Reduced European emissions of S and N - Effects on air concentrations, deposition and soil water chemistry in Swedish forests

Pihl Karlsson, Gunilla; Akselsson, Cecilia; Hellsten, Sofie; Karlsson, Per Erik

Published in:
Environmental Pollution

DOI:
10.1016/j.envpol.2011.08.007

Published: 2011-01-01

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Reduced European emissions of S and N – effects on air concentrations, deposition and soil water chemistry in Swedish forests

Gunilla Pihl Karlsson a,*, Cecilia Akselsson b, Sofie Hellsten a, Per Erik Karlsson a

a IVL Swedish Environmental Research Institute, Box 5302, SE-400 14 Gothenburg, Sweden
b Department of Earth and Ecosystem Sciences, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden

* Corresponding author.
E-mail addresses: gunilla.pihl.karlsson@ivl.se (G. Pihl Karlsson), cecilia.akselsson@nateko.lu.se (C. Akselsson), sofie.hellsten@ivl.se (S. Hellsten), pererik.karlsson@ivl.se (P.E. Karlsson).

Corresponding author: Phone: +46 31 7256208 Fax: +46 31 7256290

Capsule

Reduced European emissions have led to decreased acidic deposition and a slow recovery of soil water but nitrogen deposition remains the same in Swedish forests.
Abstract

Changes in sulphur and nitrogen pollution in Swedish forests have been assessed in relation to European emission reductions, based on measurements in the Swedish Throughfall Monitoring Network. Measurements were analyzed over 20 years with a focus on the 12-year period 1996 to 2008. Air concentrations of SO\textsubscript{2} and NO\textsubscript{2}, have decreased. The SO\textsubscript{4}2--deposition has decreased in parallel with the European emission reductions. Soil water SO\textsubscript{4}2--concentrations have decreased at most sites but the pH, ANC and inorganic Al-concentrations indicated acidification recovery only at some of the sites. No changes in the bulk deposition of inorganic nitrogen could be demonstrated. Elevated NO\textsubscript{3}-concentrations in the soil water occurred at irregular occasions at some southern sites. Despite considerable air pollution emission reductions in Europe, acidification recovery in Swedish forests soils is slow. Nitrogen deposition to Swedish forests continues at elevated levels that may lead to leaching of nitrate to surface waters.

Keywords: Acidification, Nitrogen leaching, Recovery, Forest, Swedish Throughfall Monitoring Network (SWETHRO)

Research highlights:

- S deposition to Swedish forests has decreased in parallel with European emissions.
- Soil water pH, ANC and inorganic Al-concentrations indicated a slow recovery.
The bulk deposition of inorganic nitrogen over Sweden has not decreased. Continued N deposition to Swedish forests may cause leaching of N to surface waters.

1. Introduction

Anthropogenic emissions of sulphur and nitrogen have caused acidification and eutrophication of terrestrial and aquatic ecosystems in Europe (Reuss & Johnson, 1986; Galloway et al., 2004). The emissions have however decreased considerably since 1990 (Nyiri et al., 2009). Over the period 1990-2008, the emission reductions reported by EMEP for the 27 EU member countries were 73, 39 and 22 % for oxidized sulphur, oxidized nitrogen and reduced nitrogen, respectively. The corresponding values for emission reductions for Sweden were 71, 49 and 8 % for oxidized sulphur, oxidized nitrogen and reduced nitrogen, respectively.

The emission reductions have improved the situation to some extent e.g. in streams and lakes in Sweden (Skjelvåle et al., 2001; Fölster & Wilander, 2002). But the recovery is often slow and model simulations show that a full recovery is far away in the future in many regions, where the soils have been depleted of base cations (Sverdrup et al., 2005). Continuous evaluations of effects of the reduced emissions on air pollutant concentrations, on deposition to the forests and on soil and soil water chemistry are necessary in order to assess whether or not the emission reductions are large enough to allow for sufficient ecosystem recovery.
The Swedish Throughfall Monitoring (SWETHRO) network started in 1985, with the aim to measure air concentrations, deposition and soil water chemistry in managed forest ecosystems across Sweden. The measurements started in southern Sweden, where the acidification problems were largest, but the network has expanded and today measurements are carried out across the entire country. Evaluation of data for the period 1985-1994 has shown a gradient with the highest S and N deposition in the south-western part of Sweden (Hallgren Larsson et al., 1995). Furthermore, there was a temporal trend with decreasing sulphur deposition during this period.

