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Autotuner identification of TITO
systems using a single relay feedback

experiment

Josefin Berner, Kristian Soltesz, Tore Hägglund, Karl Johan Åström ∗

∗All authors are with Department of Automatic Control, Lund
University, Sweden. Contact josefin.berner@control.lth.se

Abstract: Relay autotuning has proven very successful for single-input single-output systems.
This paper proposes an identification method for relay autotuning of systems with two inputs
and two outputs (TITO systems). The combination of asymmetric relay feedback and output
error identification admits short tuning time, without the need for limit cycle convergence.
The method is successfully demonstrated on relevant system models, including the Wood-Berry
distillation column.

Keywords: Multivariable autotuning, decentralized relay experiment, output error
identification

1. INTRODUCTION

Relay autotuning for single-input single-output (SISO)
systems has been widely used since its introduction in
the 1980’s. The closed-loop identification automatically
excites the system in the frequency interval relevant for
PID control, and the amplitudes of the oscillations can
be kept small as to not disturb the process more than
necessary. The relay autotuner in Åström and Hägglund
(1984) has been modified by e.g. Luyben (1987) where
a first-order model with time delay (FOTD model) of
the system was derived, by Shen et al. (1996) where an
asymmetric relay was used, and in more recent work as
Berner et al. (2016b) where the normalized time delay
was used to classify the system during tuning and Berner
et al. (2016a) where parameter choices and other practical
issues were discussed. A recent review of the advances in
identification from relay experiments is given in Liu et al.
(2013). Several books on relay autotuning, like Yu (2006);
Chidambaram and Sathe (2014), also give good overviews.

Even though much has been written about relay autotun-
ing almost all of it considers SISO systems only. Since
many industrial processes are of multi-input multi-output
(MIMO) type, there is a need of finding multivariable
models of them. These models can then be used to ei-
ther tune a number of SISO PID controllers by picking a
suitable input-output pairing or by decoupling the system.
Or a multivariable PID controller could be tuned as in
Boyd et al. (2015). The choice of tuning method is not
the subject of this paper, but by obtaining a full transfer
function matrix, many tuning options are possible. In this
paper we will restrict ourselves to two-input two-output
(TITO) systems. This is a common subclass of MIMO
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systems that shows up in many places both in literature
and in industrial processes.

Relay autotuning of multivariable systems could be done
in three different ways, Wang et al. (1997). The first way is
to tune each loop independently while leaving the others
in manual. This method does not take any of the cross-
couplings in the system into account, and hence is not
a good option for coupled systems. The second method
is sequential tuning, where the first loop is tuned while
the others are in manual, and then the next loop is
tuned with the first one closed, and so on until all loops
are tuned. With this method the controllers are tuned
based on all the information up to that point, but the
loops that are still open do not influence the behavior.
Therefore the method is usually iterated a number of
times with the loops closed, which results in a total of mk
relay experiments for k iterations of an m × m process.
The third option, which we will use in this paper, is
decentralized relay feedback, where all the loops are tuned
simultaneously. This is a completely closed-loop method
where all cross-couplings will influence the result. In Wang
et al. (1997) m decentralized relay tests were needed in
order to obtain the transfer functions. It was also needed
to wait for convergence of the limit cycle oscillations.
Another drawback of that method is the assumption
that the systems are coupled strongly enough to oscillate
with the same fundamental period. Attempts to find the
conditions for when this happens has been made in e.g.
Loh and Vasnani (1994), but to our knowledge no simple
full conditions have been published. In Campestrini et al.
(2006), problems with using the ultimate frequency as a
tuning parameter for MIMO systems have been remarked
upon. For MIMO systems there is not an ultimate point
as in the SISO case, but rather an ultimate surface,
and which point that will be found from the experiment
depends on the settings. This makes simple methods like
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Fig. 1. Setup of the decentralized relay experiment.

Ziegler-Nichols, based on the ultimate gain and frequency,
inappropriate for the MIMO case.

What we want is a relay autotuner for MIMO systems
that is fast, does not require numerous experiments, that
works for both weakly and strongly coupled processes,
and that does not rely on only an ultimate point to get
the process models. The autotuner in this paper aims to
identify the transfer function matrix for a TITO system
from one single decentralized relay experiment. It does
not need to wait for convergence, which makes it fast.
The models are estimated by output error minimization,
which does not require the loops to oscillate with the
same frequency and does not use the ultimate frequency in
any calculations. The method will be described and some
examples demonstrating the potential of the method will
be given. The controller tuning, and some practical issues
of the experiments are left as future work.

