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Abstract

The European Spallation Source will, once fully operational in 2025, be the
world’s brightest neutron source. The neutrons will be generated by bom-
barding a tungsten target with protons accelerated to 96% the speed of light
by electromagnetic fields confined in 155 radio-frequency cavities along the
world’s most powerful linear accelerator.

This thesis has been motivated by the strict control specifications on the
amplitudes and phases of the accelerating electromagnetic fields. By consid-
ering the field control problem from an automatic control perspective, the
thesis aims at improving the understanding of the problem and to explain
important aspects of the control design.

Throughout the thesis it has been helpful to model the cavity and RF sys-
tem by complex-coefficient single-input single-output systems. The complex-
coefficient representation was particularly useful for discussing: (1) the con-
trol design for cavities with parasitic resonance modes; (2) the effect of loop
phase variations on feedback stability; (3) the directionality of the distur-
bances and the objective function.

The thesis presents a non-standard parametrization and derivation of the
cavity field dynamics that make it easier to relate the physical cavity process
to the model, and simplifies the understanding of how the cavity parameters
affect the achievable control performance.

The control performance of simple PI(D)-controllers and general lin-
ear time-invariant controller was compared using the Youla parametrization
and convex optimization; it was found that PI(D)-controllers in many cases
achieved performance similar to the more general linear time-invariant con-
troller; this indicates that simple PI(D)-controllers in many cases are an
excellent choice for cavity field control.

Lastly, the energy-optimal strategy to build up the electromagnetic cavity
fields is derived, allowing the sustainability of the European Spallation Source
to be further improved.
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Abbreviations

Abbreviation Meaning
ADC Analog to Digital Converter
BCM Beam Current Monitor
DAC Digital to Analog Converter
DTL Drift-Tube Linac
EPICS Experimental Physics and Industrial Control System
ESS European Spallation Source
FPGA Field Programmable Gate Array
IF Intermediate Frequency
ILC Iterative Learning Control
IOC Input Output Controller (EPICS specific term)
IQ In-phase and Quadrature (i.e., the real and

imaginary parts of a complex number)
LLRF Low-Level Radio Frequency (System)
LO Local Oscillator
LTI Linear Time-Invariant
MIMO Multiple-Input Multiple-Output
MO Master Oscillator
NIQ Near/Non IQ
PI(D) Proportional-Integral-(Derivative) (Controller)
RF Radio Frequency
RFQ Radio-Frequency Quadrupole
RMS Root-Mean Square
SISO Single-Input Single-Output
SNR Signal to Noise Ratio
TITO Two-Input Two-Output

Remark on nomenclature
In this thesis, control refers to control as in automatic control, and not as in
industrial control system. Stability refers to feedback stability, and not that
a quantity is kept constant over time. When we say field error or control
error we mean what accelerator physicists call jitter. We will use ”reference”
for referring to the phase reference provided by the reference oscillator, and
set-point for the reference signal to the controller.
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1
Introduction

1.1 The European Spallation Source

The European Spallation Source will, once fully operational in 2025, be the
world’s brightest neutron source. Its high intensity and long pulses have been
said to bring a paradigm shift to neutron imaging that will ultimately lead to
scientific break-throughs in pharmacology, chemistry, solid-state physics, en-
gineering sciences, material sciences, archeology and other fields [ESSa, 2017].

Background
The history of the European Spallation Source (ESS) goes back to an OECD
study from the early 1990s that recommended that megawatt-class spallation
sources be built in Europe, Asia and North America. Early designs for the
European Spallation Source were presented in 2002 and 2003. In 2009 it was
decided that the ESS would be constructed in Lund, Sweden, in a collab-
oration between 17 European partner countries. Preparatory design efforts
culminated in 2012, with the completion of the ESS Technical Design Report
[Peggs et al., 2013], and in 2014 the construction began outside of Lund.

ESS is committed to become a sustainable research facility. This amounts
to, among other things, that only renewable energy will be used and that
waste heat from the cooling system will be recycled to the Lund district-
heating network.

Neutron imaging
The ESS can be likened to a large microscope that uses neutrons instead of
light. Neutrons interact strongly with hydrogen atoms, but weakly with large
atoms, which allows otherwise invisible features in the studied samples, see
Figure 1.1. ESS will not only have the highest neutron flux of all neutron
sources in the world, but also relatively long neutron pulses (Figure 1.2),
which will allow researchers to get an unparalleled insight into the time-
evolution of biological process on a molecular scale.
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Chapter 1. Introduction

(a) X-rays. (b) Neutrons.

Figure 1.1 Neutrons interact weakly with large atoms, but strongly with
hydrogen, which allows them to reveal features that are invisible to X-rays.
Photo credit: Paul Scherrer Institute.

ESS(Sweden)

ISIS(UK)

SNS(US) JPARC(Japan)

ILL(France)

Figure 1.2 The expected brightness of the neutron pulse of ESS, com-
pared to today’s leading neutron sources. Source: ESS Activity Report 2015

Overview of ESS
The neutrons at ESS will be obtained through a nuclear reaction called spal-
lation by bombarding a rotating tungsten target with protons, see Figure 1.3.
The emitted neutrons are guided to the 16 different state-of-the-art neutron
instruments by neutron guides. The protons are accelerated to 96 % the speed
of light by the worlds most powerful linear accelerator. The main components
of ESS are illustrated in Figure 1.4, for more details see the ESS Technical
Design Report [Peggs et al., 2013].
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1.1 The European Spallation Source

proton

288 000 km/s

Tungsten
nucleus

BOOM!

π

γ

neutrons

⇒

Figure 1.3 The spallation process used to generate free neutrons for the
ESS; put simply, high-velocity protons are smashed into tungsten nuclei,
which make them emit neutrons; for more details on spallation, see [Russell,
1990].

Particle acceleration
The protons will be accelerated in bunches, with about one billion protons
each, by oscillating electromagnetic fields confined in metal structures called
RF cavities; in total there will be 155 RF cavities of six different types along
the linear accelerator. The acceleration of the bunches and how well they
are kept together, depend on the amplitudes of the electromagnetic fields,
as well as their phases relative the bunches—if these two quantities are not
accurately controlled, the proton bunches get the wrong velocities.

Protons with incorrect velocities are not deflected correctly by the focus-
ing magnets, and will crash into the cavity walls, inducing radioactivation. If
the accelerator becomes too radio-activated it needs significant time to cool
down, before maintenance can be done, making it impossible to meet the
top-level requirement on ESS of 95% availability.

The ESS accelerator will become the most powerful linear accelerator in
the world (Figure 1.5), and with its high beam current (62.5 mA), and high
duty-factor (4 %), only very small field errors can be tolerated before the
radioactivation becomes too severe. The ESS requirements on the allowed
field errors are unprecedentedly hard for a high-intensity proton accelerator,
and it is the challenges of meeting these requirements that have motivated
this thesis.

An analogy: “The equivalent broom model”
An analogous model of the acceleration process, which perhaps is more un-
derstandable and familiar to the layman, is illustrated in Figure 1.6. The
proton bunches are modeled by dust balls, and the electromagnetic cavity
fields are modeled by brooms hinged on low friction bearings. The brooms
are free to swing in the direction from the dust source to the dust target,

15



Chapter 1. Introduction

400 m
Accelerator

Spallation target

Ion Source

Neutron
experiments

Figure 1.4 Schematic of the Euro-
pean Spallation Source. The length of
the accelerator is not to scale.

0 m 50 m 100 m

protons
neutrons

Figure 1.4 —
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Figure 1.5 How the 5 MW average power of the ESS accelerator com-
pares to the currently most powerful linear accelerators in the world.

Figure 1.6 Equivalent broom model, the dust is accelerated from the
source (under the bed), to the target (under the carpet).

and energy is provided to the brooms by (rather weak) electric motors, which
provide torque in phase with the oscillation. The broom energies (potential
+ kinetic) correspond to the energy stored in the cavity fields.

The movements of the brooms are synchronized to the dust balls, ensuring
that they are swept towards the target. The brooms provide an accelerating
force on the dust balls, while the dust balls provide a retarding force on the
brooms. Due to the large moment of inertia of the brooms, many dust balls
are needed to perturb their oscillation.

If the brooms are not properly synchronized to the dust balls, they will
spread dust in the room, which results in poor air quality.

17



Chapter 1. Introduction

Cavity

iiij

RF amplifier

AC-DC converter Power grid

Controller

LLRF system

Phase reference

Waveguide

d1

u
y

φref

d2

Asp, φsp

Figure 1.7 Typical field control loop for controlling the amplitude and
phase of the electromagnetic field in an accelerator cavity. The amplitude
and the phase (relative φref) of y are controlled to the set-points Asp and φsp.
Ripple from the power converter, d1, and variations in the beam current,
d2, act as disturbances on the system. The controller is implemented in the
Low-Level RF (LLRF) system.

The field control problem
The field control loop for a single cavity is shown in Figure 1.7. The control
problem is to design a controller so that the amplitude and phase of the
cavity field are kept at their desired set-points despite disturbances that act
on the system. The controller also needs to be robust to variations in the RF
system.

Designing a good controller is one thing, but equally important during
the design of an accelerator is to specify (and not overspecify, since this leads
to increased costs) the performance of the RF subsystems so that sufficiently
small field errors can be achieved.

Particular field control challenges for the ESS accelerator are:
• The large number of field control loops (155), and that there will be

six types of cavities, and five types of RF amplifiers, each with their
unique characteristics.

• Certain cavity types have parasitic resonance modes that are close in
frequency to the accelerating mode (the closest parasitic mode of the
medium-β cavities is 700 kHz away from the accelerating mode). These
modes need to be carefully considered to avoid instability and robust-
ness problems in the field control loop.

• The beam current is very high for a linear accelerator, which means
that disturbances from beam ripple and amplifier ripple will have a

18



1.2 Previous work

large impact on the cavity fields.

• The DC supply voltage that powers certain RF amplifiers (klystrons),
will have significant ripple due to switching in the AC-DC converters.
The ripple couples to the field control loop via the RF amplifier, and is
expected to contain frequencies around 90 kHz, where the disturbance
attenuation of the field control loop is poor. Since the switching of the
AC-DC converters will not be locked to the timing system, it will also
be hard to cancel this disturbance by feedforward or iterative learning
control.

1.2 Previous work

The proceedings of the CERN Accelerator School give a good overview of
accelerator physics, accelerator technology and RF systems; cavity field con-
trol is covered by [Baudrenghien, 2000; Schilcher, 2007]. Much work on field
control and low-level RF hardware has been presented in the dedicated Low-
Level RF Workshop held bi-annually, and also on the more general Interna-
tional Particle Accelerator Conference (IPAC) which is held annually.

Two high-intensity proton linacs, which share many characteristics and
challenges with the one at ESS, are the linac of the Spallation Neutron Source
(SNS) [UT-Battelle, 2006] and Linac4 at CERN [Arnaudon, 2006]. For dis-
cussions of the field control problem at these facilities, see [Ma et al., 2006;
Baudrenghien et al., 2014].

The best way to learn specific details of cavity field control is to talk
to experts in the field. Second to that, PhD theses from leading accelerator
facilities provide detailed investigations of different aspects of cavity field
control. It should however be kept in mind that the challenges of the field
control problem strongly depend on the considered accelerator type (high-
intensity proton linac, electron linac, synchrotron, etc).

Particularly much research has been done on field control for electron
linacs for free-electron lasers (FELs), due to the challenging requirements
on the field errors [Schilcher, 1998; Brandt, 2007; Hoffmann, 2008; Schmidt,
2010; Pfeiffer, 2014; Doolittle, 2015; Rezaeizadeh, 2016].

We conclude by mentioning some interesting control applications to par-
ticle accelerators, which are not related to the work in this thesis, but surely
enjoyable for aficionados of feedback theory. For extremely narrowband cav-
ities, where the Lorentz force detuning could be several cavity bandwidths,
the self-excited loop introduced in [Delayen, 1978] is the only viable choice. In
field control for circular machines, the dominant challenge is the coupled dy-
namics of the cavity field and the circulating beam, see [Baudrenghien, 2000].
A classic result on feedback stability for circular accelerators is Robinson’s
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stability theorem [Robinson, 1964]. For applications of extremum-seeking con-
trol to a linear particle accelerator, see [Scheinker, 2012].

1.3 Contributions

My aim with this licentiate thesis has been to describe how to analyze and
design the field control loops for a high-intensity linear proton accelerator
such as the ESS accelerator. I have tried to make the text accessible to
accelerator engineers that are not working directly with cavity field control,
and to present sufficient details for colleagues from automatic control to
understand the topic of cavity field control for linear accelerators. The main
contributions of this licentiate thesis are:

• A discussion of how complex-coefficient systems can be used for control
analysis, and how this applies to the field control problem.

• A presentation of an alternative, more direct, derivation of the cavity
field dynamics.

• An in-depth discussion of the field control problem for high-intensity
proton accelerators.

• An investigation showing that for many field control problems, simple
PI- and PID-controllers have performance close to the optimal linear
controller.

• A demonstration of different control strategies for cavities with para-
sitic resonance modes, and how a complex-coefficient system represen-
tation makes the design more intuitive.

• A discussion of directionality in the control problem, illustrated by
“instantaneous” phasor diagrams.

• A derivation of how to minimize the energy needed to build up the
fields in RF cavities.

Published material on which this licentiate thesis is based is listed below.
Most of its content has not been published elsewhere, but some are loosely
based on technical reports produced by O. Troeng and B. Bernhardsson for
the critical design review of the ESS LLRF system.

The formalism with complex-coefficient transfer functions, which is the
foundation for much of the work in this thesis, was introduced in

Troeng, O., B. Bernhardsson, and C. Rivetta (2017). “Complex-coefficient
systems in control”. In: Proceedings of the 2017 American Control Con-
ference. (Seattle, WA, May 24–26, 2017).

This publication grew out of the realization of B. Bernhardsson, that
the cavity field control problem can be analyzed using complex-coefficient
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1.4 Overview of the thesis

transfer function. C. Rivetta independently had similar ideas. The paper was
written by O. Troeng who collected the theory and applications of complex-
coefficient transfer functions, and realized that also Cartesian feedback lin-
earization could beneficially be analyzed by complex coefficient transfer func-
tions. B. Bernhardsson also contributed many valuable suggestions and com-
ments. The publication can be found in Appendix E.

The content of Chapter 9 on directionality in the field control problem
was first presented (not subject to peer-review) in

Troeng, O., B. Bernhardsson, A. J. Johansson, and R. Johansson (2015).
Cavity field control for the European Spallation Source. Low-Level Radio
Frequency Workshop 2015, Shanghai, Nov. 3–6, 2015.

The ideas are due to O. Troeng. Anders J Johansson and Bo Bernhardsson
contributed valuable comments on the presentation.

The content of Chapter 10 on how to minimize the energy required to
build up the electromagnetic fields in an RF cavity is based on the following
conference contribution

Troeng, O. and B. Bernhardsson (2017). “Optimal excitation of radio-
frequency cavity”. In: Proceedings of the 20th World Congress of the In-
ternational Federation of Automatic Control. (Toulouse, France, July 9–
14, 2017), Accepted.

The main ideas are due to O. Troeng, who also wrote the manuscript.
B. Bernhardsson contributed the self-contained optimality proof and many
valuable suggestions that significantly improved the paper.

1.4 Overview of the thesis

Chapter 2, Basics of Automatic Control, provides an overview of basic
concepts from automatic control that will be used throughout the thesis. The
chapter also introduces complex-coefficient system, which will be used exten-
sively throughout the thesis, and discusses their differences to real-coefficient
systems.

Chapter 3, The ESS Accelerator, gives an overview of the ESS acceler-
ator and its RF system, and considers the field control problem from some
different perspectives.
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Chapter 1. Introduction

Chapter 4, Subsystem Models for the ESS Accelerator, discusses
dynamic modeling of RF subsystems that are relevant for the field control
performance.

Chapter 5, Modeling of Accelerator Cavities, presents a derivation
of the baseband dynamics of an accelerator cavity. Parasitic modes are also
accounted for in the model, and a normalization suitable for control design
is introduced.

Chapter 6, The Field Control Loop, introduce a model for the dynamics
of the field control loop based on the results from the two preceding chapters.
Desirable behavior of the field control loop is discussed, and a mathematical
formulation of the control problem is presented based on that discussion. The
chapter also classifies the disturbances that affect the field control loop, and
considers how loop phase variations impact feedback stability.

Chapter 7, Limits of Field Control Performance, investigates the op-
timal field control performance that can be achieved by a general, linear
time-invariant controller, and how that performance compares to the perfor-
mance of PI(D)-controllers.

Chapter 8, Field Control for Parasitic Cavity Modes, presents differ-
ent strategies to deal with parasitic cavity modes in the field control design.

Chapter 9, Directionality in the Control Problem, considers how dis-
turbances affect the cavity field in particular directions, and how also the
objective function has a directional dependence.

Chapter 10, Energy-Optimal Cavity Filling, presents the energy-
optimal strategy to build up the electromagnetic cavity fields at the beginning
of each RF pulse.

Chapter 11, Conclusions and Future Work
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2
Basics of Automatic Control

In the first three sections of this chapter we give recaps/short introductions to
basic concepts in automatic control that will be used extensively throughout
this licentiate thesis: transfer functions, feedback, Nyquist’s stability crite-
rion, and norms of signals and systems. For a more thorough introduction to
these topics, see the Chapters 1–4 of [Åström and Hägglund, 2006].

In Section 2.4, we give an introduction to using linear systems with
complex-coefficients for control design; the complex-coefficient representation
will allow us to simplify the analysis and design of the field control loop.

2.1 Transfer functions

The dynamics of linear, time-invariant (LTI) systems can be represented by
linear differential equations in the time domain, or by transfer functions in
the frequency domain. The two representations are related via the Laplace
transform. In this thesis we will mostly use the frequency domain represen-
tation since it gives more insight, and is well-suited for analyzing the field
control problem.

An important property of (stable) linear time-invariant systems is that
for a sinusoidal input signal, then also the output signal becomes sinusoidal
after transients. The amplitudes and phases of the two sinusoids are related
by the transfer function of the system; see Figure 2.1.

Example
Assume that the linear, time-invariant, first-order system S has the following
relationship between its input signal u(t) and output signal y(t),

y′(t) + 10y(t) = 10u(t), (2.1)

then by taking the one-sided Laplace transform (for zero initial conditions)
we obtain

sY (s) + 10Y (s) = 10U(s), (2.2)
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G(s)

System S

u(t) = cos ωt y(t) = |G(iω)| cos(ωt + ∠G(iω))

Figure 2.1 If S is a linear time-invariant system, then its transfer func-
tion G(s) relates the Laplace transforms of the input and output signals via
Y (s) = G(s)U(s).

where U(s) = Lu and Y (s) = Ly. By introducing the transfer function from
u to y,

G(s) = 10
s+ 10

we can re-write (2.2) as
Y (s) = G(s)U(s).

Transfer function of time delay
A system given by a time delay of length L,

y(t) = u(t− L),

has the transfer function
G(s) = e−sL.

Bode diagrams
Transfer functions are conveniently visualized with so-called Bode diagrams,
see Figure 2.2a for the Bode diagram of the transfer function of the system

P (s) = 10
s+ 10e−s, (2.3)

which corresponds to the system (2.1) in series with a time delay of 1 s.
It is seen from the magnitude curve in Figure 2.2a that low-frequency

variations (ω < 0.1 rad/s) in the input signal give rise to output variations of
the same amplitude, but that variations of higher frequencies are attenuated.

2.2 Feedback

Given a stable system, we could in principle make its output y equal to a
constant set-point ysp by simply choosing the input signal u appropriately, in
the case of the system (2.3) by choosing u = ysp. There are several problems
with this approach: (1) it requires perfect knowledge of the process dynamics
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(b) Controller C(s) = 5 + 1/s.

Figure 2.2 Bode diagram for the process P (s) in (2.3) and the PI-
controller (2.4) with K = 5 and Ti = 5. The upper diagram shows the
amplitude of the transfer function P (iω) as a function of frequency, and the
lower diagram shows the phase of the transfer function.

P (s), (2) if there are disturbances acting on the process, see Figure 2.3a,
there will be errors on y, and (3) if the system dynamics are slow it will take
a long time for y to converge to ysp. All these problems can be mitigated by
introducing a feedback controller C(s) that adjusts the input-signal u based
on the control error e = ysp − y; see Figure 2.3b.

To illustrate the advantages of feedback, we consider a so called
proportional-integral (PI) controller, for which the control signal is given
by

u(t) = K

(
e(t) + 1

Ti

∫ t

−∞
e(t) dt

)
.

The first term is proportional to the control error and the second term is
proportional to the integral of previous control errors.

In the Laplace-domain the PI-controller takes the form

C(s) = K

(
1 + 1

sTi

)
(2.4)

see Figure 2.2b for the Bode diagram of the controller (2.4) with K = 5 and
Ti = 5.

Sensitivity function
Without feedback (Figure 2.3a) the transfer function from disturbances d to
control errors e is given by P (s); by introducing a feedback controller C(s)
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(a) No feedback.
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(b) With feedback.

Figure 2.3 Illustration of control without feedback (open-loop control),
and with feedback (closed-loop control).
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(b) Sensitivity function S = 1/(1 + PC).

Figure 2.4 Bode magnitude diagrams for two closed-loop transfer func-
tions when the process P and controller C are given by the transfer functions
in Figure 2.2; the phases of the transfer functions are not shown since it is
rarely of interest for closed-loop transfer functions.

(Figure 2.3b) the transfer function from disturbances to the control errors
becomes instead P/(1 +PC); Figure 2.4a shows the improved attenuation of
low-frequency disturbances that is provided by the feedback controller.

The difference in disturbance attenuation from introducing feedback is
quantified by the so-called sensitivity function

S = 1
1 + PC

, (2.5)

see Figure 2.4b.

Stability
Stability is a fundamental concern for systems involving feedback; in simple
terms, instability results if the controller compensates control errors too ag-
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C(s) P (s)

−1

(a) Considered feedback intercon-
nection.

-1

Re L(iω)

Im L(iω)

(b) The Nyquist curve of the open-
loop system L(s) = C(s)P (s).

Figure 2.5 Illustration of the Nyquist criterion for the for the process P
and controller C in Figure 2.2. From (b) it is seen that the Nyquist curve
is to the right of the point −1, thus, according to the Nyquist criterion, the
closed-loop system in (a) is stable.

gressively. In practice, instability leads to that the system starts to oscillate
uncontrollably or gets destroyed. For the applications in this thesis, closed-
loop stability is conveniently verified by the Nyquist stability criterion.

The Nyquist Stability Criterion (Simplified Version)
Let L(s) = C(s)P (s) be the open-loop transfer function and assume that L(s)
is strictly stable (i.e., has no poles in the right half-plane). Then the closed-
loop system is stable if and only if the Nyquist curve L(iω), ω ∈ (−∞, ∞)
does not encircle and stays to the right of the critical point −1. 2

See Figure 2.5 for an illustration of the Nyquist stability criterion.

Robustness
A feedback system is stable when its Nyquist curve is to the right of the
point −1; not surprisingly, the shortest distance between the Nyquist curve
and the point −1 is a good indication of how far the closed-loop system is
from instability, i.e., how robust the system is to modeling errors and process
variations. Since the distance in the complex-plane between the Nyquist curve
and the point −1 is given by |L(iω)− (−1)| = 1/ |S(iω)|, we realize that the
maximum value of the sensitivity function (2.5),

MS := sup
ω
|S(iω)| (2.6)

is good measure for the robustness of a feedback interconnection; the smaller
the value of MS , the more robust is the feedback interconnection.
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(b) Bode diagram.

Figure 2.6 Illustration of different robustness measures in the Nyquist
diagram and the open-loop Bode diagram.

Amplitude and phase margins Two traditional robustness measures are
the amplitude margin Am: how much the gain of the open-loop transfer func-
tion can be increased before instability occurs, and the phase margin ∆φm:
how much the phase of the open-loop transfer function can be reduced before
instability occurs; see Figure 2.6.

Even if the amplitude and phase margins are large, the closed-loop system
could have poor robustness [Åstrom and Murray, 2010, Figure 9.11]. On the
other hand, a small value ofMS always guarantees reasonable amplitude and
phase margins [Skogestad and Postlethwaite, 2007, (2.39)],

Am ≥
MS

MS − 1

∆φm ≥ 2 arcsin 1
2MS

.

For example, MS = 1.6 guarantees, according to the inequalities above, an
amplitude margin of at least 2.6, and a phase margin of at least 36°. Thus, a
robustness specification in terms of MS is more general than amplitude and
phase margins, and typically it is also more convenient to work with.

Fundamental limitations
Before continuing, we recall that there are fundamental limitations on the
achievable control performance. If both the process and the controller are
linear and time invariant, then one such limitation is given by Bode’s integral
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formula (assuming a stable open-loop system with sufficient roll-off),
∫ ∞

−∞
log |S(iω)| dω = 0, (2.7)

where S is the sensitivity function (2.5).
Bode’s integral formula can be considered as a conservation law of

sensitivity—if the feedback pushes down the sensitivity below 1 at some fre-
quencies, it will unavoidably pop up above 1 at other frequencies; fittingly,
this is known as the waterbed effect1. The waterbed effect is seen in Fig-
ure 2.4a, where the control system reduces disturbances at low frequencies,
but amplifies them around 1 rad/s.

2.3 Useful norms

Norms quantify the size of mathematical objects. In what follows it will be
convenient to use the 2-norm of signals to quantify their energy/rms-value
and the H∞-norm of transfer functions to quantify robustness of feedback
interconnections. Below we provide the definitions of these norms for the
single-input single-output case; for the multi-input multi-output case, as well
as for more details, see [Skogestad and Postlethwaite, 2007, 2.8.1, 4.10, A.5].