In this article, air concentrations, deposition and soil water chemistry were evaluated with respect to trends over time and geographical gradients for the different monitoring sites within the SWETHRO network. Focus was on the period of October 1996 – September 2008, for which continuous time series of measurements are available for more than 50 sites for throughfall and soil water chemistry, covering the entire country. Results are also shown from a few long time series in southern Sweden, starting in the late ‘80s or early ‘90s. The changes in air concentrations and deposition to Swedish forests are compared to the reported European emission reductions and discussed in relation to the progress of recovery of soil water chemistry.

2. Materials and methods

2.1 Sites and measurements
The SWETHRO network is financed by regional air quality protection associations and local county administrative boards. They decide what to measure and when, in collaboration with the SWETHRO scientists. As a result, the measurements at different monitoring sites cover different time periods.

The SWETHRO network includes measurements of air concentrations and bulk deposition (BD) in open areas, as well as throughfall deposition (TF) and soil water chemistry inside forest stands (Table 1). In 2008 air concentrations were measured on 22 sites, TF in forests on 60 sites, BD on open field on 19 sites and soil water chemistry on 67 sites (Figure 1). Some of the original sites, from 1985, are still operating, resulting in time series of up to 23 years. Monitoring sites are positioned in closed, mature managed forests with no major roads or other pollution sources in the vicinity. Relatively homogenous locations, with regard to topography and tree density, are chosen. The BD as well as the air concentration measurements are positioned in an open area close to the TF sites, preferably with similar topographical properties. Many sites were replaced with new sites, in the vicinity of the old site, due to an ageing forest and subsequent harvests. The new sites were assigned a new identity.

Air concentrations of SO$_2$, NO$_2$ and NH$_3$ were measured with diffusion samplers as described in Ferm & Rodhe, (1997).

During winter, TF was measured in open buckets ($\Omega=21.4$ cm) lined with plastic (polyethylene) bags. During summer polyethylene bottles lined with plastic bags were used with polyethylene funnels ($\Omega=15.5$ cm) threaded into the lid. The plastic bags
were replaced at each sampling occasion. Ten TF collectors were placed in an L-shaped pattern with five bottles at each side or in some cases as a cross-shaped pattern (30 x 30 m) in a homogeneous part of the forest. The bottles were wrapped with aluminium foil to minimize the effect of heat and sunlight (Ferm, 1993). To prevent contamination during summer by insects and forest litter, a piece of nylon netting was attached between the funnel and the bottle. The ten TF samples were merged to one composite sample.

BD was measured in an open area using a similar type of collectors as was used for TF (Ø=20.3 cm). To prevent contamination, a small funnel with a plastic netting (maze 2 mm) is attached at the bottom of the big funnel. During winter the funnel is replaced by a 1 m long snow sack (Ø=19.5 cm), i.e. a tubular plastic bag mounted on plastic rings.

Air concentration diffusive samples, as well as samples of TF and BD deposition, were collected monthly throughout the year.

Soil water samples were obtained using suction lysimeters with ceramic cups (P 80). The ceramic cups were placed at 50 cm depth in the mineral soil. In general, five lysimeters were installed on each forest site, inside the canopy close to the TF collectors. However, in some cases the number of lysimeters could be smaller (three or four) due to difficulties with the stoniness. At sampling the lysimeters were sucking water for two days. The water from the lysimeters was then combined into one composite sample for analysis. Soil water was collected three times a year, to
represent the conditions before (Feb-May), during (Jun-Sep) and after the vegetation period (Sep-Dec).

2.2 Chemical analyses

When the water samples arrived at the laboratory pH, alkalinity and conductivity were measured directly. The water sample was then filtered using a cellulose acetate filter (0.8 µm). A small subsample was preserved with sulphuric acid (H$_2$SO$_4$) to be analyzed for Kjeldahl-N and NH$_4$-N. Another subsample was preserved with nitric acid (HNO$_3$) for analysis of Fe and Al. The remaining sample volume was not preserved, and used for the remaining analyses.

