governed solely by the activity of the protein in solution, because 
the activity of a pure substance is unity (Equation 32). 
 
௦௢௟,௉ܭ  = ௔ು(ೌ೜)௔ು(ೞ) = ܽ௉(௔௤) = ௉ߛ௉ݔ  ⟹ ln(ݔ௉) = ln൫ܭ௦௢௟,௉൯ − ln(ߛ௉) (32) 
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7.2.1 Influence of Ethanol Content 
A comparison between Equations 29 (Chapter 6) and 31 reveals that under the same 
conditions, the curves for ln(A) and ln(xP) versus ethanol content should have equal 
slopes but opposite signs, provided that the variations in the former are attributed 
solely to the effect of ethanol on γP. Thus, a short solubility study on desB30 insulin 
at pH 7.5, 0.4 mol KCl/kg, and a range of ethanol concentrations was performed. 
Details can be found in Paper II. The results from the solubility study are shown in 
Figure 7.6, with the corresponding findings from the linear-range retention study. 
 

 
 
Figure 7.6: Comparison between the influence of ethanol on retention and solubility of desB30 insulin. 
 
There is a clear difference in the influence of ethanol content on ln(A) and ln(xP), 
wherein the slopes for the retention factor are more than twice as steep as that for 
solubility (Figure 7.6). Thus, the effect of ethanol on the adsorption of the insulin 
variants is not only a consequence of the influence on their activity coefficients. 
There are several likely explanations for this discrepancy: 1. displacement of 
adsorbed ethanol by the insulins; 2. the ratio between the activity coefficients of the 
insulin–ligand complexes and free ligands is not constant (Equation 30); 3. the 
concentration of desB30 insulin in the solubility experiments was too high to allow 
the simplifications to Wilson’s equation that were made (see Paper II); and 4. one 
or more other phenomena affected the adsorption process — e.g., conformational 
changes in the insulin molecules.  
 
One explanation that is not addressed in Paper II is the effect of changes in the 
pressure drop over the column between mobile phase compositions [86]. However, 
using the change in the molar volume of insulin due to adsorption onto an RPC 
adsorbent, as reported by Szabelski et al. [86], I found that this effect explained less 
than 1% of the variation in ln(A). 
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The amount-of-substance fraction of desB30 insulin in the solubility study was very 
low, and Explanation 3 is thus implausible, unless the activity coefficient of this 
species is very strongly influenced by its concentration. Explanation 2 is possible, 
but it is difficult to isolate the effects of the modulator on these activity coefficients 
from those on other phenomena in the adsorption process; such studies were clearly 
beyond the scope of this work. Explanation 4 is also conceivable, but recognized 
signs of conformational changes, such as peak broadening [111] and peak separation 
[110], were not observed, and insulin is small and rigid compared with other 
proteins. In addition to the arguments against Explanations 2–4, ethanol and other 
organic modulators adsorb onto RPC adsorbents [117-120], at least under certain 
conditions. In this work, the additional phenomenon is thus assumed to be the 
displacement of adsorbed ethanol by adsorbing insulin molecules. 
 
Ideally, whether ethanol adsorbs to these RPC adsorbents should be determined 
experimentally. Nevertheless, it is not obvious how the adsorption of ethanol should 
be detected, especially at a high concentration of ethanol in the mobile phase. 
Attempts were made to measure the amount of ethanol that desorbed during insulin 
adsorption and that adsorbed during the elution of the insulin, using a refractive 
index (RI) detector. Variations in RI were observed for high-load runs, but the 
detector was sensitive to changes in the concentrations of KCl and insulin; 
consequently, a stable baseline was never achieved. Tests in which sample was not 
injected (blank runs) and only ethanol concentrations were varied confirmed that a 
stable signal could not be obtained with this experimental setup. Similar 
experiments, with radioactive isotope-containing ethanol and a detector that was 
based on radioactivity, were considered. However, due to the unreasonable cost and 
the high risk of generating inconclusive results, this option was not pursued. 

7.2.1 Influence of Temperature 
The influence of temperature on the solubility of desB30 insulin was evaluated at 
two ethanol concentrations — 25.6 and 28.4 wt% — which are representative levels 
for chromatographic runs on the C4 and C18 adsorbents, respectively. The KCl 
concentration was maintained at 0.4 mol/kg. Figure 7.7 shows the unexpected 
results from this solubility study. 
 
Below 20°C, the solubility increased exponentially with temperature, as expected, 
with the exception of the outlier for high ethanol content at 19°C. Above 20°C, the 
results were unusual. No dissolved desB30 insulin, other than at levels below 0.1 
g/L in two samples at low ethanol content, could be detected in the samples that had 
been equilibrated at 25°C, despite repeated analysis and sampling and several runs 
of the entire experiment. The analyses and sampling were also recapitulated for 
some of the experiments at higher temperatures, yielding the same results. 
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Figure 7.7: Influence of temperature on the solubility of desB30 insulin. High and low ethanol content 
refers to 28.4 and 25.6 wt%, representative for chromatographic runs on the C18 and C4 adsorbents, 
respectively. “1” and “2” refer to the first experiment and its replicate, respectively. 
 
Random errors were thus precluded, raising the possibility of a systematic error in 
the method. Because the same material and methods were used for all temperatures, 
the presumed systematic error must be related to the handling of the samples. The 
temperature control in the climate cabinet might have been faulty, but the 
temperature reported for each experiment was measured independently with a 
separate thermometer. After incubation in the climate cabinet, the samples were 
centrifuged at room temperature, which could have caused additional precipitation 
for the samples that were incubated at above-ambient temperatures. Such an event, 
however, should only have resulted in a halted rise in solubility with temperature 
compared to what would have been observed with centrifugation at the incubation 
temperature. 
 
Another possibility is that the actual complexity of the dissolution, with many 
coupled equilibria, effected less predictable behavior at above-ambient 
temperatures. Insulin is prone to forming dimers and hexamers, generally via 
reversible reactions, but fibrillation can also occur. The latter type of aggregation is 
irreversible and is often caused by mechanical stress and elevated temperature [13, 
113, 121]. The combination of elevated temperatures and centrifugation might have 
induced irreversible aggregation and is thus a reasonable explanation for the 
confusing results in Figure 7.7. 
 
Consequently, none of the data in Figure 7.7 was considered to be reliable, and all 
of the findings were excluded from the calibration of the adsorption equilibrium 
model. Fortunately, the solubility data from the second solubility study were less 
important for the calibration than those from the first study, because the 
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stoichiometric coefficients between ethanol and the insulin variants (νξ) were 
assumed to be temperature-independent. 