2-norm of signal
The 2-norm of a scalar signal y with finite support [0, T ], and with one-sided
Laplace transform Y is defined as

||y||2 = ||Y ||2 :=

√∫ T

0
|y(t)|2 dt (2.8a)

=
√

1
2π

∫ ∞

−∞
|Y (iω)|2 dω. (2.8b)

From (2.8a) we see that the rms-value of y equals ||y||2 /
√
T .

If y is a stochastic signal from a stationary process with spectrum Y , the
norm (2.8b) instead corresponds to the expected rms value of the signal as
T →∞.

The 2-norm will allow a compact representation of control performance—
for example, if y is the amplitude error of the cavity field, then ||Y ||2 is the
rms value of y, which is what needs to be kept within specifications.

1 In the context of field control, the waterbed effect has been previously mentioned in
[Schilcher, 2007]. See [Stein, 2003, figs 3, 4] for a nice illustration of the waterbed effect.
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H∞-norm of a system
The H∞-norm (H-infinity norm) of a linear, time-invariant, single-input
single-output system G(s) is given by

||G||∞ =
{

supω |G(iω)| if G is stable
∞ if G is unstable

. (2.9)

Using the H∞-norm we can now re-define the robustness measure (2.6)
as

MS := ||S||∞ ,

after which a small value of MS implies that the system is both stable and
robust.

2.4 Complex-coefficient systems

In this section we go through some results on complex-coefficient systems
that will be used throughout this thesis; for more details see Appendix E.

Complex-coefficient systems from baseband transformations
For a so-called passband system GPB(s) that has narrow support around
some frequency ωc (Figure 2.7a), the analysis is often facilitated by con-
sidering the system in the baseband, i.e., by shifting the system’s spec-
trum by −iωc. The transfer function for the equivalent baseband system,
G(s) = GPB(s+iωc), then typically has complex coefficients, see Figure 2.7b.

The input signal uPB(t) and output signal yPB(t) of GPB(s), have in
cases of practical interest, a narrowband spectrum around ωc. They can
thus be considered as sinusoidal signals with (angular) frequency ωc, whose
amplitudes and phases are slowly modulated. The corresponding (complex-
valued) signals in the baseband are then given by u(t) = Au(t)eiφu(t) and
y(t) = Ay(t)eiφy(t), where Au (Ay) is the slowly varying amplitude, and φu
(φy) is the slowly varying phase of uPB (yPB).

The main points
The frequency response of complex-coefficient systems G(s) is not conjugate
symmetric2with respect to 0, which implies that the frequency response needs
to be considered at both positive and negative frequencies in analyses. Given
that this is done, that Hermitian transposition is used instead of transposi-
tion, and that double-side integration is used in the frequency domain, then

2 Conjugate symmetry means that G(iω) = G(−iω); this is a property that holds for
systems with real coefficients, but typically not for systems with complex coefficients.
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−ωc 0 ωc

f

|GPB(iω)|

(a) Original passband system.

−2ωc 0

f

|G(iω)|

(b) Baseband transformed system, the passband at −2ωc is neglected.

Figure 2.7 Illustration of baseband transformation, s 7→ s − iω, of the
system GPB(s), resulting in a baseband system G(s) = GPB(s+ iωc).

most formulae and results from standard control theory apply. In particular,
Nyquist’s theorem still holds, which allows intuitive frequency-domain design
methods to be used.

Care is required when working with complex-coefficient systems in Matlab
since the current toolbox versions do not handle them correctly.

Comparison to two-input two-output representation
The transfer functionG(s) of a complex-coefficient, single-input single-output
(SISO) system can be written uniquely as

G(s) = GRe(s) + iGIm(s), (2.10)

where GRe(s) and GIm(s) have real coefficients3. If the complex input signal
is written

u(t) = uRe(t) + iuIm(t), (2.11)
then G(s) can be represented as a real-coefficient, two-input two-output
(TITO) system

G(s) =
[
GRe(s) −GIm(s)
GIm(s) GRe(s)

]
(2.12)

3 If the impulse response of G(s) is separated in its real and imaginary parts, g(t) =
gRe(t) + igIm(t), then GRe(s) is the Laplace transform of gRe(t), and GIm(s) is the
Laplace transform of gIm(t). Alternatively, we from (E.8) that

GRe(s) = G(s) +G∗(s̄)
2

, GIm(s) = G(s)−G∗(s̄)
2i

.
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acting on real, vector-valued signals
[
uRe(t)
uIm(t)

]
. (2.13)

The real-coefficient representation (2.12) is in many respects similar to the
complex-coefficient representations (2.10), however the complex-coefficient
representation has some advantages:

• The insight and simplicity of working with SISO systems is maintained.
Especially stability and robustness analysis in the frequency domain
becomes more intuitive since it is not necessary to resort to the general
(MIMO) Nyquist criterion.

• Less computations are required. Consider as an example, multiplying
the frequency response of two TITO systems G1(iω) and G2(iω) of
the form (2.12). If the structure of the matrix is not exploited, eight
multiplications and four additions of complex numbers would be re-
quired. If structure is exploited, the work is reduced to four multiplica-
tions and two additions. The complex-coefficient SISO representation
requires only 2 complex multiplications (also the frequency response at
−iω needs to be considered).

• There is no need to explicitly impose the rotationally invariant struc-
ture of (2.12) when doing systems identification and control design,
since that structure is implicit in the complex-coefficient representa-
tion.

Norms for complex vs real representation The norms introduced in
Section 2.3 do not depend on whether the complex representation (2.10–2.11),
or the real representation (2.12–2.13) is used, i.e.,

||u||2 =
∣∣∣∣
∣∣∣∣
[
uRe
uIm

]∣∣∣∣
∣∣∣∣
2

and ||G||∞ = ||G||∞ ,

for details, see Appendix E.

Example: Baseband transformation of a time delay
It is illustrative to consider the baseband equivalent of a time delay. Let

GPB(s) = e−sL, (2.14)

and then the equivalent baseband system is given by

G(s) = GPB(s+ iωc) = e−iωcLe−sL.

We see that the baseband model contains the same time delay as (2.14), but
that there is also an additional complex factor e−iωcL. Typically ωcL is large
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(2000–4000 for the field control loops at ESS), so even small changes of the
time delay L give significant phase changes in G(s), which has a large impact
on the control performance, as discussed in Section 6.5; for example, with
fc = ωc/(2π) = 704 MHz, then a delay variation ∆L = 100 ps corresponds to
a phase change of 25°.
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3
The ESS Accelerator

In this chapter we give an overview of the ESS accelerator and its RF system.
We then discuss the field control requirements and give some comments from
an automatic control perspective.

3.1 Overview of the ESS accelerator

An overview of the accelerator is shown in Figure 3.1.
Free protons (i.e., hydrogen ions) are generated in the ion source by ion-

izing hydrogen gas with microwave radiation. The protons drift through the
low-energy beam transport (LEBT, not shown in the figure), to the radio-
frequency quadrupole (RFQ). The RFQ is a special type of RF cavity whose
electromagnetic field both accelerates the beam and forms it into bunches;
the bunching is what allows the beam to be accelerated by the oscillating
electromagnetic fields in the downstream cavities.

ion
source 1 RFQ MEBT,

3 bunchers 5 DTLs 26 spoke
cavities

120 elliptical
cavities

target

fRF = 352.21 MHz fRF = 704.42 MHz

Figure 3.1 Block diagram of the linear proton accelerator at ESS. De-
pending on the proton velocity, different accelerator cavities are used. The
first 9 cavities (orange color; 1 radio-frequency quadrupole, 3 buncher cavi-
ties, and 5 drift-tube linacs) are made of copper, and are operated at room
temperature, the succeeding 146 cavities (blue color) are made of niobium
and kept at 2 K, which makes them superconducting; this reduces the resis-
tive losses and allows stronger electric fields. There are two types of elliptical
cavities, medium-β and high-β, that are optimized for different proton ve-
locities.
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3.1 Overview of the ESS accelerator

After the RFQ, the three buncher cavities in the medium-energy beam
transport (MEBT) keep the beam bunched, before five drift tube linacs
(DTLs) accelerate the bunches from from 9 % to 41 % of the speed of light.

These first 9 cavities (RFQ, bunchers, DTLs) are made of copper, and
are operated at room temperature. All the succeeding cavities are made of
niobium and are cooled to 2 K. This makes them superconducting, which
gives very low electric losses and allows strong electric fields. Three different
superconducting cavities are used depending on the velocity of the proton
bunches: spoke cavities, medium-β elliptical cavities, and high-β elliptical
cavities. The RF frequency of the RFQ, bunchers, DTLs and spoke cavities
is 352 MHz and for the elliptical cavities it is doubled to 704 MHz1. Images
of three different types of cavities are shown in Figure 3.2.

Pulse structure The proton beam of the ESS accelerator will be pulsed
at 14 Hz, with 2.86 ms long beam pulses, corresponding to a 4 % duty cycle.
The beam current during the pulses will be 62.5 mA, which is quite high for a
linear accelerator. Each pulse contains about one million bunches, and every
bunch consists of approximately one billion protons. The RF fields need to
be built up prior to the beam pulse, so the RF amplifiers and their power
supplies are turned on some 300 µs before the arrival of the proton bunches
(Figure 3.3).

The motivation for the pulsed operation is to allow higher peak intensities
and to give a time separation of the neutron energies that arrive at the
experiment stations. The specific pulse rate of 14 Hz is related to the time it
takes for the neutrons to travel from the target, through the neutron guides,
to the instrument stations.

More details on the ESS accelerator The accelerator cavities and the
RF system are the focus of this licentiate thesis, but to give a sense of the
complexity of the ESS accelerator, we mention some of its other subsystems:
beam instrumentation to observe properties of the proton beam, a vacuum
system to give the protons a free path to the target, a cryo system to keep
the superconducting cavities cold, magnets to steer the beam, water cooling
to remove heat, choppers to shape the beam, protection systems to avoid
that things get destroyed, and an industrial control system which allows all
systems to be monitored and controlled from the control room. The reader
who wants to learn interesting things about these systems is encouraged to
read Chapter 4 of the ESS Technical Design Report [Peggs et al., 2013]. A
good introduction to linear accelerators is [Wangler, 2008].

1 352.21 MHz and 704.42 MHz to be exact.
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Chapter 3. The ESS Accelerator

(a) Radio-frequency quadrupole with vacuum pumps and tuners [Alberi and Lacroix,
2015].

(b) Cryomodule with two spoke cavities [Bousson et al., 2014].

(c) Cryomodule with four elliptical medium-β cavities [ESSb, 2017].

Figure 3.2 Three of the six RF cavity types that will be used for the
ESS accelerator. The spoke cavities and the elliptical cavities are kept in
cryomodules to allow them to be cooled to 2 K, which makes them super-
conducting. Image credit: ESS.
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Figure 3.3 Timing of the 14 Hz pulses of the ESS. The RF amplifiers
are turned on some 300 µs before the beam, since the RF amplifiers need
to build up the cavity fields to their nominal level before the beam can be
accelerated; this part of the pulse is called filling. With all cavity fields at
their nominal levels, the beam is turned on; while energy is provided by
the cavity fields to the proton beam, the RF amplifiers provide power to
the cavity fields to maintain them at their nominal levels; this part of the
pulse is called flat-top. Finally, the RF amplifiers are turned off together
with the beam, and the cavity fields decay by resistive losses, and via the
waveguide, to the RF load. The terminology for the different parts of a pulse
is a de-facto standard, see for example [Brandt, 2007].

3.2 The RF system of the ESS accelerator

The energy in the electromagnetic cavity fields that accelerate the protons
is provided by the RF system. Since the radiation from beam losses in the
RF cavities is high enough to destroy ordinary electronics, the accelerating
cavities will be located in a tunnel several meters below ground, while the
RF amplifiers and RF electronics are kept in a ground level gallery above the
tunnel; see Figure 3.4 for a high-level schematic of the RF system.

The RF amplifiers generate electromagnetic waves, which build up and
maintain the electromagnetic fields in the cavities. The most suitable type of
RF amplifier for a given application depends on the required output power,
the duty cycle, and the RF frequency. A high-intensity proton accelerator,
such as the one of ESS, has several different cavity types, which calls for
different RF amplifier technologies. At ESS it is planned to use four differ-
ent amplifier types: klystrons, solid-state amplifiers, tetrodes and inductive
output tubes (IOTs), see Table 3.1. For an introduction to RF amplifiers, see
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Controller
(LLRF system)

....

AC-DC converter

Cavity

Waveguide

//

Phase
reference

RF amplifier
Circulator

RF gallery

Tunnel

Figure 3.4 Schematic of a typical RF system.

Figure 3.5 Two RF cells for the medium-β section of the ESS accelerator.
Each cell drives eight medium-β cavities, and consists of eight klystrons, two
AC-DC converters (so-called modulators), and more than twenty racks with
electronics for control and monitoring. Image credit: ESS.
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3.2 The RF system of the ESS accelerator

Table 3.1 The RF amplifiers that will be used for the ESS accelerator.
It will be the first accelerator to use multi-beam inductive output tubes.

Cavity Type fRF Output Power Amplifier Type
(No. Units) [MHz] [kW]
RFQ (1) 352.21 3000 Klystron∗
Buncher (3) –”– 30 Solid-State Amplifier
DTL (5) –”– 3000 Klystron∗
Spoke (26) –”– 2×200 Tetrode
Medium-β (36) 704.42 1500 Klystron∗
High-β (84) –”– 1200 Inductive Output Tube†

∗The klystrons will have 200 W–300 W preamplifiers.
†The IOTs will have of 15 kW–20 kW preamplifiers.

[Carter, 2010].
All RF amplifiers for the ESS accelerator need a DC power supply, so

AC-DC converters2 are needed to convert the AC grid voltage. The energy
required during the pulses needs to be drawn continuously from the regional
power grid, and stored in capacitors banks in the AC-DC converters, since a
pulsed draw of about3 200 MW, would cause flicker on the grid.

The energy from the RF amplifiers is transferred to the cavities in rect-
angular waveguides, which in appearance are similar to ventilation ducts.
As we will see in Chapter 5, the waveguides will also carry waves travel-
ing backwards from the cavities. These backward waves can destroy the RF
amplifiers, and to avoid this, special RF devices, called circulators, re-direct
the backward waves to RF loads, where they are absorbed. The waveguides,
circulators and loads are the main components of the RF distribution system.

As we mentioned in the introduction, the phases of the electromagnetic
fields in the RF cavities relative the phase of the proton bunches need to be
accurately controlled. This is done by the low-level RF system which adjusts
the drive signals to the high-power amplifiers, based on measurements of the
cavity fields; additional measured signals of, e.g., the amplifier output, or the
beam current, could also be used by the controller to improve the control
performance.

Since sufficiently fast and accurate measurements of the bunch phase are
not feasible, the phases of the cavity fields are controlled with respect to
a very stable reference oscillator, called the master oscillator (MO). This
essentially corresponds to control with respect to the bunch phase, since the

2 Which are called modulators if the RF amplifier it drives is a klystron or an inductive
output tube.

3 The power provided to the beam equals 125 MW, but there are losses in the conversion
of the electrical grid power.
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bunch phase is determined by the phase of the RFQ.
The signal from the master oscillator is distributed along the accelera-

tor tunnel in a coaxial line, which is temperature stabilized to avoid phase
drifts from thermal expansion/contraction. The cables for the cavity field
signal and the phase-reference signal, from the tunnel to the RF gallery, will
not be temperature stabilized, but will be kept close together so that phase
drifts cancel out. The master oscillator and the temperature-stabilized phase
reference line constitute the phase reference system.

To avoid damage to the RF amplifiers and other systems there will be
a local protection system, that shuts down the RF station if, for example,
overheating of RF amplifiers or vacuum leaks in the klystrons are detected.

3.3 Field control requirements

Protons that deviate too much from their nominal velocity will be incorrectly
deflected by the transversal focusing magnets, which might cause them to
crash into the cavity walls and induce radioactivity.

According to the top-level technical specification for ESS, the availability
of the facility shall be better than 95 %. To meet this requirement, “hands on
maintenance” of the accelerator, in case something breaks, must be possible
within a reasonable amount of time—for this, the accelerator must not be
too radioactive. For proton accelerators it has been concluded that beam
losses of 1 W/m is “a reasonable limit for hands-on maintenance” [Mokhov
and Chou, 1999].

Beam Physics
Starting from the beam loss requirement of 1 W/m, a highly specialized cadre
of physicists, known as beam physicists, designed the ESS accelerator layout
and derived requirements on mechanical tolerances, alignment errors, magnet
field errors and cavity field errors. The requirement of 1 W/m translates to
that only 1–2 out of 100 000 particles can be lost, which was challenging to
achieve in the design; in fact, the ESS accelerator is beam-loss limited, i.e.,
the requirements on many subsystems have been driven by the need for low
beam losses [Levinsen et al., 2016].

The design of beam-loss-limited accelerators is a formidable task since so-
called halo formation around the central core of the bunches is a major cause
of beam loss. To accurately account for halo formation requires that 105−106

macro particles (each representing some 1000 protons) are simulated. The
simulations are numerically demanding due to the large number of particles
and the nonlinear Coulomb forces between them.

To arrive at tolerance requirements for the ESS accelerator, the beam
losses for different error distributions were studied; hundreds or thousands
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3.4 Beam-loss objective function

of simulations had to be performed for each set of error distributions before
conclusions could be drawn from statistical analyses of the simulation results.
Each simulation took about one hour on a high-performance computer, so
the complete error studies took many months. The primary computer code
used for the beam-physics simulations of the ESS accelerator was Tracewin
[Uriot and Pichoff, 2015].

After many thorough error studies, the beam physics group at ESS set the
cavity field error requirements to 0.2 % and 0.2° rms for warm cavities and
0.1 % and 0.1° rms for cold cavities [Eshraqi and Levinsen, 2016; Levinsen
et al., 2016]. The different error levels are motivated by that it is easier to
obtain good field stability for superconducting cavities, which we will see in
Chapter 7.

3.4 Beam-loss objective function

The proton bunches pass the entire accelerator in less than 4 µs, and after
the second DTL tank they travel 1 m in less than 5 ns; the cavity field errors
vary much more slowly, so the expected4 beam losses per time unit is a static
function of the field errors, which we introduce as

ΨBL(∆A1,∆φ1,∆A2,∆φ2, . . .) := expected instantaneous
beam loss . (3.1)

The objective function that should be minimized is thus

JBL := expected average
beam loss = E

∫ tf

0
ΨBL(∆A1,∆φ1,∆A2,∆φ2, . . .) dt, (3.2)

where the field errors are considered stochastic, and the expectation is taken
with respect to their distribution.

The beam physicists try to make JBL small by a suitable design of ΨBL

(i.e., the accelerator lattice); cavity field control, which is discussed in this
thesis, is about how to make JBL small by making the variances of ∆Ak and
∆φk small.

Discussion of field error correlation
When evaluating (3.2) it should be remembered that the field errors
∆A1,∆φ1,∆A2,∆φ2, . . . are correlated; beam-current variations give rise to
errors correlated between all cavities, and similarly, there will be correla-
tions between the disturbances from amplifiers supplied by the same AC-DC
converter.

4 The initial particle distribution can be considered to be stochastic.
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Chapter 3. The ESS Accelerator

In Chapter 9 we will see that there will be significant correlation between
the errors ∆Ak and ∆φk for a fixed k, and discuss consequences of this. The
full understanding of the effects due to correlation between the field errors
requires more studies.

3.5 A perspective from process control

Taking a step back from the field control problem, we note that the Eu-
ropean Spallation Source has many similarities with the plants considered
in process control. The ESS will with tens of thousands of measured signal
and controlled output, all which will be interfaced to an industrial control
system.

There will be many thousands control loops, from very fast ones, such as
those for cavity field control, which will have bandwidths around 100 kHz,
to rather slow ones, such as those for the temperature control of the phase
reference line, which will have a bandwidth of around 0.001 Hz. There will also
be even slower feedback in terms of set-point calibration of the amplitudes
and phases of the electric fields, where the calibration procedures take several
hours and are performed on the time scale of months monthly.

From a control perspective, the ESS is one enormous, multi-input multi-
output, nonlinear system, with a complicated, nonlinear objective function.
Just as in process control it is not feasible to implement a central controller
with thousands of measured signals and control signals, but rather the process
is designed so that the control to a large degree can be decentralized, and so
that the majority of the loops can be closed by relatively simple and robust
controllers that only use local information.

The cavity field controllers used for linear accelerators are typically com-
pletely decentralized, but the benefits of using centralized field control for
the electron accelerators of free-electron lasers have been studied in [Pfeiffer,
2014; Rezaeizadeh, 2016]. To quantify the benefits of a centralized control
for a high-intensity, linear proton accelerators, such as the one of ESS, it is
necessary to have a good knowledge of the function ΨBL in (3.1); however,
it is likely that the benefits are outweighed by increased complexity of the
controller and its implementation.

3.6 Comparison to accelerators for free-electron lasers

To give some perspective on the field-control challenges for a high-intensity
proton accelerator such as the ESS accelerator, we make some comparisons
to the field control problem for the electron accelerators used for free-electron
lasers (FELs); this is particularly relevant since there is relatively much lit-
erature on field control for this type of accelerators.
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3.6 Comparison to accelerators for free-electron lasers

For free-electron lasers, the emittance of the electron bunches (which
determines the brilliance of the laser pulses), and the arrival time of the
bunches at the undulator (which determine the timing of the laser pulse),
are the primary design objectives [Pfeiffer, 2014; Rezaeizadeh, 2016].

Beam losses are typically not an issue for electron linacs due to four
reasons: (1) the average beam current in FELs is much lower than in a high-
intensity proton accelerator; (2) the Coulomb repulsion between the particles
is less significant since they are moving at the speed of light (a relativistic
effect); (3) there is less transversal defocusing due to the electric field5; (4)
the type of radioactivation induced by electrons is less severe, so significantly
higher beam losses can be tolerated.

To achieve the low emittance required for high-brilliance laser pulses, very
high demands have to be put on the field stability. For the European XFEL
[Altarelli, 2007] and LCLS-II [Doolittle, 2015] the requirements are 0.01 %
and 0.01° rms, a factor 10–20 tighter than for ESS. However, the average
beam current and the corresponding beam loading are significantly lower for
FEL accelerators than for high-intensity proton accelerators, which implies
that the disturbances they experience are much less severe.

Since the allowed field errors for FEL accelerators are of the same mag-
nitude as the noise from the detection electronics, a great amount of care
needs to be taken in the electronics design. Also the direct effect of measure-
ment noise on the field errors should be carefully accounted for in the control
design. Relative to the field error specifications for the ESS accelerator, this
direct effect of measurement noise is negligible, although the impact of noise
on the control signal activity still needs to be considered.

Another aspect is that many different cavity types and RF amplifier tech-
nologies are used for high-intensity proton accelerators which makes the con-
trol problem more heterogeneous; FEL accelerators on the other hand mostly
use identical elliptical cavities (and a few special cavity types, the RF gun
and 3rd harmonic cavities).

Then there are challenges that are unique to specific FEL accelerators:
at the European XFEL each RF amplifier drives, not one, but thirty-two
cavities [Brandt, 2007; Hoffmann, 2008; Schmidt, 2010; Pfeiffer, 2014], at
the SwissFEL the pulses are too short for intra-pulse feedback, and the nor-
mal conducting accelerating structures require accurate temperature control
[Rezaeizadeh, 2016], and at LCLS II the cavities have bandwidths of around

5 From Maxwell’s equations we have that the electric field E in the cavity satisfies

0 = ∇ · E = ∂E
∂x

+ ∂E
∂y

+ ∂E
∂z
.

To achieve longitudinal focusing it is necessary that the particle bunches experience a
negative gradient in the z-direction, ∂E/∂z < 0, which implies that at least one of the
last two terms need to be positive, which corresponds to transversal defocusing.

43



Chapter 3. The ESS Accelerator

10 Hz, which calls for field control by self-excited loops, and makes control of
the resonance frequencies of the cavities a major concern [Doolittle, 2015].
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4
Subsystem Models for the
ESS Accelerator

In this chapter we discuss the subsystems of the ESS accelerator whose dy-
namics and characteristics are relevant for the field control performance.

4.1 Ion source

The ESS will have a pulsed Microwave Discharge Ion Source [Neri et al., 2014;
Celona et al., 2016] that generates free protons (H+) by ionizing hydrogen
gas (H2) to a plasma. From the plasma, which is confined by magnetic fields,
a proton current of 62.5 mA is extracted by a 75 keV potential.

Plasma instabilities lead to variations of the extracted proton current,
which subsequently act as load disturbances on the cavity field; it should
be remembered that the impact of these disturbances on the field control
performance is strongly dependent on the spectral properties of the beam-
current variations.

The beam-current variations are arguably the most important characteris-
tic of the ion source from a field-control perspective, but for overall accelerator
performance it is typically more important with a low beam emittance.

4.2 RF distribution system

Waveguides
The propagation velocity of an electromagnetic wave in a waveguide depends
on the frequency of the wave and the waveguide dimensions [Pozar]; the
propagation velocity is to a small extent also affected by the temperature,
the humidity and the pressure of the air in the waveguide. The waveguides
at ESS will have dimensions of 58 cm×29 cm (29 cm×15 cm) for distribution
at 352 MHz (704 MHz), and in both cases the propagation velocity is 68 %
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4.3 High-power RF amplifiers

the speed of light. The waveguides from the RF amplifiers to the cavities will
be up to 40 m, which corresponds to a propagation time of 200 ns.

Circulators
We briefly discussed in Section 3.2 how the circulators are crucial for re-
directing the backward waves from the cavities to RF loads. From a cavity
field control perspective however, they are wideband enough to have negligi-
ble impact on the field control loop.

