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Abstract—The main purpose of this paper is to make the study
of spatially coupled turbo-like codes (SC-TCs) more complete by
investigating the impact of spatial coupling on the thresholds of
hybrid concatenated codes (HCCs). In our previous studies, we
introduced some classes of SC-TCs and considered their density
evolution (DE) analysis. The obtained results indicated that for a
fixed coupling memory, braided convolutional codes (BCCs) have
the best belief propagation (BP) thresholds among the considered
classes. Besides having excellent BP thresholds, BCCs have good
distance properties and their minimum distance grows linearly
with block length. Similarities between BCCs and HCCs make
HCCs good competitors for BCCs. This has motivated us to
investigate the impact of spatial coupling on HCCs. In this paper,
we introduce two spatially coupled ensembles of HCCs, referred
to as Type-I SC-HCCs and Type-II SC-HCCs. Then, we derive
the exact density evolution (DE) equations for the uncoupled and
the coupled ensembles for the binary erasure channel (BEC).
Finally, considering different component encoders, we compute
the thresholds of the SC-HCC ensembles and compare them with
the thresholds of BCCs for a range of different rates.

I. INTRODUCTION

In the last years, there has been a growing interest in low-
density parity-check (LDPC) convolutional codes [1], also
known as spatially coupled LDPC (SC-LDPC) codes [2].
These codes exhibit a remarkable behavior called threshold
saturation; for them, the belief propagation (BP) decoder can
achieve the threshold of the optimal maximum-a-posteriori
(MAP) decoder.

However, spatial coupling is a general concept and is not
limited to LDPC codes. Spatially coupled turbo-like codes
(SC-TCs) were introduced in [3], [4]. In these articles, various
ensembles of spatially coupled parallel and serially concate-
nated codes (SC-PCCs and SC-SCCs) were proposed. More-
over, two extensions of braided convolutional codes (BCCs)
for higher coupling memory were introduced, referred to
as Type-I BCCs and Type-II BCCs. For the binary erasure
channel (BEC), the exact density evolution (DE) equations of
the considered SC-TCs were computed and the BP thresholds
of the coupled ensembles were obtained. The numerical results
in [4] indicate improvements in the BP thresholds of the
coupled ensembles and the occurrence of threshold saturation.
Moreover, the occurrence of threshold saturation is proved
analytically for SC-TCs over the BEC in [4], [5].

The DE analysis of SC-TCs shows that the Type-II BCC
ensemble has the best BP threshold among the considered
SC-TC ensembles. On the other hand, the finite block length
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analysis of BCCs in [6] indicates that the minimum distance
of BCCs grows linearly with the permutation size. It is also
shown that for BCCs very low error rates can be achieved by
avoiding a small fraction of bad permutations. Having close-
to-capacity thresholds and very low error floor, make BCCs a
very promising class of codes.

Hybrid concatenated codes (HCCs) [7], [8] are a class of
turbo-like codes which are closely related to BCCs. Similar to
the BCC ensemble, the HCC ensemble is a mixture of parallel
and serially concatenated code ensembles. Also for HCCs, the
minimum distance grows linearly with the permutation size.
In addition, they can achieve very low error rates in the floor
region [7], [8]. The remarkable properties of HCCs and their
similarities with BCCs, have motivated us to investigate the
impact of spatial coupling on HCCs.

As a first step, we briefly review the SC-TCs. Then, we
propose two ensembles of spatially coupled HCCs (SC-HCCs),
referred to as Type-I SC-HCCs and Type-II SC-HCCs. We also
derive the exact DE equations for the proposed ensembles
and compute the thresholds of BP decoding for the BEC.
Using the area theorem we compute the MAP threshold. We
also consider different component encoders to investigate the
impact of the component encoders on the decoding thresholds
of SC-HCCs. By considering random puncturing, we perform
a threshold analysis for a family of rate compatible SC-HCCs.
Finally, we compare the obtained numerical results with the
corresponding results for BCCs.
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Fig. 1. (a) Block diagram of PCCs, Compact graph representation of (b)
PCCs, (c) SCCs and (d) BCCs
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Fig. 2. Compact graph representation (a) PCC (b) SC-PCC at time instant t (c) SC-PCC