7.3 Models 
In accordance with the assumption that ethanol was displaced by the insulin 
variants, to explain the stronger effect of ethanol on retention than on solubility, the 
models were based on the mechanism and corresponding equilibrium expression per 
Equations 2b and 3b, respectively, and the dynamic model in Equation 16 was used 
for the simulations. All ligands were assumed to be occupied by the insulin variants 
or ethanol. Consequently, the model is similar to the SMA model [95] but with 
ethanol molecules instead of counter-ions. 
 
The model was developed and calibrated in two steps. First, equilibrium and 
dynamic models for the influence of the concentrations of KCl and ethanol were 
derived and calibrated (Paper II), and then, these models were expanded to include 
the temperature dependence of the adsorption process (Paper III). This subsection 
describes the final models, which encompass the effects of modulator 
concentrations and temperature. 

7.3.1 Equilibrium Model 
The main structure of the linear-range equilibrium model that was developed in this 
work is given by Equation 33, from which the thermodynamic retention factor for 
adsorbate i on adsorbent j can be calculated. Only the first and last terms are 
adsorbent-specific, whereas all of them are adsorbate-specific. Based on the 
assumptions, the activity of the species in the mobile phase is unaffected by the 
adsorbent, and the mobile phase properties do not affect the species in the stationary 
phase. 
 
 ln൫ܣ௜,௝൯ = ln൫ܣ଴,௜,௝ᇱ ൯ + ln(ߛ௜(ܿ௦௔௟௧)) + ln(ߛ௜(ݔெ)) − ௜,௝ߦ௜,௝ߥ ln(ݔெߛெ) (33) 
 
Under isothermal conditions, the first term is constant. A’

0,i,j is a lumped parameter 
(Equation 34), comprising the adsorption equilibrium constant and all other factors 
that vary negligibly with the mobile phase composition — e.g., the lumped 
parameter ζi (denoted ω’

i in Paper II), which contains the constant terms from 
Wilson’s equation for ternary solutions. The simplified version of this formula is 
given by Equation 38. The ratio between the activity coefficients of the species in 
the stationary phase and the total molarity of the mobile phase are assumed to vary 
insignificantly with the modulator concentrations. Also, the fraction of occupied 
ligands is neglected under linear-range conditions. The motivations for these 
assumptions can be found in Paper II. 
 

଴,௜,௝ᇱܣ  = ௔ௗ௦,௜,௝ܭ ቀ ஃೕ௖೟೚೟ቁఔ೔,ೕ ఊಽಾ഍ഌఊುಽഌ  ௜ (34)ߞ
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The theoretical temperature dependence of Kads,i,j is given by Equation 8 in Chapter 
4, and based on the near-linear Van’t Hoff plots, the changes in enthalpy and entropy 
were assumed to be temperature-independent. On performing approximate 
calculations, the variation in column pressure drop with temperature was negligible 
in this case, and thus, Equation 9 could be used to describe the effects of temperature 
on the adsorption equilibrium constant. All of the other parameters that were lumped 
in A’

0,i,j were assumed not to have varied significantly with temperature. The premise 
for these assumptions can be found in Paper III. 
 
The second term in Equation 33 describes the influence of salt concentration on the 
activity coefficient of adsorbate i. It is a simplified version of the salting-in potential 
from Kirkwood’s electrostatic theories on macromolecules in solution, used to 
model HIC by Mollerup and colleagues [10] (Equation 35). 
 
 ln(ߛ௜(ܿ௦௔௟௧)) = − ଷேಲ଺ସగఢವோ் ቀߢଶ߰௜ + ఉ೔మிమఢವோ் ∑ ௝ܿ߰௝ே௝ୀଵ ቁ (35) 
 
NA and F are Avogadro’s and Faraday’s numbers, respectively, and R is the ideal 
gas constant. The mobile phase properties are given by the permittivity (εD), 
temperature (T), and inverse of the Debye length (κ), which is a measure of ionic 
strength (Equation 36). 
 
ଶߢ  = ிమఢವோ் ∑ ௝ܿߚ௝ଶே௝ୀଵ  (36) 
 
cj and βj are the concentration and valence, respectively, of ion j. In Equation 35, 
index j represents the N types of adsorbates, whereas it denotes the N types of ions 
in the mobile phase in Equation 36. In the linear-range equilibrium model, the 
concentrations of the adsorbates in the mobile phase were assumed to be sufficiently 
low to omit the last term in Equation 35 and neglect their contribution to κ. The 
parameter ψi (denoted (ητ2)i in Paper II) is a combination of two parameters that are 
related to the size and dipole moment of adsorbate i and varies with the permittivity 
of the mobile phase (Equation 37). 
 
 ߰௜ = ߰଴,௜ ସ൬ଶାചబചವ൰మ = ଴,௜߬଴,௜ଶߟ ସ൬ଶାചబചವ൰మ (37) 

 
ε0 is the permittivity of vacuum. One of these parameters (τ0,i) was assumed to be 
small enough to allow the use of a Maclaurin series — i.e., a Taylor series around 0 
— thereby enabling a reduction of the number of parameters. Because no indication 
of conformational changes in the insulin variants was observed in the temperature 
study, the size and dipole moment of each adsorbate should not vary significantly 
with temperature, and temperature affects ψi solely with regard to permittivity. 
Paper II details the derivation of Equation 35. 
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Although there is a slight variation in the salting-in potential versus ethanol 
concentration, due to its impact on permittivity, the main effect of ethanol on the 
activity coefficients of the adsorbates is given by the third term in Equation 33. This 
term is a simplified version of Wilson’s equation for ternary solutions (Equation 
38), assuming infinite dilution of adsorbate i. The concentrations of the insulin 
variants are not negligible, especially outside of the linear range, but the amount-of-
substance fractions are insignificant compared with those of ethanol and water, 
which justifies this assumption. In addition, some terms have been assumed to vary 
insignificantly (see Paper II). 
 
 ln(ߛ௜(ݔெ)) = − ఈ೔௫ಾఞ௫ಾమ ାఋ௫ಾାாೈ,ಾ (38) 
 
αi, χ, and δ are lumped parameters that are functions of the binary interaction 
parameters for the water–ethanol–insulin system. Two of them, EW,M and EM,W, are 
parameters for the water–ethanol system and are also used in Wilson’s equation for 
binary solutions (Equation 39), which is applied to estimate the influence of ethanol 
content on the activity coefficient of ethanol. χ and δ can be calculated from EW,M 
and EM,W, whereas αi includes parameters for the interaction between insulin and 
water or ethanol. 
 
 ln(ߛெ) = − ln൫ݔெ + ௐ൯ݔெ,ௐܧ + ௐݔ ൬ ாಾ,ೈ௫ಾାாಾ,ೈ௫ೈ − ாೈ,ಾ௫ೈାாೈ,ಾ௫ಾ൰ (39) 
 
xW is the amount-of-substance fraction of water, and the temperature dependence of 
the binary interaction parameters is given by Equation 40, where Vm is the molar 
volume and ΔUi,j is a system-specific constant. 
 