4.3 High-power RF amplifiers

There are no ideal amplifiers, and the imperfections that are most relevant
for field control performance are:

• Limited bandwidth
• Nonlinearity from that the gain and phase shift of the amplifier depend

on the input amplitude
• Gain and phase dependence on DC supply voltage (klystrons)
• Noise and spurious components (solid-state amplifiers)

Limited bandwidth
We will model the limited bandwidth of the RF amplifiers by a first-order
low-pass filter as in [Schilcher, 1998],

Pamp(s) = ωamp
s+ ωamp

, (4.1)

where ωamp is the 3dB bandwidth in radians per second.
RF amplifiers typically have bandwidths that are greater than 1 MHz,

about ten times greater than the cross-over frequency of a typical field control
loop for ESS; thus, the amplifier dynamics has a small impact on the field
control loop, but it is prudent to account for it in field control analysis since
it has a slight negative impact on performance.

An alternative way to model the RF amplifier dynamics is by a pure time
delay equal to the group delay of the amplifier.

The truth probably lies somewhere in between; at least in the case of
klystrons, where a more detailed model accounts for that it contains sev-
eral high-bandwidth cavities, each with baseband dynamics of the form
1/(sτi + 1), coupled via an electron beam; such systems can be accurately
approximated by a first-order system in series with a time delay [Skogestad,
2003; Åström and Hägglund, 2006, (2.23)].
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Chapter 4. Subsystem Models for the ESS Accelerator

Nonlinearity
For reasons of sustainability and economy, the amplifiers at ESS will be oper-
ated close to saturation, with roughly 25 % power overhead, corresponding to
12 % overhead in amplitude, so saturation and nonlinear affects will have an
impact. The harmonics due to the nonlinearity, which is a major concern for
telecommunications due to adjacent channel interference, is of little concern
for field control, due to the small bandwidth of the cavity. The nonlinearities
could in principle be inverted1 by the LLRF system[Omet, 2014], mitigated
by an inner loop around the klystron [Baudrenghien et al., 2014], or simply
ignored. We will not consider this issue further in this thesis.

Gain and phase dependence on DC supply voltage (klystrons)
The gain and phase shift of klystrons depend on both the DC supply voltage
via so-called pushing2. Variations ∆Vc in the DC (cathode) voltage Vc that
powers a klystron lead to gain variations [Gilmour, 2011]

∆Gkly
Gkly

= 5
4

∆Vc
Vc

.

and phase variations
∆φkly = ξ

∆Vc
Vc

,

where ∆φkly is measured in radians, and ξ is the so-called (phase) pushing
factor. For the klystrons that will be used at ESS, ξ ≈ 10–15°/% ≈ 17–25 rad,
depending on the type and the operating point3. How the pushing factor ξ
depends on the physical parameters of the klystron is discussed in [Hara et
al., 1998].

If the ideal klystron output is given by Fg, and the deviation from the
nominal output due to cathode voltage variations is denoted by Fd

g , we have

Fg + Fd
g =

(
1 + ∆G

G

)
eiξ∆φklyFg

=
(

1 + 5
4

∆Vc
Vc

)
exp

(
iξ

∆Vc
Vc

)
Fg. (4.2)

Assuming that ∆Vc is small compared to Vc and that Fg is close to the
nominal value F0

g, then we can approximate Fd
g by linearizing (4.2),

Fd
g ≈

(
5
4 + iξ

)
F0

g ·
∆Vc
Vc

. (4.3)

1 In telecommunications this is known as pre-distortion.
2 Gain variations and phase shifts from a varying load impedance, so-called pulling, is
negligible since the amplifier always sees a matched load because of the circulator.

3 Personal communication with Morten Jensen, ESS.
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4.4 Low-level RF system

Since ξ ≈ 20, we see that the amplitude variations are small compared to the
phase variations. See Figure 4.2 for an illustration of the klystron model.

It should be kept mind that the impact of variations ∆Vc (typically from
switching in the AC-DC converter, a.k.a. modulator), on cavity field errors,
is determined by the spectral properties of the variations.

ωAmp
s+ ωAmp

Fg

Fd
g =

(
5
4 + iξ

)
F0

g · ∆Vc

Vc

Figure 4.2 Klystron model which accounts for a limited bandwidth and
the impact of cathode voltage variations.

Noise and spurious components (solid-state amplifiers)
The spectrum of the disturbance Fd

g added by solid-state amplifiers contains
both flicker noise, with a 1/f -dependence in the baseband, spurious peaks
originating from combinations of switching and nonlinear phenomena, and
to a minor extent also white, thermal noise. To evaluate the impact of these
disturbances requires a spectral model of them. There are also slower effects
such as droop and phase drifts.

4.4 Low-level RF system

The LLRF system for the ESS accelerator will be based on components that
are compliant with the MicroTCA.4 standard [MTCA.4 2017], which was
developed as a subspecification of the MicroTCA standard [Jamieson, 2006],
to allow a flexible carrier-grade platform for big science projects.

A schematic of the LLRF system for ESS is shown in Figure 4.4, and
typical components that have been considered are listed in Table 4.1 and
shown in Figure 4.3. For an introduction to the RF components used in the
LLRF system, such as vector modulators, down converters, etc, see [A. Gallo,
2010].
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Chapter 4. Subsystem Models for the ESS Accelerator

Figure 4.3 MicroTCA compliant for a typical LLRF system. Left:
Digitizer SIS8300-KU from Struck. Middle: Signal conditioning board
DWC8VM1 from Struck. Right: 12-slot MicroTCA4 crate from ELMA.
Photo Credit: Struck Innovative Systeme GmbH, Elma Electronic Inc.
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Figure 4.4 Overview of the LLRF system for ESS. Interfaces to the in-
terlock system and cavity tuning system are not shown.
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4.4 Low-level RF system

Table 4.1 Planned components for the ESS LLRF system.

Component Model/Comments
12-slot chassis TBD
MicroTCA Carrier Hub NAT-MCH-PHYS
Power Supply Unit Wiener MTCA.4 1000W PS
Digitizer (AMC∗) Struck SIS8300-KU:

Kintex Ultrascale FPGA
10 ADCs, 16-bit, 125 MS/s
2 high speed DACs
2 GByte DDR4 Memory

Downconversion & Struck DWC8VM1(-LF):
vector modulator (RTM†) 8 down-conversion channels

1 up-conversion channel
(vector modulator)

Timing receiver (AMC∗) Module from Micro Research Finland
CPU (AMC∗) TBD
LO-generation 352.21 MHz In-kind contribution form ESS Bilbo
(stand-alone unit)
LO-generation 704.42 MHz In-kind contribution from
(RTM†) the Polish Electronic Group‡

∗Advanced Mezzanine Card, inserted from the front of the chassis.
†Rear Transition Module, inserted from the back of the chassis.
‡National Centre for Nuclear Research, TU Warsaw, and TU Łódź.
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5
Modeling of Accelerator
Cavities

5.1 Introduction

For analysis and control design for the field control loop it is essential to have
a baseband model of the electromagnetic cavity fields. In existing particle
accelerator literature, such models are derived by considering an equivalent
electric circuit [Schilcher, 1998; Tückmantel, 2011]1.

While the equivalent circuit approach may seem natural to the electrical
engineer, it arguably obfuscates the connection between the derived model
and the actual cavity field dynamics. In this chapter we will use an alternative
approach from the optoelectronics literature [Haus, 1983; Suh et al., 2004],
that allows the cavity dynamics to be derived directly from Maxwell’s equa-
tions using fundamental laws of physics. In his book, Haus has the following
to say about using equivalent circuits for modeling cavity dynamics:

. . . /Aside from the fact that such a procedure would be more
cumbersome, the derivation would be model dependent and thus
would lack generality/. . .

The only difference between the cavity model that we derive in this chap-
ter, and those that result from consideration of an equivalent circuit model,
is that the model parameters are chosen somewhat differently; in particular,
the mode amplitudes are quantified by the square root of the mode energies,
rather than by the effective accelerating voltage of the modes. Arguably, the
parameterization proposed in this chapter simplifies the understanding of
how the cavity parameters affect the achievable field control performance.

1 Often the emphasis is on steady-state relations [Padamsee et al., 2008; Wangler, 2008],
which is not enough to enable control design. Section 5.7 of [Wangler, 2008] contains an
interesting approach to gain intuition for the dynamics of a waveguide-coupled cavity.
See also the classic references [Montgomery et al., 1948; Slater, 1950; Pedersen, 1975].
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5.2 Dynamics of waveguide-coupled cavity

Outline
In Section 5.2 we derive the dynamics of a waveguide-coupled cavity using an
approach inspired by [Haus, 1983]. For an accelerator cavity it is necessary
to include the effects of beam-interaction, so in Section 5.3 we introduce a
suitable parameter to describe this interaction. After that, in Section 5.4, we
put together the differential equation for a single cavity mode and transform
the dynamics to the baseband.

From the baseband model of the accelerating cavity mode we find the
optimal coupling and detuning of the cavity in Section 5.5, as well as inves-
tigate the relative size of the terms that affect the cavity field; both these
aspects are then illustrated by a somewhat novel type of phasor diagram in
Section 5.6; then in Section 5.7 we normalize the cavity equation to a form
suitable for control design.

In Section 5.8 we consider multiple cavity modes (the accelerating mode
plus parasitic modes), and illustrate the system dynamics with a block di-
gram.

Finally in Section 5.9 we compare the modeling approach of this chapter
to the equivalent circuit approach.

5.2 Dynamics of waveguide-coupled cavity

In this section we present a derivation for the dynamics of a waveguide-
coupled cavity that is based on [Haus, 1983, Section 7.2]. Attempts have
been made to make the presentation self-contained and aligned with the rest
of this thesis. The reader is advised to seek out the original reference for
more details.

Outline of the derivation
We start by assuming that the cavity is closed and lossless, which allows us
to describe the electric cavity field as a superposition of orthogonal eigen-
modes: E(r, t) =

∑
en(t)En(r). We then introduce cavity-waveguide cou-

pling, assuming that the coupling is sufficiently weak to allow the coupling
between the modes En to be neglected. Starting from that the electric field
in the waveguide can be considered as a superposition of a forward wave
and a backward wave, we argue, as in [Haus, 1983], that due to linearity
of Maxwell’s equations the cavity modes couple linearly to the backward
and forward waves. By using the time reversibility of Maxwell’s equations
and conservation of energy, we obtain a relation between the constant for
how the forward wave couples to the cavity field and the constant for how
the cavity field couples to the backward wave. Then in Section 5.4, resistive
losses are introduced, again under the assumption that they are sufficiently
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Chapter 5. Modeling of Accelerator Cavities

small to allow mode coupling to be neglected; in connection with this step
also the beam-interaction is included.

Mode expansion of the cavity field
From Maxwell’s equations it follows that the electric field E = E(r, t) inside
a vacuum-filled cavity satisfies

∇2E − ε0µ0
∂2

∂t2
E = −µ0

d

dt
J . (5.1)

If the cavity has perfectly electrically conducting walls, the electric field can
be expanded as a sum of orthogonal eigenmodes

E(r, t) =
∞∑

n=a,1,2,...
en(t)En(r) (5.2)

where each En satisfies the eigenrelation

∇2En = −k2
nEn

as well as the boundary conditions. The symbol a in the sum in (5.2) corre-
sponds to the mode used for particle acceleration, while 1, 2, . . . correspond to
parasitic modes with increasing frequency offset from the accelerating mode.
The eigenfunctions are assumed to be normalized so that

ε0
2

∫∫∫

V

|En|2 dV = 1. (5.3)

This normalization makes the oscillation amplitude of |en(t)|2 equal the mode
energy, which we will denote by Un. From inserting the eigenmode expansion
(5.2) into (5.1) it follows that

d2en(t)
dt2

+ ω2
nen(t) = −1

2
∂

∂t

∫∫∫

V

J(r, t) ·En(r) dV, (5.4)

where ωn = ckn is the resonance frequency of mode n.
For increased clarity, we will up until Section 5.8 only consider the accel-

erating mode, so we will drop the mode indexes except when there is a risk
of ambiguity, e.g., for Ea and ωa. The discussion in the next two sections
applies to any cavity mode, while sections 5.5 to 5.7 are only relevant for the
accelerating mode.

Complex-valued representation of mode dynamics
We recognize the differential equation (5.4) for the mode dynamics as an un-
damped second-order system; and as we will see, it will be driven by a signal
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5.2 Dynamics of waveguide-coupled cavity

of frequency ωRF ≈ ωa (with slowly varying amplitude and phase). Thus
also the mode amplitude will have a similar sinusoidal dependence, and we
can write e(t) = A(t) sin(ωRFt + φ(t)), where A(t) and φ(t) vary slowly; for
this reason it will be convenient to use a complex-valued representation of
the differential equation (5.4). To this end, we let ξ1 = ea, ξ2 = ėa/ωa, and
Γa(t) = 1

ωa

∂
∂t

∫∫∫
V

J(r, t) ·Ea(r) dV , after which (5.4) can be written as two
coupled, first-order differential equations

ξ̇2 = −ωaξ1 −
1
2Γa(t) (5.5a)

ξ̇1 = ωaξ2. (5.5b)

By introducing the complex variable

a = ea − i
1
ωa
ėa = ξ1 − iξ2,

[√
J
]

(5.6)

where
[
·
]
indicates the units of the equation, we can write (5.5) as

d

dt
a = iωaa + i

2Γa(t), (5.7)

where the real part of the equation corresponds to (5.5b) and the imaginary
part to (5.5a). The beam-interaction term Γ(t) on the right hand side is
evaluated in Appendix D.1, but up until Section 5.4 we will assume it to be
zero.

Electric fields in the waveguide
To transport energy between the RF amplifier and the cavity, they are both
coupled to a waveguide. For most accelerator applications, the waveguide
dimensions are chosen so that there is only one mode whose cut-off frequency
is below the RF frequency, and hence there is only one propagating mode that
is able to transport energy from the RF amplifier to the cavity.

From Maxwell’s equations it follows that the amplitude of the electro-
magnetic field in the waveguide along the propagation direction (z-direction),
satisfies the electromagnetic wave equation (equation 5.1 with J ≡ 0, and
assuming that the relative permittivity εr = 1)

∇2E − ε0µ0
∂2

∂t2
E = 0. (5.8)

From (5.8) it can be shown that the electric field in a waveguide with uniform
cross-section is a superposition of one forward wave traveling from the RF
amplifier to the cavity, and one backward wave traveling away from the cavity.
Typically a so-called circulator is inserted after the RF amplifier, which lets
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a
s+

s−

Figure 5.1 Illustration of a cavity coupled to a waveguide.

the forward wave pass through unaffected, but re-directs the backward wave
to an RF load where it is absorbed. This is done to protect the RF amplifier
from the backward wave. See Figure 5.1 for an illustration.

We describe the amplitude and phase of the forward and backward waves
at suitably chosen reference planes in the waveguide, close to the cavity, by
the complex signals s+(t) and s−(t). We assume that the s+, and s− are
defined, in units of

√
J/s, so that

∣∣s+∣∣2 = power carried by the forward wave,
∣∣s−
∣∣2 = power carried by the backward wave.

Throughout this section we assume that the waveguide is lossless in or-
der to derive a relationship between the constants for the cavity-waveguide
coupling. After that we could introduce waveguide losses if we would like to,
but from a field control perspective they would just correspond to a constant
factor which would disappear after normalization.

Waveguide coupling
Due to the waveguide coupling, the equation (5.4) for the lossless cavity needs
to be modified to take into account:

1. The energy of the cavity field will decay through the coupling mecha-
nism, and travel away from the cavity in the backward wave.

2. A (non-zero) forward wave in the waveguide will excite the cavity field.

From Maxwell’s equations it follows that both these effects are linear, and
since the coupling could be both electric and/or magnetic, both the decay
and the excitation from the forward wave could directly affect both ė and ë.

By denoting the rate at which the mode energy decays via the waveguide
coupling mechanism by γext, and by quantifying the coupling of the forward
wave s+ to the cavity field by κ, which in principle could be complex, we get

d

dt
a = iωaa − γexta + κs+.

[√
J

s

]
(5.9)
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5.2 Dynamics of waveguide-coupled cavity

Time-reversibility of Maxwell’s equations
Time-reversibility means that if E(r, t) is a solution to the waveguide-coupled
cavity system, and hence satisfies the electromagnetic wave equation (5.8)
both in the cavity and the waveguide, then so does the time-reversed solution
Ẽ(r, t) = E(r,−t). This is immediate from (5.8).

We denote the complex amplitude of the forward wave of the time-
reversed solution by s̃+, and it is clear that |̃s+(−t)| = |s−(t)|.

For the eigenmode expansion of the time-reversed solution inside the cav-
ity we have that time-varying coefficients in (5.2) are given by ẽn(t) = en(−t).
By introducing the time-reversed, complex-valued mode amplitude

ã = ẽa − i
1
ωa

˙̃ea

analogously to (5.6), it follows that it also satisfies the equation (5.9),

d

dt
ã = iωaã − γextã + κs̃+,

since ã, just like a, corresponds to a valid solution to Maxwell’s equations
inside the cavity.

Relation between κ and γext
It seems reasonable that the decay rate of the cavity field via the coupling
mechanism (quantified by γext) and how easily the cavity is excited by the
forward wave (quantified by κ), are related; we now, based on the same
ideas as in [Haus, 1983], derive such a relationship from fundamental laws of
physics.

Consider the time evolution of a for t ≥ 0, from the initial state a(0) = 1,
when there is no forward wave exciting the cavity, i.e, s+(t) = 0, t ≥ 0. We
denote this solution a1(t), and thus have

d

dt
a1 = iωaa1 − γexta1, t ≥ 0

a1(0) = 1. (5.10)

Since there is no forward wave exciting the cavity, the mode energy U
will decay through the coupling mechanism at rate

dU

dt
= d

dt
|a1|2 = a1

∗ da1
dt

+ da1
∗

dt
a1 = −2γext |a1|2 ≥ 0.

Conservation of energy gives that the energy that escapes the cavity is carried
away by the backward wave, i.e.,

∣∣s−1
∣∣2 = 2γext |a1|2 , t ≥ 0. (5.11)
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Now, consider the time-reversed solution ã1 of a1 which is defined for
t < 0, and satisfies |ã1(−t)| = |a1(t)|. As discussed in the previous section,
it satisfies

d

dt
ã1 = iωaã1 − γextã1 + κs̃+

1 , t ≤ 0. (5.12)

From (5.10) we see that a1(t) = exp(iωat) exp(−γextt), and since the
backward wave depends linearly on the mode amplitude, we also have that
s−1 ∝ exp(iωat) exp(−γextt). From time reversal it then follows that we have

s̃+
1 (t) = s̃+

1 (0) exp(iωat) exp(γextt), t ≤ 0. (5.13)

By substituting (5.13) into (5.12), we can compute ã1(t) as a function of
s̃+

1 (t),

ã1(t) =
∫ t

−∞
κeiωa(t−τ)−γext(t−τ)s̃+

1 (0)eiωaτ+γextτdτ, t ≤ 0.

For t = 0, we get

ã1(0) = κ

∫ 0

−∞
e2γextτdτ s̃+

1 (0) = κ
s̃+

1 (0)
2γext

,

from which it follows that

|ã1(0)| = |κ|
2γext

∣∣̃s+
1 (0)

∣∣ . (5.14)

We also have that
∣∣̃s+

1 (0)
∣∣2 =

∣∣s−1 (0)
∣∣2 = 2γext |a1(0)|2 = 2γext |ã1(0)|2 , (5.15)

where the first and last equalities follow from equality of the original and
the time-reversed solution, and the middlemost equality follows from (5.11).
Comparing (5.14) and (5.15) we see that

|κ| =
√

2γext,

and by choosing the reference plane, relative to which s+ is defined, we can
assume that κ is positive and real, so that (5.9) becomes

d

dt
a = iωaa − γexta +

√
2γexts+. (5.16)

The magnitudes of the original and the time-reversed cavity field ampli-
tudes and the forward/backward waves are illustrated in Figure 5.2.
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1

Figure 5.2 Left: Time evolution of the cavity equation corresponding to
(5.10). Right: The corresponding time-reversed solution.

Backward wave
From the linearity of Maxwell’s equations we know that the backward wave
depends linearly on the forward wave and the mode amplitude:

s− = Css+ + Caa,

where Cs and Ca are complex constants. We already know from (5.11) that
|Ca| =

√
2γext, and by choosing the reference plane that s− is defined with

respect to, we can make Ca real and positive, giving that Ca =
√

2γext.
Next we derive an expression for Cs. Conservation of energy gives that

∣∣s+∣∣2 −
∣∣s−
∣∣2 = d

dt
|a|2 , (5.17)

and from (5.16) it follows that

d

dt
|a|2 = −2γext |a|2 +

√
2γext

(
a∗s+ + a(s+)∗

)
. (5.18)
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Adding (5.17) and (5.18) gives
∣∣s+∣∣2 −

∣∣s−
∣∣2 = −2γext |a|2 +

√
2γext

(
a∗s+ + a(s+)∗

)
, (5.19)

and by making the substitution a = (s−−Css+)/
√

2γext in (5.19) we obtain

∣∣s+∣∣2 −
∣∣s−
∣∣2 = −

(∣∣s−
∣∣2 − Cs(s−)∗s+ − C∗s s−(s+)∗ + |Cs|2

∣∣s+∣∣2
)

+
(

(s−)∗s+ − C∗s
∣∣s+∣∣2 + s−(s+)∗ − Cs

∣∣s+∣∣2
)
,

which can be re-written as
∣∣(1 + Cs)s+ − s−

∣∣2 =
∣∣s−
∣∣2 .

For this equality to hold for all s+ and s−, we must have that

Cs = −1.

Thus the backward wave is given, as in [Haus, 1983, (7.36)] by

s− = −s+ +
√

2γexta.

5.3 Parameters for cavity field-beam interaction

In this section we introduce two parameters which are important for quanti-
fying the cavity-beam interaction: the effective accelerating voltage, and the
ratio of the effective accelerating voltage to the square root of electromagnetic
energy stored in the cavity mode2.

Effective accelerating voltage
Denote the electric field of the accelerating cavity mode (we only consider
one mode so that we can drop the mode indexes), in the direction of the ac-
celerated particles (the z-direction), by Ez(z, t). Then the energy transferred
to a particle with charge q as it crosses the cavity along a trajectory z(t) is
given by

∆W = q

∫ L

0
Ez(z, t(z)) dz, (5.20)

Under the assumption that the mode energy Ua is constant as the particle
crosses the cavity, we have from the normalization (5.3) that

Ez(z, t) = ea(t)
√
UaEz(z) = cos(ωRFt)

√
UnEz(z), (5.21)

2 We refrain from introducing the transit-time factor and the axial RF voltage since they
are not needed for this presentation.

60



5.3 Parameters for cavity field-beam interaction

where Ez(z) is the z-component of Ea(r) along the axis of the accelerated
particles, and where the phase of ea(t) was taken to equal 0, since we will
assume that the accelerating mode will nominally have zero phase.

We will also assume that the accelerated particles travel through the
cavity with constant velocity v, in which case we can write

z = vt− v

ωRF
φ, (5.22)

where φ is a phase offset between the particle bunches and the electric field.
Strictly speaking, it is phase of the electric field which is chosen based on
the phase of the particle bunches, but we will consider it to be the other
way around, since this will simplify the exposition; the two viewpoints are
equivalent.

Under the assumption that the mode energy and particle velocity are
constant, we can use (5.21) and (5.22) to re-write (5.20), as

∆W = q

∫ L

0
cos(ωRF

z

v
+ φ)

√
UaEz(z) dz. (5.23)

As shown in [Wangler, 2008, Exercise 2.12], there exists a value φ = φ0
for which the energy transferred to the accelerated particle is maximized.
Using the value φ0 we define the effective accelerating voltage

Veff :=
∫ L

0
cos(ωRF

z

v
+ φ0)

√
UaEz(z) dz. (5.24)

Thus, the most energy that the cavity can transfer to a particle with charge
q is given by qVeff.

For linear proton accelerators it is desired that the particle bunches arrive
with a phase offset φb before what corresponds to maximal acceleration. This
is to achieve longitudinal focusing that keeps the bunches together. With a
phase offset φb from φ0 it can be shown [Wangler, 2008] that the energy
transferred to the bunches is given by ∆W = qVeff cosφb.

Relation between effective voltage and stored energy
The effective accelerating voltage (5.24) depends on the mode amplitude, so
it is convenient to introduce

α := Veff√
Ua

=
∫ L

0
cos(ωRF

z

v
+ φ0)Ez(z) dz,

[
V√
J

]
(5.25)

which only depends on the geometry of the cavity.
A more common parameter for relating the effective accelerating voltage

and the energy stored in a cavity mode is [Wangler, 2008]

r

Q
:= V 2

eff
ωRFUn

,
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We see that α and r/Q are related via α2 = ωRF(r/Q).

5.4 Baseband dynamics of the accelerating cavity mode

Starting from (5.16), and including the term Γ(t) from equation (5.7), and
adding a term −γ0a for resistive losses in the cavity walls, gives

da
dt

= iωaa − (γ0 + γext)a +
√

2γexts+ + i

2Γa(t). (5.26)

In Appendix D.1 it is shown that

Γa(t) ≈ −iαIb(t)eiωRFt (5.27)

where α, defined in (5.25), quantify the coupling between the cavity field and
the beam, and the definition of Ib in (D.5) is given by

Ib(t) = IDC(t)ei(π−φb(t)).

