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We propose a method for the optimal time-controlled generation of entangled itinerant particles, using on-
demand sources in a conductor in the quantum Hall regime. This entanglement pump is realized by applying
periodic, tailored voltage pulses to pairs of quantum dots or quantum point contacts. We show that the pump can
produce orbital Bell pairs of both electrons and holes at the optimal rate of half a pair per pumping cycle. The
entanglement can be detected by a violation of a Bell inequality formulated in terms of low-frequency current
cross correlations.
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Entanglement of itinerant electrons in mesoscopic and
nanoscale systems continues to attract great attention. Despite
intense effort, a clear demonstration of the generation, spatial
separation and detection of entangled pairs of electrons is
still missing. Of particular interest would be an on-demand
source for entanglement,1–4 while a key component in quantum
information processing is the time-controlled production of
entangled flying quantum bits. A scheme for the dynamical
generation, or pumping, of orbitally entangled electron-hole
pairs was proposed by two of us in Ref. 1. However, as the
proposed pump operated in the weak amplitude regime, it
produced on average much less than one Bell pair per cycle.
Subsequently it was shown that, for strong amplitude pumping
of noninteracting particles, the optimal production rate is half
a Bell pair per cycle.2 Optimal electron-hole pair entanglement
pumps have also been proposed, but without any scheme for
entanglement detection.2,4

An important step toward entanglement pumping was
taken experimentally by Fève et al.,5 who realized a single-
particle on-demand source in a conductor in the quantum
Hall regime.6–11 Under ideal conditions, the source produces
exactly one electron and one hole per cycle. A scheme for
the production of pairs of orbitally entangled particles in
different time bins based on two on-demand sources in a
double electronic Mach-Zehnder interferometer was proposed
in Refs. 12 and 13. The origin of the entanglement was
two-particle interference,14–16 manifested by a nonlocal two-
particle Aharonov-Bohm effect. The maximum production
was 1/4 Bell pair per cycle, i.e., half the optimal rate.

Here we propose an entanglement pump, aiming for the
simplest scheme for detection and optimal production of
orbital entanglement in the same system (see Fig. 1). A
conductor in the quantum Hall regime with two on-demand
sources, C and D, is connected to four terminals via electronic
beam splitters at A and B. Using a single spin-polarized edge
state and the interferometer of Ref. 1, the sources operate in
the strong amplitude regime and generate pairs of entangled
particles at an optimal rate.

The two types of sources, driven by voltage pulses VC(t)
and VD(t), are shown in Figs. 1(b) and 1(c). Figure 1(b)
shows the level of a quantum dot (QD) driven up (down)

through Fermi energy, generating a single electron (hole), as
in the experiment of Ref. 5. However, with the QD coupled
to separate quantum Hall edge states, the particle is emitted
into a superposition of states at the two edges. In Fig. 1(c), a
quantum point contact (QPC) is opened and closed to generate
exactly one particle and one hole, which are independently
emitted into edge state superpositions. We show below that,
for QD as well as QPC sources, driving C and D periodically
generates orbitally entangled pairs of both electron and hole
wave packets, with one particle propagating toward A and one
toward B. For synchronized and spatially symmetric sources
the entanglement production rate is optimal, with half a Bell
pair per cycle. Using earlier results for many-body states
of emitted particles of on-demand sources,4,6,9 we derive
explicit expressions for the entangled wave function. The
entanglement, arising from two-particle interference,14–16 can
be detected via low-frequency cross correlations of currents at
the four terminals 1–4. Throughout the Rapid Communication
we consider zero temperature and put h̄,e = 1.

QD sources. We first consider QD sources. The aim is to
obtain the many-body wave function of the entangled particles
emitted from the sources toward A and B. We consider the
scattering properties of source C for a single-electron-emission
event. The QD has a single localized level at energy E(t) and
tunnel couplings to the edges toward A and B. If the energy
of the level is varied slowly on the scale of the Wigner delay
time (adiabatic approximation), the time development of the
scattering states is given by the instantaneous value of the
scattering matrix SC . When the energy of the level is varied at
constant speed, E(t) = ν(t − tC), SC takes the Breit-Wigner
form

SC = 1

t − tC − iτC

(
t − tC + iτ̄C −2i

√
τCAτCB

−2i
√

τCAτCB t − tC − iτ̄C

)
, (1)

with τC = τCA + τCB and τ̄C = τCA − τCB . Here ντCA and
ντCB are tunnel rates through the barriers into states propagat-
ing toward A and B.
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FIG. 1. (Color online) (a) Optimal orbital entanglement pump
with two single-particle emitters, C and D, connected to conductors in
the quantum Hall regime. The emitted electrons and holes propagate
along edge states to controllable electronic beam splitters at A and B
and are detected at terminals 1–4. The sources C and D can be either
(b) quantum dots or (c) quantum point contacts. Tailored voltage
profiles VC(t) and VD(t) are applied to a gate in case (b) to move a
localized level with energy E(t) up (down) through the Fermi energy
releasing an electron (hole), or in case (c) to cycle the transmission
probability, T (t), from zero through unity and back to generate a
particle-hole excitation.