௜,௝ܧ  = ௏೘,೔௏೘,ೕ exp ቀ− ୼௎೔,ೕோ் ቁ (40) 

 
The effect of temperature on αi was assumed to have the same form as that of EW,M 
and EM,W but with an empirical constant instead of the ratio between molar volumes. 
The empirical constant was determined from the previously calibrated values of αi 
at 22°C (Paper II) and the system-specific constant for αi, henceforth denoted ΔUα,i, 
was calibrated against retention data. 
 
Estimates for EW,M and EM,W were based on data from a publication regarding the 
vapor–liquid equilibrium (VLE) of mixtures of water and ethanol at 25°C [122]. 
These values were used to calibrate the model that describes the effects of modulator 
concentrations but not temperature (Paper II). The same VLE data were also applied 
to estimate ΔUi,j for the temperature-dependent model (Paper III). To separate the 
effects of ethanol concentration on the two last terms in Equation 33, this model and 
the solubility model that is given by Equation 32 were calibrated simultaneously, 
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using the correlation for the activity coefficient in Equation 38 for both models. In 
the solubility model, the constant ζ was lumped with Ksol. 
 
The presence of the salt and its potential effects were neglected when Wilson’s 
equation was used, primarily because it does not account for electrostatic 
interactions and is thus unsuitable for ionic compounds. It is possible to combine 
electrostatic interactions — e.g. per Debye and Hückel — with Wilson’s equation, 
but these interactions have a minor effect on uncharged species, such as ethanol and 
water. Therefore, the increased accuracy of a combination model was not considered 
to motivate the increased complexity of such a model. 

Effects of Modulator Concentrations 
The parameters that were calibrated were ψi and αi, which are only adsorbate-
specific, and A’

0,i,j, νi,j, and ξi,j, which are adsorbate-specific and adsorbent-specific. 
However, in the final model, the effect of ethanol concentration on the activity 
coefficient was assumed to be the same for all three insulin variants — i.e., α was 
not considered to be adsorbate-specific in this case — based on the similarities in 
the structure and properties of the adsorbates and in the influence of ethanol on their 
retention (Figures 7.1-7.2 and 7.8). It is more likely that they differ with regard to 
the surface with which they adsorb to the stationary phase; thus, the difference in 
the effect of ethanol was modeled using individual stoichiometric coefficients (νi,j 
and ξi,j) for the insulin variants. 
 
Only the product of the stoichiometric coefficients is relevant in the linear-range 
equilibrium model, and thus, νi,jξi,j was considered to be a single parameter. All of 
the data in Figures 7.1-7.2 were included in the calibration, but for clarity, only the 
results for the lowest and highest KCl concentrations are shown in Figure 7.8. The 
calibration results for all KCl concentrations, those for the solubility of desB30 
insulin, and the calibrated parameter values are presented in Paper II. 
 
As shown in Figure 7.8, the model fit well for all combinations of adsorbents and 
adsorbates. However, the agreement between the experimental data and the 
response of the model was better for lower KCl concentrations and for more strongly 
retained adsorbates. The model describes ln(A) as being slightly more linearly 
dependent on the amount-of-substance fraction of ethanol compared with the 
experimental data. The resulting lack of fit occurs at the data points that correspond 
to lower retention volumes, because the calibration was performed for A, not its 
logarithm (Paper II). This approach was chosen due to the inherently lower precision 
of these points. Regarding the solubility of desB30 insulin, the model fit is 
comparable with that of the retention model. All of the calibrated parameters were 
statistically significant. 
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Figure 7.8: Comparison of experimental data (markers) and equilibrium model response (lines) for 
linear-range adsorption on the C18 (filled markers) and C4 (open markers) adsorbents at a) 0.1 mol 
KCl/kg and b) 0.7 mol KCl/kg. 

Effects of Temperature 
The parameters that were calibrated were ΔH’

i,j and ΔS’
i,j, which are adsorbate-

specific and adsorbent-specific, and ΔUα,i, which is adsorbate-specific. Because αi 
was presumed to have the same value for all three insulin variants, the same 
assumption was made for ΔUα,i. The calibrated parameter values are listed in Paper 
III, and the model fit is shown in Figures 7.9-7.10. 
 

 
 
Figure 7.9: Comparison of experimental data (markers) and equilibrium model response (lines) for 
linear-range adsorption on the C18 (filled markers) and C4 (open markers) adsorbents. Results for the 
set point concentrations (28.4 and 25.6 wt% for the C18 and C4 adsorbents, respectively, and 0.4 mol 
KCl/kg) are shown. 
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Figure 7.10: Comparison of experimental data (markers) and equilibrium model response (lines) for 
linear-range adsorption on the C18 (filled markers) and C4 (open markers) adsorbents. Results for the 
a) lower KCl concentration (0.1 mol/kg) and b) lower ethanol content (27.5 and 24.7 wt% for the C18 
and C4 adsorbents, respectively) are shown. The colors for the various adsorbates are as in Figure 7.9. 
 
As shown in Figures 7.9-7.10, the model fit is comparable with that of the model 
that only includes modulator effects (Figure 7.8). Ideally, the lines could have been 
slightly curved, but the discrepancies were not considered to be large enough to 
warrant the use of Equation 10a and the addition of one parameter per adsorbate–
adsorbent combination. All calibrated parameters were statistically significant 
(Paper III). 

7.3.2 Dynamic Model 
The structure of the dynamic model that was used in this work is described in 
Section 4.3 (Equations 11 and 16-19), and the thermodynamic retention factor was 
included in the model, as described by Equation 41. 
௔ௗ௦,௜ܭ   ൬ஃఊಽಾ഍௖೟೚೟ ൰ఔ೔ γ୧ = ఔ೔క೔(ெߛெݔ)௜ܣ = ଴,௜ᇱܣ  (41) (ெݔ)௜ߛ௜(ܿ௦௔௟௧)ߛ
 
Because the activity coefficient is included in A’

0,i,j, this parameter was moved to 
outside of the term in large parentheses in Equation 16, resulting in the final 
adsorption rate expression in Equation 42. 
 