By letting

a(t) = A(t)eiωRFt
[√

J
]

(5.28a)

s+(t) = Fg(t)eiωRFt
[√

J/s
]

(5.28b)

and substituting these expressions and (5.27) into (5.26), and dividing by
eiωRFt, we obtain

iωRFA + dA
dt

= iωaA− (γ0 + γext)A +
√

2γextFg + α

2 Ib. (5.29)

What we have done is essentially a baseband transformation in the time
domain. By defining

∆ω := ωa − ωRF,
we can rewrite (5.29) as,

dA
dt

= i∆ωA− (γ0 + γext)A +
√

2γextFg + α

2 Ib. .

By introducing the combined decay rate of the cavity field from both wave-
guide coupling and resistive losses in the cavity walls,

γ = γ0 + γext

we finally get

dA
dt

= (−γ + i∆ω)A +
√

2γextFg + α

2 Ib.

[√
J

s

]
(5.30)
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5.5 Optimal coupling and detuning

When the cavity dynamics are derived from an equivalent circuit model,
the field is usually represented by a phasor for the effective voltage. We arrive
at such an equation by multiplying with α (recall that V = αA),

dV
dt

= (−γ + i∆ω)V + α
√

2γextFg + α2

2 Ib(t).
[

V
s

]
(5.31)

Note that (5.30) and (5.31) only differ by a constant factor, so after
normalization there will not be any difference

Comments on the choice of parameters
The parameters and variables in the resulting differential equation (5.30) are
somewhat different from when the derivation is based on an equivalent circuit
approach; below we provide some justification for the choices made, and also
discuss them further in Section 5.9.

• The reason for denoting the bandwidth/decay rate of the cavity by γ,
rather than the more common notation ω1/2, which evokes thoughts of a
bandwidth, is that the discussion in Section 5.9 of how cavity parameter
variations impact the field control performance becomes more intuitive
when γ is thought of as a decay rate. We will however also freely call γ
a bandwidth, when considering the accelerating mode as a first-order
system.

• In (5.30) the generator drive is modeled by a power flow (actually√power), so it would not make sense to represent it with the standard
symbol for the general drive, Ig, which would be assumed to have units
of Ampere. Instead the letter F as in forward wave, field and forcing
term, was chosen, while keeping the subscript g for generator.

• It should also be noted that the magnitude of Ib is the DC-current;
there is no need to introduce an “equivalent RF current”.

5.5 Optimal coupling and detuning

In this section we compute the optimal detuning and coupling for minimiza-
tion of the generator power at steady state. How to do this is well known
[Schilcher, 1998; Wangler, 2008], but we go through the computations to show
what they look like with the parametrization of (5.30), and because we need
the results in the next section.

From the cavity dynamics (5.30) of the accelerating mode, in steady state,
at the nominal operating point (A, Ib,Fg) = (A0, I0

b,F0
g), it follows that

0 = (−γ + i∆ω)A0 +
√

2γextF0
g + α

2 I0
b. (5.32)
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Assume that the nominal phasor for the accelerator voltage is real and posi-
tive, and given by αa0, so that A0 = a0, and also assume that the nominal
beam phasor is given by

I0
b = Ibei(π−φb) = −Ib cos(φb) + iIb sin(φb),

where3−π/2 ≤ φb ≤ 0. The generator power at steady-state then equals

P 0
g =

∣∣F0
g
∣∣2

= 1
2γext

∣∣∣(−γ + i∆ω)a0 + α

2 I0
b

∣∣∣
2

= 1
2γext

[(
(γ0 + γext)a0 + α

2 Ib cosφb
)2

+
(

∆ωa0 + α

2 Ib sinφb
)2
]
,

and we see that the detuning that minimizes the generator power is given by

∆ω(opt) = −
α

2 Ib sinφb
a0

. (5.33)

With this optimal detuning, the generator power becomes,

Pg

∣∣∣
∆ω=∆ω(opt)

= 1
2γext

(
(γ0 + γext)a0 + α

2 Ib cosφb
)2
,

and it is clear that power-optimal coupling corresponds to4

γ
(opt)
ext = γ0 +

α

2 Ib cosφb
a0

. (5.34)

Thus, for an optimally tuned and coupled cavity the required generator power
equals

Pg = 2γ0a
2
0 + αIb cos(φb) · a0,

that is, all energy in the forward wave is either dissipated in the cavity walls
or transferred to the particle beam, and no power is wasted in the backward
wave.

Note that the second quantity in (5.34),
α

2 Ib cosφb
a0

=: “γbeam(a0, Ib)”

3 This condition is necessary in order for the beam to be both accelerated and longitu-
dinally focused [Wangler, 2008, p. 179].

4 We wish to minimize 2f(x) = (ux+v)2/x = u2x+2uv+v2/x wrt x > 0. Differentiation
gives 2f ′(x) = u2 − v2/x2, and we find the stationary (and optimal) point x∗ = v/u,
at which f(x∗) = 2vu
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corresponds to the decay rate of the cavity field due to beam loading, at
the nominal operating point and with optimal detuning. Thus, for optimal
external coupling, the external decay rate at the nominal operating point
equals the sum of the decay rate from resistive losses and the decay rate
from beam loading.

For the combined decay rate, which also accounts for resistive losses in
the cavity walls, we have

γ = 2γ0 +
α

2 Ib cosφb
a0

. (5.35)

Comparison of the different terms
Consider the cavity equation at steady state (5.32), for an optimally tuned
and optimally coupled cavity at the nominal operating point. To get an idea
of the relative size of the terms, we compare them relative to the term for
resistive and external decay γA0 = γa0.

First, for the term that depends on the mode amplitude we get

(−γ + i∆ω)A0
γa0

= −1 + i
∆ω
γ
. (5.36a)

For the beam loading term, we have

α

2 I0
b

γa0
=
−α2 Ib cosφb + i

α

2 Ib sinφb
γa0

, (5.36b)

and using (5.33) we see that the imaginary part is the negative of that in
(5.36a), since the detuning was chosen to be optimal (5.33). We also see that
the real part of (5.36b) is between −1 and 0 (using (5.35)). For a supercon-
ducting cavity (γ0 ≈ 0 and γ ≈ (α/2)Ib cosφb/a0), we have that

α

2 I0
b

γa0
≈ −1 + i

sinφb
cosφb

.

By solving for the generator term in (5.32) and using (5.36a) and (5.36b),
we obtain √

2γextF0
g

γa0
= 1 + αIb cosφb

2γ0 + αIb cosφb
, (5.36c)

which we see is between 1 and 2, and approximately equal to 2 for a super-
conducting cavity.
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5.6 Phasor diagrams

In the previous section we considered the relative size of the different terms
in equation (5.30), which we restate for convenience,

dA
dt

= (−γ + i∆ω)A +
√

2γextFg + 1
2αIb.

To gain more insight into the dynamics of the accelerating mode, which
will be helpful for the control design, we will illustrate the different terms of
(5.30) in phasor diagrams such as in Figure 5.3, where the coloring coincides
with that in the equation above. To avoid clutter, the phasor for the cavity
field is drawn separately from the phasors that affect its derivative (field
decay, generator drive and beam loading).

Mode amplitude A [
√

J]

√
2γextFg

α

2 Ib

(−γ+i∆ω)A
φg

φb

Terms of d

dt
A [
√

J/s]

Figure 5.3 Phasor diagrams for visualizing the terms in the differential
equation for the accelerating cavity mode (5.30). Left: Phasor for the mode
amplitude. Right: Terms that affect the time derivative of the mode ampli-
tude.

If the cavity is optimally tuned and optimally coupled, then the nominal
generator phasor (green) will lie on the positive real axis, and the imaginary
part of nominal decay phasor (blue) and the imaginary part of the beam
loading phasor (red) will have equal magnitude put opposite signs. We realize
that the phasor diagram in Figure 5.3 does not correspond to an optimally
tuned or coupled cavity, but that the one in Figure 5.4 does.

Remark on phasor diagrams
Phasor diagrams are common in literature on cavity field control and accel-
erator physics, but to my knowledge they have only been used for illustrating
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Mode amplitude A

√
2γextFg

α

2 Ib

(−γ+i∆ω)A

Terms of d

dt
A

Figure 5.4 Phasors diagram for a superconducting cavity that is both
optimally tuned and optimally coupled.

the nominal phasors at steady state. Typically, the phasors for the generator
drive and the beam loading, together with the voltages that they induce, i.e.,
their steady-state effects on the cavity field

Vg = α

γ − i∆ω
√

2γextFg

Vb = α

γ − i∆ω
α

2 Ib,

are shown. In this thesis we will use phasor diagrams to understand how
variations in the driving terms Fg and Ib affect the cavity field, and we will
not consider induced voltages.

In previous literature, the beam loading phasor Ib is typically oriented
along the negative real axis. This is not unreasonable, since after all, the beam
phase is the reference relative to which the cavity field should be controlled.
However, at least from a field control perspective, where the goal is to keep
the cavity field close to a set-point, and beam variations act as disturbances,
it seems natural to orient the phasor for the cavity field along the positive real
axis. With this convention, we get a nice symmetry in the phasor diagrams
for optimally tuned cavities (see Figure 5.4), with the nominal phasors for
the cavity field and generator drive lying along the real axis. Thus, for these
two phasors we have that amplitude variations correspond to variations of
the real part, and small phase variations correspond to variations of their
imaginary parts.
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5.7 Relative impact of disturbances

Requirements on field control performance, and specifications on the ampli-
tude of amplifier ripple and beam ripple are typically given in relative terms,
i.e., on the form x% rms and x° rms. By normalizing the dynamics from dis-
turbances to field errors (of the accelerating mode), it will be easy to compute
the relative field errors from a relative disturbance specifications.

To simplify the control design we would also like to normalize the static
gain from the control signal to the measured signal (i.e., the mode amplitude)
to one.

For these reasons we introduce the relative variations of the accelerating
mode as5 z, the relative variations of the generator drive due to disturbances
as dg, the relative beam variations as db, and the normalized control signal
u, via

A = A0(1 + z) (5.37a)

Fg = F0
g(1 + dg) + γ√

2γext
A0u (5.37b)

Ib = I0
b(1 + db) (5.37c)

As an example, z = 0.01 + 0.02i corresponds to that the accelerating mode
has an amplitude error of 1 % and a phase error of 0.02 rad ≈ 1.1°.

By inserting (5.37) into the cavity equation (5.30), and using that the
nominal phasors sum up to zero in stationarity (5.32) we get

żA0 = (−γ + i∆ω)A0z + γA0u +
√

2γextF0
gdg + α

2 I0
bdb, (5.38)

and dividing by A0,

ż = (−γ + i∆ω)z + γu +
√

2γextF0
g

A0
dg +

α

2 I0
b

A0
db.

[
1
s

]
(5.39)

By introducing the dimension-less coefficients

Kg= 1
γ

√
2γextF0

g
A0

Kb = 1
γ

α

2 I0
b

A0

5 The notation z for the relative field errors of the accelerating mode was selected since in
the automatic-control literature z is commonly used for denoting controlled variables,
i.e., the variables whose variation is of interest, as opposed to measured variables that
are denoted by y.
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we can re-write (5.39) as

ż = (−γ + i∆ω)z + γu + γKgdg + γKbdb. (5.40)

From the discussion in the second half of Section 5.5, we know that typically

1 ≤ Re Kg ≤ 2
0 ≤ Re Kb ≤ 1.

By Laplace transforming and re-arranging (5.40), we obtain

Z(s) = γ

s+ γ − i∆ω
[
U(s) + KgDg(s) + KbDb(s)

]

= Pa(s)
[
U(s) + KgDg(s) + KbDb(s)

]
, (5.41)

where
Pa(s) = γ

s+ γ − i∆ω .

We will use equation (5.41) in Section 6.1 when we formulate a normalized
model for the RF system.

5.8 Parasitic modes

When additional (i.e., parasitic) modes, need to be considered in addition
to the accelerating mode, the parameters for the accelerating mode will be
labeled with a, those for the parasitic mode closest in frequency to the accel-
erating mode by 1, those for the second closest parasitic mode by 2, and so
on. Subscripts will be used when possible, and superscripts when necessary.

It follows directly from Section 5.4 how the beam and RF generator out-
put affect the mode amplitudes, which we illustrate in Figure 5.5; the figure
also shows how the cavity modes affect the beam, and that the voltage in-
duced in the cavity pickup antenna, Vpu, is a linear combination of the mode
amplitudes.

In general the parameters γkext, γk, and the pickup gains ck for the different
modes are not related. However for elliptical cavities, which are commonly
used and where parasitic modes often need to be considered, such relations
exist for the modes closest to the accelerating mode, i.e., in the so-called
fundamental passband.

Normalized cavity model with parasitic modes
In the following chapters when we consider the general mode structure in
Figure 5.5, we would also like to use the normalization of Section 5.8. Unfor-
tunately the beam loading Ib and the generator drive Fg couple differently
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Figure 5.5 Block diagram for how cavity modes couple to the RF system
and the beam. Vpu is the voltage detected by the pickup.

to the modes, so things would become slightly messy if we want to do this
in an exact manner. To this end, we introduce the notation

Pk(s) =
√

2γkext√2γaext
ck
ca

γa
s+ γk − i∆ωk

, (5.42)

and consider the block diagram of Figure 5.6.
We see that it almost corresponds to Figure 5.5 with the modes normal-

ized around their nominal operating points: the coupling of the modes to
generator drive and to the pickup antenna is correct, but the coupling to the
beam is only correct for the accelerating mode. However it is the output of
the accelerating mode that we really care about, so for our intended use, it
will be a good approximation, in particular since the spectral content of the
beam is centered around the RF frequency.
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u

d = Kgdg + Kbdb

Pa(s)

P1(s)

PN (s)

...
...
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z

y

Figure 5.6 Normalized cavity dynamics including parasitic modes, with
Pk(s) given by (5.42). Note that the impact of db is only approximately
correct.

5.9 Comparison to the equivalent circuit model

The presented approach from [Haus, 1983] for deriving the cavity field dy-
namics is somewhat different from the equivalent circuit approach, which is
standard in the accelerator literature. In this section, we discuss advantages
of Haus’ approach, for getting insight into the field control problem. For elec-
trical engineers who are accustomed to electrical circuits, these advantages
may not outweigh the familiarity of thinking in terms of a circuit model.

It should be emphasized that the only differences are in the derivation
(Haus’ derivation follows directly from Maxwell’s equations), and in the
parametrization of the differential equation. In particular after normaliza-
tion the resulting differential equations are identical.

Insight and simplicity
The equivalent circuit approach where the cavity dynamics are mapped to an
analogous equivalent circuit from which a model is then derived, obfuscates
the connection between the cavity and the derived model. For example, it
is hard to visualize how particle bunches interact with the voltage over a
resistor. The approach taken here, where everything follows from Maxwell’s
equations, is arguably more convincing and easier to follow.

Choice of parameters
With the equivalent circuit approach considered in [Schilcher, 1998], the
complex-coefficient differential equation for the accelerating mode takes the
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Table 5.1 Comparison of the parameters and the variables used in this
thesis compared to those used in [Schilcher, 1998]. A cross × indicates that
the given quantity does not occur in the considered model, and an asterisk ∗
indicates that the parameter occurs in the model (5.43).

Quantity [Schilcher, 1998] This thesis
∗Accelerating voltage (phasor) V Va = αA
∗Generator current (phasor) Ig 2

√
2γext/αFg

∗Beam current (phasor) Ib(RF) 2Ib
Forward wave (phasor) ×,

√
R/(2β)Ig Fg

∗Cavity Bandwidth ω1/2 γ
∗Detuning of acc. mode ∆ω ∆ω
Resonance frequency of
accelerating mode ω0 ωa
Unloaded Q Q0 ×, = ωa/(2γ0)
Coupling Factor β ×, = γext/γ0
External Q Qext = Q0/β ×, = ωa/(2γext)
Loaded Q QL = Q0/(β + 1) ×, = ωa/(2γ)
Normalized Shunt Impedance r/Q ×, α2/ωa
Resistor R R = (r/Q) ·Q0/2 ×, = α2/(4γ0)
∗Loaded shunt impedance RL = R/(1 + β) ×, = α2/(4γ)
Detuning Angle tanψ −∆ω/γ
Forward Power Pg = R/(2β) |Ig|2 |Fg|2
Beam current (DC) Ib0 Ib

form (the original work considered an equivalent real-valued two-input two-
output representation),

dV
dt

= (−ω1/2 + i∆ω)V +RLω1/2
(
2Ig + Ib(RF)

)
, (5.43)

where the parameters and variables of the equations are listed in Table 5.1.
We now compare how the parameters in this differential equations, relate

to those in (5.30), which we restate for convenience,

dA
dt

= (−γ + i∆ω)A +
√

2γextFg + α

2 Ib.

Definition of parameters in terms of Q0 Quantities such as the cou-
pling factor β = Q0/QL − 1, and the resistor R = (r/Q)/2 ·Q0, are defined
in terms of the unloaded quality factor, Q0. For a superconducting cavity Q0
is very large and may vary significantly due to anomalous losses and field
emission, it seems strange that important parameters such as R and β are
affected by this variation.
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Figure 5.7 The impulse responses of two hypothetical cavities with res-
onance frequencies of 352 MHz (a) and 704 MHz (b). The Q-values for the
two cavities differ by a factor of two, but their baseband dynamics are iden-
tical, which is seen from the figures. The Q-value for (b) is typical for the
ESS medium-β cavities, and the Q-value of (a) is somewhat similar to the
ESS spoke cavities. This examples illustrates that Q-values on their own
say very little about the cavity dynamics; they must always be considered
together with the resonance frequency of the cavity, and thus, one might
just as well use a single parameter, such as the decay rate γ, to quantify
the cavity dynamics.

For a perfectly conducting cavity, β and R becomes infinite, and the
equations that they occur in become ill-defined; while a lossless RF cavity is
not physically possible, it high-lights the problem.
Quantification of generator drive The drive from the RF amplifier is
modeled as a current Fg in the equivalent circuit model. To obtain the single
most important property of the generator drive, its power, it is necessary to
use the rather cumbersome expression Pg = RL/(8β) |Ig|2, where RL depends
on β, r/Q and Q0. In Haus’ approach, the generator drive is quantified by
the amplitude of the electric field in the waveguide (in units of

√
J/s). This

provides a considerable simplification.
Interpretation of bandwidth From (5.43) we see that the transfer func-
tion from amplifier ripple and beam ripple to field errors is given by

ω1/2

s+ ω1/2
RL.

Thus one is led to believe that by reducing the bandwidth ω1/2, the effect of
generator ripple and beam ripple on the cavity field is reduced. This is not
correct. The reason is that RL depends inversely on ω1/2. From (5.30) one
sees that the effect of beam ripple is given by the transfer function

1
s+ γ

α

2 ,

from which we see that the effect of beam ripple is actually increased (at
low frequencies) by reducing ω1/2 = γ. However now one would be led to
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believe that the effect of generator ripple also is increased when γ is reduced,
however this is not quite the case.

Different definitions of r/Q There are two common ways to define the
shunt resistance in the equivalent circuit mode, the “circuit definition” and
the “linac definition”, that differ by a factor two; care is required to avoid
confusion and mistakes [Tückmantel, 2011], [Schilcher, 1998, Eq 3.2]. In this
chapter we have instead used the parameter α, which is the ratio of two
clearly defined cavity parameters, the effective accelerating voltage and the
stored energy; thus, there is is little risk of confusion.

A comment on Q-values Designers of accelerator cavities typically quan-
tify the cavity losses in terms of Q-values, which are generally defined as

Q = 2π stored energy
energy dissipated per oscillation period .

Put differently, the Q-value quantify how many oscillation periods, mea-
sured in radians, it takes for an impulse response to the cavity to decay
to e−1 = 37 % of the initial amplitude. Depending of the type of accelerator
cavity, it could take from some several thousand to several hundred thousand
oscillation periods. From a field control perspective, where the interest is in
the complex envelope of the cavity field, the number of oscillations within
the envelope is of no interest.

Also, from just a Q-value, one can say nothing about the cavity dynamics,
unless the corresponding resonance frequency is known, consider for example
the situation shown in Figure 5.7. What actually matters is the corresponding
time constant for the decay. Even more insightful is to consider the decay rate,
i.e., the inverse of the time constant. Decay rates, e.g., from resistive losses
or from decay via the coupling mechanism, also simply add up linearly, γ =
γ0 + γext which is very convenient. Decay rates also go nicely together with
the type of phasor diagrams shown in 5.3; in particular, if the phasor diagram
for the time-derivate terms is normalized with respect to the magnitude of
the cavity field, it is possible to compare the relative impact of disturbances
between different cavities.
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6
The Field Control Loop

First, let us motivate the need for a field control loop. Without feedback,
the effects of beam ripple and amplifier ripple on the accelerating cavity
mode have a frequency dependence given by the transfer function Pa(s) in
(5.41), which is shown in Figure 6.1. It is seen that the cavity acts as a
low-pass filter—high-frequency disturbances are attenuated, but there is no
attenuation of slow, low-frequency disturbances.

With a feedback controller, it is possible to attenuate the effect of the
low-frequency disturbances. To ensure stability and sufficient control perfor-
mance, it is important to include dynamics and time delays in the closed-loop
analysis. That is why we in the two previous chapters considered the dynam-
ics of different systems in the field control loop. In this chapter we put those
pieces together and provide a general discussion of the field control loop.

In all the remaining chapter, except Chapter 10, we will only consider
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Figure 6.1 Normalized transfer function for the accelerating mode of a
superconducting cavity with 600 Hz bandwidth.
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Chapter 6. The Field Control Loop

feedback, and consider operation around a nominal operating point; the con-
trol performance during the filling transient, and for repetitive disturbances,
can typically be improved by using iterative learning control, see [Norrlöf,
2000; Rogers et al., 2010].

6.1 The model

By collecting the results from the two previous chapters we get the baseband
model of the field control loop in Figure 6.2, where Lreg is the delay from
signal processing in the LLRF system, L1 is the propagation time of the
electric waves from the RF amplifier to the cavity, and L2 is the propagation
time from the pickup probe in the cavity to the LLRF system. The factors
e−iθ1 and e−iθ2 are phase shifts from considering the propagation delays in
the baseband (see Section 2.4), we also consider phase-shifts from the klystron
and other components to be lumped into these two factors; the factor eiθadj

is for loop phase adjustment, and can in principle be considered to be a part
of the controller (see Section 6.5). For our analysis we assume the controller
C0(s) to be linear in its action on complex signals, i.e., of the form (2.12).

The set-point V0
pu for the cavity voltage measured by the cavity pickup

probe, is provided by the beam physicists. For Vpu to be controlled to V0
pu it

is crucial that θ̂2 is calibrated to equal θ2. This calibration is also handled by
the beam physics group. We will not consider this further, and thus assume
that θ2 = θ̂2 = 0.

By using the normalized cavity model from Figure 5.6, introducing the
cavity transfer function Pcav(s) := Pa(s) + P1(s) + · · · + PN (s), and then
lumping the process dynamics in Figure 6.2 into one transfer function

P (s) := Pcav(s)Pamp(s)e−sLe−iθ, (6.1)

where L := L1 +L2 +Lreg, θ := θ1 + θ2, and lumping the loop-phase adjust-
ment and the nominal controller into a new controller,

C(s) := C0(s)eiθadj ,

we obtain the simplified and normalized block diagram in Figure 6.3, where
the normalized disturbances from the generator and the beam loading term
have been added into one signal

d = e−sL1Kgdg + Kbdb. (6.2)
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C0(s)eiθadje−sLreg Pamp(s) e−sL1e−iθ1

Fig. 5.5

e−sL2e−iθ2

pickup cable

RF amplifierLLRF system cavitywaveguide

Fg

beam loading
Ib

Vpu

Va

V0
pue−iθ̂2 +

amplifier ripple
Fd

g

−

noise
n

Figure 6.2 Linearized, somewhat simplified, baseband model of the RF
system, which will be used for analyzing the field control loop. For improving
transient performance and dealing with repetitive disturbances, one could
add a feedforward signal to the output of the controller; but since only flat-
top operation will be considered in this thesis, that feedforward signal is
not shown in the figure.

6.2 Three types of disturbances

We find it useful to think about three classes of disturbances affecting the
cavity field stability: random disturbances, that are not feasible to predict,
such as

• Beam current fluctuations Ĩb due to plasma instabilities in the ion
source

• Disturbances Fd
g on the RF amplifier output due to power supply

switching and various other noise sources1.
These disturbances will inevitably give rise to cavity field errors, and the only
way to reduce their effects is by feedback.

Then there are repetitive disturbances, which are more or less identical
from RF pulse to RF pulse, for example

• The beam pulse Ib.
• Resonance frequency variations, i.e. variations of ∆ωa, from mechanical

deformation of the accelerator cavity caused by the Lorentz force2.
1 If the modulator switching is deterministic and synchronized to the timing system, it

could effectively be canceled by iterative learning control. Unfortunately there is not
plan to do this for the planned modulator at the European Spallation Source, however
it has been done at other facilities [Personal correspondence with Thomas Schilcher,
Paul Scherrer Institute].

2 The electromagnetic field acting on the cavity walls.
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C(s) P (s)

Pa(s)

controller plant

accelerating
mode

u yy0 +

d z

−

n

Figure 6.3 Normalized version of the block diagram in Figure 6.2, where
the plant dynamics P (s) are given by (6.1), and the normalized disturbances
d are given by (6.2). We will for the most part assume that θadj is calibrated
so the θadj = θ, in order to simplify the exposition.

Since these disturbances can be anticipated, it is in principle possible to
cancel them completely by adding a suitable signal uILC(t), which is syn-
chronized to the start of the beam, to the control signal. The technique of
updating the compensation signal uILC(t) based on the errors from the pre-
vious iteration (i.e. RF pulse), is called iterative learning control (ILC)3. We
will not consider this topic in this thesis, and refer to [Norrlöf, 2000; Bristow
et al., 2006; Rogers et al., 2010].