SO$_4$-S, NO$_3$-N, Cl, Ca, Mg, Na, K, Mn were analysed by Ion Chromatography, IC. NH$_4$-N was analysed by Flow Injection Analysis (FIA). Kj-N was measured according to Foss-Tecators method AN 52212002-10-24. Fe, total, organic and inorganic aluminium were measured with ICP-MS according to SS-EN ISO 17294-2:2005.

2.3 Time series analysis

The monthly data for air concentrations and deposition were merged into yearly data based on the hydrological year, October – September. The advantage with using the hydrological year is that the impacts of the precipitation and deposition during the entire winter season can be assigned to a specific year.
It was necessary to analyse monitoring data for different time periods adapted to
different data coverage for different sites. Time series analysis was done both for the
sites with long time series, starting around 1990 or earlier, all situated in southern
Sweden, and for sites with time series starting in October 1996. The latter time series
covered the whole country and yet the time series was long enough to enable the
detection of time trends. As far as possible the same periods have been chosen for air
concentrations, deposition and soil water chemistry.

The time series were statistically analysed using the non-parametric Mann-Kendall
and Seasonal-Kendall methodologies (Mann, 1945; Hirsch & Slack, 1984). Mann-
Kendall was used for air concentrations and deposition trends, where annual data
were analysed, whereas Seasonal Kendall was used on soil water chemistry, where the
data from each sampling occasion (three times a year) were analysed. The changes are
referred to as statistically significant when the Mann-Kendall or Seasonal Kendall test
results in a p value ≤0.05.

Non-marine S deposition was calculated according to LRTAP (2004). Non-marine
SO₄-S = Total SO₄-S - (Cl * 0.0462). Cl was used instead of Na for sea salt
corrections since Na deposition measurements were lacking for some sites while Cl
deposition was measured at all sites.

3. Results

3.1 Air concentrations
Several of the sites in the SWETHRO network with long-term air pollution concentration measurements were terminated 2006 and several other sites did not start air concentration measurements until the beginning of the 2000s. As a result there were relatively few sites with air concentration measurements covering the entire period 1996/97–2007/08. An example of the geographical distributions of yearly mean air concentrations of SO$_2$, NO$_2$ and NH$_3$ across Sweden is shown in Figure 2 for the hydrological year 2000/01. The highest concentrations of SO$_2$ and NO$_2$ were found around the south and west coast of Sweden and around the Stockholm area (east part of mid-Sweden). The highest NH$_3$-concentrations were around the south coast.

Annual mean air concentrations of SO$_2$ in mid Sweden during 1996/97-2007/08 have been in the range 0.3-1.6 µg/m3 (Figure 3 a). The trend analysis of annual SO$_2$ concentrations demonstrated a significant decrease for Sticklinge, one site in mid-Sweden, with a decline of 44 % for the whole time period of 12 years, i.e. in the same order as the reported oxidized sulphur emission reductions from EU-27. Sticklinge is positioned near the greater Stockholm region and may to some extent be influenced by local emissions. There were no significant trends for the SO$_2$ concentrations at the other three sites. Additional information from other air monitoring networks in Sweden show that the SO$_2$ concentrations in air over Sweden have been decreasing (data not shown, see discussion).

Annual mean air concentrations of NO$_2$ in southern and mid Sweden have been between 1 and 12 µg/m3 during 1996/97–2007/08 (Figure 3 b). There were significant
decreases for air concentrations of NO$_2$ at all four monitoring sites. The rate of the
decrease corresponds to a reduction of between 27 and 40 %. Hence, the decrease in
NO$_2$ concentrations over Sweden has been somewhat larger as compared with the
averaged emission reductions over Europe. Of the four sites included in the time
series, the two sites Farstanäs and Sticklinge, positioned near the greater Stockholm
region, may be influenced by local emissions.

Air concentrations of NH$_3$ were much lower than NO$_2$, and showed a high temporal
variability (Figure 3 c). The annual mean NH$_3$ concentration ranged between the
detection limit (0.3 µg/m3) and 0.9 µg/m3. No statistical trend analysis was made for
NH$_3$ concentrations due to the lack of data for some years.

3.2 Deposition

3.2.1 Geographical distribution

The total non-marine S deposition to forests, measured as TF, shows a distinct
gradient across Sweden, with the highest values in the southwest and decreasing
values towards northeast (Figure 4). The annual S deposition, as a mean value during
the hydrological years 2005/06-2007/08, exceeded 5 kg S ha$^{-1}$ at several sites in
southwest Sweden. At the remaining sites in south and mid Sweden, the annual S
deposition was 2-5 kg S ha$^{-1}$ while in the north the values were below 2 kg S ha$^{-1}$.