2. METHOD

2.1 Experiment

The experimental setup is shown in Fig. 1 and based on the
decentralized relay feedback experiment proposed in Wang
et al. (1997). Both loops are closed with relay feedback
simultaneously. Even though it is a closed-loop experi-
ment, the input-output noise correlation is negligable since
the input signal is kept constant except at the switching
instances of the relay. Hence, the system can be viewed as
open-loop for identification purposes. The relays used are
asymmetric, and implement most practical features from
the one described in Berner et al. (2016a). To get as much
excitation as possible the asymmetry level γ (i.e. the ratio
between the on and off amplitudes) is different for the two
relays. In this paper the asymmetries were set to γ = 1.5
in relay 1 and γ = 2 in relay 2, but this choice should be
investigated more in future work. The amplitudes are set
automatically during the startup phase. The identification
method that will be used in this paper does not require
limit cycle convergence, hence the experiments can be
made short. In this paper the experiments are stopped
when both loops have undergone four relay switches. For
the simulations in this paper, the control signal is set to its
stationary level immediately when the experiment stops.
If this is the best way of shutting down the experiment,
and when to connect the new controller, needs to be
investigated in future work.
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Fig. 2. Decentralized relay experiment for the uncoupled
system, Gε=0. The two loops converge to limit cycles
with different periods tp = 3.26 and tp = 2.19.

2.2 Coupling level

As has been described in Loh and Vasnani (1994), there
are three possible limit cycle behaviors of the decentral-
ized relay feedback experiment of the TITO system. The
separate behaviors depend on the strength of the cross-
couplings in the process. An illustration of the possible
outcomes is given by looking at the system

Gε(s) =




1

s+ 1
e−s

ε

s+ 1
e−s

ε

s+ 1
e−s

1

0.1s+ 1
e−s


 (1)

with ε = {0, 0.3, 0.8} shown in Fig. 2-4. For the purpose
of this illustration the decentralized relay experiment has
been run until convergence of the time periods of the
limit cycles, or in the intermediately coupled case for 10
switches since it will not converge. If the coupling of the
system is sufficiently strong, like in Fig. 4, both loops will
oscillate with the same frequency, the half-periods may,
however, be separate. If the coupling is weak (or non-
existent), as in Fig. 2, the loops will oscillate with different
frequencies like two separate SISO systems. If the coupling
is intermediate, see Fig. 3, the loops will have a more
complex limit cycle with multiple relay switches within
the fundamental period.

Most literature on decentralized relay autotuning like e.g.
Wang et al. (1997) assumes the strongly coupled case
with equal fundamental periods. We would, however, like a
method that can handle all coupling levels. The uncoupled
system could just as well be treated as two SISO systems
and use methods for that, but the possibility to handle it
in the same framework as the others is desirable since the
coupling level is not necessarily known on beforehand.

Fig. 3 and Fig. 4 show that the waveforms of the limit
cycles can be quite complex, and to use simple equations
from a few significant data points, as is usually done in the
SISO autotuner, is not straightforward. Instead we use all
data points to identify model parameters, as described in
the following section.
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Fig. 3. Decentralized relay experiment for the intermedi-
ately coupled system, Gε=0.3. The loops converge to
limit cycles that contain multiple relay switches.
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Fig. 4. Decentralized relay experiment for the strongly
coupled system, Gε=0.8. The loops converge to limit
cycles with identical periods tp = 2.76.

2.3 Identification method

The elements of the transfer function matrix in Fig. 1 will
be estimated on the form

Pi,j(s) =
bi,j

s+ ai,j
e−sLi,j , i, j ∈ {1, 2}, (2)

that is, first order systems with time delay (FOTD).
The parameter vector defining each element (2) is θi,j =

[bi,j ai,j Li,j ]
>.

For our purposes the system can be decomposed into
two parts yi = Pi,1u1 + Pi,2u2, with parameter vectors
θi =

[
θ>i,1 θ

>
i,2

]>
. Denoting by u1,u2, yi and ŷi, the

sampled process inputs, output, and the model output,
respectively, we pose the parameter identification problem
as minimization of the L2 norm of the output error ei =
yi − ŷi

J(θi) =
ts
2
e>i ei, (3)

where ts is the sampling period of the signals. Since ŷi
is not convex in θi, a local second-order method will be
used. Its SISO counterpart for discrete time systems was
described in Åström and Bohlin (1965), and it was adopted
to relay identification of continuous time systems in Soltesz
et al. (2010). In the SISO case, the essence of the method
lies in constructing a continuous time state space system
S : {A,B,C,D}. The system S is parametrized in θ,
and is designed to have a certain structure such that its
delayed output contains both the estimated output ŷ and
its gradient ∇θŷ,