Finally we find it useful to think about model changing disturbances,
i.e., process variations. These could be due to both random or repetitive
disturbances, e.g.,

• Amplifier droop, i.e., a slow decrease of ∆Vc, which, for the klystrons,
leads to a phase shift of the control loop according (4.2).

• Resonance frequency variations, i.e. variations of ∆ωa, from mechanical
deformation of the accelerator cavity caused by the Lorentz force4 and
due to microphonics5.

These disturbances are slow/repetitive and can be almost perfectly canceled
by the integral action of the feedback controller and the iterative learning
control; from this perspective one could ignore them. However these distur-
bances give rise to parameter variations of the nominal process model (6.1),
and thus either the controller needs to be robust to these variations in terms

3 Frequently referred to as adaptive feedforward in the cavity field control literature.
4 The electromagnetic field acting on the cavity walls.
5 Unwanted mechanical vibrations, for example, from nearby traffic or the cryo plant.
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of stability and performance, or the controller needs to be adaptive. Adap-
tive controllers are notoriously complex and troublesome, so we will focus on
designing robust controllers.

The feedback from the controller C(s) will attenuate both repetitive and
non-predictable disturbances. However, since the repetitive disturbances such
as the beam loading transient can be handled by iterative learning control, we
will mainly consider non-predictable disturbances when we analyze closed-
loop performance.
Remark: We classified high-frequency ripple on the amplifier supply volt-
age as a random disturbance, however as with droop it also leads to a change
in the model. However, the amplitude of the high-frequency ripple is so small
that it is a good approximation to consider it as a random load disturbance
on the nominal model.

6.3 Closed-loop transfer functions

Without feedback, the disturbances will only be attenuated by the low-pass
dynamics of the cavity (Figure 6.1). To attenuate slow disturbances, it is
necessary to introduce a feedback controller.

The change in disturbance attenuation between no feedback, and feedback
with the controller C, is, as discussed in Section 2.2, quantified by the so-
called sensitivity function

S = 1/(1 + PC). (6.3)

Using a controller with high gain at low frequencies, which is where we want
to increase disturbance attenuation, we get a sensitivity function like the one
in Figure 6.4; the transfer function examples throughout this chapter corre-
spond to the nominal PI-controller design for a cold cavity from Chapter 7.
In Figure 6.4 it is seen that disturbance attenuation is significantly improved
at low frequencies, but worsened at around 10–100 kHz. This is unavoidable
and known as the waterbed effect (see Section 2.2).

With feedback, the transfer function from disturbances to field errors
becomes

Gzd = Pa/(1 + PC) = PaS, (6.4)
which is shown in Figure 6.5, together with the transfer function Pa of the
accelerating cavity mode without feedback.

The transfer function

Gun = C/(1 + PC) = CS (6.5)

quantifies how measurement noise n is amplified to the controlled signal
z. High control signal activity tends to give poor control performance due
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Figure 6.4 Sensitivity function S = 1/(1 + PC) for a cold cavity con-
trolled with a PI-controller, this, as well as the other examples in this chap-
ter, correspond to the nominal design in Chapter 7.
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Figure 6.5 Transfer functions from disturbances d to field errors z: with
feedback (Gzd = Pa(1 +PC), solid line), and without feedback (Pa, dashed
line).

to excitation of unmodeled dynamics and an increased impact of amplifier
nonlinearities. These effects are hard to quantify, so it is prudent to limit the
control signal activity. Typically the controller gain needs to be large for the
superconducting cavities, motivating the introduction of a low-pass filter in
the controller in order to limit the amplification of high-frequency noise to
the control signal.

Finally, we also mention the transfer function

Gzn = PaC/(1 + PC) (6.6)

which quantifies the impact of measurement noise on the controlled signal and
also the response to set point changes; its typical characteristics are shown
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Figure 6.6 The transfer function Gun = C/(1 +PC) from measurement
noise n to the control signal u.

in Figure 6.7. For ESS the impact of measurement noise on the field errors is
small compared to the impact of disturbances from the amplifier and beam
current variations. Also, during the pulses the set-point will be constant, and
hence there are no demands to track fast set-points variations. Thus, we will
primarily look at other closed-loop transfer functions than Gzn(s) for our
control analyses.
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Figure 6.7 The transfer function Gzn = PaC/(1 + PC) from measure-
ment noise n to field errors z.

The transfer functions (6.3)-(6.6) are collectively known as the ”gang of
four”, and capture the essentials of the closed-loop control performance. Typ-
ical gang-of-fours for a cold cavity and a warm cavity are shown in Figure 6.8.
.
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Figure 6.8 The set of transfer functions known as the “gang of four”, for
a warm cavity with a bandwidth of 12 kHz (orange lines), and a cold cavity
with a bandwidth of 0.6 kHz (blue lines), with a PI-controller tuned for a
maximum sensitivity of Smax = 1.6.

Stability
It is not only sufficient to look at the magnitude of the closed-loop transfer
function, but as we discussed in Section 2.2, it is important to consider stabil-
ity when feedback is involved. For the applications in this thesis, closed-loop
stability is conveniently verified by Nyquist’s criterion, which we introduced
in Section 2.2. The Nyquist curves and the Bode digram for the cold and
warm cavities from our previous examples are shown in Figure 6.9.

6.4 Mathematical formulation of control specifications

In the previous section, we stated rather loosely that for good control perfor-
mance it is desirable with high disturbance attenuation, sufficient robustness
and limited control signal activity. Now, we will formulate these requirements
mathematically, using th signal and system norms from Section 2.3.
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Figure 6.9 Nyquist and Bode diagrams for a warm and a cold cavity
controlled by a PI-controller. The gray circle in the Nyquist diagram cor-
responds to a sensitivity constraint of MS ≤ 1.6, and the gray lines in the
phase curve of the Bode diagram illustrate phase margins of about 45°; both
robustness measures indicate good robustness of the closed-loop system. For
more details on these robustness measures, see Section 2.2.

Cavity field error
By denoting the spectrum of the normalized load disturbances d by D(s),
we have, since Pa(s) is normalized (Section 5.7), that the resulting (relative)
rms error of the accelerating mode is

||GzdD||2 =
√

1
2π

∫ ∞

−∞
|Gzd(iω)|2 |D(iω)|2 dω.

There is also a contribution ||GznN ||2 due to measurement noise, however
for the ESS accelerator this effect is not significant: assuming that the down-
sampled 10 MHz signal has a signal-to-noise ratio of 70 dB, which should be
achievable with the planned hardware, that the noise is white, and that the
closed-loop bandwidth of the system is 100 kHz, then the effect on the cavity
field is roughly

||GznN ||2 = (−70− log10(100 kHz/5 MHz)) dBc = −87 dBc = 0.005%,

which is small compared to the field error specification of 0.1 % and 0.1°
rms6.

6 Note that for FEL accelerators, this error is of the same order as their typical control
specification of 0.01 %
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Robustness
We will quantify the robustness of the field control loop by the maximum
value of the sensitivity function (6.3),

MS = sup
ω
|S(iω)| = ||S||∞ .

This is, as we discussed in Section 2.2, a more general, and more convenient
robustness measure than the traditionally used gain and phase margins. Typ-
ically the maximally allowed value for MS is chosen between 1.4 and 2, with
better robustness for smaller values.

Control signal activity
The control signal activity (rms), resulting from measurement noise with
spectrum N , is given by ||GunN ||2. The peak-to-peak value is approximately
3 times the rms value, i.e. ±3 ||GunN ||2. At ESS the amplifier power overhead
for regulation will be around 25 %, giving an amplitude overhead of 12 %,
which we would like to stay well below.

Assuming that the measurement noise is white with N(iω) = 1 up to the
Nyquist frequency ωNy, then the control signal activity due to measurement
noise is given by

||GunN ||2
||N ||2

=
√

1
2π

∫ ωNy

−ωNy

|Gun(iω)|2 dω
/√

2ωNy/(2π).

Formal formulation of control problem
We are now in a position to formulate our control problem mathematically:

Control Problem
From a given class C of suitable controllers, we wish to find the controller C
which solves the optimization problem:

minimize
C ∈ C

∣∣∣∣
∣∣∣∣

Pa
1 + PC

D

∣∣∣∣
∣∣∣∣
2

(6.7a)

subject to
∣∣∣∣
∣∣∣∣

1
1 + PC

∣∣∣∣
∣∣∣∣
∞
≤ Smax. (6.7b)

∣∣∣∣
∣∣∣∣

C

1 + PC
N

∣∣∣∣
∣∣∣∣
2
≤ Bun. (6.7c)

where D is the spectrum of load disturbances, N is the spectrum of measure-
ment noise, Smax is a limit on the maximal value of the sensitivity function,
and Bun is a bound on the control signal activity due to noise.
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Figure 6.10 Illustration of the effect of loop phase variations for a warm
cavity with a bandwidth of γ = 12 kHz which is controlled by a P-controller
C(s) = 5.

6.5 Loop phase adjustment

We will now discuss how the loop phase adjustment angle θadj should be
chosen. For this, we introduce P0(s) := Pcav(s)Pamp(s)e−sL so that

P (s) := P0(s)e−iθ,

after which the open-loop transfer function can be written

L(s) = C(s)P (s) = C0(s)eiθadjP0(s)e−iθ = L0(s)eiδ

where L0(s) = C0(s)P0(s) and δ = θadj−θ. From this we see that the Nyquist
curve of L(s) equals the Nyquist curve of L0(s) rotated by δ radians around
the origin, see Figure 6.10.

If L0(s) has real-valued coefficients, for example if there is no detuning
and parasitic modes are not modeled, then it is clear that choosing δ = 0
gives the best robustness. In this case we also have that if L0(s) corresponds
to a stable closed loop, then small values of δ correspond to a reduction of
the phase margin by δ radians.

In the case where L0(s) has complex coefficients, the choice δ = 0 may
not necessarily give the best robustness, see Figure 6.11.

Methods for calibration of the loop phase adjustment
To calibrate the loop phase adjustment, the most straight-forward approach
would be to do systems identification of L(s) and then adjust φadj for optimal
robustness. Realizing that adequate phase-margins are most critical around
a system’s bandwidth, the identification should be focused in this frequency
region.
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Im L(iω)
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ω > 0

Figure 6.11 A situation where choosing θadj different from 0 gives im-
proved robustness. The gray circle corresponds to MS = 1.6. The Nyquist
curve is for a cold cavity with a single parasitic mode, which is controlled
by a PI-controller augmented with a second-order low-pass filter.

This approach essentially corresponds to the following model-free method
for calibration of loop phase adjustment7:
1. Find an angle θa such that the closed-loop system is stable.
2. Increase θadj from θa until the loop starts to oscillate, i.e. is on the

stability boundary, and denote the corresponding value of θadj by θb.
3. Similarly, decrease θadj from θa until oscillations start, and denote

the angle θc.
4. Select θadj = (θb + θc)/2.

This calibration should preferably be done with the controller and set-point
that are intended to be used.

Calibration of the loop phase adjustment is also discussed in [Brandt,
2007, Sec. 4.3.3].

6.6 Process variations

An illustration of the effect is shown in Figure 6.12, where we see that gain
variations of the plant reduce the disturbance rejection or reduce the robust-
ness. Furthermore, phase variations give reduced robustness, and in particu-
lar, reduced phase margin.

The controller also needs to be robust against variations of the mode
frequencies ∆ωa,∆ω1, . . . ,∆N .

7 Oral tradition of the field control community. The author learned about it from Mark
Crofford, SNS.

86



6.6 Process variations

-1

Re L(iω)

Im L(iω)

(a) Effect of gain variation.
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(b) Effect of phase variation.

Figure 6.12 Effect of gain and phase variation on the closed-loop transfer
function L(s), which can be due to variations in the amplifier supply voltage
or the electrical length of the wave-guide and cables.
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7
Limits of Field Control
Performance

7.1 Controller structure

An important aspect of control design is to decide on the controller
structure—on the one hand it should be flexible enough to allow a small
value of the objective function (6.7a), and on the other hand it should be as
simple as possible, since this simplifies understanding, implementation, and
leaves fewer things to go wrong.

For field control it has been proposed to use: PI(D)-controllers, observer-
based state feedback, Smith predictor based controllers and model predictive
controller. All these controllers, and almost all other controllers of practical
use, are linear and time invariant (LTI), at least if there is no control signal
saturation. Regardless of the controller however, there are fundamental limi-
tations on the achievable control performance; when both the controller and
plant are linear, one such fundamental limitation is given by Bode’s Integral
Formula (2.7).

In the LTI setting it is often possible to be more specific about the lim-
its of control performance—by explicitly computing them! In this chapter
we will do just that for the field control problem (6.7), and compare the
performance of the optimal LTI controller with the performance of PI- and
PID-controllers. It will turn out that the difference in performance is quite
small, which indicates that there typically is little need to use more compli-
cated controllers for field control. The work in this chapter has been inspired
by [Garpinger, 2009], where similar investigations were made for low-order
process models.

In Section 7.2 we provide the details for the comparison of the different
controller types, and in Section 7.3 we compare the performance of the op-
timal LTI controller to the performance of optimal PI- and PID-controllers
for different loop-delays and different levels of control signal activity.
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7.2 Problem formulation

In Appendix B.1 we give a short background on how to find optimal
linear controllers and the specifics of the approach used for this thesis, and
in Appendix B.2 we briefly discuss how optimal parameters of the PI- and
PID-controllers were found.

7.2 Problem formulation

We will compare the optimal solutions to the control problem from the pre-
vious chapter,

minimize
C ∈ C

∣∣∣∣
∣∣∣∣

Pa
1 + PC

D

∣∣∣∣
∣∣∣∣
2

subject to
∣∣∣∣
∣∣∣∣

1
1 + PC

∣∣∣∣
∣∣∣∣
∞
≤ Smax.

∣∣∣∣
∣∣∣∣

C

1 + PC
N

∣∣∣∣
∣∣∣∣
2
≤ Bun

for the following classes C of controllers:
• The set of all linear time-invariant controllers.
• PI-controllers of the form

CPI(s) = K

(
1 + 1

sTi

)
· 1
sTf + 1 . (7.1)

• PID-controllers of the form

CPID(s) = K

(
1 + 1

sTi
+ sTd
sTd/N + 1

)
· 1
sTf + 1 . (7.2)

Below we introduce the assumed process models P (s) and Pa(s), the distur-
bance spectrum D(s) and measurement noise spectrum N(s).

Process model
We consider the process model (6.1),

P (s) = Pcav(s)Pamp(s)e−sLeiθ.

To make the ideas come across clearly, we will neglect the impact of
parasitic modes and only include the accelerating mode of the (normalized)
cavity model,

Pcav(s) = Pa(s) = γa
s+ γa

= 1
τas+ 1 . (7.3)
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Chapter 7. Limits of Field Control Performance

Table 7.1 Model parameters used in the numerical examples in Sec-
tion 7.3.

Parameter Unit Value
Amplifier bandwidth, famp = ωamp/(2π) MHz 1.5
Loop-delay, L µs 1.0

Warm Cold
cavity cavity

Bandwidth of acc. mode, fa1/2 = γa/(2π) kHz 12 0.6
Time constant of acc. mode, τa µs 13 265

where τa = 1/γa is the time constant of the accelerating mode, and we
have assumed the detuning to be zero, to get a conjugate symmetric transfer
function1. The assumption that the detuning is zero has little impact on
field control performance, since the closed-loop bandwidth on ≈ 100 kHz is
much greater than typical detuning. For the bandwidth γa we will consider
two different values: 12 kHz, which corresponds to the (normal conducting)
DTLs at ESS, and 0.6 kHz, which corresponds to the superconducting cavities
at ESS.

We also assume that the loop phase is perfectly calibrated, i.e., θadj = θ,
and for simplicity, even that θadj = θ = 0. The amplifier dynamics Pamp(s)
is given by (4.1). The numerical parameter values that will be considered in
the next section are given in Table 7.1, and an overview time delays in the
field control loops at ESS is given in Table 7.2.

Disturbance spectrum
Since it has not been possible to obtain sufficient data on the disturbance
spectrum D(s) for the field control loops at ESS, we assume a simple, circular
symmetric disturbance model, i.e., without the directionality discussed in
Section 9, and with power spectral density

Φ(ω) = |D(iω)|2 with D(s) = b(s+ a)
s(s+ b) , (7.4)

where a = 2π ·3× 103, and b = 2π ·3× 104, see Figure 7.4; the large values of
|D(iω)| at low frequencies corresponds to droop of the amplifier power supply
and pulse-to-pulse variations of the beam current, while the constant part
up to the frequency b, corresponds to beam current ripple and fast switching
in the amplifier power supply.

1 Strictly speaking it still acts on complex-signals, but in the ideal case the dynamics for
the real-part and the complex-parts are de-coupled.
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7.2 Problem formulation

Table 7.2 Estimated latencies in the field control loops at ESS. The RF-
amplifier dynamics is modeled by a first-order system Pamp(s), instead of
as a pure time delay; see Section 4.3.

Source of delay Delay [ns]
Propagation Delays
Amplifier to cavity (waveguide), 40 m÷ 0.68c 200
LLRF to amplifier (cable), 10 m÷ 0.82c 40
Cavity probe to LLRF (cable), 40 m÷ 0.82c 160

LLRF latencies
ADC latency 130
30 FPGA clock cycles @100 MHz 300
DAC latency 90

Contingency 80
Total 1000

102 103 104 105 106

10−1

101

a b

Frequency [Hz]

|D
(i

ω
)|

Figure 7.1 Assumed load disturbance spectrum for the numerical exam-
ples considered in this section. Since we will consider the performance of
different control approaches relative to each other, the absolute scale of the
disturbance spectrum is not important.
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Chapter 7. Limits of Field Control Performance

Measurement noise spectrum
We assume the measurement noise to be white, i.e., have constant magni-
tude up to the Nyquist frequency. Instead of specifying the spectrum N(iω)
corresponding to the actual noise level, we normalize so that ||N ||2 = 1,

N(iω) =
{√

2π/(2ωNy), if |ω| ≤ ωNy
0, otherwise

,

which makes it easier to compare different noise levels. We assume the
Nyquist frequency ωNy = 5 MHz, which corresponds to a sampling rate of
10 MHz for the controller. The assumption on white noise will allow us to
use a numerically preferable problem formulation to find the optimal LTI-
controller.

7.3 Results

We consider the following nominal case: the time delay L = 1 µs, the maxi-
mum sensitivity Smax = 1.6, and maximum control signal activity Bun = 30;
for this nominal a case, a comparison of the open-loop frequency responses
and the gang-of-fours, for the considered controller structures are shown in
Figure 7.5 and Figure 7.4.

How the optimal control performance depends on the allowed control
signal activity Bun is shown in Figure 7.2, and how the performance depends
on the time delay L is shown in Figure 7.3.

Remark
The sensitivity constraint of MS ≤ 1.6 is motivated by that MS ≤ 1.4 is
commonly used for process control [Åström and Hägglund, 2006], where it is
hard to obtain good process models, the controllers should function robustly
even if there are significant process variations, and where there are thousands
of control loops to tune and it does not make sense to push the performance
of each and every one of them. The typical field control loop has rather
simple dynamics (apart from the amplifier nonlinearity), and for accelerators
that cost billions of euros, it is economically feasible, and justified, to spend
some time on obtaining good process models. This makes it reasonable with
a slightly larger values of MS , which will enable better control performance.

The constraint on Bun can be motivated as follows. For ESS it has been
estimated that the phase-adjusted baseband signal y will have a signal-to-
noise ratio of 70 dB, which corresponds to relative rms variations on 0.03 %.
The constraint ||GunN ||2 ≤ Bun = 30 ensures that the control signal has
relative rms variations of less than 1 %.
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Figure 7.2 Optimal control performance vs. allowed control signal ac-
tivity Bun, for different controller types. For a small value of Bun it is not
possible for the general LTI controller to use its flexibility to suitably shape
the open loop system, since this requires a large control signal. With greater
values of Bun, the performance advantage of the general LTI-controller over
the PI- and PID-controllers increases.
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Figure 7.3 Optimal control performance vs. time delay L in the field
control loop, with the controller constraints given by Smax = 1.6 and Bun =
30. It is seen that the achievable control performance, both for the warm
and the cold cavity, can be significantly improved by reducing the time delay
in the field control loop; the effect is most dramatic for the warm cavity,
where the control performance is almost proportional to the time delay, this
is because the main limit on the control performance of the warm cavity is
the robustness constraint MS ≤ 1.6, which becomes much easier to handle
for shorter time delays, for the cold cavity, the constraints on control signal
activity does not allow a reduced time-delay to be fully exploited.
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(a) Warm cavity. The Nyquist curve for the LTI-controller makes a big turn into the right
half plane after it exits the top of the figure, before finally coming back and goes to zero
for high frequency.
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Figure 7.4 Comparison between the open-loop frequency responses for
three different controller types.
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Figure 7.5 The gang of four for different optimal controllers subject to
Smax = 1.6 and Bun = 30.
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7.4 Conclusions

From the Bode diagrams in Figure 7.4 we see that the open-loop transfer
functions for all the different controllers are similar, and all have ”typically
good” characteristics for open-loop transfer functions: high gain at low fre-
quencies, and roll-off for higher-frequencies. However, the optimal LTI con-
trollers do a better job of pushing up the loop gain at around 30 kHz, giving
better disturbance rejection around that frequency (see also the sensitivity
function in Figure 7.5); this is made possible by the high flexibility of the
LTI controllers which allow them to push the sensitivity function all the way
to the sensitivity constraint MS ≤ 1.6. With reference to the waterbed effect
(Bode’s integral formula Section 2.2), one can say that the LTI controller
corresponds to a softer waterbed than PI- and PID-controller. The same ef-
fect is seen in Figure 7.4 where the Nyquist curves for the LTI-controllers
tightly follow the sensitivity circles.

In order to both push up the loop gain at around 30 kHz while still respect-
ing the sensitivity constraint, the optimal LTI for the warm cavity makes a
big turn into the right half-plane before finally going to zero for high frequen-
cies; this big turn corresponds to the resonance peak in the Bode diagram.
To implement such a controller in practice is very challenging, and it would
be very sensitive to implementation errors and process variations.

Dependence on allowed control signal activity
From Figure 7.2 we see that control performance is strongly dependent on
the allowed control signal activity Bun, especially for cold cavities. Cold
cavities have low bandwidths so it is necessary to use a high-gain controller
to increase the bandwidth of the closed-loop system; the high gain makes
the controllers sensitive to measurement noise, and the constraint on control
signal activity leaves little freedom for the general LTI controller to achieve
better performance than the PI(D)-controllers.

With the given constraints on control signal activity there is little benefit
from using a more complex controller than a PI-controller for controlling cold
cavities. For warm cavities there are some benefits of using a PID-controller
or a more complex controller over a PI-controller. Note that decreased levels
of measurement noise directly leads to a corresponding allowed increase of
Bun, and thus quite significant performance improvements.

Dependence on the loop delay
Figure 7.3 shows how the control performance depends on the time delay in
the field control loop. It is seen that it is quite worthwhile to decrease it, in
particular for warm cavities, for which the field error is almost proportional
to the loop delay.
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8
Field Control for Parasitic
Cavity Modes

8.1 Introduction

We saw in Chapter 5 that RF cavities in addition to the accelerating mode,
have infinitely many parasitic modes. The interaction of these modes with the
beam and the field control loop is detrimental to beam quality and control
performance.

Typically only one, or possibly two, of the parasitic modes are sufficiently
close to RF frequency to require consideration in the field control design,
see Figure 8.1. The beam interacts not only with the parasitic modes close
to the RF frequency, but also with modes that are close to the machine
lines, i.e., integral multiples of the bunch frequency. These interactions need
consideration to ensure sufficient beam quality [Ainsworth and Molloy, 2012],
but for the purpose of this thesis, we only need to consider the parasitic modes
close to the RF frequency.

An early work which considered parasitic modes in the field control design
is [Schilcher, 1998]. More details and discussions of different control strategies
are provided in [Vogel, 2007]. For an example of how parasitic modes were
handled in connection with robust control design, see [Pfeiffer et al., 2012;
Schmidt et al., 2012], and for system identification of the parasitic mode
frequencies, see [Pfeiffer, 2014].

In this chapter we will present and compare different approaches for
dealing with parasitic modes in the control design, demonstrating how
the complex-coefficient SISO representation of dynamics introduced in Ap-
pendix E, brings insight to the control design and analysis, avoiding the need
to resort to the generalized Nyquist criterion [Schilcher, 1998], or to ignore
the imaginary part of the cavity transfer function (which is acceptable for the
accelerating mode, but it is not an adequate approximation for the parasitic
modes) [Vogel, 2007].
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Figure 8.1 Pole-zero diagram and Bode diagram for the (baseband)
transfer function from the power coupler to the measurement probe of a
6-cell elliptical cavity. Only the two parasitic modes closest to the acceler-
ating mode are shown in the pole-zero diagram.

Illustration of the dangers of parasitic modes
Consider the process model P (s) from Section 7.2, where the cavity model
does not include parasitic modes, controlled by the PI-controller (7.1) with
K = 85, Ti = 24 µs, and Tf = 0.48 µs; frequency domain plots for this process
and controller combination are shown in Figure 8.2.

If the same controller C0(s) is used when the cavity model is taken to
include parasitic modes (corresponding to the red curve of Figure 8.1), we
get the Nyquist curve in Figure 8.3 that encircles the point−1, demonstrating
that the closed-loop system is unstable. This simple example illustrates that
parasitic modes need to be considered in the control design.