The scattering matrix SC can be diagonalized in a

time-independent basis S̃C = V SCV † = ( eiφC 0
0 1 ), with V =

1√
τC

( −√
τCA

√
τCB√

τCB
√

τCA
) and

eiφC (t) = t − tC + iτC

t − tC − iτC

. (2)

The low-temperature many-body state incident on C is a filled
Fermi sea of electrons originating from terminals 2 and 3. The
incident many-body state is |ψin〉 = ∏

ε<0 a
†
C+(ε)a†

C−(ε)|〉,
where the a

†
C±(ε) are creation operators in the diagonal basis

for particles with energy ε in the incoming channels + or −,
and |〉 is the vacuum. Denoting the operators for particles in
the corresponding outgoing states by b

†
C±(ε), the many-body

state after impinging on C is

|ψC〉 =
∏
ε<0

b
†
C+(ε)

∑
ε′

(eiφC )ε,ε′b
†
C−(ε′)|〉. (3)

Here (eiφC )ε,ε′ is the Fourier transform of eiφC (t) with respect
to the energy difference (ε − ε′).17–19

With the phase profile of (2) and taking ν > 0, the
many-body state becomes |ψe

C〉 = √
2τC

∑
ε>0 exp[ε(itC −

τC)]b†C−(ε)|0〉. It describes a single electron above the
unperturbed Fermi sea |0〉.6,9 The wave function of the
single-particle excitation is ψ(x,t) ∼ 1/(x − vdr[t − tC −
iτC]), where x is the distance from C and vdr the drift velocity
along the edge. Using [b†CA(ε),b†CB(ε)] = V [b†C−(ε),b†C+(ε)]

to write |ψe
C〉 in terms of operators b

†
CA(ε) and b

†
CB(ε), which

create particles propagating along the edges toward A and B,
we obtain

∣∣ψe
C

〉 = 1√
τC

[−√
τCAp

†
CA + √

τCBp
†
CB]|0〉. (4)

Here the normalized wave-packet operator p
†
CA =√

2τC

∑
ε>0 exp[ε(itC − τC)]b†CA(ε) and similarly for

p
†
CB . Equation (4) shows that driving the QD level at C up

through the Fermi level injects a single electron into a linear
superposition of states propagating toward A and B.

The corresponding result to (4), when driving the
QD level at D up through the Fermi level, is |ψe

D〉 =
(1/

√
τD)[−√

τDAe−iηp
†
DA + √

τDBeiηp
†
DB]|0〉. Here p

†
DA and

p
†
DB are obtained from p

†
CA and p

†
CB by changing indices

C ↔ D. We have also included a phase factor eiη to account
for a possible Aharonov-Bohm phase. The total wave function
for the electrons emitted from C and D is then the product
|ψee

out〉 = |ψe
C〉|ψe

D〉. We are interested in the nonlocal proper-
ties of |ψee

out〉, with the particles emitted toward different beam
splitters. Projecting |ψee

out〉 onto the subspace with one particle
at A and one at B gives the normalized wave function20

∣∣ψee
AB

〉 = 1√
N

[
√

τCAτDBp
†
CAp

†
DBeiη

+√
τCBτDAp

†
CBp

†
DAe−iη]|0〉, (5)

where N = τCAτDB + τCBτDA. The weight, or probability that
|ψee

AB〉 is generated, is wAB = N/(τCτD).
The wave function |ψee

AB〉 describes two particles above
the filled Fermi sea. It is entangled in the orbital (i.e.,
source C and D) degree of freedom—a result of two-particle
interference.14 The superposition in |ψee

AB〉 results from the
indistinguishability of the two emission processes leading to
a particle at A and one at B. In one process a particle moves
from C to A and another from D to B. In the second process
particles move from D to A and from C to B. To quantify the
orbital entanglement we consider the reduced 4 × 4 orbital
density matrix ρAB . This is obtained by tracing |ψee