 డ௤೔డ௧ = ݇௞௜௡,௜ ቀܣ଴,௜ᇱ (ெݔ)௜ߛ௜(ܿ௦௔௟௧)ߛ ቀ1 − ∑ (ఔೖାఙೖ)௤ೖஃே௞ୀଵ ቁ஝౟ ܿ௜  ఔ೔క೔ቁ (42)(ெݔெߛ)௜ݍ−

ln
(A

) [
-]

ln
(A

) [
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Effects of Modulator Concentrations 
The remaining parameters that were to be calibrated for this model were those that 
described the capacity effects (Λ, νi, and σi) and adsorption kinetics (kkin,i). Because 
the capacity parameters correlate strongly, parameter reduction was performed by 
estimating the number of ligands that were covered by an insulin molecule to be 7, 
using literature data for representative RPC adsorbents [30, 31], and setting σi = 7 - 
νi. The remaining parameters were calibrated by iterative adjustment of the values 
and visual comparison of the experimental and simulated chromatograms for high-
load runs with only desB30 insulin (Figures 7.11-7.12). To determine the 
parameters Λ and νi, the chromatograms that were generated at 12 g insulin/L 
column were used, whereas kkin,i was fitted to the chromatograms that were produced 
at 1.2 g insulin/L column. The calibrated parameter values and details on the 
estimations are presented in Paper II. 
 

 
 
Figure 7.11: Comparison of experimental data (full lines) and simulation results for the dynamic 
model (dashed lines). For each mobile phase composition, 12 and 1.2 g desB30 insulin/L column were 
loaded onto the C18 adsorbent. The small, narrow peaks at the end of some of the experimental 
chromatograms were caused by regeneration. 
 
Experiments were also performed at 28.4 and 25.6 wt% ethanol on the C18 and C4 
adsorbents, respectively, and used for the calibration but were excluded from 
Figures 7.11-7.12 for readability. The study included the corresponding experiments 
at 0.7 mol KCl/kg, but none of them was included in the calibration, because the 
retention volumes were very low, causing partial flow-through. 
 
As shown in Figures 7.11-7.12, the model fit was acceptable, but there were clearly 
minor effects that the model could not capture. The lack of fit at 0.4 mol KCl/kg and 
the highest ethanol concentration for both adsorbents (purple lines) was most likely 
caused by a lack of fit for the equilibrium model, because the discrepancies for the 
two protein loads were comparable. Also, the peaks in the experimental 
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chromatograms for 12 g insulin/L column on the C18 adsorbent were nearly 
triangular, whereas the corresponding simulated peaks had the expected curved 
trailing edge. There were, however, no obvious effects of modulator concentrations 
on adsorption capacity, supporting the assumption that the species in the stationary 
phase are insignificantly affected by the mobile phase composition. 
 

 
 
Figure 7.12: Comparison of experimental data (full lines) and simulation results for the dynamic 
model (dashed lines). For each mobile phase composition, 12 and 1.2 g desB30 insulin/L column were 
loaded onto the C4 adsorbent. The small, narrow peaks at the end of some of the experimental 
chromatograms were caused by regeneration. 

Effects of Temperature 
The capacity parameters Λ and ν should not vary with temperature, although the 
latter might change if the conformation of the adsorbate is altered. Because no signs 
of conformational changes were observed, such changes were assumed not to have 
occurred; thus, Λ and ν should have remained constant. A clear effect of temperature 
on peak shape was nonetheless seen, as evidenced by the wider and more rounded 
peaks at lower temperatures (Figures 7.13-7.16). This finding was anticipated as a 
consequence of the increased viscosity at lower concentrations, causing slower mass 
transfer. Because the mass transfer effects — i.e., diffusion through the stagnant 
film around the particles and inside of the particle pores — are clustered with the 
desorption rate in kkin, the influence of temperature should be attributed to this 
parameter. 
 
An exponential function of 1/T, similar to the Arrhenius equation for reaction rates, 
and a linear function of T, similar to the Stoke–Einstein and Wilke–Chang 
correlations for diffusion constants, were tested. However, a change in kkin primarily 
affects the peak height, not its roundness. Consequently, kkin was kept constant, and 
the conclusion was reached that a more advanced dynamic model would be required 
to describe the effects of temperature on peak shape correctly. Details can be found 
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in Paper III, and the experimental and simulated chromatograms from the 
temperature study for the C18 and C4 adsorbents are compared in Figures 7.13-7.14 
and 7.15-7.16, respectively. 
 

 
 
Figure 7.13: Comparison of experimental data (full lines) and simulation results for the dynamic 
model that includes the temperature dependence (dashed lines) at 16°C on the C18 adsorbent. The load 
levels are the same as in the study of the modulator effects. 
 

 
 
Figure 7.14: Comparison of experimental data (full lines) and simulation results for the dynamic 
model that includes the temperature dependence (dashed lines) at 34°C on the C18 adsorbent. The load 
levels are the same as in the study of the modulator effects. 
 
The fit of the model that includes the temperature dependence is worse at high 
adsorbate loads (Figures 7.13-7.16) than that of the model that only includes the 
effects of the modulator concentrations (Figures 7.11-7.12). As discussed, the model 
fails to capture the roundness of the peaks, and there are clear discrepancies in the 
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retention volume between the experiments and simulations. These differences 
appear to be random and cannot be explained by a lack of fit of the linear-range 
equilibrium model. 
 

 
 
Figure 7.15: Comparison of experimental data (full lines) and simulation results for the dynamic 
model that includes the temperature dependence (dashed lines) at 16°C on the C4 adsorbent. The load 
levels are the same as in the study of the modulator effects. 
 

 
 
Figure 7.16: Comparison of experimental data (full lines) and simulation results for the dynamic 
model that includes the temperature dependence (dashed lines) at 34°C on the C4 adsorbent. The load 
levels are the same as in the study of the modulator effects. 
 
Notably, the modulator concentration had a pronounced effect on peak roundness, 
which was not observed in the first study, as evidenced by a comparison between 
Figures 7.11, 7.13, and 7.14 for the C18 adsorbent and Figures 7.12, 7.15, and 7.16 
for the C4 adsorbent. A reduction in the values of Λ from Paper II by 25% and 50% 
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for the C18 and C4 adsorbents, respectively, improved the results with regard to the 
position of the peaks. Thus, the lack of fit was concluded to have been caused 
primarily by wear of the adsorbents. 

7.3.3 Predictions for Other Systems 
The greater complexity of a mechanistic versus empirical model is often warranted 
by the possibility of extrapolating and making predictions for conditions outside of 
the ranges that are examined and for other systems — i.e., other combinations of 
adsorbates, adsorbents, and modulators. Few predictions can be made with the 
models that are presented in this thesis without any experimental data for the new 
system, but a limited number of experiments can suffice for re-calibration of the 
models. 