II. SPATIALLY COUPLED TURBO-LIKE CODES

A. Compact Graph Representation

In our previous studies [4], we considered three main classes
of TCs; including PCCs, SCCs, and BCCs. The compact
graph representations of these codes are shown in Fig. 1. This
new representation makes the illustration of TCs and SC-TCs
simpler, and makes the DE analysis of theses codes more
convenient. In this graph representation, the variable nodes,
corresponding to information and parity sequences, are shown
by black circles, and the factor nodes corresponding to the
component trellises are represented by squares. These factor
nodes are also labeled by the length of the corresponding
trellises.

As an example, the block diagram of the PCC encoder
and the compact graph of PCCs are shown in Fig. 1 (a)
and (b), respectively. In the compact graph representation, the
information sequence u is connected to the upper trellis TU

to produce the upper parity sequence vU. Likewise, a reorded
copy of u is connected to the lower trellis TL to produce the
lower parity sequence vL. To illustrate that a reordered copy of
u is connected to TL, the corresponding permutation is shown
by a cross line on the edge which connects u to TL.

Consider the PCC ensemble at time t in Fig. 2 (a). In order
to obtain the coupled ensemble —as it is shown in Fig. 2 (b)—
the information sequence, ut, is divided into two sequences
of equal size, ut,0 and ut,1, by a multiplexer (the multiplexer
is illustrated by a rectangle in the graph). Then, the sequence
ut,0 is used as a part of the input to the upper encoder at time
t, and ut,1 is used as a part of the input to the upper encoder
at time t + 1. Likewise, a reordered copy of the information
sequence, ũt, is divided into two sequences ũt,0 and ũt,1.
These sequences are connected to the lower encoders at time
t and t+ 1, respectively.

Consider a collection of L PCCs at time instants t = 1, ..., L
(Fig. 2 (c)), where L is called the coupling length. Similarly
to Fig. 2 (b), divide the information sequence ut, t = 1, . . . , L
into two sequences ut,0 and ut,1. The input to the upper
encoder at t is a reordered copy of (ut,0,ut−1,1). Likewise,
the input to the lower encoder at time t is a reordered copy
of (ũt,0, ũt−1,1).

In the SC-PCC ensemble in Fig. 2 (c), the coupling memory
is equal to m = 1 as ut is used only at the time instants t and
t + 1. It is possible to obtain higher coupling memory m by
dividing each of the sequences ut and ũt into m+1 sequences
of equal size and spread these sequences respectively to the
input of the upper and the lower encoder at time slots t to
t+m [4].

Similarly to PCCs, it is possible to apply spatial coupling
on SCCs and, increase the coupling memory for BCCs. The
SC-TC enseble are described in detail and illustrated in [4].

B. Density Evolution Equations and Decoding Thresholds

Considering transmission over a BEC, we can analyze the
asymptotic behavior of TCs and SC-TCs by tracking the
evolution of the erasure probability in different iterations of
the decoding procedure. This evolution can be shown as a set
of equations called density evolution (DE) equations, and for
the BEC, it is possible to derive an exact expression for them.
By use of the DE equations, we compute the threshold of
BP decoding. The BP threshold is the largest channel erasure
probability ε for that the erasure probability at the output of the
BP decoder converges to zero as the block-length and number
of iterations go to infinity. The BP thresholds, εBP, of the
considered TC ensembles are computed and summarized in
Table I for rate R = 1

3 .
We also computed the MAP thresholds of the ensembles,

εMAP, by use of the area theorem [9]. According to the



TABLE I
THRESHOLDS OF PCCS, SCCS AND BCCS WITH R = 1

3
, m = 1

Ensemble εBP εMAP εSC
PCC 0.6428 0.6553 0.6553
SCC 0.5405 0.6654 0.6437

Type-I BCC 0.5541 0.6653 0.6609
Type-II BCC 0.5541 0.6653 0.6651

area theorem, the MAP threshold1 can be obtained from the
following equation: ∫ 1

εMAP

p̄extr(ε)dε = R ,

where R is the rate of the code and p̄extr(ε) is the average
extrinsic probability of erasure for all transmitted bits.