AB〉〈ψee
AB |

over energy:21

ρAB = N−1(τCAτDB |CD〉〈CD| + τCBτDA|DC〉〈DC|
+χ

√
τCAτCBτDAτDB[eiη|CD〉〈DC| + H.c.]), (6)

where |CD〉 ≡ |C〉A|D〉B and |C〉A denotes an electron at A
emitted from C, etc. Here

χ = 4τCτD

(tC − tD)2 + (τC + τD)2
(7)

quantifies the overlap (0 � χ � 1) between the two wave
packets emitted from C and D. We note that a reduced
overlap χ < 1 plays the same role as a nonzero dephasing
for two-particle interference.16

The entanglement of ρAB is conveniently quantified via
the concurrence C, which ranges from 0 for a separable
nonentangled state to 1 for a maximally entangled state.22

For ρAB we find

C = 2(χ/N)
√

τCAτCBτDAτDB, (8)

which is nonzero for arbitrary small overlap χ and arbitrary
tunnel couplings.12 For QDs synchronized in time, tC = tD ,
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with symmetric couplings τCA = τCB = τC/2 and τDA =
τDB = τD/2, the density matrix ρAB = |ϕee

AB〉〈ϕee
AB | with

|ϕee
AB〉 = 1/

√
2[eiη|CD〉 + e−iη|DC〉]. This state is an orbital

Bell pair, i.e., it is maximally entangled (C = 1). Moreover,
the weight wAB = 1/2 and hence the concurrence production
per cycle is wABC = 1/2, the theoretical maximum.20

If the QD level at C is driven down through the Fermi level at
time t ′C , a hole is generated in a linear superposition of states
in the edges toward A and B, with a wave function |ψh

C〉 =
(1/

√
τC)[−√

τCAh
†
CA + √

τCBh
†
CB]|0〉. Here the hole wave-

packet creation operator is h
†
CA = √

2τC

∑
ε<0 exp[ε(it ′C +

τC)]bCA(ε). A similar relation holds for |ψh
D〉, giving a total

hole wave function |ψhh
out〉 = |ψh

C〉|ψh
D〉.

For a large amplitude driving up and subsequently down
through the Fermi energy, with t ′C − tC 	 τC and t ′D − tD 	
τD , the electron and hole emissions are well separated in time
and can be treated as independent.8,9 The total wave function
for the emitted particles is then |ψQD

out 〉 = |ψee
out〉|ψhh

out〉. In the
experimentally relevant situation,5 with a cycling of the QD
level with period T 	 τC,τD , the pump produces pairs of
both entangled electrons and holes which, for symmetric and
syncronized sources, reaches the optimal production rate of
1/2 a Bell pair per period.

QPC sources. For QPC sources, the emitted state is created
by applying tailored voltage pulses VC,D(t) to the gates C
and D.4 The instantaneous scattering matrix of gate C can be
written

SC =
(

λC(t) κC(t)

−κ∗
C(t) λ∗

C(t)

)
, (9)

where |κC(t)|2 and |λC(t)|2 are the transmission and reflection
probabilities through the QPC, respectively. Provided no
voltage is applied across the device, SC can be diagonalized4

in a time-independent basis S̃C = V SCV † = ( eiφC 0
0 e−iφC

), with

V = 1√
2
( 1 −i

1 i
) and eiφC (t) = λC(t) + iκC(t). The outgoing

manybody wave function can then be written in the diagonal
basis

|ψ̄C〉 = 1

2

∏
ε<0

∑
ε′,ε′′

(eiφC )ε,ε′(e−iφC )ε,ε′′b
†
−(ε′)b†+(ε′′)|〉. (10)

By varying VC(t) so that the transmission amplitude κC(t) =
2τC(t − tC)/[(t − tC)2 + τ 2

C], the phase factor eiφC (t) is again
given by (2). In this case we can write the outgoing many-body
wave function6

∣∣ψeh
C

〉 = 1
2 (p†

CA + ip
†
CB)(h†

CA − ih
†
CB)|0〉 (11)

in the unrotated basis with a corresponding result for
|ψeh

D 〉. The wave functions |ψeh
C,D〉 describe one electron and

one hole wave packet, independently emitted on top of the
unperturbed Fermi sea, in superpositions which describe
excitations propagating toward A and B. Consequently, the
total state |ψQPC

out 〉 = |ψeh
C 〉|ψeh

D 〉, as for the QD, is the direct
product of independently emitted pairs of electrons and holes.
The difference is that for the QPC the electrons and holes at
C (D) are emitted at the same time, t ′C = tC and t ′D = tD . The
reduced density matrix and the concurrence of the electron and
hole states at A and B are given by Eqs. (6) and (8), respectively,

after taking τCA = τCB = τC/2 and τDA = τDB = τD/2. For
perfectly synchronized driving tC = tD the QPC also works as
an optimal entanglement pump, producing independent pairs
of entangled electrons and holes at A and B with a rate 1/2 per
cycle.