Change in Adsorbents — Three Experiments 
The simplest prediction that can be made from the model is how adsorption will be 
affected by a change in adsorbents. The C4 and C18 adsorbents cover most of the 
range of ligand types for RPC adsorbents, and the linear-range retention on, for 
example, a C8 adsorbent should lie between those on the C4 and C18 adsorbents but 
reside closer to that of the former. The parameters that are related to the adsorbent 
are A0, ΔH’, ΔS’, ξ, ν, σ, Λ, and kkin, but not all of them need to be re-calibrated. ν and 
σ were estimated from literature data and are not specific for the systems in this 
work. Two linear-range chromatographic experiments at 0.4 mol KCl/kg and 
various ethanol concentrations and one experiment at high adsorbate load should be 
satisfactory to estimate new values for A0, ξ, Λ, and kkin. For the inclusion of 
temperature dependence — i.e., the calibration of ΔH’ and ΔS’ — one linear-range 
chromatographic experiment each at 16°C and 34°C should suffice. 

Change in Salts — Six Experiments 
Only two of the calibrated parameters, A0 and ψ, are related to the salt modulator, 
but another salt might cause both salting-in and salting-out within the soluble range 
of modulator concentrations. Consequently, three linear-range chromatographic 
experiments, distributed evenly over the solubility range for the salt, should be 
performed for each of two ethanol concentrations — e.g., 27 and 29 wt%. The 
resulting data will be sufficient to determine whether salting-out occurs and re-
calibrate A0 and ψ — or A0, η, and τ, if salting-out is observed. If the temperature-
dependent model is used, ΔH’ is re-calibrated instead of A0; the other effects of 
temperature are already given by the model. However, if the salt differs significantly 
from KCl, another correlation for the effect of the salt on mobile phase density is 
required. Possible effects on mobile phase permittivity should also be taken into 
account.  

Change in Organic Modulators — Five Experiments 
In addition to the calibrated parameters A0 or ΔH’, ξ, and α, a change in organic 
modulators affects the density and permittivity of the mobile phase. Further, the 
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binary interaction parameters for the water–organic modulator system will have 
other values. Adaptation of the model to another organic modulator thus requires 
literature data for its influence on density and permittivity and for its vapor–liquid 
equilibrium with water. A solubility study for one of the insulin variants, at a 
minimum of three concentrations of the organic modulator, is required to separate 
the effects of ξ and α. However, only two linear-range chromatographic experiments 
at 0.4 mol KCl/kg, with various concentrations of the organic modulator, are needed 
for subsequent re-calibration of these two parameters and A0 or ΔH’. 

Change in Adsorbates — Thirteen Experiments 
A change in adsorbates requires the most extensive re-calibration. The only 
parameter values that remain unchanged are ξ and Λ, but all literature data for the 
modulators can be reused. New values for σ and ν+σ must be estimated from the 
size of the adsorbate molecules. The probability of salting-out is lower than when 
the salt is exchanged, but it is still advisable to perform three linear-range 
chromatographic experiments, distributed over the solubility range for the salt, for 
each of two ethanol concentrations. A solubility study for the new adsorbates — or 
one of them if they have similar properties — at a minimum of three different 
ethanol concentrations is also needed. Re-calibration of ψ (or η and τ), A0, νξ, and α 
can be performed against the six linear-range chromatographic experiments and the 
three solubility experiments. Linear-range chromatographic experiments should be 
conducted at a minimum of three temperatures for re-calibration of ΔH’ and ΔS’. At 
least one chromatographic experiment at a high load of the intermediately retained 
adsorbate must be performed for the re-calibration of Λ and kkin. However, if the 
properties of the adsorbates differ significantly, one experiment for each is 
recommended.  
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Chapter 8  
Optimal Conditions for RPC Separation 
Although it is interesting to study and model various effects on chromatographic 
retention, models are seldom developed without a specific field of application. The 
most common applications are the design of a new process and optimization or 
robustness analysis of an existing process. One of the aims of the work presented in 
this thesis was to demonstrate the applicability of the model that was described in 
the previous chapter in an optimization study (Paper IV). The effects of temperature 
and the concentrations of KCl and ethanol on the selectivity between the insulin 
variants will first be evaluated, because several conclusions with regard to suitable 
process conditions can be drawn from these relationships. 

8.1 Selectivity 
Notable observations regarding the separation of the insulin variants on the RPC 
adsorbents were made in the studies on which Papers II and III are based (Figures 
8.1-8.2). 
 

 
 
Figure 8.1: Selectivity between the two most weakly retained insulin variants at various modulator 
concentrations on the C18 (filled symbols) and C4 (open symbols) adsorbents. 
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As discussed in the previous chapter, the C18 adsorbent yielded near-Gaussian peaks, 
whereas the peaks that were eluted from the C4 adsorbent were tailing. Combined 
with a lower selectivity, the tailing resulted in poorer separation of the insulin 
variants on the C4 adsorbent. Further, concerning the separation on the RPC 
adsorbents, the selectivity declined with increasing KCl concentration. These 
observations were made directly from the chromatograms but were supported by 
calculations that revealed that greater selectivity is achieved at lower concentrations 
of KCl or ethanol and that there is a clear synergistic effect (Figures 8.1-8.2). 
 

 
 
Figure 8.2: Selectivity between the two most strongly retained insulin variants at various modulator 
concentrations on the C18 (filled symbols) and C4 (open symbols) adsorbents. 
 
As suspected, the selectivity was significantly lower on the C4 versus C18 adsorbent 
at the same modulator concentrations. The dependence of the selectivity on KCl was 
substantial and stronger at lower concentrations for all cases, whereas the 
dependence on ethanol varied between adsorbate pairs and adsorbents. For the most 
weakly retained adsorbates (Figure 8.1), ethanol had a strong effect on selectivity 
on the C18 adsorbent but barely affected that on the C4 adsorbent. For the two most 
strongly retained adsorbates (Figure 8.2), however, the effect of ethanol was 
moderate and did not differ significantly between adsorbents. The effects of 
modulator concentrations and adsorbent type on the selectivity above were 
confirmed by the findings in Paper III (Figures 8.3-8.4). 
 
Within the ranges of mobile phase compositions and temperatures that were 
examined, the KCl concentration had the strongest influence on the selectivity 
between both adsorbate pairs on both adsorbents, whereas the influence of the 
ethanol concentration and temperature were similar in magnitude. The selectivity 
between the two most weakly retained insulin variants (Figure 8.3) clearly increased 
with falling temperature, and the effect was more pronounced at the lower KCl 
concentration (0.1 mol/kg) on the C18 adsorbent. For the C4 adsorbent at 0.1 mol 
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KCl/kg (open burgundy squares), the data point at 16°C is an outlier — or the 
selectivity peaks at approximately 25°C. The former explanation is more likely, but 
neither interpretation can be excluded without performing additional experiments. 
 