According to the values shown for εBP and εMAP, while the
uncoupled BCC ensembles have the worst BP thresholds, they
have very good MAP thresholds. The last column of the table
shows the BP thresholds of coupled ensembles with coupling
memory m = 1. The BP threshold of the Type-II BCC
ensemble improves significantly and this coupled ensemble
has the best BP threshold for m = 1.

III. HYBRID CONCATENATED CODES

In this paper, we consider a rate R = 1
5 HCC ensemble

consisting of a PCC encoder as an outer encoder which is
serially concatenated with an inner encoder. The block diagram
representation of the HCC encoder is shown in Fig. 3. The
outer encoder is built of two rate-1 recursive systematic con-
volutional (RSC) encoders with N trellis sections, referred to
as upper and lower encoders, respectively. The inner encoder
is an RSC encoder with 2N trellis sections.

The information sequence u is connected to CU to produce
the upper parity sequence vU. Likewise, a reordered copy of u
is connected to CL, to produce the lower parity sequence vL.
Then, the sequences vU and vL are multiplexed and properly
reordered by permutation ΠI . The resulting sequence is used
as the input sequence for the inner encoder CI to produce
the parity sequence vI. Finally, the encoded sequence is v =
(u,vU,vL,vI).

CU

CL

⇢U

⇢L

⇢ICI⇧I⇧L

M M

U U

X X

vU

vL

vI

u

GI

GU

GL

Fig. 3. Block diagram representation of an HCC encoder
1The obtained threshold from the area theorem is an upper bound on the

MAP threshold. However, the numerical results show that the threshold of
the coupled ensemble converges to this upper bound. This indicates that the
upper bound on the MAP threshold is a tight bound.

A family of rate-compatible SC-HCCs can be obtained by
applying puncturing. We denote by ρ ∈ [0, 1] the fraction
of surviving bits in a sequence after puncturing, referred to
as permeability rate. Consider random puncturing with the
permeability rates ρU, ρL and ρI for the sequences vU

t , vL
t ,

and vI
t, respectively. The overall rate of the code is

R =
1

1 + ρU + ρL + 2ρI .

Fig. 4(a) shows the compact graph representation of the
considered HCC ensemble. The factor nodes corresponding to
upper, lower, and inner trellises are represented by squares and
denoted by TU, TL and TI, respectively.

The information sequence u is connected to TU to produce
the upper parity sequence vU. Likewise, a reordered copy of
u is connected to TL, to produce vL. Note that in the graph,
the permutation ΠL is illustrated by the line which crosses
the edge between u and TL. The sequences vU and vL are
multiplexed and properly reordered. The resulting sequence is
connected to TI to produce vI.

IV. SPATIALLY COUPLED HYBRID CONCATENATED CODES

A. Type-I Spatially Coupled Hybrid Concatenated Codes

The compact graph representation of the Type-I SC-HCC
ensemble with coupling memory m is shown in Fig. 4(b) for
time instant t. Consider a collection of L blocks of HCCs at
time instants t = 1, . . . , L. The information sequence at time
t is denoted by ut. Similarly to uncoupled HCCs, ut and a
reordered copy of ut are connected to TU

t and TL
t to produce

the current parity sequences vU
t and vL

t , respectively. Then, vU
t

and vL
t are multiplexed and reordered. The resulting sequence

is denoted by ṽO
t . In order to obtain a coupled ensemble with

memory m, ṽO
t is divided into m+ 1 equal-sized sequences,

denoted by ṽO
t,j , j = 0, . . . ,m. At time t, the input of the inner

encoder is a reordered version of (ṽO
t,0, ṽ

O
t−1,1, . . . , ṽ

O
t−m,m).

The corresponding parity sequence is denoted by vI
t. Finally,

the unpunctured code sequence is vt = (ut,v
U
t ,v

L
t ,v

I
t).