Bell inequality. The existence of entanglement in the
system illustrated in Fig. 1 can be verified experimentally by
demonstrating violation of a Bell inequality (BI). A BI can
conveniently be formulated in terms of the joint, or coincident,
probabilities to detect quasiparticle excitations,14 as M � 2 for
the Bell parameter

M = |E(α,β) − E(α,β ′) + E(α′,β) + E(α′,β ′)|. (12)

Here the correlation function

E(α,β) = P24 + P13 − P14 − P23

P24 + P13 + P14 + P23
, (13)

where Pij (= P ee
ij + P hh

ij ) is the sum of the probabilities to
jointly detect an electron or hole at A (i = 1,2) and B (i = 3,4)
during a pumping cycle,1 and is given by

P ee
ij =

∫ ∞

0
dε

∫ ∞

0
dε′〈b†i (ε)b†j (ε′)bj (ε′)bi(ε)〉,

(14)

P hh
ij =

∫ 0

−∞
dε

∫ 0

−∞
dε′〈bi(ε)bj (ε′)b†j (ε′)b†i (ε)〉.

The annihilation operators for the states entering the terminals
i,j at A are(

b2

b1

)
=

(
cos α sin α

− sin α cos α

)(
bCA

bDA

)
. (15)

The operators at B are obtained after setting α → β, 1 → 3,
and 2 → 4. From the emitted many-body wave functions for
the QD and the QPC, together with the operator relations at the
beam splitters (15), we obtain the joint detection probability

P ee
13 = (2τCAτDB sin2 α cos2 β + 2τCBτDA sin2 β cos2 α

−χ cos η
√

τCAτDBτCBτDA sin 2α sin 2β)/(2τCτD),

(16)

with corresponding results for the other P ee
ij (P hh

ij = P ee
ij ).23

For the QPC source we put τCA = τCB = τC/2 and τDA =
τDB = τD/2. Inserting the Pij into (13) gives

E(α,β) = −(cos 2α cos 2β + C cos η sin 2α sin 2β), (17)

where C is the concurrence in Eq. (8). By optimizing the
settings α, α′, β, and β ′ of the beam splitters A and B,24 the
BI reduces to 2

√
1 + C2 cos2 η � 2, which can be violated for

arbitrary overlap χ and phase η.
The joint detection probabilities in Eq. (14) are presently not

directly accessible in mesoscopic conductors, as they require
time-resolved correlation measurements on the time scale of
the period T . It is, however, possible to express Pij in terms of
experimentally available currents and low-frequency current
cross correlators. The period-averaged, zero-frequency cross
correlations Sij (Ref. 25) are found to be

Sij = T −1(P ee
ij − P e

i P e
j + P hh

ij − P h
i P h

j

)
. (18)

Note that Sij does not contain any electron-hole correlations,
as a consequence of the independent emission of electrons and
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holes, discussed above. In Eq. (18) the (single-particle) proba-
bility to detect an electron in lead i is P e

i = ∫ ∞
0 dε〈b†i (ε)bi(ε)〉,

while P h
i is the probability to detect a hole. For the QD, P e

i

and P h
i are available from Ii(t), which is the experimentally

accessible time-resolved current.5 By integrating over half
cycles, driving the QD-level up (down) during the first
(second) half, we have (1/e)

∫ T/2
0 dtIi(t) = Qe

i /e = P e
i and

(1/e)
∫ T

T/2 dtIi(t) = Qh
i /e = P h

i . Here Qe
i and Qh

i are the
electron and hole charge flowing into contact i during the cycle.
For the QPC, P e

i and P h
i can instead be obtained in a more

indirect way via the low-frequency current autocorrelations,
which we do not discuss here. Taken together, this allows

us to express the correlation function E(α,β), and hence
the Bell inequality, directly in terms of currents and current
correlations.

In conclusion, we have proposed an optimal entanglement
on-demand source in a noninteracting mesoscopic conductor
in the quantum Hall regime. Pairs of entangled, spatially
separated electrons and holes are generated by applying
tailored, time-dependent voltage pulses to quantum dots or
quantum point contacts. The entanglement can be investigated
by current and current cross-correlation measurements.

We acknowledge discussions with B. Muzykantskii.
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