8.2 Process model

Throughout this chapter we will consider the RF system model

P (s) = Pcav(s)Pamp(s)e−sLe−iθ,

from (6.1), with the same parameters as in Section 7.2 (L = 1 µs, θ = 0), but
include a single parasitic mode in the cavity model, i.e.,

Pcav(s) = γa
s+ γa − i∆ωa

− γ1
s+ γ1 − i∆ω1

. (8.1)
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Figure 8.2 Frequency domain plots for a nominal controller design for a
model of a cold cavity without parasitic modes.
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Figure 8.3 Nyquist curve, for when a controller designed for a cavity
model without parasitic modes, is used for a cavity with parasitic modes.
The bulge from the parasitic mode makes the Nyquist curve encircle −1 and
the closed loop system is therefore unstable due to the effect of the parasitic
mode. This illustrates that the parasitic modes needs to be considered in
the controller design.
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8.3 Control strategies for parasitic modes

Table 8.1 Parameters used in the cavity model with one parasitic mode
(8.1).

Parameter Unit Value
Accelerating mode
Bandwidth, fa1/2 = γa/(2π) Hz 600
Detuning, ∆fa = ∆ωa/(2π) Hz 0

1st parasitic mode
Bandwidth, f1

1/2 = γ1/(2π) Hz 1100
Detuning, ∆f1 = ∆ω1/(2π) kHz −700

For our numerical examples we will use parameter values in Table 8.1, which
are typical for ESS’s medium-beta cavities1. The dashed, red lines of Fig-
ure 8.1 correspond to these parameter values. In practice it could be neces-
sary to consider more than one parasitic mode, but to simplify the exposition,
we limit ourselves to only one.

8.3 Control strategies for parasitic modes

To avoid instability from the parasitic mode, we want to ensure that the
corresponding ”bulge” in the Nyquist curve L(iω) = C(iω)P (iω), for ω close
to ∆ω1, does not encircle, or come close to the point −1. This can be achieved
in two ways:

1. By sufficient attenuation of the parasitic mode so that the open-loop
transfer function L(s) is well below 1 around this frequency. Due to
the normalization of Pcav(s), this corresponds to that |C(i∆ω1)| is well
below 1 around ∆ω1.

2. By using the controller C(s) for phase adjustment of the open-loop
transfer function L(s) around ∆ω1, so that the ”bulge” from the para-
sitic mode is directed away from the −1 point.

For option 1, attenuation, the phase of L(iω) around ∆ω1 is not important
for stability, and thus the closed loop is robust to for example small varia-
tions of the loop delay. Option 2, on the other hand, where the bulge from
the parasitic mode is kept large, is sensitive to phase variations around the
parasitic mode frequency ∆ω1.

1 Except that we assume the detuning of the accelerating mode to be 0, since we did so
in the previous section.
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Attenuation
Below we discuss three different strategies to sufficiently attenuate the para-
sitic mode to ensure closed-loop stability: keeping the gain of the controller
low, augmenting the controller with a high-order low-pass filter, and aug-
menting the controller with a notch filter.

Low gain Of course, one possibility would be to just use the PI-controller
(7.1), and reduce the gain K and the bandwidth of the low-pass filter. While
approach avoids instability, it would give poor control performance, since the
low-frequency gain would be too low to suppress slow disturbances.

High-order low-pass filter Augmenting the controller with low-pass fil-
ters of the form

F1(s) = 1
sTf + 1

and
F2(s) = 1

s2T 2
f + sTf + 1 ,

attenuates not only the closest parasitic mode with frequency ∆ω1, but actu-
ally all parasitic modes. This strategy is not sensitive to the exact frequency
of the parasitic mode.

Notch filter To specifically reduce the gain of C(s) around ∆ω1, the ob-
vious choice would be to introduce a notch filter

Fn(s) = s2 + ω2
n

s2 + 2ζnωns+ ω2
n

= s− iωn
s+ ζnωn − iωn

√
1− ζ2

n

· s+ iωn

s+ ζnωn + iωn
√

1− ζ2
n

. (8.2)

in the controller, as in [Schmidt et al., 2012]. This notch filter has real coef-
ficients and is thus conjugate symmetric, however from Figure 8.1 it is seen
that the resonance from the parasitic mode is only present at negative base-
band frequencies. Therefore it suffices to use a single-sided notch filter of the
form

Fn(s) = s− iωn
s+ ζnωn − iωn

, (8.3)

which requires slightly less FPGA resources for the implementation, and also
gives slightly better control performance, since the phase reduction around
cross-over could be somewhat reduced (at least after appropriate adjustment
of θadj).

If the notch filter is designed to only reduce the magnitude of C(∆ω1), the
resulting design will be sensitive to the exact frequency of the parasitic mode.
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Figure 8.4 Pole-zero diagram for a single-sided notch filter F in contin-
uous time.

A design criterion, which gives better robustness to this, is the following

|C(iω)| ≤ 1− 1
Smax

for |ω| ∈ [∆ω1 − b,∆ω1 + b] , (8.4)

where a low magnitude of C is enforced also in a neighborhood of ∆ω1.

Remark on alternative notch filter implementation Another type of
notch filter that is advantageous due it its low implementation complexity is
[Vogel, 2007]

H(z) = 1
2
(
1 + z−n

)
, (8.5)

The filter (8.5) gives a notch at the frequency 1/(2nh), but there is also
a version which allows adjustment of the notch frequency [Vogel, 2007]. A
disadvantage of the filter (8.5) is that it does not allow adjustment of the
width of the notch, like the notch filter in (8.3) does. Thus the notch filter
(8.5) may give an unnecessarily large phase drop in the control loop; it is
also not direct to obtain a one-sided version of 8.5

Phase adjustment
In order to adjust the exact phase of the parasitic mode and still keep a good
behavior of the controller around the cross-over frequency and below, it is
beneficial with a flexible controller structure.
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8.4 Numerical comparison

We will consider the same control problem (6.7) as in the previous chap-
ter, with the process model from Section 8.2, and with the disturbance and
measurement noise spectra from Section 7.2. We will also consider the same
nominal constraints as in Chapter 7, i.e., Smax = 1.6 and Bun = 30.

For the cases when we want to attenuate the parasitic modes, we will
augment the control problem with the constraint

|C(i∆ω1)| ≤ 1− 1
Smax

,

which guarantees that Nyquist curve stays outside of theMS-circle regardless
of its phase around the frequency ∆ω1.

The approach to find the optimal controller parameters was the same as
for the PI- and PID-controllers in the previous chapter, see Section B.2.

Controller structures
We will consider controllers of the form

C(s) = K

(
1 + 1

sTi

)
F (s)eiθadj (8.6)

where the filter F (s) is chosen as either:

1. A first-order low-pass filter F1(s) = 1
1 + sTf

.

2. A second-order low-pass filter, F2(s) = 1
1 + sTf + s2T 2

f

.

3. A third-order low-pass filter F (s) = F3(s) := F1(s)F2(s).

4. A fourth-order low-pass filter F (s) = F4(s) := F2(s)F2(s).

5. A first-order low-pass filter + a notch filter F (s) = F1(s)Fn(s).

6. A second-order low-pass filter + a notch filter F (s) = F2(s)Fn(s).

The reason for including the factor eiθadj in (8.6) is that the process
transfer function P (s) has complex coefficients when parasitic modes are
included in the cavity model, and hence it is typically suboptimal to choose
θadj = 0 as we did in the previous chapter.
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8.4 Numerical comparison

Table 8.2 The performance for different approaches of dealing with par-
asitic modes in the control design. The table is normalized with respect to
the performance for a cavity model without parasitic modes controlled by
a PI-controller with a first-order low-pass filter.

Type Controller Structure Objective
Baseline, no PM PI+1st order filter (Fig. 8.2) 1.00
PM attenuation PI+1st order filter (Fig. 8.5) 5.94

PI+2nd order filter (Fig. 8.6) 3.27
PI+2nd order filter (θadj = 0, Fig. 8.7) 3.31
PI+3rd order filter 2.79
PI+4th order filter 2.56
PI + notch filter + 1st order filter 1.25
PI + notch filter + 2nd order filter 1.25
PI + double notch filter

+ 2nd order filter 1.30
PI + wide notch filter

+ 1st order filter (Fig. 8.8) 2.11
PM phase adjust PI+1st order filter 5.71

PI+2nd order filter 2.70
PI+3rd order filter (θadj = 0) 1.96
PI+3rd order filter (Fig. 8.9) 1.93

Results
For the case where we want to limit controller gain we consider all the filters
1–6 that are listed above, and for the case of phase adjustment we consider
the filters 1–4.

In addition, we consider a few minor variations to the control structure:
enforcing φadj = 0, enforcing the wide-notch constraint (8.4), and consider a
double sided notch filter instead of a single-sided one.

The field errors for the different designs, relative to a baseline situation
without parasitic modes (i.e., the model in Chapter 7), are given in Table 8.2.
For some controller designs we have provided illustrative frequency domain
plots, see figures 8.5 to 8.9. A frequency domain comparison between four
different control approaches is provided in Figure 8.10.
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Figure 8.5 Attenuation of parasitic mode, PI-controller + 1st order filter.
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Figure 8.6 Attenuation of parasitic mode, PI-controller + 2nd order fil-
ter.
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Figure 8.7 Attenuation of parasitic mode, PI-controller + 2nd order fil-
ter, with φadj = 0.
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Figure 8.8 Attenuation of parasitic mode, PI-controller + wide notch
filter.

8.5 Conclusions

Parasitic cavity modes that are close in frequency to the accelerating mode
affects the control in that the low-frequency controller gain needs be reduced
to maintain the desired robustness level. The performance degradation from
parasitic mode depends strongly on the strategy chosen for dealing with
them; see Table 8.2.

One simple approach to deal with parasitic modes is to design robust
controller for a cavity model without parasitic mode, and then simply aug-
ment it with a notch filter. A perhaps better approach would be to include
a notch filter with desired characteristics in the process model, after which
standard design methods could be applied. A main drawback with a notch
filter approach is that the frequency of the parasitic mode needs to be known
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Figure 8.9 Phase adjustment of parasitic mode, PI-controller + 3rd or-
der filter; note the big "bulge” in the Nyquist curve due to that the para-
sitic mode is not attenuated, if the phase at the parasitic mode frequency
changes, the bulge might encircle the critical point −1, leading to instability.

with reasonable accuracy.
If a notch filter is not used, the consequences of the parasitic mode is

that the bandwidth of the control loop must be reduced to maintain the
specified robustness level, see Figure 8.10. This leads to reduced attenuation
of low-frequency disturbances. If this is a problem or not depends on the
disturbance spectrum. Also it could happen that the constraint on control
signal activity also enforces a relative low bandwidth, in this case the penalty
for choosing a different approach than the notch filter is not so great.

If the field error specification is easy to meet, the method of choice should
be to use a high-order low-pass filter since this is both easier to implement
and more robust than a notch filter.

This has been far from an exhaustive investigation, the conclusions are
affected by many factors such as the considered controller structures, the as-
sumed spectrum of load disturbances and the control specifications. We have
also not considered time domain response of the system, this is important to
consider since the convergence time of sharp notch filters could be long rela-
tive to the pulse length. However the results presented in this chapter gives
the general ideas and an overview of different approaches to handle parasitic
modes in the control design.
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Figure 8.10 Comparison between different control strategies to avoid
instability in the field control loop due to parasitic modes. It is seen that the
achievable control bandwidth is dependent on the type of controller used,
the controller with a notch filter achieves the highest bandwidth; whether a
lower bandwidth is a problem or not, depends on the spectrum of the load
disturbances.
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9
Directionality in the Control
Problem

In the previous chapters, we modeled the dynamics of the cavity and RF
system by a single-input single-output complex-coefficient system (under the
assumption that imperfections in the vector-modulator , e.g., skew, are in-
verted by the controller)

P (s) = Pamp(s)Pcav(s)e−sLe−iθ.

This representation implies that the dynamics of the plant is rotationally
invariant in the baseband, i.e., a rotation of the input signal gives a corre-
sponding rotation of the output signal,

P (iω)
[
eiρU(iω)

]
= eiρ · P (iω)U(iω).

this rotational invariance is natural and corresponds to that the original
system is time invariant.

However, although the plant dynamics is rotationally invariant, the true
objective function that quantify the beam losses (ΨBL from Section 3.4),
and the disturbances acting on the system, are not; we will now discuss this
directionality and its consequences.

Effect of directional input on complex-coefficient system
In this chapter we will consider how the output of a complex-coefficient SISO
system1 G(s) = GRe(s)+iGIm(s), is affect by signals with a specific direction
in the complex-plane, i.e., of the form

u(t) = u0 ·m(t) where m(t) ∈ R, and u0 ∈ C.

1 How to separate G(s) in GRe(s) + iGIm(s) is shown in footnote 3 on page 31.
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u(t) = u0 · cos(ωt) y(t)

G(iω)

Figure 9.1 The output signal of a complex-coefficient system driven by
a sinusoidal signal with a specific direction in the complex plane is given by
a Lissajous oval in the complex plane, see (9.1).

To understand this it is helpful to consider the case when m(t) is a real-
valued sinusoidal signal,

u(t) = u0 · cosωt = u0 ·
1
2(eiωt + e−iωt),

in which case, the output after transients becomes

y(t) = u0 ·
1
2(G(iω)eiωt +G(−iω)e−iωt)

= u0 ·
[
ARe cos(ωt+ φRe) + iAIm cos(ωt+ φIm)

]
, (9.1)

where ARe = |GRe(iω)|, φRe = ∠GRe(iω), AIm = |GIm(iω)| and φRe =
∠GIm(iω). From (9.1) we can now see that y(t) traces out a to a Lissajous
oval in the complex plane; this is illustrated in Figure 9.1. In the special case
of a transfer function with real coefficients, the direction of output signal is
the same as for the input signal.

However, if G(s) is given by a closed-loop transfer function of the field
control loop, we typically have, at frequencies that are well greater than the
detuning ∆ωa, and well smaller than the frequency of the closest parasitic
mode ∆ω1, it holds that G(iω) is quite close to being conjugate symmetric;
thus, we have that GIm(iω) = (G(iω)−G∗(−iω))/2i is rather small, making
it a reasonable approximation that the effect of a disturbance on the cavity
field is in the same direction as the disturbance.

Directionality of disturbances
In the case the RF amplifier is a klystron, we saw in equation (4.3) that the
ripple from the AC-DC converter gives rise to a disturbance Kgdg ≈Kgiξ∆c

on the cavity field; since the direction of Kg is the same as for F0
g, we have
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that the disturbance Kgdg affects the cavity field in a direction perpendicular
to F0

g.
Assuming that the only variations in Ib are from the beam current varia-

tions (due to ion source instabilities)2, then only the amplitude of Ib changes,
and thus db is real-valued, and the disturbance Kbdb acts in the direction
of I0

b.
To get insight in the directionality of the control problem it will will be

helpful to consider the phasor diagrams that were introduced in Section 5.6;
see Figure 9b for an illustration of the directions of the cavity field distur-
bances.

Directionality of the objective function
The requirements on cavity field errors are typically specified in terms of the
allowed rms error of the cavity field amplitude Va = |Va| (in %) and the
cavity phase φa = ∠Va (in ◦) [Altarelli, 2007; Peggs et al., 2013; Doolittle,
2015]. However, the actual quantities which ultimately affect the beam losses
are: (1) the acceleration of the particle bunches, which is proportional to
Va cos(φb − φa); and (2) the longitudinal focusing of the particle bunches,
which is proportional to Va sin(φb − φa),

Acceleration/
Transferred Energy ∝ Va cos(φb − φa) ∝ Re {Va · I∗b} (9.2a)
Longitudinal Focusing ∝ Va sin(φb − φa) ∝ Im {Va · I∗b} (9.2b)

The directionality of the control objectives (9.2) is illustrated in Figure 9a.
In Section 3.5 we discussed that the true objective function for

high-intensity proton accelerators is a complicated nonlinear function
ΨBL(∆A1,∆φ1,∆A2,∆φ2, . . .). This objective function is is too cumber-
some to evaluate to be useful for control design; but specifying the errors on
acceleration and the longitudinal focusing, should reflect the true objective
ΨBL better, than if errors on amplitude and phase are considered, as is
traditionally done for particle accelerators.

To allow more flexibility in the control design, one could consider an
objective function of the form

J(e) =
[
Re e Im e

]
QJ

[
Re e
Im e

]

where QJ is a symmetric, positive definite matrix, and e = z0 − z; this
type of objective function would correspond to an ellipsoidal constraint in
Figure 9a.

2 There will of course also be variations in the arrival time of the particle bunches, which
corresponds to phase variations, but these should be small if the field control in the
upstream cavities is working satisfactorily.
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acceleration

longitudinal
focusing

(a) Directionality of the objective function.

α

2 Ib

√
2γextFg

Kbdb

Kgdg

(b) Directionality of disturbances.

Figure 9.2 Left: The error directions that affect acceleration and focus-
ing of the particle bunches. The solid rectangle correspond to a specficaition
in terms of amplitude and phase errors. The dashed rectangle shows a spec-
ification in terms of acceleration and longitudinal focusing, which is seen to
relax the error specification in the direction for longitudinal focusing. Right:
Illustration of the directions that modulator ripple (green dashed line), and
the beam current ripple (red dashed line) affect the cavity field in.

Why bother about this directionality?
Assume that the beam losses are significantly more dependent on the accel-
eration experienced by the particle bunches than the longitudinal focusing
that they experience. In that case, we can from Figure 9 draw the conclusion
that it is more worthwhile to improve the stability of the ion source, rather
than to reduce the amplifier ripple.

Comment on error specifications of the form x%/x◦
It should be pointed out that while a specification of the form x%/x◦ is
convenient to remember, it is actually not symmetric in the complex plane.
Since 1 % = 0.01 and 1° = 0.017 rad we notice that the phase errors are
allowed to be significantly larger than the amplitude errors, see Figure 9.3.
Little discussion of this can be found in the literature, and while 1 % and 1°
are roughly of the same magnitude, there is indeed a factor 1.7 difference.

Without any prior knowledge of the effect of amplitude and phase dis-
turbances, a symmetric error would be more natural. However, at least for
free-electron-laser accelerators, only the acceleration is important [Mosnier
and Tessier, 1994, Appendix C], and since φb is small for electron acceler-
ators, it is much more important to keep the amplitude errors small. Thus
for FEL accelerators, it not unreasonable to allow the phase errors to be
larger than the amplitude errors. However, as we have already discussed, the
situation is very different for high-intensity proton accelerators where the

113



Chapter 9. Directionality in the Control Problem

Figure 9.3 Illustration of a requirement on the form (x%, x◦) in the
IQ-plane. Note that the requirement is asymmetric.

longitudinal focusing is critical, and it is not clear that a specification of the
form x% and x◦ is the most suitable.

Discussion
For a rotationally invariant, two-input two-output system

P (s) =
[
PRe(s) −PIm(s)
PIm(s) PRe(s)

]
,

with rotationlly invariant control objective and control constraints, it holds
that also the optimal controller C(s) is rotationally invariant3.

A direct consequence of the directionality of the disturbances of the ob-
jective function for the field control loop is that the optimal field controller is
not roationally invariant. For most practical applications however, the sim-
plicity of the complex SISO-approach should outweigh the performance gains
of a general two-input two-output controller.

3 This can be shown by using the same idea as in the proof of Theorem 9 in [Bamieh
et al., 2002]; note that the framework presented in the paper is not directly applicable
to rotationally invariant systems.
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10
Energy-Optimal Cavity
Filling

This chapter is based on [Troeng and Bernhardsson, 2017].

10.1 Introduction

For pulsed particle accelerators, the energy required to fill the cavities (i.e.,
build up the electromagnetic fields), is significant but does not contribute to
particle acceleration. For the ESS accelerator which has 2.86 ms long beam
pulses at 14 Hz, it takes 150 µs to fill the superconducting cavities in the high-
β section, which amounts to a yearly cost of 100 ke1 [Peggs et al., 2013].

Currently, the most common RF amplifier for high-power particle acceler-
ators is the klystron, which is somewhat inefficient since its power consump-
tion is constant, regardless of output power. For the 84 cavities in the high-β
section of the ESS accelerator, the industry has been encouraged to design
an Inductive Output Tube (IOT), which is a newer type of RF amplifier that
is usecommonlyd for television transmissions. IOTs have an almost constant
efficiency (i.e. the power consumption is proportional to the output power)
down to 30% of maximum output power, which will give substantial power
savings.

For klystrons, which have constant power consumption, the energy-
optimal filling strategy is simply to drive them at saturation. However, for
IOTs, it is possible to reduce the filling energy with a more sophisticated
strategy.

1 The filling constitutes 0.15 ms/(2.86+0.15) ms = 5 % of the RF pulse, and the expected
average electricity consumption of the RF amplifiers (inductive output tubes) is 6 MW,
which gives the following cost estimate:

5 % × 6 MW × 5000 h/year × 0.07 e/kWh = 100 ke/year.
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As remarked in a recent article by [Bhattacharyya et al., 2015], little
work has been done on energy-optimal filling of RF cavities. In their arti-
cle, they derived analytically how to minimize the energy reflected from the
cavity during filling, which corresponds to minimization of the wall-plug en-
ergy consumption for ideal amplifiers. In this contribution we show how to
minimize the wall-plug energy for arbitrary amplifier characteristics.

Problem formulation
The baseband dynamics for the cavity voltage of the accelerating mode is
given by (5.31), which we re-state for convenience

dV
dt

= (−γ + i∆ω)V + α
√

2γextFg + α2

2 Ib(t).

We will only do relative comparisons of the energy consumption for dif-
ferent filling approaches, so to make the exposition more clear, we normalize
so that the nominal value of V is equal to 1, scale time so that γ = 1, and
finally redefine Fg so that its coefficient equals 1 (|Fg|2 will still be propor-
tional to the generator output power); thus we have the following normalized
equation for the cavity voltage during filling (since Ib = 0),

dV
dt

= (−1 + i∆ω)V + Fg. (10.1)

We want to determine how to fill the cavity, i.e., reach V(tf ) = 1, while
minimizing the energy consumption

W =
∫ tf

0
Pamp(|Fg|) dt, (10.2)

where Pamp(Fg) = F 2
g /η(Fg) is proportional to the wall-plug power drawn

by the amplifier, and η(Fg) is the amplifier efficiency as a function of output
amplitude. The final time tf is a free parameter and there is an upper limit
Fmax
g on |Fg|, see Figure 10.1 for an illustration.
Formally stated, the problem is

minimize
Fg, tf

∫ tf

0
Pamp(|Fg|) dt (10.3a)

subject to V̇ = (−1 + i∆ω(t))V + Fg (10.3b)
|Fg| ≤ Fmax

g (10.3c)
V(0) = 0 (10.3d)
V(tf ) = 1. (10.3e)
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Figure 10.1 Normalized amplitudes of the cavity field and the generator
current during an RF pulse, for minimum time filling, i.e., |Fg| = Fmax

g

(solid lines), and energy-optimal filling for an IOT (dotted lines).

In the problem formulation (10.3), we assume the detuning ∆ω(t) for
0 ≤ t ≤ tf to be known in advance, that the amplifier has no dynamics, that
there are no disturbances, and that all parameters for the cavity dynamics are
perfectly known. These assumptions are approximations, but we believe that
the results that will be computed under these assumpations are reasonably
close to what can be achieved in practice.

Previous Work
An analytic solution for how to minimize the reflected energy for a fixed
final time tf for ∆ω ≡ 0 and no limit on |Fg|, we derived in [Bhattacharyya
et al., 2015]—the considered problem is similar to minimizing the energy
consumption for an amplifier with constant efficiency. The optimal generator
current profile was found to be

F ∗g (t) = exp(t)
sinh(tf ) , (10.4)

with the corresponding cavity voltage

V (t) = sinh(t)
sinh(tf ) .
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In case the amplifier saturation level is too low to implement (10.4), i.e.,
exp(tf )/ sinh tf > Fmax

g , it was shown that the solution is given by F ∗g (t) =
min(Ket, Fmax

g ), for a suitably chosenK. Bhattacharyya et al. also compared
the energy consumption for amplifiers with different efficiency characteristics
η(Fg), with Fg given by (10.4). Note that F ∗g was computed for η ≡ constant,
and thus suboptimal for amplifiers whose efficiency depend on the output
amplitude.

Outline of the chapter
In the next section we solve (10.3) for arbitrary efficiency characteristics
η(Fg) and time varying, but known, detuning ∆ω(t). In Section 10.3 we com-
pare the energy-optimal filling strategies for different efficiency characteristics
η(Fg) and different saturation levels Fmax

g . We conclude with a remark on
cryogenic losses and a discussion of the results.

10.2 Energy Optimal Filling Profile

Optimal phase of Fg(t)
In polar coordinates the cavity equation (10.3b) takes the form [Brandt,
2007],

V φ̇−∆ωV = Fg sin(θ − φ) (10.5a)
V̇ + V = Fg cos(θ − φ), (10.5b)

where Fg≥0, V ≥0, θ and φ are defined via

Fg(t) = Fg(t)eiθ(t) (10.6)
V(t) = V (t)eiφ(t). (10.7)

By considering (10.5b), we see that choosing θ as

θ∗(t) = φ(t), (10.8)

maximizes V̇ for all Fg ≥ 0. Since the cost (10.3a) is independent of φ, and
we wish to minimize the cost for reaching V (tf ) = 1, it is clear that (10.8) is
optimal. With this choice of θ(t), equation (10.5a) reduces to φ̇ = ∆ω, and
since we want φ(tf ) = 0, we must have

φ(t) = −
∫ tf

t

∆ω(t′) dt′. (10.9)

From (10.8) it follows that the optimal phase profile θ∗(t) of the generator
current equals the right hand side of (10.9).
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10.2 Energy Optimal Filling Profile

Remark: For superconducting cavities, the detuning ∆ω(t) depends on the
cavity field amplitude V via the Lorentz force detuning. However, since the
the optimization of θ and Fg is decoupled, the optimal Fg and the corre-
sponding V can be found first, before finding the optimal phase via (10.9).