Total deposition of inorganic N to forest, as NH$_4$-N and NO$_3$-N, is difficult to measure
since N is taken up directly to the tree crowns (e.g. Ferm, 1993). Thus open field BD
was used to assess N deposition (Figure 5). The BD of inorganic N could be assessed for fewer sites, as compared to S deposition, but largely followed the same geographical pattern as the S deposition. The annual inorganic N BD exceeded 11 kg N ha\(^{-1}\) in southwest Sweden at both the beginning and the end of the 12-year period. Most remaining sites in south and mid Sweden had an annual inorganic N deposition exceeding 5 kg N ha\(^{-1}\). Since dry deposition is not included in the BD measurements, the total deposition of inorganic nitrogen to Swedish forests may be considerably larger as compared to the values reported here, see the discussion.

3.2.2 Trends 1996/97-2007/08

Total non-marine S deposition to forests, measured as TF, decreased significantly at 47 of 52 sites between the two three-year periods 1996/97-1998/99 and 2005/06-2007/08 (Figure 4). The largest reductions were found in south-western Sweden, where the levels were the highest in the beginning of the period. The non-marine S deposition during the two three-year periods 1996/97-1998/99 and 2005/06-2007/08 in Sweden has declined between 22% and 67%, which is in the same order of magnitude as the 49% reduction in the European emissions of oxidized sulphur during the same period. The open field measurements showed that the S bulk deposition decreased significantly at 8 of 14 sites, and the reductions were between 4 and 8% (data not shown), hence considerably less changes as compared to TF.

The BD of inorganic N (NO\(_3^-\)+NH\(_4^+\)) increased significantly between 1996/97 and 2007/08 at two out of 20 sites (Figure 5). There were no significant trends for NO\(_3^-\)N on the 14 sites with open field measurements (data not shown). There were, however,
tendencies towards lowered NO$_3$-N deposition on many of the sites. For NH$_4$-N two
sites showed significant changes, one increase and one decrease, but there was no
general trend for the entire country (data not shown).

Deposition and soil water chemistry is affected not only by anthropogenic emissions,
but also by sea salt episodes (Hindar et al., 1995; Skjelvåle et al., 2007) and the
amount of precipitation. There was, however, not any general time trend neither in
amount of precipitation and throughfall nor in the chloride deposition, which is a
measure of the sea salt deposition (data not shown).

3.2.3 Long-term trends

The changes in S deposition in TF over a longer time period are shown in Figure 6,
for four different years with 5-year intervals. Many of the longer time series for S
deposition were terminated after 2006. The monitoring sites are not identical for the
different years. However, it was considered that the number of monitoring sites were
high enough and the changes so large, that this did not influence the overall
evaluation of the trends in S deposition. The S deposition to forests has decreased
substantially since the early 1990-ies, especially in south-western Sweden (Figure 6),
where the deposition was the highest. In the beginning of the 1990s, the S deposition
rates were around 20 kg S ha$^{-1}$ yr$^{-1}$ in southwest Sweden. During 2006/07 the S
deposition rates were below 5 kg S ha$^{-1}$ yr$^{-1}$ except for in the southernmost part of
Sweden.

3.3 Soil water chemistry
3.3.1 Geographical distribution

The sulphur (SO$_4$-S) concentrations in soil water were generally higher in the southern part of Sweden than in the northern part, although the variation on a local level was large, especially in the south (Figure 7). For the three acidification indicators pH, ANC (acid neutralizing capacity) and concentrations of inorganic Al there was a distinct gradient with increasing pH and ANC and decreasing concentrations of inorganic Al from the southwest to the north. The pH of soil water was below 4.5 and the ANC was considerably negative on several sites in southern Sweden during 2005/06-2007/08, indicating severe acidification of the soil water (Figures 8 and 10).

The concentrations of nitrate (NO$_3$-N) in soil water were generally very low, in particular in northern Sweden (Figure 11). In the south-western part of Sweden there were several sites with elevated concentrations, e.g. in Arkelstorp where there has been frequent elevated NO$_3$-N concentrations during the entire period 1996/97-2007/08 (Figure 11). Two of the sites, Vallåsen and Alandsryd, were damaged by a storm incident in January 2005 which led to increased concentrations (Figure 11). In Vallåsen the concentrations were elevated already before the storm, but the concentrations was further increased after the storm.

