Algorithms and Proofs of Concept for Massive MIMO Systems

by

João Vieira

Doctoral dissertation/Akademisk avhandling

for the degree of technical doctorate at the faculty of engineering at Lund University will be publicly defended in the auditorium E: 1406, E-building, Lund Institute of Technology, Thursday on 30 November 2017 at 10:15.

som för avläggande av teknisk doktorsexamen vid tekniska fakulteten vid Lunds Universitet kommer att offentligen försvaras i hörsal E:1406, E-huset, Lunds Tekniska Högskola, Torsdag den 30 November 2017 kl 10.15.

Organization	Document name		
Department of Electrical and		DOCTORAL DISSERTATION	
Information Technology		Date of issue	
Lund University		November 2017	
P.O. Box 118		CODEN:	
SE-221 00 Lund, Sweden	CODEN.		
Author(s)			
João Vieira	Sponsoring organization		
Jodo viena	SSF, VR, MAMMOET		
Title and subtitle			
Algorithms and Proofs of Concept for Massive MIMO Systems			
Abstract			
This thesis focuses on algorithms and proofs of concepts in the area of wireless systems operating with a large number of antennas, especially at the base station			
side.			
The first studied topic concerns the design and implementation of massive multiple-input multiple-output (MIMO) testbeds, primarily for communications. This is an entirely new engineering challenge on its own, due to the unprecedented use of a large number of base station antennas together with time division			
duplex (TDD)-based operation. We consider hardware and system-level aspects of extending current Long Term Evolution (LTE) systems in order to integrate			
a massive number of antennas at the base station side. We materialize our testbed design into the Lund University massive MIMO (LuMaMi) testbed, and			
finalize with (measured) proof-of-concept results to validate our design claims. The second researched topic addresses transceiver calibration to re-establish the reciprocity assumption of a wireless link. This aspect is crucial to be dealt			
due to the preferred operation mode of massive MIMO, i.e. TDD. To overcome the practical hassles of hardware-based calibration schemes, we propose a			
convenient over-the-air sounding method between all pairs of base station antennas that allows gathering enough measurements in order to estimate robust			
calibration coefficients. We provide algorithmic contributions and experimental evidence that corroborate the use of this calibration methodology in practice. This calibration approach is also applied to the case of calibrating the transmitter and receiver chains individually, for classical array beamforming applications.			
The topic of detection in block fading (massive) SIMO systems is also addressed. This system setup is very representative to those of many existing systems as			
of today, e.g., in low power sensor networks. Using an estimation framework learned from our work in transceiver calibration, namely the generalized method			
of moments (GMM), we study a closed-form estimator that balances complexity and performance nicely. The last part of the thesis aims to bring together the emerging topic of Deep Learning with fingerprint-based terminal positioning using uplink massive MIMO			
channels. The key idea is that the intricate structure of raw massive MIMO channels can be learned by deep learning networks and therefore used for positioning			
purposes. We study the applicability of a particular case of deep learning methods, namely, convolutional neural networks, which are state-of-the-art learning machines in the context of image processing			
Key words: Massive MIMO, Algorithms, Parameter Estimation, Testbeds, Implementation, Generalized Method of Mo-			
ments, Positioning, Deep Learning			
Classification system and/or index terms (if any)			
		Language	
Supplementary bibliographical information		English	
ISSN 1654 700X No 108		ISBN	
ISSN 1654-790X, No 108		978-91-7753-442-6	
Recipients notes	Number of pages	Price	
	254		
	Security classification	Security classification	

Distribution by (name and address)

The thesis may be ordered from the Department of Electrical and Information Technology or borrowed through the University Library, Box 3, SE-221 00 Lund, Sweden.

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to all reference sources permission to publish and disseminate the abstract of the above-mentioned dissertation.

Signature:

foodlieura

Date 2017-11-03