B. Type-II Spatially Coupled Hybrid Concatenated Codes

Fig. 4(c) depicts the compact graph representation of the
Type-II SC-HCC ensemble. This ensemble is equivalent to the
Type-I SC-HCC ensemble in most of the parts. For Type-II
SC-HCCs, in addition to the coupling of the parity sequences
vU
t and vL

t , we consider the coupling of the information
sequence ut. At time t, ut is divided into m + 1 equal-
sized sequences ut,j , j = 0, . . . ,m. Likewise, a reordered
copy of the information sequence, ũt, is divided into m + 1
equal-sized sequences ũt,j , j = 0, . . . ,m. At time t, the
sequence (ut−0,0,ut−1,1, . . . ,ut−m,m) and a reordered copy
of the sequence (ũt−0,0, ũt−1,1, . . . , ũt−m,m) are the input
sequences for the upper and the lower encoder, respectively.

V. DENSITY EVOLUTION ANALYSIS ON THE BEC

In this section, we assume transmission over the BEC with
erasure probability ε. Then, we derive the exact DE equations
for the SC-HCC ensembles with the coupling memory m. Note
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that the DE equations for the uncoupled HCC ensemble can be
obtained by considering m = 0 and removing the time index
in the DE equations of the SC-HCC ensembles. Using the
obtained DE equations, we analyze the asymptotic behaviors
of the ensembles in the next section.

A. Type-I Spatially Coupled Hybrid Concatenated Codes

Consider the Type-I SC-HCC ensemble with coupling mem-
ory m, in Fig. 4(b). The factor node TU is connected to the
variable nodes ut and vU

t . In the ith iteration, the average
extrinsic erasure probabilities from TU to ut and vU

t are
denoted by p

(i,t)
U,s and p

(i,t)
U,p , respectively. Likewise, p(i,t)L,s and

p
(i,t)
L,p denote the average extrinsic erasure probabilities from
T L to ut and vL

t , respectively. Then, the DE updates for TU

are

p
(i,t)
U,s = fU,s

(
q
(i−1,t)
L , q

(i−1,t)
I

)
, (1)

p
(i,t)
U,p = fU,p

(
q
(i−1,t)
L , q

(i−1,t)
I

)
, (2)

where

q
(i,t)
L = ε · p(i,t)L,s , (3)

q
(i,t)
I = ε ·

∑m
j=0 p

(i,t+j)
I,s

m+ 1
, (4)

and fU,s and fU,p are the transfer functions of TU for the
systematic and parity bits, respectively. Note that p(i,t)I,s in
equation (4), denotes the average extrinsic erasure probabilities
from T I to the set of vU

t′ and vL
t′ , t
′ = t−m, . . . , t which are

connected to it. The method proposed in [10] is used to obtain
the exact transfer functions of the component decoders.

The DE updates of the lower decoder are identical to those
of the upper decoder if the indexes U and L are interchanged.

Similarly the DE updates of T I can be written as

p
(i,t)
I,s = fI,s

(
q
(i−1,t)
UL , ε

)
, (5)

p
(i,t)
I,p = fI,p

(
q
(i−1,t)
UL , ε

)
, (6)

where

q
(i,t)
UL = ε ·

∑m
k=0 p

(i,t−k)
U,s + p

(i,t−k)
L,s

2(m+ 1)
, (7)

and fI,s and fI,p are the transfer functions of T I for the
systematic and parity bits, respectively.

Finally, the a-posteriori erasure probability on ut at time t
and iteration i is

p(i,t)a = ε · p(i,t)U,s · p
(i,t)
L,s . (8)

B. Type-II Spatially Coupled Hybrid Concatenated Codes

Consider the Type-II SC-HCC ensemble with coupling
memory m in Fig. 4(c). As we discussed in the previous
section, this ensemble is identical to the Type-I SC-HCC
ensemble except that in the Type-II SC-HCC ensemble the
information bits are also coupled. Therefore, the DE updates of
the Type-II SC-HCC ensemble are identical to the DE updates
of the Type-I SC-HCC ensemble except for the equations (3).
According to the compact graph representation in Fig. 4(c),
the information variable node ut is connected to the set of
TU
t′′s at time instants t′′ = t, . . . , t + m. The reordered copy

of ut is also connected to the set of T L
t′′s, t′′ = t, . . . , t+m.