Optimal amplitude of Fg(t)
The optimal phase of the generator current is given by (10.8), so we only
need to consider the amplitude dynamics given by (10.5b), and finding the
optimal amplitude Fg reduces to the following problem

minimize
Fg, tf

∫ tf

0
Pamp(Fg(t)) dt (10.10a)

subject to V̇ (t) = −V (t) + Fg(t) (10.10b)
|Fg(t)| ≤ Fmax

g (10.10c)
V (0) = 0 (10.10d)
V (tf ) = 1. (10.10e)

From (10.10), it seems reasonable that the optimal choice of Fg at each
time instant maximizes the ratio between the increase of the cavity field and
the power consumption, i.e.,

F ∗g (t) = argmax
Fg

−V (t) + Fg
Pamp(Fg)

. (10.11)

That (10.11) indeed is optimal, follows from the following, slightly more
general theorem.
Theorem 1
Consider the optimal control problem

minimize
u, tf

∫ tf

0
r(u(t)) dt (10.12a)

subject to ẋ(t) = f(x(t), u(t)) (10.12b)
x(0) = 0 (10.12c)
x(tf ) = 1 (10.12d)
u(t) ∈ U , (10.12e)

where U is a compact set, r(u) > 0 for all u ∈ U , f(x, u) and r(u) are
continuous functions of u, and

∀x ∈ [0, 1] ∃u ∈ U so that f(x, u) ≥ c > 0. (10.13)

119



Chapter 10. Energy-Optimal Cavity Filling

Define
u∗(x) := argmax

u∈U

f(x, u)
r(u) . (10.14)

and assume that u∗ is sufficiently well-behaved for ẋ = f(x, u∗(t)) to have
a unique solution x∗(t). Then the optimal control signal is given by
u(t) = u∗(x∗(t)). 2

Proof See Appendix D.2 for a proof based on the Hamilton-Jacobi-Bellman
technique. 2

Remark 1: The assumption (10.13) guarantees finite-time feasibility.

Remark 2: The maximum in (10.14) exists since a continuous function is
optimized over a compact set. If several u maximize the expression, any can
be chosen.

Remark 3: It is clear that the functions r(u) and f(x, u) considered in the
optimal control problem (10.10) give a well-behaved u∗.

Remark 4: A constraint tf < tmax on the final time can be handled by
adding a constant term to r(u), and doing a binary search over that constant.

Solution for constant efficiency For a constant efficiency η ≡ η0 we
have Pamp(Fg) = F 2

g /η0, and (10.11) becomes,

F ∗g = argmax
Fg

−V + Fg
F 2
g /η0

= 2V.

With this control signal V does not reach 1 in finite time, which is possible
since the cost is not strictly greater than 0. If a fixed final time is imposed,
the solution follows from the maximum principle, or as in [Bhattacharyya
et al., 2015].
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10.3 Results

In this section we compare the energy consumption for three filling strategies:
• Minimum-time, i.e., Fg(t) = Fmax

g

• Minimum-reflection, i.e., Fg(t) = min(et/ sinh τ̂i, Fmax
g ) with τ̂i = 2

[Bhattacharyya et al., 2015]
• Energy-optimal, according to (10.11),

considering four amplifier efficiency characteristics η(Fg), [Bhattacharyya et
al., 2015], see Figure 10.2:

• Tetrode
• Solid-state amplifier (SSA)
• Inductive output tube (IOT)
• Constant efficiency (ideal) amplifier,

and two saturation levels, given in normalized units by:
• Fmax

g = 1.5
• Fmax

g = 2.25.
The levels correspond to a normal conducting cavity and a heavily beam-
loaded superconducting cavity respectively.

The energy consumption for the different filling strategies and parameter
combinations are shown in Figure 10.3. The relative energy consumption of
energy-optimal filling compared to minimum time and minimum-reflection
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Figure 10.2 Efficiency as a function of normalized output power
(Fg/Fmax

g )2 for the considered amplifiers types. The data is from [Bhat-
tacharyya et al., 2015, Fig. 9], and has been slightly smoothed.
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Table 10.1 Energy consumption of minimum-time (MT) and minimum-
reflection (MR) filling relative energy-optimal (EO) filling.

Fmax
g = 1.5

Amplifier Type WEO
WMT

WEO
WMR

Tetrode 98% 94%
Doherty Arch. SSA 90% 98%
IOT 92% 98%
Constant Efficiency 83% 96%

Fmax
g = 2.25
WEO
WMT

WEO
WMR

97% 82%
82% 94%
87% 92%
68% 96%
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Figure 10.3 Comparison of the energy consumption for minimum-time
filling (standard approach), minimum-reflection filling according to [Bhat-
tacharyya et al., 2015], and energy-optimal filling according to (10.11). Four
different amplifier types and two different saturation levels are considered.

filling is given in Table 10.1. The corresponding profiles for the cavity voltage
and generator current are shown in Figure 10.4.

For the high-β section at ESS, where IOTs will be used, and with
Fmax
g = 2.25, the energy reduction of using energy-optimal filling, relative to

minimum time filling, is 13%, which corresponds to 13 ke/year.
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Figure 10.4 Cavity voltage and generator current for different filling
strategies: minimum time, minimum-reflection (↔ constant efficiency am-
plifier) and energy-optimal for the efficiency characteristics in Figure 10.2.
Note that minimum time and minimum-reflection filling are independent of
the amplifier characteristics. Two saturation levels are considered.
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Remark on cryogenic losses
As seen in Figure 10.4, the energy-optimal filling profiles take about 50–100%
longer time than minimum time filling. This implies increased RF heating of
the cavities, and a higher load on the cryogenic system, estimated to a yearly
cost of 1–2 ke2. This cost is clearly outweighed by the savings from using
energy-optimal filling.

If desired, it is easy to incorporate cryogenic losses into the optimization
problem by adding a term αcryoV

2 to the integrand in (10.10a). We performed
some experiments with this, and found that the resulting energy-optimal
trajectories were similar, but slightly faster, than the ones for which cryogenic
losses were ignored.

10.4 Conclusions

We have shown how to minimize the energy required to build up the
electromagnetic field in RF cavities. We proved that the amplitude and
phase for the optimal generator current profile, for a normalized cavity,(
V̇ = (−1 + i∆ω)V + Fg

)
, are given by:

F ∗g (t) = argmax
Fg

−V (t) + Fg
Pamp(Fg)

θ∗(t) = −
∫ tf

t

∆ω(t) dt.

We compared the energy savings for different amplifier characteristics and
found that the energy consumption could be reduced by up to 30%. For the
high-β section at the European Spallation Source we estimated the yearly
savings to be about 10 ke. Since the energy-optimal filling profiles, or at
least approximate versions thereof, are relatively easy to implement, they
provide a straight-forward way to reduce the operating costs and environ-
mental footprint of pulsed particle accelerators.

2 The cryogenic load due to RF heating in the high-β section is 1.6 kW@4.5K. With a
cooling efficiency of 250W/W, the required wall-plug power is 400 kW [Peggs et al.,
2013]. Assuming a linear increase of V during the filling, the average cryo load from
the filling is proportional to

∫ T
0 (V/T )2dV = T/3, i.e., a third of the heating from T

time units of flat-top operation. Thus the energy cost for the cryo load from minimum
time filling, which take ≈ 5 % of the RF pulse length, is

5 % × 1/3 × 400 kW × 5000 h/year × 0.07 e/kWh = 2 ke/year.
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11
Conclusions and
Future Work

11.1 Conclusions

This thesis has addressed the problem of controlling the amplitude and phase
of electromagnetic fields in accelerator cavities. The topics covered were se-
lected based on their relevance to the high-intensity proton accelerator of
ESS, but most of the material is relevant to other accelerator types as well.

Throughout, it has been demonstrated that a complex-coefficient repre-
sentation of the cavity and RF system dynamics greatly facilitates control
design and analysis. This representation was also helpful in the, somewhat
non-standard, derivation of the cavity mode dynamics.

When the performance of simple PI(D)-controllers was compared to the
optimal linear controller, it was found that there actually was not much
difference, owing to the simple and well-behaved process dynamics of the
field control loop (ignoring parasitic modes). Since PI(D)-controllers also are
intuitive and easy to implement, they seem like the ideal controller choice for
cavity field control.

To deal with parasitic modes in the control design, a number of different
strategies were presented and discussed, each with their own pros and cons.
Simply adding a second-order filter to the controller gives reasonable perfor-
mance and avoids complications, but more complicated approaches allowed
for better performance.

Just as the success story of complex-coefficient system representations
was about to come to a happy end, it was shown that although the plant
dynamics can be represented by complex-coefficient systems, and hence is
rotationally invariant, this does not hold for the objective function or the
disturbance distributions. Thus the optimal controller is not rotationally in-
variant, and cannot be represented by a complex-coefficient SISO system.
However the complex-coefficient representation is good for insight, and for

125



Chapter 11. Conclusions and Future Work

many cases of interest, the simplicity of a rotationally invariant controller
probably outweighs the performance gains of a more complicated controller.

Lastly, we demonstrated how to reduce the energy required to build up
the electromagnetic cavity fields, allowing a further improvement of the sus-
tainability of ESS.

11.2 Future work

Improved computer tools for complex-coefficient control design
This thesis has illustrated the utility of complex-coefficient systems for ana-
lyzing the field control problem. For the control analysis, synthesis and testing
of these systems it would be convenient with well-designed and well-tested
computer software. The support provided by Matlab for complex-coefficient
systems is however highly deficient, so it would be valuable to implement the
necessary functionality either in Matlab, or Julia which is an up-and-coming
language for technical computing.

Directionality in the control problem
As more data on the disturbances that will act on the ESS field control loops
become available, it would be interesting to investigate the possible per-
formance gains from using a general two-input two-output controller, rather
than the rotationally invariant structure that was considered throughout this
thesis. This study could be carried out using the Youla parametrization in a
similar manner as it was used in Chapter 7.

Iterative Learning Control (ILC)
For the ESS accelerator it will be necessary to implement an ILC algorithm on
top of the existing controller to update the table for predicted disturbances,
uILC
k . The plan is to use the approach in [Norrlöf, 2000], where the update

law is given by
uILC
k+1 = Q(z)(1− L(z)ek)uILC

k ,

and where ek is the error vector from the previous pulse, L(z) is a suitably
chosen (possibly non-causal) filter, and Q(z) is a zero-phase low-pass filter.
This approach can be directly extended for the complex-coefficient represen-
tation used in this thesis, allowing a simple and elegant implementation of
the algorithm.

Exploration of the objective function ΨBL
It would be valuable to get a qualitatively better understanding of the struc-
ture of the objective function ΨBL(∆A1,∆φ1,∆A2,∆φ2, . . .). This is a non-
trivial task which would probably have to carried out by doing a very large
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number of numerically demanding computer code simulations in a joint effort
with beam physicists.

Feedforward from beam current monitors
As the beam current of high-intensity proton accelerators keeps increasing,
and the requirements on cavity field errors are made tighter, the impact of
beam current variations on the cavity field becomes an issue.

An interesting possibility if the bandwidths of the field control loops does
not allow sufficient attenuation of the beam current variations, is to use feed-
forward from measurements of the beam current that are made by the Beam
Current Monitors (BCMs). This is however non-trivial since the propagation
velocity of the beam and the electric BCM signals are of the same order; for
a digital controller there are also processing delays. For these reasons, it is
uncommon with beam feedforward for linear accelerators, and seems only to
have been implemented with analog electronics [Jameson and Wallace, 1971].

Preliminary investigations for the ESS accelerator have indicated that
BCM feedforward reduces the impact of beam current variations on the DTL
fields by up to 30 %. This is a topic worthy of further investigation, since
it would allow for higher beam currents, more ion source fluctuations, and
tighter field control requirements.

Closing remark

In theory, there is no difference between practice and theory. In practice, there
is. The question that will be answered, in one year form now, when the first
field control loops of the ESS accelerator (Figure 11.1) will be commissioned,
is how different the theory presented in this thesis is from practice.

Hopefully the basis for how to think about the field control problem
for high-intensity accelerators that I have put forward in this thesis will be
helpful in achieving the field control requirements of the ESS accelerator. I
am looking forward to take part in the commissioning of its LLRF system,
and to deal with the awaiting challenges.

127



Chapter 11. Conclusions and Future Work

Figure 11.1 The construction site of the European Spallation Source on
2017-04-17. The long gray building is the RF gallery that will house the RF
systems of the ESS accelerator. Photo credit: ESS.
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A
Dynamics of Digital
Demodulation for Field
Control

In this section we take a closer look at how the complex envelope of a signal
(i.e. the equivalent baseband signal) is typically detected in low-level RF
systems.

Although it was the availability of high-performance components devel-
oped for telecommunication systems that enabled digital LLRF systems, we
find that the detection is done quite differently in LLRF and telecommunica-
tion systems. In telecommunication systems the signals are wideband—their
amplitudes and phases are modulated rapidly in order to maximize data
rates, and ideally only one sample should be spent to detect each symbol; for
portable devices the design of hardware and firmware have been designed for
low power consumption.

The signals that are measured by LLRF systems have complex envelopes
that vary slowly in the time (for the cavity signal the envelope is ideally con-
stant), so the challenge is not to track a rapidly varying envelope, but rather
to detect it accurately. A typical implementation is shown in Figure A.1.
First the RF signal is down-converted to an intermediate frequency (IF) sig-
nal in order to reduce the impact of LO and clock jitter, then it is sampled
by a single high-speed ADC1, and finally the sampled signal is digitally de-
modulated in the FPGA by a scheme known as Near-IQ or Non-IQ (NIQ)
sampling [Doolittle et al., 2006; Schilcher, 2007; Hoffmann, 2008]. By care-
fully choosing the parameters for the NIQ sampling it is possible to reduce
the effects of ADC nonlinearity and IF harmonics from the mixer.

1 For telecom applications two mixers with LOs offset by 90° and two ADCs are typically
used in order to achieve high data rates, however this introduces problems with phase
alignment.

134



Appendix A. Dynamics of Digital Demodulation for Field Control

ADC NIQ
yIF[tk] ŷ(tk)

LPF

yLO(t) = cos(ωLOt)

yRF(t) = Re
{

y(t)eiωt
}

yIF(t)

FPGA
clkclk

Figure A.1 Typical down-modulation scheme for LLRF systems, it pro-
duces an estimate ŷ(t) for the complex envelope y(t) of the signal yRF(t).
The components shown are: down-conversion mixer, analog low-pass filter
(LPF), analog-to-digital converter (ADC) and the digital down conversion
scheme which is called Near-IQ (NIQ) sampling.

The near IQ complex baseband signal, relative the master oscillator, is
computed from the IF signal as

ŷ[tk] = e−iωIFtk
2
N

N−1∑

`=0
yIF[tk−`]e−2πi`M/N (A.1)

where tk+1 − tk = Tadc is the sampling period of the ADC. M and N are
integers chosen so that N samples are taken over M IF periods, i.e.

NTadc = M
2π
ωIF

.

The first factor on the right hand side of (A.1) takes into account that the
computed phasor should be relative to the phase of the master oscillator2.
Notice how the second factor of (A.1) can be seen as a discrete Fourier trans-
form, over a very short time interval, with only one bin, which is perfectly
matched to the IF frequency.

To reduce aliasing of IF harmonics from the mixer, the number N needs
to be chosen carefully, [Schilcher, 2007; Doolittle et al., 2006].

To save FPGA resources, one may compute only every Nth sample of
(A.1). [Hoffmann, 2008, Figure 4.9] calls this approach step window detection
and the original version sliding window detection. Step window detection is
equivalent to directly decimating the signal in (A.1) by a factor N , and
as is well known in signal processing, one should lowpass filter signals before
decimating them in order to reduce aliasing. As we discuss in the chapters on
control design, we wish to include a low-pass filter in the controller anyhow,
so before the decimation could be a suitable option.

2 Exactly how this is accomplished is implementation dependent, either the local os-
cillator and the clock signal are locked to the master oscillator, or both the signal of
interest and the master oscillator signal are sampled after which the phase of the master
oscillator is subtracted in the firmware.
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n[tk] 2e−iωIFtk

HMA(z−1)
yIF[tk] = Re

{
y[tk]eiωIFtk

}
ŷ[tk]

(a) Illustration of the digital down conversion and how ADC noise enters the detection,
HMA(z−1) is defined in (A.3).

2n[tk]e−iωIFtk

HMA(z−1)
y[tk] + y[tk]e−i2ωIFtk ŷ[tk]

(b) Rearrangement of the figure above, using that Re{A} = (A+ Ā)/2.

Figure A.2 Detection of the complex envelope y of an IF signal yIF(t) =
Re
{

y(tk)eiωIFtk
}
. The non-IQ sampling scheme essentially corresponds to

a discrete-time Fourier transform with only one bin. We assume that the
timing errors are negligible.

A.1 Baseband dynamics of non-IQ sampling

We will now study the dynamics this detection approach adds to the control
loop and how the ADC noise enters; the situation is illustrated in Figure A.1.

Since the detection is done relative the master oscillator, the action of the
non-IQ filter on the signal yIF[tk] is effectively time varying; this is illustrated
in Figure A.2a. After a small rearrangement we get Figure A.2b, where we
see that

ŷ[tk] = 1
N

N−1∑

`=0
y[tk−`] + 1

N

N−1∑

`=0
y[tk−`]e−2iωIFtk−`

+ 2
N

N−1∑

`=0
n[tk−`]e−2πi`M/N . (A.2)

The first term is the cavity field phasor filtered through an N sample moving
average filter

HMA(z−1) = 1 + z−1 + . . . z−N+1

N
, (A.3)

the second term sums to 0 if y is constant, and is small otherwise, the final
term is low-pass filtered noise from the ADC.
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A.1 Baseband dynamics of non-IQ sampling

ADC quantization noise
In the case of step window detection, the variance of the noise added to the
samples at times tk, tk+N , tk+2N , . . ., are

n[tNm] = 2
N

N−1∑

`=0
n[tNm−`]e−2πi`M/N

It can be seen that Re{n} and Im{n} are white and uncorrelated with vari-
ance 2σ2

n/N . Thus n is white and circular symmetric with variance 4σ2
n/N

For sliding window detection the ADC noise gives rise to non-circular
symmetric, cyclostationary noise on the baseband phasor.
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B
Controller Optimization

B.1 Finding optimal linear controllers

The key idea that for finding (approximately) optimal, linear time-invariant
controllers is the so-called Youla parametrization [Youla et al., 1976], whereby
all internally stable closed-loop transfer functions are affinely parameterized
in a stable transfer function Q(s). From this parametrization it is possible to
obtain a finite dimensional, convex problem which can be solved efficiently
by standard solvers [Boyd and Barratt, 1991]; see [Hespanha, 2009] for a
practical description of how to formulate the convex problem in the modeling
system cvx [CVX Research Inc, 2012].

While the underlying ideas and the formulation of the optimization prob-
lem are relatively straight-forward, it has been my experience that numerous
numerical problems are encountered for all but the smallest problems. The
method presented in this section has grown out of my attempts to deal with
these numerical problems.

The approach is entirely based on frequency domain computations, and
only handles stable SISO plants, but this specialization allows the approach
to be both transparent and easy to use. For example time-delays are ef-
fortlessly handled without approximation, and measured process frequency
response, or disturbance spectra could be used without complications.

For the problem that we consider in Chapter 7 it is enough with the
following special case of the Youla parametrization.

Youla Parametrization (Simplified Version)
Assume that the SISO system P (s) is stable, then

C(s) = Q(s)
1− P (s)Q(s)

is an internally stabilizing controller for P (s), if and only if Q(s) is stable.2
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B.1 Finding optimal linear controllers

With this parametrization, all closed loop transfer functions become affine in
Q(s), for example, the sensitivity function S = (1−PQ), and we can re-write
the control problem (6.7) as

minimize
Q

||Pa(1− PQ)D||2
subject to ||1− PQ||∞ ≤MS .

||QN ||2 ≤ Bun.

We see that the both the objective and the constraints are convex in Q.

Obtaining a finite-dimensional problem
To be able to solve the problem (B.1) numerically, it needs to be finite dimen-
sional; we therefore let Q be approximated using a basis {Qk}Nk=1 of stable
transfer functions,

Q =
N∑

k=1
βkQk, (B.2)

and we also select a finite number of frequencies Ω1 = {ω`}L`=1 where the
sensitivity constraint is to be enforced. To allow for arbitrary disturbance
spectra D(iω), perhaps empirically measured, we express the 2-norm in the
objective as a frequency-domain integral,

||G||22 = 1
2π

∫ ∞

−∞
|G(iω)|2 dω ≈ 1

2π

M−1∑

m=1
|G(iωm)|2 ∆ωm (B.3)

where Ω2 = {ωm}Mm=1 is a set of suitably chosen frequencies and
∆ωm = ωm+1 − ωm. In principle we could have Ω1 = Ω2, but having them
different could allow for a more efficient frequencies selection. For example,
the sensitivity constraint only needs to be enforced around the closed-loop
system’s cross-over frequency, so Ω1 only needs to include frequencies in that
range.

For the constraint on measurement-noise amplification of the control sig-
nal we can use the same type of integral expression as in (B.3).

Practical considerations
Basis functions The basis functions were taken as equal to 1 over some
interval

Qk(t) =
{

1 if t ∈ [tk, tk+1)
0 otherwise

(B.4)

with finite support in the time-domain ( Figure B.1). This is similar to the
choice in [Garpinger, 2009] where all intervals had the same length, tk = k∆t.
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Figure B.1 Illustration of the impulse response of Q =
∑

βkQk for when
the basis functions are of the form (B.4).

Allowing the interval length to be adjusted makes it possible to increase the
resolution of the impulse response of Q for small times t, where fast variations
typically occur. Also note that the basis functions Qk are orthogonal. In
[Boyd and Barratt, 1991; Hespanha, 2009] a different choice of basis functions
was used, Qk(s) = 1/(s + α)k, however the parametrization (B.4) seems to
have certain advantages, it is easy to specify the time-domain resolution, and
their orthogonality allows simplification of the constraint (B.1), as we will
see below.

Constraint on control signal activity If the measurement noise is
white, i.e., N(iω) = N(0), and if the basis functions Qk are orthogonal,
the constraint on control signal activity (B.1) can be expressed as

||QN ||22 = N(0)2 ||Q||22 = N(0)2
N∑

n=1
|βn|2 ||Qn||22 ≤ B2

un, (B.5)

which seemed numerically preferable to using a constraint based on the ex-
pression (B.3). One reason for the numerical advantages of (B.5) could be
that it acts as a regularization constraint on the coefficient vector {βn}.

B.2 Finding optimal low-order controllers

Some notes on the numerical optimization
It is tricky to hand-tune the controllers well enough for a fair comparison
between them, so ”optimal” parameters for the different controller struc-
tures were found by local, gradient-based search performed with Matlab’s
fmincon with the methods sqp and active set. Note that the problem is
non-convex, and hence it is not practically feasible to guarantee that the op-
timal parameters are found. The command Multistart was used for running
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B.2 Finding optimal low-order controllers

multiple local searches from different starting points to increase the likelihood
of finding the global optimum.
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C
A practical matter:
Anti-windup

When the actuator in a control loop is driven into saturation, the integral
part of the PI(D) controllers causes a problematic effect known as integrator
windup [Åström and Hägglund, 2006]. The problem is an effect of that a
persistent non-zero control error is integrated during the time of saturation.
When the control error later changes sign, it will take a long time for the
control signal to counter-act the error, due to the large value of the integral
part.

It is not expected that the saturation of the power amplifiers at ESS will
be overly severe, our simulations show that for flat-top operation, even if
the control signal saturates for short periods of time it does not lead to a
significant reduction in control performance. Windup is however a notorious
issue when working with controllers with integral action and it is considered
good practice to always implement some means of anti-windup. In face of
currently discussed reductions of the amplifier power overhead at ESS, which
would increase the probability of saturation, it seems like a prudent decision
to include anti-windup in the field controllers.

In the standard (real-valued) single-input single-output setting, there are
several anti-windup strategies to choose from [Åström and Hägglund, 2006].
One simple option called clamping, is to stop increasing the I-part when
the control signal saturates. Another approach is back-calculation, which is
applicable to the complex signal setting if the saturation of a complex signal
u is defined as

usat =
{

u if |u| ≤ 1
u/ |u| if |u| ≥ 1,

(C.1)

which corresponds to limiting the magnitude, but leaving the phase un-
changed. Back-calculation in the complex-coefficient setting is illustrated in
Figure C.1.
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Σ1
s

Σ

Σ

1
Ti

1
Tt

u(t)

− +

usat(t)e(t)

uILC(t)

Figure C.1 Complex-valued anti-windup based on back-calculation. The
nominal controller is given by C(s) = (1 + 1/(sTi)). The signal uILC(t) is
the feedforward term that is updated by the ILC algorithm.

A nice feature of back-calculation in the complex setting, is that the phase
of the resulting control signal usat(t) equals that of the nominal control signal
u(t). This seems tricky to achieve with a clamping-based approach.
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D
Proofs and Calculations

D.1 Evaluation of beam-interaction term

We wish to compute the beam-interaction term

Γa(t) := 1
ωa

∂

∂t

∫∫∫

V

J(r, t) ·Ea(r) dV
︸ ︷︷ ︸

=: ga(t)

. (D.1)

for the accelerating mode in (5.7).
The current of particle bunches, with time-separation Tbunch, is well de-

scribed by point charges traveling along the z-axis through the center of the
cavity. Thus, we model as a train of Dirac pulses, IIIT (t) =

∑∞
`=−∞ δ(t−`T ),

with slowly varying DC-level,

I(z, t) = IDC(t) 1
fbunch

IIITbunch

[
z

v
−
(
t+ φb(t)

ωRF
− φ0
ωRF

)]

= IDC(t)
∞∑

`=−∞
exp

[
i`ωbunch

[
z

v
−
(
t+ φb(t)

ωRF
− φ0
ωRF

)]]
, (D.2)

where the second equality follows from the Fourier expansion of the impulse
train1, and where the phase angles φ0 and φb(t) are those discussed in Sec-
tion 5.3; note that we via the time-dependence of φb allow for variations in
the arrival time/phase of the bunches.