3.3.2 Trends 1996/97-2007/08
The concentrations of SO$_4$-S in the soil water have decreased significantly on more than half of the sites, and the fraction of sites with decreasing concentration was highest in the southwest (Figure 7). Also, the concentrations of Ca have decreased significantly on many of the sites (data not shown). Chloride concentrations have been higher in the end of the period than in the beginning on eight of the 55 sites (data not shown).

pH, ANC and concentrations of inorganic aluminium showed reduced acidification on several of the sites in southern Sweden (Figures 8-10). There were also a few examples with a change in the opposite direction. Although there seemed to be a recovery on several of the sites in the worst acidified areas, there were also many sites with no significant change. This showed that the recovery was slow on many sites.

There were no significant time trends in the NO$_3$-N concentrations, except for the increases caused by the storm in January 2005. Elevated concentrations of ammonium in the soil water were rare, but sometimes occurred in connection with the storm incident 2005 (data not shown).

3.3.3 Long-term trends

Two 15-year time series for soil water S concentrations in southern Sweden showed somewhat different results (Figure 12). Both sites were affected by a storm in 2005, so data are not shown after 2005. On both sites there was a clear decrease of S concentration in soil water. The rate of the decrease was especially high during the second half of the 1990-ies. The changes in ANC showed different patterns between
the sites (Figure 12). In Alandsryd there was no time trend for ANC during the period.
At Klippan, on the other hand, there was a clear increase in ANC during the period,
from around -0.3 to over -0.15 meqv l\(^{-1}\). The increase in ANC indicates recovery from
acidification. For pH there was no time trend in any of the sites. The analysis of long-
term trends shows a great variability in the soil water recovery from acidification as a
result of the reduced concentrations of SO\(_4\)-S. The long time-trends in southern
Sweden are studied more thoroughly and related to deposition development, sea salt
episodes and storm damage effects in an on-going study (Akselsson et al., in
preparation).

4. Discussion

The air pollution situation over Sweden, as well as the deposition rates, depends
strongly on the weather conditions. However, there were no obvious trends in air
temperatures or precipitation during the period 1996/97–2007/08 that might have
systematically influenced the air pollution concentration or deposition during this
period. This analysis was made for average values across Sweden with yearly and
growing season time resolution (data not shown), based on official weather statistics
reported by the Swedish Meteorological and Hydrological Institute (SMHI).

Sweden’s location in northern Europe, separated from the continent by the Baltic Sea,
in combination with relatively low domestic air pollution emissions, makes air quality
over Sweden very sensitive to emission reductions from the European continent and
the UK. European emissions of oxidized sulphur have been estimated to have
decreased 73% between 1990 and 2008 and 49% between 1997 and 2008 (Nyiri et al., 2009). To what extent can the consequences of these emissions reductions be detected in the context of acidification in Swedish forests?

Reduced air concentrations of SO$_2$ could be demonstrated only for one out of four monitoring sites within the SWETHRO network during the 1996/97-2007/08 period. The four sites were positioned in mid-Sweden at approximately the same latitude, 59-60°N (Figure 3). The statistical method used to analyze trends could detect only monotonic trends and there were relatively high SO$_2$ concentrations during a period 2003-2006, which might have been connected with polluted air originating from extensive biomass burning in Russia and neighboring countries (Whitham & Manning (2007). A recent evaluation of air concentrations of gaseous SO$_2$ measured within the EMEP monitoring stations in southern Sweden indicated that SO$_2$ concentrations had decreased by 90% since the 1980s until present day on mainland southern Sweden (Sjöberg et al., 2010). Over the period 1997-2008 the corresponding decreases were in the order of 50% for mainland southern Sweden. A recent analysis by Anttila and Tuovinen (2010) demonstrated significant decreases in air SO$_2$ concentrations at six out of eight Finnish rural background sites, with yearly decreases in the order of 3-8%. They concluded that the decline of air SO$_2$ concentrations in Finnish background areas continued also after the year 2000. Corresponding measurements of air SO$_2$ + SO$_4$ concentrations at four EMEP stations in Norway also showed a decrease in the order of 50% during the period 1997-2009 (SPFO, 2010). Hence, overall, it seems likely that the air oxidized sulphur concentrations across the Nordic countries have decreased in parallel with European emission reductions. The strong geographical gradient in the measured air concentrations of SO$_2$ from southwest towards northeast
supports what has been reported by EMEP (Nyiri et al., 2009), that the most important sources for sulphur deposition in Sweden are long-range transport from continental Europe and from ship emissions in the North sea and the Baltic sea.