Thus, the equations (3) is rewritten as

q
(i,t)
L = ε · 1

(m+ 1)2

m∑
k=0

m∑
j=0

p
(i,t+j−k)
L,s , (9)

Finally, the a-posteriori erasure probability on ut at time t
and iteration i is

p(i,t)a =
q
(i,t)
U · q(i,t)L

ε
. (10)

C. Random Puncturing

Assume transmission over a BEC with erasure probability ε.
Puncturing a sequence with permeability rate ρ is equivalent to
transmitting the sequence over a BEC with erasure probability
ερ = 1− (1− ε)ρ. Thus, we can modify the DE equations of
SC-HCCs to account for the random puncturing by considering
the corresponding ερs for the transmitted sequences.

As we discussed in the previous section, we denote the
permeability rates for the upper, lower, and inner sequence by
ρU, ρL and ρI, respectively. The DE updates for the punctured
Type-I SC-HCCs are obtained by substituting ερU ← ε in
equation (4) ( ερL ← ε in the corresponding equation for the
lower decoder) and ερI ← ε in equations (5) and (6). Moreover,
the equation (7) is modified to

q
(i,t)
UL =

∑m
k=0 ερU · p(i,t−k)U,s + ερL · p(i,t−k)L,s

2(m+ 1)
. (11)

The DE updates for the punctured Type-II SC-HCC ensem-
ble are identical to those of the punctured Type-I SC-HCC



ensemble, except of the modified versions of the equation (3)
and its corresponding equation for the lower decoder. For the
punctured Type-II SC-HCCs, q(i,t)L is obtained by substituting
ερU ← ε in equation (9). Likewise, q(i,t)U is obtained by
substituting ερL ← ε in the corresponding equation for the
lower decoder.

VI. RESULTS AND DISCUSSION

In this chapter, we compute the BP thresholds of HCCs and
SC-HCCs by use of the DE equations derived in Section IV.
In order to investigate the impact of the component encoders
on the thresholds of HCCs, we consider three different cases,
referred to as HCC-I, HCC-II and HCC-III. In all cases, we
assume identical upper and lower component encoders. The
generator matrices of the component encoders are shown in
Table II, in octal notation. In this table, the generator matrix
of the upper, lower, and inner encoder are denoted by GU, GL

and GI, respectively.

TABLE II
GENERATOR MATRICES OF THE COMPONENT ENCODERS

Ensemble GU = GL GI

SC-HCC-I (1, 1/3) (1, 5/7)
SC-HCC-II (1, 5/7) (1, 5/7)
SC-HCC-III (1, 5/7) (1, 1/3)

TABLE III
THRESHOLDS FOR PCCS, SCCS, BCCS AND HCCS WITH R = 1

3

Ensemble Type εBP εMAP ε1SC
PCC - 0.6428 0.6553 0.6553
SCC - 0.5405 0.6654 0.6437
BCC Type-I 0.5541 0.6653 0.6609
BCC Type-II 0.5541 0.6653 0.6651
HCC-I Type-I 0.4961 0.6666 0.6398
HCC-I Type-II 0.4961 0.6666 0.6611
HCC-II Type-I 0.3480 0.6666 0.5667
HCC-II Type-II 0.3480 0.6666 0.6181
HCC-III Type-I 0.5456 0.6665 0.5943
HCC-III Type-II 0.5456 0.6665 0.6382

In HCC-I, the upper and lower component encoders are
considered to be a simple 2-state RSC encoder with generator
matrix G = (1, 1/3). The inner component encoder is a 4-
state RSC encoder with generator matrix G = (1, 5/7). In
HCC-II, we consider three identical RSC encoders for the
upper, lower and inner components. These encoders have
generator matrix G = (1, 5/7). Finally, in HCC-III, we
considered similar component encoders as in HCC-I but with
a different order. The upper and lower components are the
2-state RSC encoders, while the inner component is the 4-
state RSC encoder. The corresponding thresholds to Table I
are computed for HCC-I, HCC-II and HCC-III. These results
are summarized in Table III. In order to obtain a code with
rate R = 1/3, random puncturing is considered with ρU = 0,
ρL = 0 and ρI = 1.