 
 
Figure 8.3: Selectivity between the two most weakly retained insulin variants at various temperatures 
and modulator concentrations on the C18 (filled symbols) and C4 (open symbols) adsorbents. 
 

 
 
Figure 8.4: Selectivity between the two most strongly retained insulin variants at various temperatures 
and modulator concentrations on the C18 (filled symbols) and C4 (open symbols) adsorbents. 
 
The influence of temperature on the selectivity between the two most strongly 
retained insulin variants (Figure 8.4) was less pronounced, and there are indications 
of maxima for the two series at 0.4 mol KCl/kg (filled light-blue circles and green 
diamonds). In summary, a decline in temperature or the concentration of either 
modulator increases the selectivity. There are also synergistic effects, improving the 
results further if the values of two or all three of the parameters are reduced. Because 
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the retention rises with decreasing temperature and modulator concentrations, a 
balance between maximum selectivity and a reasonable retention time must be 
maintained. 

8.2 Optimization Study 
Four Pareto fronts were determined — with and without a solubility constraint for 
both adsorbents. The weighted sum of the productivity and yield (Equation 27 in 
Chapter 5) was used as the objective function, and the intermediately retained 
adsorbate, desB30 insulin, was chosen as the target adsorbate. The solubility 
constraint that was applied was an upper limit of the total insulin concentration in 
the eluate, corresponding to 90% of the maximum solubility at the current ethanol 
concentration, according to the solubility function that was given by Equations 32 
and 38 (Paper II). A lower limit for the purity of the target adsorbate and upper 
limits for the concentrations of the impurities were also set. The minimum purity 
was 96%, and a maximum of 3% and 1% of insulin aspart and the insulin ester, 
respectively, was allowed. 2 CV were added to the total cycle time for regeneration 
and equilibration. 
 
Due to the lack of fit of the dynamic model that included the effects of temperature 
at high adsorbate loads, the model that only included the influence of the modulator 
concentrations was used for the optimization study. Many possible decision 
variables that had similar effects on retention remained. Consequently, isocratic 
elution was chosen, and the remaining decision variables were the load factor, the 
concentration of KCl and ethanol during elution, and the cut points for pooling. The 
load factor was defined as the ratio between the adsorbate load and the maximum 
amount of adsorbates that could be adsorbed per unit volume of the column. Upper 
and lower bounds were applied for the load factor and the modulator concentrations 
to avoid establishing process conditions that were too unrealistic. Details can be 
found in Paper IV. 

8.2.1 Pareto Fronts 
The significant difference in selectivity between the C18 and C4 adsorbents was 
expected to impact the possibility of improving the separation of the insulin variants. 
As shown in Figure 8.5, the maximum productivity that could be achieved with the 
C18 adsorbent is more than twice that with the C4 adsorbent for the constrained 
optimization, and the difference is even larger for the unconstrained optimization. 
Here, the term “unconstrained optimization” is defined as optimization without the 
solubility constraint, although the constraints on the purity and impurity levels were 
applied for all cases. 
 
There was a pronounced effect of the solubility constraint on the Pareto front (Figure 
8.5), wherein the maximum productivity was over threefold higher when this 
constraint was not applied, and a sudden deviation appeared between the constrained 
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and unconstrained Pareto fronts at yields of approximately 98% and 90% for the C18 
and C4 adsorbents, respectively. Despite the difference in the achievable 
productivity levels, the Pareto fronts for the two adsorbents were similar in shape. 
 

 
 
Figure 8.5: Pareto fronts for constrained and unconstrained optimization of purification of desB30 
insulin on the C18 (filled markers) and C4 (open markers) adsorbents. The encircled Pareto points are 
compared in the next subsection. 

8.2.2 Comparison of Suitable Operating Points 
Due to the significantly limiting effect of the solubility constraint on productivity, 
only two reasonable alternative operating points arose for each adsorbent (encircled 
in Figure 8.5); the corresponding chromatograms are shown in Figures 8.6-8.7. 
 

 
 
Figure 8.6: Chromatograms for maximum productivity, when the insulin concentration is limited by 
the solubility constraint, for separation on the a) C18 and b) C4 adsorbents. These chromatograms 
correspond to the encircled points at the lower yields in Figure 8.5. 
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The principal difference between the chromatograms in Figure 8.6 is the scale of 
the concentrations. Because the solubility of the insulin variants decreased 
concomitantly with the ethanol content of the mobile phase, the lower ethanol 
content that is required for elution on the C4 adsorbent decreases the concentration 
limit. The productivity for the C4 adsorbent is thus limited primarily by the solubility 
constraint, despite the lower selectivity between the most weakly retained impurity 
(insulin aspart) and the target adsorbate (desB30 insulin) resulting in a loss of 
product on the leading edge, where the concentration peaks. 
 

 
 
Figure 8.7: Chromatograms for the suggested operating points for separation on the a) C18 and b) C4 
adsorbents. These chromatograms correspond to the encircled points at the higher yields in Figure 8.5. 
 
Comparing the chromatograms in Figures 8.6 and 8.7, the concentration of each 
insulin variant is slightly higher at the lower value of ω, especially for the C18 
adsorbent, due to a higher ethanol content, which increases the solubility of insulin. 
At ω = 1, the load factor is higher, and the greater overlap raises the total insulin 
concentration. Due to the constraint, the peaks must be flattened, which is achieved 
with a lower ethanol concentration. Thus, it appears to be more efficient to lower 
the ethanol content to widen the peaks than to increase it to enhance the solubility 
of insulin. 
 
Another notable difference between the high and low values of ω is that the 
constraint on the concentration of the most strongly retained impurity (the insulin 
ester) is only limiting in the latter case. At maximum productivity, the concentration 
of the target adsorbate (desB30 insulin) in the tail of the peak is not sufficiently high 
for its inclusion in the product pool to improve productivity. Consequently, the 
purity is 1.0 percentage point above the minimum at maximum productivity for both 
adsorbents. As seen in Table 8.1, the little gain in productivity is outweighed by the 
loss in yield if the operating points that correspond to maximum productivity are 
chosen. 
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Table 8.1: Productivity, yield, and product purity for the four encircled operating points in Figure 8.1. 
 