Sulphur deposition to Swedish forests has declined to the extent expected from European emission reductions, ranging from 22% up to 67% for different sites between the two three-year periods 1996/97-1998/99 and 2005/06-2007/08. The larger changes in TF sulphur deposition to forests, as compared to changes in bulk deposition, indicate that the dry deposition, which decreased substantially between 1985 and 1994 (Hallgren Larsson et al., 1995), has continued to decrease over the 1996/97-2007/08 period.

Sulphur concentrations in the soil water at 50 cm depth at Swedish forest sites showed a considerable variability between nearby monitoring sites due to differences in soil conditions. However, the highest concentrations occurred in the south and south-east part of Sweden but also in mid-Sweden around the Stockholm region and around the lake Mälaren. The soil water acidification parameters pH and ANC were clearly lowest towards the southwest part of Sweden, where the acid deposition has been the highest. The soil water concentrations of S, Ca and inorganic Al are affected by the amount of precipitation and runoff. High flow of water lowers the concentrations due to dilution effects. Since flow varies geographically, with the highest flow in the southwest, differences in concentrations between geographical areas should be interpreted with caution. This effect, however, acts in the opposite direction as compared with the geographical variations in soil water concentrations that was found across Sweden, with higher concentrations in the south.
The decreased sulphate concentrations in the soil water on more than half of the monitoring sites across Sweden during 1996/97-2007/08 was on many sites accompanied by reduced Ca concentrations, due to the reduction in anion flow. pH and ANC have increased during the same period at some sites, but clearly less frequent as compared to the number of sites with reduced sulphate concentrations. A significant number of strongly acidified sites remain in south Sweden during the period in 2005/06-2007/08, with a median pH value for the soil water below 4.5 and a strongly negative ANC. Also soil water concentrations of inorganic aluminum have decreased at some sites while it has remained unchanged at quite a number of other sites. Soil water concentrations of inorganic aluminum around or higher than 2 mg l-1, an often used limit for aluminium toxicity (e.g. de Vries, 1993), is still common in southern Sweden. Hence, sulphate deposition and sulphate concentrations in the soil water has declined considerably during the 12 year period, but the soil water acidification indicators pH, ANC and inorganic aluminum concentrations show only small signs of recovery.

On seven sites in the southern half of Sweden there was a significant increased acidity, through decreased pH or ANC or increased concentration of inorganic aluminum. On five of them there was a significant increase in chloride concentrations in soil water, which indicates that the increased acidity can be the temporary effect of increased concentrations of sea salt in soil water, due to sea salt episodes, although the sea salt episodes were not strong or frequent enough to lead to significantly increased Cl deposition over time.
All sites in the region with the highest sulphur deposition, i.e. southwest Sweden (red area in Figure 13), had negative ANC during the period 2005/06-2007/08. These sites are in the beginning of the recovery process. If the pools of base cations have been depleted to a great extent, it will take a long time before the sites can recover. In the regions with intermediate sulphur deposition (yellow area in Figure 13), many of the sites show a soil water ANC around zero. On these sites the recovery has proceeded further. Most of the sites in northern Sweden, which corresponds to the lowest deposition region, have a positive ANC and high pH, and many of these sites have probably been acidified only to a small extent. The non-linear relation between pH and ANC in soil water may provide some explanation for the lack of pH increase as a response to reduced sulphur concentrations. At highly acidified sites, ANC has to increase considerably before there will be a substantial increase in pH. However, the analysis of the soil water chemistry changes during the time series 1989-2005, demonstrated that also the response of ANC to a reduced sulphate concentration in the soil water can be quite different (Figure 12). These differences are further analysed in a separate study (Akselsson et al., in preparation).