According to our numerical results, in general, all three
considered HCC ensembles suffer from relatively bad BP
thresholds and the HCC-II ensemble has the weakest BP

threshold. The MAP thresholds, εMAP, are almost identical,
but that of the HCC-III ensemble is slightly smaller; however,
the MAP thresholds of all three cases are excellent, even
better than the MAP thresholds of BCCs and SCCs. In other
words, for the HCC ensembles, the gap to the Shannon limit is
smaller than that for the BCC and SCC ensembles. Applying
the coupling results in improved BP thresholds. Similarly to
BCCs, Type-II SC-HCC ensembles have better BP thresholds
than Type-I SC-HCC ensembles.

As the HCC-II ensemble has the smallest BP threshold,
the gap between BP and MAP threshold is big for this
ensemble. Although its BP threshold improves significantly
after applying spatial coupling with m = 1, the coupled
threshold ε1SC is still much smaller than those of the other
cases. The SC-HCC-I ensemble has the best ε1SC between the
considered SC-HCCs ensembles. Overall, however, the Type-
II BCC ensemble still has the best ε1SC according to the results
in Table III.

To make the comparison more complete, we consider the
SC-HCC ensembles with some higher rates and higher cou-
pling memories. In order to obtain higher rate R, we consider
random puncturing with ρU = 0, ρL = 0 and ρ2 = ρI = 1−R

2R .2

The obtained BP and MAP thresholds are summarized in Table
IV. The corresponding BP thresholds for Type-II BCCs in [4]
are also given in this table. As we discussed, Type-II BCCs
have better thresholds than Type-I BCCs. Therefore, only the
thresholds of Type-II BCCs are reported in Table IV.

According to the results in the table, for all rates, the HCC
ensembles suffer from small BP thresholds and among them,
the HCC-II ensemble has the smallest BP threshold. The MAP
thresholds of the HCC ensembles are almost identical and very
close to the Shannon limit for all rates. However, for some
rates, the HCC-III ensemble has smaller MAP threshold than
those of the two other HCC ensembles. But this threshold
is still slightly better than the MAP threshold of the BCC
ensemble.

The BP thresholds of the spatially coupled ensembles with
coupling memory m = 1, 3, 5 are presented in the columns
corresponding to ε1SC, ε3SC and ε5SC, respectively. In all con-
sidered cases of SC-HCCs, the BP thresholds improve by
increasing the coupling memory. For a large enough coupling
memory, the BP thresholds achieve the threshold of the MAP
decoder. It can be seen that, for a fixed coupling memory, the
Type-II SC-HCC ensembles have better BP thresholds than
the corresponding Type-I SC-HCC ensembles and for them,
saturation occurs for smaller m. Although the Type-II BCC
ensemble has the best BP threshold for m = 1 for all rates,
by increasing m, the BP thresholds of the SC-HCC ensembles
get better those of BCCs.

VII. CONCLUSIONS

In this paper, we have investigated the impact of spatial
coupling on the BP thresholds of HCCs. Similarly to BCCs,
these codes are a powerful class of turbo-like codes and their

2To have consistent notation with [4], we replace ρI with ρ2 in the table.