Adsorbent C18  C4  
ω 1 0.05 1 0.1 
Y [%] 90.4 97.7 85.1 91.0 
P [kg/(m3∙h)] 0.87 0.82 0.41 0.40 
X [%] 97.0 96.0 97.0 96.0 

8.2.3 An Alternative Approach 
The constrained optimizations require the maximum total concentration of insulin 
that exits the column to be determined for each simulation. When standard 
optimization algorithms are used, the simulation must be performed twice or the 
optimization algorithm must be modified. The latter was chosen for the study 
presented here, but for this type of optimization problem, there is a third alternative. 
 
As concluded above, the point at which the constrained and unconstrained Pareto 
fronts diverged corresponds to suitable operating conditions, because the solubility 
constraint limits the productivity to a greater extent than selectivity. This point can 
be approximated using the unconstrained Pareto front and the solubility limit. It is 
shown in Paper IV that the intersection between the maximum total insulin 
concentration for each unconstrained Pareto-optimal point and the 90% solubility 
limit, plotted against ethanol concentration, coincides with this point. However, this 
method has limitations — it only works well for continuous Pareto fronts, as 
demonstrated in Figure 8.8 and Table 8.2, which compare the operating conditions 
that are determined by the two methods. 
 

 
 
Figure 8.8: Evaluation of the alternative approach for estimating a suitable operating point for the a) 
C18 and b) C4 adsorbents. Filled and open markers denote the load factor and pool volume, respectively, 
and the black dashed line marks the ethanol concentration, as determined with the alternative approach.  
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Based on Figure 8.8 and Table 8.2, the alternative method is applicable to the 
separation on the C18 but not C4 adsorbent, due to the lack of Pareto points for yields 
between 91% and 99% for the latter (Figure 8.1). 
 
Table 8.2: Operating conditions as determined from the constrained Pareto front (alt. 1) and the 
alternative approach (alt. 2). 
 
Adsorbent C18  C4  
Approach Alt. 1 Alt. 2 Alt. 1 Alt. 2 
fload [%] 6.7 6.3 9.0 7.8 
wEtOH [wt%] 28.4 28.4 24.7 24.5 
Vpool [CV] 10.8 10.7 16.1 25.2 

 
The concentration of KCl in the eluent was also included as a decision variable, but 
the optimal value for all tested values of ω and both adsorbents was 0.1 mol/kg 
(±0.001) for both adsorbents, which was also the lower bound for this variable, 
because lower concentrations had not been examined experimentally. This trend 
was anticipated, because the KCl concentration has a much stronger influence on 
the selectivity between the insulin variants than on their retention. 
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Chapter 9  
Summary of Findings 
The findings from the work on which this thesis is based are summarized below in 
the conclusions, and a short discussion about the uncertainties in the investigations 
is presented. The thesis concludes with suggestions for future work. 

9.1 Conclusions 
The HIC experiments show that salting-in of the insulin variants does not occur 
within the soluble range of KCl concentrations, at least not with the butyl and phenyl 
adsorbents that were examined in this work. Different results might be obtained with 
other types or densities of ligands, but it is likely that another type of salt is required 
to achieve salting-in. The lack of a salting-in effect is unaffected by the addition of 
ethanol, but ethanol weakens the salting-out effect and lowers the retention time. 
All three adsorbates yield fronting peaks on both HIC adsorbents, but the fronting 
is more pronounced with butyl ligands — i.e., with the more hydrophobic adsorbent. 
The retention time and fronting tendency decline with an increasing ethanol 
concentration in the mobile phase, likely due to the higher solubility in a more 
hydrophobic solution. 
 
In contrast to the influence of salt on the retention in HIC, salting-out was not 
observed during RPC of the insulin variants. A rise in the concentration of either 
modulator lowered the retention — a pattern that held for the entire range of feasible 
combinations of KCl and ethanol concentrations. Compared with the solubility of 
desB30 insulin, ethanol had a substantially stronger effect on the chromatographic 
retention of this insulin variant — indicating that the influence of ethanol 
concentration on the adsorption of desB30 insulin in RPC cannot be attributed solely 
to variations in the activity coefficient of the adsorbate. There are several plausible 
explanations for this finding, but in this work, the additional phenomenon was 
assumed to be the displacement of adsorbed ethanol molecules on adsorption of the 
insulin variants. The mechanism is presumed to be analogous to that of the steric 
mass-action (SMA) model for ion-exchange chromatography — i.e., all “free” 
ligands are occupied by ethanol. 
 



Chapter 9: Summary of Findings 
 

68 
 

The retention of the insulin variants on the RPC adsorbents decreased with rising 
temperature. The influence of temperature was stronger for the C4 versus C18 
adsorbent and at lower concentrations of KCl and ethanol. The effect of temperature 
also increased concomitantly with the hydrophobicity of the adsorbate. 
 
A model that describes the effects of temperature and modulator concentrations was 
developed from existing thermodynamic theories, simplified and calibrated against 
experimental data for the RPC systems. The influence of salt concentration was 
based on the adaptation of Kirkwood’s electrostatic theories on macromolecules in 
solution to HIC by Mollerup and colleagues, and that of ethanol content was derived 
from Wilson’s equation. The final calibrated model describes the linear-range 
equilibrium well and makes good predictions on high-load dynamics. Because the 
focus was on the equilibrium, more time was spent on the development of that 
component of the model, which is reflected by its better fit. 
 
Using the final equilibrium model, conclusions about the different contributions to 
the temperature dependence of ln(A) could be drawn. As suspected, the decrease in 
retention at higher temperatures was attributed to negative changes in enthalpy and 
entropy on adsorption of each adsorbate. However, the decline of the lumped 
parameter ln(A’0) with increasing temperature, which includes the equilibrium 
constant, was more than twice that of ln(A), because the contributions from the 
changes in the activity coefficients of the adsorbates and ethanol were significant 
and had the opposite sign. The assumption that the changes in the equilibrium 
constant with temperature were the sole cause of the temperature dependence of the 
retention would have led to a gross underestimation of ΔH and ΔS.  
 
I acknowledge that A’0, in addition to the equilibrium constant, includes factors for 
the activity coefficients of the adsorbates and the ratio between the activity 
coefficients of the ethanol–ligand and adsorbate–ligand complexes. One or both of 
these factors might vary with temperature. Consequently, I do not claim to have 
made a good estimation of the actual values of ΔH and ΔS — only that of the lumped 
parameters ΔH’ and ΔS’. Nevertheless, it is unlikely that the sign of the actual and 
lumped parameters differs; thus, I conclude that the adsorption is enthalpy-driven 
and that a practically applicable model has been derived.  
 