Xts Cx(t+ L) =
[
ŷ> ∇θŷ>

]>
,

where Xts denotes the sample operator of period ts. The
(un-delayed) output of S is cheap to compute by simu-
lation of the discrete time system {Φ,Γ, C,D} obtained
through zero-order hold sampling of S, with period ts. A
subsequent shift by bL/tsc produces the desired output
and associated gradient. For the FOTD SISO case, a
minimal realization of S is given by

[
A B

C D

]
=




−a 0 1
b −a 0

b 0 0
1 0 0
0 −1 0
ab 0 −b



. (4)

See Soltesz et al. (2010) for the general order SISO case,
and its derivation.

Use of (4) enables computation of the Jacobian
∇θJ = tse

>∇θŷ,
and an approximation of the associated Hessian

∆θJ ≈ ∇θŷ>∇θŷ.
The approximation consists in keeping quadratic terms
∂2/∂2θi, but discarding cross terms ∂2/(∂θi∂θj) – which
are negligible unless e and ∇θŷ are strongly correlated.

Using the Jacobian and Hessian information, the opti-
mization problem can be solved (to a local minimum) by
standard means. (The trust-region-reflective solver bun-
dled with Matlab has been used here.) Each iteration only
involves a simulation of S and a gradient descent step,
making the identification method computationally cheap.

Extension to the TITO case is straightforward as the out-
put yi = Pi,1u1 +Pi,2u2 is the sum of outputs yi,1 = Pi,1ui
and yi,2 = Pi,2u2. Two instances of (4) are constructed
for yi,1 and yi,2, respectively. From their outputs it is
straightforward to assemble ∇θi ŷi =

[∇θi,1 ŷi ∇θi,2 ŷi
]
,

which enables computation of the Jacobian and Hessian
associated with (3).

It can be noted that the identification method is readily
extendible to higher order systems, as put forth in Soltesz
et al. (2010). It is also straightforward to apply it to
transfer matrices of arbitrary input and output dimen-
sionality. The ability of the proposed method to identify
parameters under such conditions, depends on how well
the identification input excites the dynamics, and will be
investigated in future work.

Excitation As was just stated, it is crucial to excite the
process sufficiently to be able to find all unknown process
parameters. In Fig. 5 the power spectra of the input
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Fig. 5. Power spectra of the relay signals in the decen-
tralized relay experiment for the process Gε=0.3. The
upper plot shows an experiment with symmetric re-
lays. The lower plot shows an experiment with the
asymmetry levels γ1 = 1.5 and γ2 = 2.

signals are shown for two decentralized relay feedback
experiments. These specific experiments were done on
Gε=0.3, as defined in (1), with symmetric relay functions in
the upper plot and asymmetric relay functions in the lower
plot. As can be seen the signal power is much more spread
out for the asymmetric relay functions. The frequency
plots of course depend on the processes. The large peaks in
the frequency plots are from the main oscillation periods,
so for strongly coupled systems, e.g. Gε=0.8, that oscillates
with the same frequncy, the two curves will more or less
be on top of each other.

Initialization The described identification method some-
times converges to a local minimum. Initialization is there-
fore important. Since the computations are cheap and fast,
and this paper is a proof of concept rather than a complete
algorithm, we chose to initialize in multiple points and
then pick the best solution. The first attempts indicated
that the time delay L is the most crucial parameter to have
a good initial value of, therefore we start with L gridded
between 0 and Lmax that is here set to the time period of
the oscillation. The initial values of a and b are set to 0.
If the grid is very dense this methodology will require a
lot of combinations which will make the overall computing
time larger than necessary. Therefore a more clever way of
initializing the system should be found in the future.

3. RESULTS

To evaluate the method we explored the three Gε in (1),
representing different coupling levels, and the Wood-Berry
distillation column, Wood and Berry (1973). The dynamics
of this common benchmark process is given by

GWB(s) =




12.8e−s

1 + 16.7s

−18.9e−3s

1 + 21s

6.6e−7s

1 + 10.9s

−19.4e−3s

1 + 14.4s


 . (5)

White noise with a peak-to-peak-amplitude of 0.9 was
added to the simulations. The experiments for the three Gε
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Fig. 6. Experiment data and model fit for the weakly
coupled example Gε=0.

are shown in Fig. 6-8, and the experiment for Wood-Berry
is shown in Fig. 9. The figures show that the black esti-
mated output curves follow the true (noisy) red curves very
well. The obtained model parameters are listed in Tab. 1.
They are all close to their true values. The estimate of
GWB is comparable to the one obtained in Chidambaram
and Sathe (2014). Our parameters are slightly worse, but
obtained from one noisy experiment instead of two noise-
free. Since the method in Chidambaram and Sathe (2014)
assumes strong coupling all Gε cannot be compared.