The sulphate concentrations in soil water have decreased also at ICP Forest level II plots in Norway over the period 1990-2008 (Andreassen et al., 2009). However, most of the decrease occurred during the 1990-ies and in recent years the changes have been small. Also the Norwegian forest plots show a parallel decrease in the soil water calcium concentrations while there were small changes in the soil water pH and inorganic aluminum concentrations (Andreassen et al., 2009).
European emissions of oxidized and reduced nitrogen have decreased 22 and 8% between 1997 and 2008, respectively (Nyiri et al., 2009). There was a substantial decline in air NO\textsubscript{2} concentrations at all four monitoring sites in mid-Sweden between 1997 and 2008. This decline was even larger than what was expected from the European emission reductions. The decrease in air NO\textsubscript{2} concentrations was consistent with reported decreases in air NO\textsubscript{2} concentrations at the two EMEP monitoring sites Råö, at the west coast of Sweden, and at Vavihill, in southernmost Sweden (Sjöberg et al., 2010). Furthermore, Anttila and Tuovinen (2010) demonstrated significant decreases in air NO\textsubscript{2} concentrations at two out of four Finnish rural background sites during a period 1994-2007. Significant yearly decreases were in the order of 1-2%. Trends in NH\textsubscript{3} air concentrations have been more difficult to assess due to lower concentrations and higher variability.

The bulk deposition of inorganic nitrogen over Sweden did not decrease during the 1996/97-2007/08 period. The bulk deposition of inorganic N even increased significantly at two out of 20 sites, while there were no statistically significant changes at the remaining sites. The increases were mainly a result of an increasing ammonium bulk deposition. In accordance with the results in this study, the bulk deposition of inorganic nitrogen did not change over time for the Norwegian ICP Forest level II plots over the period 1990-2008 (Andreassen et al., 2009) as well as for two Danish monitoring sites with Norway spruce and beech, respectively, over the period 1986-2005 (Hansen et al., 2006). Fowler et al. (2007) reported that the concentrations of NO\textsubscript{3} in precipitation have increased in remote areas of Europe over the period 1980-2000, even though the emissions from more densely populated part of Europe decreased over the same period. Moreover, a recent report from the UK
concluded that the bulk nitrogen deposition over the UK had not, with a few exceptions, changed significantly over a recent twenty-year period (Kernan et al., 2010). Thus, due to non-linearity’s in atmospheric chemistry (Fowler et al., 2007, Fagerli and Aas, 2008) the reductions in European NOx emissions were not reflected in bulk nitrate deposition to Swedish forests.

Total deposition of inorganic N to forest as NH$_4$-N and NO$_3$-N in throughfall, which in theory should include also dry deposition, is difficult to measure due to direct nitrogen uptake by the canopies. A newly developed method to assess nitrogen dry deposition to forests based on the use of surrogate surfaces (Ferm and Hultberg, 1999, Karlsson et al., 2010) indicated that nitrogen dry deposition to forests may be in the order of 40 % of the total deposition in southwest Sweden, while it is considerably lower in the north. The lack of correlations between the trends in air concentrations of NO$_2$/NH$_3$ and the trends in inorganic nitrogen deposition may in part be explained by the fact that the nitrogen dry deposition could not be included in the assessment in the present study. Dry nitrogen deposition should be more strongly connected to air nitrogen concentrations, as compared to the bulk deposition.

N leaching due to high N input is generally reflected in increased NO$_3$-N concentrations in soil water. There was no continuous trend for NO$_3$-N concentrations in soil water. Elevated NO$_3$-N concentrations in the soil water occurred at irregular occasions, but also after massive fellings caused by a severe storm events, at some sites particularly in southern Sweden (Hellsten et al., 2009). This indicated that nitrogen stocks in the forest soils in southern Sweden are increasing and are in some areas approaching levels where they are sensitive to disturbances. In accordance with
these results, the southwestern part of Sweden was identified as a risk area for
nitrogen leaching in a study where four different modeling and monitoring
approaches, including SWETHRO, were used to assess the risk of nitrogen leaching
(Akselsson et al., 2010).