The selectivity between the closely eluting insulin variants varied substantially with 
mobile phase composition and temperature. A reduction in temperature or the 
concentration of KCl or ethanol increased the selectivity with significant synergistic 
effects. Compared with its influence on retention, the concentration of KCl had a 
significantly stronger effect on selectivity than temperature and ethanol 
concentration. The effects of temperature and modulator concentrations were more 
noticeable for the C4 versus C18 adsorbent and affected the selectivity between 
insulin aspart and desB30 insulin to a greater extent than that between desB30 
insulin and the insulin ester.  
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As expected, based on the calculated selectivity values, significantly greater 
productivity could be achieved with the C18 versus C4 adsorbent for the same yield 
and using the same constraints. When the solubility constraint was applied, the 
productivity for the C4 adsorbent was further limited by its lower hydrophobicity, 
decreasing the ethanol concentration during elution. Because the solubility of 
insulin increased concomitantly with the ethanol concentration, the lower ethanol 
concentrations required for the C4 adsorbent correspond to a stricter solubility 
constraint compared with the C18 adsorbent. Due to the solubility constraint, the 
difference in ethanol concentration affected the productivity more than that in 
selectivity. 
 
The Pareto fronts for optimization with and without the solubility constraint 
diverged when the constraint became active, and the productivity ceased to rise with 
decreasing yield for the constrained Pareto fronts. For continuous Pareto fronts, an 
alternative approach could be used to determine suitable operating conditions, 
instead of constructing a Pareto front from constrained optimizations. The operating 
conditions that correspond to the ethanol concentration at which the solubility limit 
and the maximum total insulin concentrations from the unconstrained optimizations 
coincide constituted a good estimate of the operating conditions that were 
determined from the constrained Pareto front. 

9.2 Uncertainties 
The certainty of the observations and conclusions in the text above varies, and I 
have summarized the main uncertainties below. 
 
The cause of the fronting peaks on the HIC adsorbents remains unknown but was 
attributed to self-association of the adsorbates, as supported by the findings at high 
adsorbate load. The effects of self-association were more pronounced at high 
adsorbate loads, but this phenomenon will also occur in linear-range experiments, 
despite the low adsorbate concentrations. Another explanation is that 
conformational changes in the insulin variants arose during the 
adsorption/desorption process, but the low hydrophobicity of the adsorbent and 
mobile phase should not have induced such shifts. This explanation is especially 
unlikely for insulin, which is a robust protein with a stable ternary structure. A third 
possibility, which is not discussed in Paper II, is that self-association of the insulin 
variants occurred at low ethanol concentrations (below 10 wt%) due to their poor 
solubility under these conditions. 
 
The peculiar peak shapes that were observed for RPC at high adsorbate loads and 
the tailing at low adsorbate loads on the C4 adsorbent might have originated from 
self-association or a similar phenomenon. This possibility could have been 
examined by fractionation and analysis of the eluted peaks, but the potential on-
column dimerization might be reversed during elution. 
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It is also difficult to study the possible effects of modulator concentrations and 
temperature on the activity coefficients of the adsorbate–ligand and ethanol–ligand 
complexes experimentally. Independent experiments, equivalent to solubility 
studies on the effects on the activity coefficients of the insulin variants in solution, 
are difficult, if not impossible, to design. The validity of the assumption that the 
ratio between the activity coefficients of the adsorbate–ligand and ethanol–ligand 
complexes is invariant thus remains unknown. 
 
That ethanol adsorption caused ethanol to have a stronger influence on the 
chromatographic retention than on the solubility of insulins is plausible, but this 
effect could also be explained by the invalidity of the assumption in the previous 
paragraph. If ethanol is adsorbed and desorbed during RPC of the insulin variants, 
the corresponding decrease and increase in ethanol concentration should be possible 
to measure experimentally, but this project had insufficient resources for such 
experiments. 

9.3 Future Work 
The effects of other modulators on the retention of the insulin variants and those of 
KCl and ethanol on other proteins or peptides should be examined and compared. 
Studies that use other adsorbents are less interesting, because C18 and C4 ligands 
cover the RPC range well, and butyl and phenyl ligands are representative for HIC. 
The effects of temperature should be included in such studies. A more detailed 
investigation of the influence of temperature and the concentrations of KCl and 
ethanol on the solubility of insulin can enable refinement of the model, generating 
useful results for process development and resolving the strange findings from the 
study on the effects of temperature on the solubility of desB30 insulin. 
 
The cause of peak fronting and the disparate slopes of ln(A) for the HIC systems 
should also be determined. Although the potential dimers and hexamers might revert 
to monomers during the elution, a first step could be to fractionize and analyze the 
peaks. Molecular dynamics simulations could also provide insights into the 
underlying phenomena. There is a slight possibility that the unexpected peak shapes 
in the HIC study were caused by non-specific binding, which would be interesting 
to examine for the HIC and RPC adsorbents. In the latter case, it should be easy to 
obtain adsorbent particles without ligands for such a study. 
 
One of the main conclusions of this work is that ethanol adsorbs onto the ligands 
and is displaced by adsorbing insulin molecules. Although other studies support the 
adsorption of ethanol, it is desirable to demonstrate that it also occurs for the 
adsorbents used in this work. A better setup with an RI detector, the use of ethanol 
with a radioactive isotope, or an improved experimental design might enable 
measurement of ethanol adsorption. 
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The optimization study in this work only tested the possibilities with regard to 
simultaneously varying the concentrations of the two modulators — not 
temperature. By fixing the KCl concentration at the value that yielded the highest 
selectivity according to this study, temperature could be added as a decision variable 
— preferably after improving the temperature-dependent model. A linear, or more 
complex, gradient of the ethanol concentration for this process could be optimized. 
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Many of today’s pharmaceuticals have active ingredients that are pep-
tides, proteins or antibodies. These are called biopharmaceuticals, and 
are generally made to compensate for a human deficiency to produce 
that particular substance, or act as a tailor-made treatment for an illness 
that is otherwise difficult to treat.

In the production of biopharmaceuticals, preparative chromatography 
is a key method for purification of the active ingredients. Optimization 
of existing processes and efficient development of new ones require 
knowledge about the effects of different process conditions, which can 
be obtained by studying the underlying phenomena.

The aim of the work presented in this thesis was to investigate and mo-
del the effects of the temperature and the concentrations of KCl and 
ethanol on the chromatographic separation of three types of insulin. 
Existing thermodynamic models were combined to create a semi-empi-
rical model that has a clear connection with the phenomena that affect 
the process, as well as with the process conditions and the properties 
of the insulins.

Finally, the possibilities offered by this kind of model are demonstrated 
in a model-based optimization study, focusing on the effect of a solubi-
lity constraint on the purified solution.
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