To this point all examples have been processes that are
of the model order we are estimating, and the good
accordance of the estimated models is therefore possible.
To explore what happens if the process is of higher order
we investigated the second order TITO process

GSOTD(s) =




1

(s+ 1)2
e−s

0.3

(s+ 1)2
e−s

0.3

(s+ 1)2
e−s

1

(0.1s+ 1)2
e−s


 . (6)

The results for this process are shown in Fig. 10 and the
Bode plots for the true and estimated models are shown in
Fig. 11. There is a very good match between the estimated
and the true Bode plots up to frequencies where the phase
lag is −180◦, which means that good PID controllers can
be designed based on the FOTD models. The Bode plots
naturally differ at high frequencies due to the differences
in high frequency roll off. The estimated model parameters
for GSOTD are listed in the bottom of Tab. 1. Notice that
the estimated time delays L̂ are significantly larger than
the true time delays L. This is because the extra time
constant of the SOTD model is split between the time
constant and the time delay of the estimated FOTDmodel.
The large difference in true and estimated time delays
indicates that, even though a good PID controller for the
FOTD model could be obtained, the performance could
be improved significantly by basing control design on a
model of higher order. This since the time delay causes
fundamental limitations on the achievable bandwidth of
the system, and a robust control design has a constant
product of the time delay and gain crossover frequency.



Table 1. Estimated model parameters K̂, T̂ , L̂,
as well as the true parameters K, T , L, for the
five example processes. The rows are ordered

P11, P12, P21, and P22 for each process.

Process K̂ T̂ L̂ K T L

0.99 1.00 1.00 1 1 1
Gε=0 0.01 0.99 1.15 0 - -

0.00 0.09 0.03 0 - -
1.00 0.10 1.00 1 0.1 1
0.98 0.99 1.00 1 1 1

Gε=0.3 0.32 1.02 1.02 0.3 1 1
0.25 0.68 1.12 0.3 1 1
1.02 0.11 1.00 1 0.1 1
0.97 0.96 0.99 1 1 1

Gε=0.8 0.85 1.17 1.00 0.8 1 1
0.76 0.98 1.01 0.8 1 1
1.03 0.13 0.99 1 0.1 1
15.9 21.0 1.03 12.8 16.7 1

GWB -18.2 20.7 3.00 -18.9 21 3
5.84 9.62 7.02 6.6 10.9 7
-20.2 15.1 2.99 -19.4 14.4 3
1.13 2.09 1.43 1 {1,1} 1

GSOTD 0.32 2.17 1.33 0.3 {1,1} 1
0.32 1.90 1.47 0.3 {1,1} 1
1.02 0.17 1.04 1 {0.1,0.1} 1

−2

0

2

4
u1
y1
ŷ1
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Fig. 7. Experiment data and model fit for the intermedi-
ately coupled example Gε=0.3.
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Fig. 8. Experiment data and model fit for the strongly
coupled example Gε=0.8.
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Fig. 9. Experiment data and model fit for the Wood-Berry
distillation column GWB.
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Fig. 10. Experiment data and model fit for the second
order time delayed process GSOTD.

4. DISCUSSION

The proposed method shows that good process models of
a TITO system of FOTD subprocesses can be identified
by one single decentralized relay experiment. There is no
need to wait for convergence of the limit cycle oscillations
and neither to fully understand the conditions for when
the different limit cycles occur. The method is shown to
work well for the investigated FOTD examples. The result
for the SOTD system is also satisfying in the sense that
it provides good FOTD approximations of the processes.
However, better control performance can be obtained if a
higher order model was estimated instead. As stated in
Sec. 2.3 the method can be extended to estimate higher
order models, and a generalization of the method to both
higher order models as well as arbitrary MIMO systems
to see how it scales, and if the excitation from one single
experiment is sufficient, are interesting continuations of
this work. Practical issues like parameter choices, exper-
iment start-up and termination, and of course how the
controllers should be tuned from the obtained models, are
other aspects that should be explored further. Noise has
been considered in this paper, but the method’s sensitivity
to other disturbances has not yet been investigated.
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Fig. 11. Bode plots for the true SOTD TITO process in blue, and the estimated FOTD TITO model in red.
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