TABLE IV
THRESHOLDS FOR PUNCTURED BCCS AND HCCS

Ensemble Type Rate ρ2 εBP εMAP ε1SC ε3SC ε5SC
BCC Type-II 1/3 1.0 0.5541 0.6653 0.6651 0.6653 0.6653
HCC-I Type-I 1/3 1.0 0.4961 0.6666 0.6398 0.6621 0.6651
HCC-I Type-II 1/3 1.0 0.4961 0.6666 0.6611 0.6666 0.6666
HCC-II Type-I 1/3 1.0 0.3480 0.6666 0.5667 0.6166 0.6312
HCC-II Type-II 1/3 1.0 0.3480 0.6666 0.6181 0.6652 0.6666
HCC-III Type-I 1/3 1.0 0.5456 0.6665 0.5943 0.6243 0.6352
HCC-III Type-II 1/3 1.0 0.5456 0.6665 0.6382 0.6655 0.6663
BCC Type-II 1/2 0.5 0.3013 0.4993 0.4988 0.4993 0.4993
HCC-I Type-I 1/2 0.5 0.2486 0.4999 0.4601 0.4947 0.4982
HCC-I Type-II 1/2 0.5 0.2486 0.4999 0.4846 0.4999 0.4999
HCC-II Type-I 1/2 0.5 0.1502 0.4999 0.3766 0.4472 0.4659
HCC-II Type-II 1/2 0.5 0.1502 0.4999 0.4272 0.4970 0.4999
HCC-III Type-I 1/2 0.5 0.3501 0.4999 0.4135 0.4540 0.4685
HCC-III Type-II 1/2 0.5 0.3501 0.4999 0.4597 0.4979 0.4994
BCC Type-II 2/3 0.25 – 0.3331 0.3323 0.3331 0.3331
HCC-I Type-I 2/3 0.25 0.0622 0.3333 0.2671 0.3274 0.3314
HCC-I Type-II 2/3 0.25 0.0622 0.3333 0.2952 0.3327 0.3333
HCC-II Type-I 2/3 0.25 0.0331 0.3333 0.1972 0.2787 0.3024
HCC-II Type-II 2/3 0.25 0.0331 0.3333 0.2355 0.3252 0.3328
HCC-III Type-I 2/3 0.25 0.1820 0.3332 0.2434 0.2876 0.3044
HCC-III Type-II 2/3 0.25 0.1820 0.3332 0.2821 0.3295 0.3327
BCC Type-II 3/4 0.166 – 0.2491 0.2481 0.2491 0.2491
HCC-I Type-I 3/4 0.166 0.0199 0.2499 0.1662 0.2398 0.2481
HCC-I Type-II 3/4 0.166 0.0199 0.2499 0.1930 0.2479 0.2499
HCC-II Type-I 3/4 0.166 0.0102 0.2492 0.1161 0.1919 0.2184
HCC-II Type-II 3/4 0.166 0.0102 0.2492 0.1431 0.2348 0.2477
HCC-III Type-I 3/4 0.166 0.1106 0.2491 0.1624 0.2043 0.2215
HCC-III Type-II 3/4 0.166 0.1106 0.2491 0.1933 0.2433 0.2485
BCC Type-II 4/5 0.125 – 0.1999 0.1986 0.1999 0.1999
HCC-I Type-I 4/5 0.125 0.0085 0.1999 0.1091 0.1821 0.1982
HCC-I Type-II 4/5 0.125 0.0085 0.1999 0.1315 0.1956 0.1997
HCC-II Type-I 4/5 0.125 0.0043 0.1999 0.0747 0.1406 0.1677
HCC-II Type-II 4/5 0.125 0.0043 0.1999 0.0940 0.1795 0.1970
HCC-III Type-I 4/5 0.125 0.0743 0.1999 0.1173 0.1557 0.1726
HCC-III Type-II 4/5 0.125 0.0743 0.1999 0.1422 0.1917 0.1990
BCC Type-II 9/10 0.055 – 0.0990 0.0954 0.0990 0.0990
HCC-I Type-I 9/10 0.055 0.0006 0.0999 0.0245 0.0603 0.0822
HCC-I Type-II 9/10 0.055 0.0006 0.0999 0.0317 0.0798 0.0960
HCC-II Type-I 9/10 0.055 0.0003 0.0990 0.0159 0.0427 0.0610
HCC-II Type-II 9/10 0.055 0.0003 0.0990 0.0208 0.0617 0.0850
HCC-III Type-I 9/10 0.055 0.0190 0.0990 0.0367 0.0587 0.0714
HCC-III Type-II 9/10 0.055 0.0190 0.0990 0.0463 0.0805 0.0941

MAP thresholds are even better than those of BCCs. We have
shown that the BP thresholds of the HCC ensembles increase
significantly by applying spatial coupling and threshold satu-
ration occurs. By selecting the component encoders properly,
we can optimize the HCC ensemble for higher BP or MAP
thresholds. However, optimizing the HCC ensemble for higher
BP or MAP threshold does not guarantee a high BP threshold
for SC-HCC for a fixed coupling memory.
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