1

IIIT (t) = 1
T

∞∑

`=−∞

ei2π`t/T
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D.1 Evaluation of beam-interaction term

Now, by inserting the expression (D.2) for the beam current into the
integral in (D.1), we have

ga(t) =
∫ L

0
I(z, t)Ez(z) dz

= IDC(t)
∫ L

0

∞∑

`=−∞
exp

[
i`ωbunch

[
z

v
−
(
t+ φb(t)

ωRF
− φ0
ωRF

)]]
Ez(z) dz

= IDC(t)
∞∑

`=−∞
exp(−i`ωbuncht)

×
∫ L

0
exp

[
i`ωbunch

(
z

v
− φb(t)

ωRF
+ φ0
ωRF

)]
Ez(z) dz

(D.3)

Only the term where −`ωbunch = ωRF will2 be able to significantly excite the
mode amplitude a in (5.7), so neglecting the other terms we have that

ga(t) ≈ IDC(t)eiωRFt

∫ L

0
exp

[
−iωRF

(
z

v
− φb(t)

ωRF
+ φ0
ωRF

)]
Ez(z) dz

= IDC(t)e−iφb(t)
∫ L

0
e−i(ωRFz/v+φ0)Ez(z) dz · eiωRFt = −αIbeiωRFt (D.4)

where we introduced the phasor for the beam current

Ib = −IDC(t)e−iφb(t) = −IDC(t)ei(π−φb(t)), (D.5)

(the extra minus-sign will be convenient later on), and recognized the defini-
tion of α from (5.25) with the help of [Wangler, 2008, Exercise 2.12].

Now we are able to compute

Γa(t) ≈ 1
ωa

d

dt
ga(t) = 1

ωa

d

dt

(
−αIbeiωRFt

)
≈ αωRF

ωa
Ib ≈ iαIb, (D.6)

where we for the first approximation used that Ib varies slowly relative to
eiωRFt, and in the second inequality we used that the modes that we consider
have resonance frequencies close to the RF frequency.

2 In cases of practical interest, the bunch period is a multiple of the RF period, so there
is always one such term.
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Appendix D. Proofs and Calculations

D.2 Proof of Theorem 1

Define the optimal cost-to-go function

V (x) :=
1∫

x

r(u∗(x′))
f(x′, u∗(x′) dx

′.

Let u be an arbitrary control signal with u(t) ∈ U , such that the corre-
sponding state trajectory x satisfies (10.12b)–(10.12d). It then holds that

r(u) + d

dt
V (x(t)) = r(u) + dV

dx
f(x, u)

= r(u)− r(u∗(x))
f(x, u∗(x))f(x, u) =

= r(u)r(u∗(x))
f(x, u∗(x))

(
f(x, u∗(x))
r(u∗(x)) −

f(x, u)
r(u)

)
≥ 0, (D.7)

where the inequality follows from f(x, u∗(x)) > 0, r(u) > 0 and the definition
(10.14) of u∗. Equality holds for u = u∗.

Integration of (D.7) gives, since x(0) = 0 and x(tf ) = 1,
∫ tf

0
r(u(t)) dt ≥ V (x(0))− V (x(tf )) = V (x(0)),

with equality for u = u∗. This proves optimality of u∗. 2
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E
Complex-Coefficient
Systems in Control

This appendix contains the paper

Troeng, O., B. Bernhardsson, and C. Rivetta∗ (2017). “Complex-coefficient
systems in control”. In: Proceedings of the 2017 American Control Con-
ference. (Seattle, WA, May 24–26, 2017).

∗C. Rivetta is with Stanford Linear Accelerator, Stanford University.

Abstract
Complex-valued dynamics can be used for modeling rotationally invariant
two-input two-output systems and bandpass systems when they are consid-
ered in the baseband. In a few instances, control design has been done in the
complex domain, which facilitated analysis and synthesis. While previous
work has been application specific, we will discuss more generally how com-
plex valued dynamics arise, basic properties of these systems, revisit some
classic control theoretic results in the complex setting, and discuss two novel
examples of control design in the complex domain—accelerator cavity field
control and feedback linearization of RF amplifiers.
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Appendix E. Complex-Coefficient Systems in Control

E.1 Introduction

Certain systems are most conveniently modeled by complex-coefficient differ-
ential equations [Novotny and Wouterse, 1976; Harnefors, 2007; Dòria-Cerezo
and Bodson, 2016; Byun and C.-W. Lee, 1988; Ren et al., 2013; Pippard,
2007; Martin, 2004; Beauchard et al., 2007; James and Kosut, 2010; Dong
and Petersen, 2010]. In two cases, also control design has been done in the
complex domain: regulation of electric machines [Novotny and Wouterse,
1976; Harnefors, 2007; Dòria-Cerezo and Bodson, 2016] and active vibration
damping of rotating machinery [Byun and C.-W. Lee, 1988; Ren et al., 2013].
For these applications it was found that the complex formulation facilitated
design and analysis compared to previous real-valued formulations.

The utility of complex-coefficient representations has also become appar-
ent in the authors’ work on accelerator cavity field control at the European
Spallation Source [Peggs et al., 2013] and the SLAC National Accelerator
Laboratory [Arthur, 2002]. When complex-coefficient transfer functions are
analyzed in existing cavity field control literature, either the coefficients are
assumed to be real, or an equivalent, real-coefficient, two-input two-output
representation is considered, which complicates analysis and synthesis. With
complex-coefficient systems, the standard Nyquist criterion can be used,
rather than the less intuitive MIMO Nyquist criterion as in [Schilcher, 1998,
p. 85].

As remarked in [Dòria-Cerezo and Bodson, 2016], little has been written
on complex-coefficient systems in the control literature, some noteworthy
examples are: linear systems theory [Lancaster and Rodman, 1995], Routh-
Hurwitz’s stability criterion [Frank, 1946], Kharitonov’s theorem [Bose and
Shi, 1987], the Nyquist stability criterion [Gataric and Garrigan, 1999] and
root locus [Dòria-Cerezo and Bodson, 2016].

In the next section we look at how complex-coefficient dynamics arise in
real-world applications, in Section E.3 we discuss basic properties of complex
systems, in Sections E.4 and E.5 we consider some classic control theoretic
results in the complex setting, and in the final two sections we discuss two
novel applications of complex-coefficient systems for control analysis: cavity
field control and Cartesian feedback linearization of RF amplifiers. In the
Appendix we mention some pitfalls when analyzing complex systems with
Matlab.
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E.2 Origin of complex-valued dynamics

E.2 Origin of complex-valued dynamics

Rotationally invariant TITO systems
A two-input two-output (TITO) system

G(s) =
[
G1(s) −G2(s)
G2(s) G1(s)

]
(E.1)

acting on signals
[
x1 x2

]T can be compactly represented by the complex
SISO system

G(s) = G1(s) + iG2(s) (E.2)
acting on signals x1 + ix2.

For example, the dynamics of the Foucault pendulum in the xy-plane,
can, subject to small angle approximation, be represented by the complex
differential equation

z̈ + 2iΩż sinφ+ ω2z = 0
where z = x+iy, ω is the natural frequency of the pendulum, Ω the rotational
frequency of the Earth and φ is the latitude where the pendulum is located.
See [Pippard, 2007] for similar examples.

Two other examples are the dynamics of balanced three-phase electric ma-
chines, which take the form (E.1) after application of an αβ-transformation
[Novotny and Wouterse, 1976; Harnefors, 2007; Dòria-Cerezo and Bodson,
2016], and vibrations in rotating machines [Byun and C.-W. Lee, 1988], where
the states x1 and x2 correspond to the x- and y-positions of the rotating shaft.

Bandpass systems
In applications such as telecommunications, where the signals of interest
are narrowband around some frequency ωc, it is convenient to consider the
complex envelopes of the signals [Crochiere and Rabiner, 1983; Martin, 2004;
Schreier and Scharf, 2010].

If the physical signal is given by

xc(t) = A(t) cos (ωct+ φ(t))

= Re
{
A(t)eiφ(t)eiωct

}
, (E.3)

where the modulation, i.e. A(t) and φ(t), varies slowly, then the complex
envelope, or the equivalent baseband signal, is given by

xBB(t) := A(t)eiφ(t)

= xRe(t) + ixIm(t), (E.4)

where xRe(t) and xIm(t) are real-valued.
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An input-output-relation

Yc(s) = Gc(s)Uc(s)

in the Laplace domain, is conveniently transformed to the base-band via the
transformation s 7→ s+ iωc, which gives

Yc(s+ iωc) = Gc(s+ iωc)Uc(s+ iωc).

Yc(s + iωc) and Uc(s + iωc) are equivalent baseband signals and thus the
equivalent baseband model of Gc(s) can be identified as

GBB(s) = Gc(s+ iωc). (E.5)

If the signals of interest are have narrow support around ωRF, high-frequency
dynamics of GBB(iω) can be neglected. Typically the resulting GBB(s) has
complex coefficients [Martin, 2004].

Example, baseband model of complex pole pair: The second order
resonant system

2ζ0ω0s

s2 + 2ζ0ω0s+ ω2
0

has a baseband model given by

2ζ0ω0(s+ iωc)
(s+ ζω0 + iω0 + iωc)(s+ ζω0 − iω0 + iωc)

.

If ω0 ≈ ωc and the damping factor ζ is small, then for small s the first term in
the denominator is ≈ 2iωc and the following first-order approximation holds,

GBB(s) ≈ ζ0ω0
s+ ζω0 + i(ωc − ω0) .

Example, baseband model of time delay: The baseband model of a
time delay e−sT is e−(s+iωc)T = e−sT e−iωcT . If ωc is large, the phase of
baseband model is sensitive to variations in T .

Quantum systems
Linear stochastic quantum systems are naturally described by complex, quan-
tum stochastic differential equations—see [Beauchard et al., 2007; Dong and
Petersen, 2010; James and Kosut, 2010] for control design for these systems.
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Figure E.1 Step response y(t) of first-order system 2/(s+ 1− i).
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Figure E.2 Frequency response of G(s) = 12/(s+ 1 + 8i)/(s+ 2). Solid
lines correspond to ω > 0 and dashed lines to ω < 0.

E.3 Complex signals and systems

In the previous section we motivated the study of systems of the form

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t) (E.6)

where the signals and matrices are complex. The complex setting gives rise
to some peculiarities not seen for real systems. In Fig. E.1 it is seen that a
first-order complex system may exhibit an oscillatory step response and in
Fig. E.2 it is seen that the frequency response is not necessarily conjugate
symmetric with respect to positive and negative frequencies.

To better understand the structure of the system (E.6) we split its impulse
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Figure E.3 Illustration of how a complex transfer function G(s) =
GRe(s) + iGIm(s) acts on a signal x = xRe + ixIm to produce a signal
y(t) = yRe + iyIm.

response into its real and imaginary parts

g(t) = gRe(t) + igIm(t).

Denoting the Laplace transform of gRe and gIm by GRe(s) and GIm(s) re-
spectively, it is seen that the transfer function for (E.6) is given by

G(s) = GRe(s) + iGIm(s). (E.7)

Note that GRe(s) and GIm(s) are not the real and imaginary parts of G(s),
but that the subscripts are motivated by their relative contribution to the
impulse response. Since gRe(t) and gIm(t) are real it follows that g∗(t) =
gRe(t)− igIm(t) and

G∗(s̄) = GRe(s)− iGIm(s),
due to conjugate symmetry of GRe(s) and GIm(s). Thus the decomposition
(E.7) can be recovered from G(s) via

GRe(s) = G(s) +G∗(s̄)
2 , GIm(s) = G(s)−G∗(s̄)

2i . (E.8)

The action of the complex coefficient transfer function (E.7) on a signal
x(t) = xRe(t) + ixIm(t) is illustrated in Fig. E.3.

Correspondence to real-valued representation
In some applications, [Schilcher, 1998; Dawson and T. H. Lee, 2004], the
complex transfer function (E.7) is represented as a real, two-input two-output
(TITO) system of the form

G(s) =
[
GRe(s) −GIm(s)
GIm(s) GRe(s)

]
, (E.9)

acting on real-valued vector signals
[
xRe xIm

]T .
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To better understand the relationship between the real system represen-
tation (E.9) and the complex representation (E.7), we consider the eigenvalue
factorization of (E.9),

G(iω)=S∗
[
G(iω) 0

0 G(−iω)

]
S, S= 1√

2

[
1 1
−i i

]
, (E.10)

from which we see that the eigenvectors are independent of frequency, and
that the eigenvector

[
1 −i

]T ↔
[
cosωt sinωt

]T ↔ eiωt, and similarly for[
1 i

]T .
While the real-coefficient representation (E.9) is necessary for physical

implementation of complex transfer functions, it contains redundant infor-
mation, and from (E.10) we see that the frequency responses of G(iω) for
positive and negative frequencies are intertwined, complicating analysis.

The eigenvectors of G(iω) are orthogonal, so the singular values of G(iω)
are the modulus of the eigenvalues, thus

||G||∞ = ||G||∞ (E.11)
||G||2 =

√
2 ||G||2 . (E.12)

Response to signal with specific direction
Even if the dynamics of a system is rotationally invariant, and hence can
be represented as a complex SISO system, disturbances may have a specific
direction. Consider for example phase noise in radio-frequency applications.

To illustrate the general behavior, consider without loss of generality, the
output of (E.6) when subjected to a purely real signal u(t) = cos(ωt),

y(t) = |GRe(iω)| cos (ωt+ ∠GRe(iω))
+ i |GIm(iω)| cos (ωt+ ∠GIm(iω)) . (E.13)

The signal (E.13) corresponds to Lissajous ovals in the complex plane, see
Fig. E.4.

E.4 Frequency domain analysis

When analyzing complex systems in the frequency domain it is necessary to
consider both positive and negative frequencies, as illustrated in Fig. E.2.
For example a factor eiε gives the impression of an improved phase margin
if only positive frequencies are considered.

Nyquist’s stability criterion
The assumptions and standard proof of the Nyquist stability criterion require
no change as the argument principle is valid for any meromorphic function
[Gataric and Garrigan, 1999].
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Figure E.4 Lissajous ovals in the complex plane generated by excitation
of 1/(s+ 1 + i) by u = sin(2πft).

Bode’s sensitivity integral
Bode’s sensitivity integral is typically considered over only positive frequen-
cies [Freudenberg and Looze, 1985], however double-sided integration is nec-
essary for complex coefficient transfer functions,

∫ ∞

−∞
log |S(iω)| dω = 2π

Np∑

k=1
Re pk, (E.14)

where {pk} are the RHP poles of G. Also, unlike the real case, it is crucial to
take the real part of the poles in (E.14). The proof is the same [Freudenberg
and Looze, 1985].

That the single-sided version of (E.14) fails to hold in the complex case,
is seen from that G(s + iδ) would correspond to different lower limits of
integration for different δ.

Bode’s complementary sensitivity integral
The relationship for the complementary sensitivity function [Middleton and
Goodwin, 1990] needs the same modifications as in (E.14) to cover complex
coefficient transfer functions,

∫ ∞

−∞
log |T (iω)| dω

ω2 = −πK−1
v + πτ + 2π

Nz∑

k=1
Re 1
zk
, (E.15)

where τ is the time delay of the system, {zk} are the RHP zeros of G(s) and
Kv = lims→0 sL(s). The result follows, with minor modifications, from the
proof in [Middleton and Goodwin, 1990].

Bode’s gain-phase relationship
Bode’s gain-phase relationship which relates the phase of a real, minimum
phase system G(s), to the slope of its gain curve in logarithmic scale, does not
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hold for complex G(s). The less intuitive relationship given by the double-
sided version of the Kramers-Kronig relations [Kronig, 1926],

∠G(iω0) = 1
π
P
∫ ∞

−∞

log |G(iω)|
ω − ω0

dω,

where P denotes the Cauchy principle value, still holds for complex, minimum
phase systems.

E.5 State-space analysis

Notions such as controllability, stability, etc. are analogous to the real case
[Lancaster and Rodman, 1995]. Below, some special results are discussed in
more detail.

H2 and H∞ norms
The H2-norm can be calculated using the same formulas as in the real case,
i.e. ‖C(sI −A)−1B‖22 = trace (B∗Y B) = trace (CXC∗), where X = X∗ and
Y = Y ∗ are solutions to the complex Lyapunov equationsXA+A∗X+B∗B =
0 and AY + Y A∗ + CC∗ = 0 respectively.

The linear matrix inequalities for calculating the H∞-norm also carry
over, given that Hermitian transposition is used.

Remark: Matlab’s functions for H∞-synthesis does not handle complex
systems correctly.

LQR
In [Lancaster and Rodman, 1995] the optimal feedback for a complex linear
system with respect to a cost functional

J =
∫ ∞

0

[
x(t) u(t)

]∗
[
Q N
N∗ R

] [
x(t)
u(t)

]
dt

is derived. The optimal feedback is given by u = −Kx with
K = R−1(N∗ +B∗X),

where the Hermitian matrix X ≥ 0 satisfies the complex Riccati equation
A∗X +X∗A− (N +XB)R−1(N∗ +B∗X) +Q = 0.

For a first order system it seen that when N = 0, BK is real and positive,
and the linear optimal regulator moves the closed-loop pole, A−BK, parallel
to the real axis, further into the LHP.

The amazing robustness properties of LQR (for N = 0), that hold in the
real case (infinite gain margin and ≥ 60◦ phase margin), hold also in the
complex case, even if the Nyquist curve is not symmetric with respect to the
real axis.
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Kalman filter for complex-valued normally distributed noise
It is natural to allow the state and measurement noise to be complex-valued.
A complex-valued normally distributed variable Z with zero mean is deter-
mined by the matrices E(ZZ∗) and E(ZZT ). If the latter is zero, one says
that Z is circular-symmetric, which means that the distribution function is
rotationally invariant in the complex plane. The paper [Dini and Mandic,
2012] discusses the general problem and introduces the concept of ”widely
linear state space models” to describe the optimal estimator in an aesthetic
form.

E.6 Example I: Amplifier linearization

Cartesian feedback linearization of power amplifiers was actively studied 10–
20 years ago as a means to reduce power consumption and adjacent channel
interference in telecommunications [Johansson, 1991; Briffa and Faulkner,
1996; Dawson, 2003]. To avoid instability and performance degradation, the
phase shift φ between up- and down-conversion needs to be properly com-
pensated by an adjustment phase φ̂, see Fig. E.5.

H(s)

H(s)
i.PA

sinωRFt

cosωRFt

Σ

Σ

I ′

−

Q′

−

−φsin(ωRFt+ φ̂)

cos(ωRFt+ φ̂)

I

Q

Figure E.5 Amplifier linearization by Cartesian feedback [Dawson, 2003],
loop filters, up- and down-conversion mixers are shown.

If the amplifier is operating in an almost linear region, the open-loop
system is well approximated by

G(s) = H(s)P (s)e−τseiδ, (E.16)
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-1

Re

Im

Nominal
10° adjustment error
20° adjustment error

Figure E.6 Nyquist curves for Cartesian feedback loop with different
phase adjustment errors. The nominal curve is from [Johansson, 1991, Sec.
4.2].

where H(s) is the loop filter, P (s) is a baseband model of the mixer and am-
plifier dynamics, τ is the loop delay and δ := (φ̂−φ) is the phase adjustment
error.

Although [Briffa, 1996] simulated (E.16) as a complex systems, the sta-
bility properties were analyzed using the equivalent TITO form (E.1). After
algebraic computations and a clever observation it was shown that an ad-
justment error δ translates directly to a corresponding reduction in phase
margin.

In the complex setting the same conclusion follows directly from the
Nyquist criterion (Sec. E.4), by noting that the factor eiδ corresponds to
a rotation of the Nyquist curve H(iω)P (iω)e−iτω by δ radians, see Fig. E.6
for an illustration.

E.7 Example II: Cavity field control

In radio-frequency accelerators, particle bunches are accelerated by electro-
magnetic fields confined in RF cavities. The amplitude of the fields, and their
phase relative the particle bunches, need to be precisely controlled [Wangler,
2008].

To see how complex transfer functions play a role in this, we first derive
the baseband equations for the cavity and the RF system (Fig. E.7), and
then design a complex H∞-controller.
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u
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φref
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Figure E.7 Block diagram of RF system for one cavity. Variations in the
voltage supply to the power amplifier (d1) and ripple on the accelerated
current (d2), affect the system as load disturbances on the cavity input.

Model of cavity dynamics
From Maxwell’s equations it follows that the electric field in the cavity can
be expressed as a linear combination of eigenmodes,

E(r, t) =
∞∑

k=0
vk(t)Ek(r),

where the mode amplitudes ek satisfy [Wangler, 2008, Ch 5, 10]

d2

dt2
vk + 2γk

d

dt
vk + ω2

kvk = 2κk
d

dt
ig + 2αk

d

dt
ib, (E.17)

where ωk is the resonance frequency and γk the half bandwidth of mode k.
κk and αk quantify how the output of the power amplifier, modeled as a
current ig, and the accelerated particle current ib, couple to the cavity field.
The amplifier output ig, can considered as the control signal. Variations in
ib enter as load disturbances.

The distribution of modes in the fundamental passband for an elliptical
cavity is shown in Fig. E.8. The mode that is used for particle acceleration
is typically the π-mode, and the purpose of the RF system is to excite the
π-mode and control its phase and amplitude.

After both Laplace and baseband transformations of (E.17), we get

Vk(s) := 1
s+ γk + i∆ωk

(κkIg(s) + αkIb(s)) , (E.18)

where ∆ωk = ωRF − ωk.
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Figure E.8 Fundamental passband modes in the nine-cell TESLA cavity
[Schilcher, 1998], that is used in many large accelerators, e.g. LCLS II.
The π-mode is used for particle acceleration, while all other modes are
detrimental to both particle acceleration and RF system stability.

A baseband model of the RF system in Fig. E.7, including the accelerating
π-mode and one parasitic mode, now takes the form

P (s) = Pamp(s)e−iωRFτe−τs ×
[

cπκπ/2
s+ γπ + i∆ωπ

+ c1κ1/2
s+ γ1 + i∆ω1

]
, (E.19)

where Pamp(s) is the dynamics of the power amplifier, τ is the system time
delay, ck quantify the coupling of mode k to the measurement probe, and
e−iωRFτ is an additional factor resulting from the baseband transformation of
the loop delay (cf. E.2). Complex quantities in (E.19) have been highlighted.

H∞-synthesis example
As we demonstrate in the Appendix, the Matlab functions forH∞-synthesis
does not work for complex coefficient systems, instead we used the TITO
representation (E.1), which resulted in a controller that also had structure
(E.1), from which we recovered a complex controller.

Specifications The main requirements for cavity field control is to sup-
press load disturbances while maintaining good robustness and avoiding ex-
cessive control signal activity. These requirements correspond to the following
weights for mixed sensitivity synthesis,

WS(s) = 1

WPS(s) = k1 ·
1

s+ ε

WKS(s) = k2 ·
s+ ωbw
s+Nωbw

.
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Figure E.9 Bode plot of H∞-controller K, solid (dashed) lines corre-
spond to positive (negative) frequencies.

By tuning how the parameters of the weighting functions, we arrived at a
reasonable controller design.

Results The frequency response of the controller is shown in Fig. E.9,
note the asymmetry with respect to positive and negative frequencies, which
imply that the controller has complex-coefficients. It can also be seen that a
notch has been by the H∞-design, which allow a high control bandwidth for
negative frequencies, without introducing positive feedback via the parasitic
mode. The gang of four for the design is shown in Fig. E.10.

E.8 Conclusions

We have described some applications where system dynamics are conve-
niently modeled by complex-coefficient systems. Most control theoretic re-
sults developed for the real-valued case carry to the complex setting with
minor changes, such as ensuring that transposition is Hermitian and that
both negative and positive frequencies are considered. Instances where com-
plex systems are erroneously handled by Matlab were pointed out.

A design example for cavity field control was presented in some detail
and it was demonstrated that it was possible to synthesize a complex H∞
controller. Due to the special structure of the plant, with resonance peaks
only occurring at negative frequencies, the optimal controller had a markedly
different frequency response for positive and negative frequencies.

We believe that there are many applications where a complex approach
could bring increased insight and that there are related control theoretical
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Figure E.10 Gang of four for the H∞-design. The frequency response is
not conjugate symmetric, so both positive frequencies (solid) and negative
frequencies (dashed) are shown. The gray curves in the upper right plot is
the frequency response of the plant P .

questions worthy of further investigation.
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E.9 Appendix: Complex-coefficient systems in Matlab

Matlab handles complex-coefficient systems incorrectly. We detected the
following issues with version R2016a (Linux).

In the nyquist plot, the frequency response for negative frequencies
equals that at positive frequencies, which is incorrect for complex coefficients
system. hinfnorm only considers positive frequencies, while minreal does
not support complex data at all.

The first example of H∞-synthesis in the Matlab documentation,

G = (s-1)/(s+1)^2;
W1 = 0.1*(s+100)/(100*s+1);
W2 = 0.1;
[~,~,GAM] = mixsyn(G,W1,W2,[])

gives GAM=0.23. Multiplying the plant G by a complex factor exp(0.4i)
should not affect the resulting value, as the factor could be canceled by the
controller. However the result in this case is GAM=0.40, thus demonstrating
incorrectness.
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