Future trends in air concentrations, deposition and soil water chemistry will be
affected by direct and indirect effects of climate change. Changed wind and
precipitation patterns may affect air concentrations and deposition (Langner et al.,
2005). Changes in temperature and moisture will affect tree growth (Laubhann et al.,
2009), weathering, decomposition, and other processes in the forest ecosystems,
which will affect soil water chemistry. Adaptation and mitigation of climate change
may lead to changed emission patterns of S and N and intensified forestry for
production of biofuels and/or increased C sequestration (Beland Lindahl & Westholm,
2011). Increased biofuel harvesting may hamper recovery from acidification (Olsson
et al., 1993; Joki-Heiskala et al., 2003; Akselsson et al., 2007) and N fertilization
leads to build-up of N in the forest soils, which may lead to N saturation and N
leaching in areas with high N status (Emmett, 2007; Akselsson et al., 2010). In order
to be able to optimize abatement strategies for climate gas emissions, it is important to
keep track of the concentrations of pollutants as well as the forest deposition and soil
water chemistry trends in the changing climate.

5. Conclusions
Changes over time in sulphur and nitrogen air concentrations, deposition and soil water concentrations in forest ecosystems in Sweden as well as in other Nordic countries were assessed in relation to European emission reductions for oxidized sulphur and oxidized- and reduced nitrogen. The analysis of the time series 1996/97-2007/08 gave the following results.

- The SO$_2$ and NO$_2$ air concentrations have decreased substantially, whereas there was no trend for NH$_3$.
- Reductions in SO$_4$ deposition were found for the majority of monitoring sites across Sweden, as well as for the other Nordic countries, and the reductions were in the same order of magnitude as the European emission reductions.
- Soil water SO$_4$ concentrations decreased at most, but not all, monitoring sites across Sweden in parallel with the SO$_4$ deposition reductions. The soil water acidification indicators pH, ANC and inorganic Al concentrations indicated acidification recovery on some of the sites but there were also many sites with no significant change.
- Despite the substantial decrease in NO$_2$ air concentrations, no statistically significant decreases in the bulk deposition of inorganic nitrogen deposition could be demonstrated. However, we were not able to include the dry nitrogen deposition in the trend analyses.
- Elevated NO$_3$ concentrations in the soil water occurred at irregular occasions, but also after massive fellings caused by severe storm events, at some sites particularly in southern Sweden. This indicated that nitrogen stocks in the forest soils in southern Sweden are increasing and may be approaching saturation.
We conclude that, despite considerable air pollution emission reductions in Europe, the recovery from acidification is slow and for many sites far from complete. Furthermore, the relatively high nitrogen deposition to Swedish forests still appears to continue at a constant rate and this level is probably high enough to influence the biodiversity of the forest ground vegetation (c.f. Nordin et al., 2005) as well as to cause increasing nitrogen stocks in the forest ecosystem, resulting in an increasing risk for leakage of nitrate to surface waters. The careful monitoring of Swedish forest ecosystems needs to proceed in order to follow up the trends of recovery and nitrogen leaching.

6. Acknowledgements

This research has been funded by various regional air quality protection associations, county administrative boards and the Swedish Environmental Protection Agency. The Swedish Throughfall Monitoring Network (SWERHRO) is run by IVL Swedish Environmental Research Institute. The work with this publication was funded by the unit Monitoring at the Swedish Environmental Protection Agency. We would also like to thank all field and laboratory personnel and all other devoted colleagues.

7. References

Ferm, M. & Hultberg, H., 1999. Dry deposition and internal circulation of nitrogen, sulphur and base cations to a coniferous forest. Atmospheric Environment 33, 4421-4430

Figure 1. Currently operating measurements in the Swedish Throughfall Monitoring Network (SWETHRO) in 2008.
Figure 2. Mean air concentrations at rural monitoring sites in Sweden of a) SO$_2$, b) NO$_2$ and c) NH$_3$ (µg m$^{-3}$) during the hydrological year 2000/01.
Figure 3. Trends for air concentrations of SO$_2$ (a), NO$_2$ (b) and NH$_3$ (c), measured within the Swedish Throughfall Monitoring Network (SWETHRO) 1996/97 – 2007/08. The grey, solid line represents the time course, in relative units, for the yearly emissions from EU member states (EU-27) for SO$_2$, NO$_3$ and N$_{red}$ respectively, as reported by EMEP (Nyiri et al., 2009).
Figure 4. Non-marine S deposition to forest (throughfall) during two time periods, 1996/97-1998/99 and 2005/06-2007/08. a) The average S deposition during 1996/97-1998/99, b) Decrease (%) between the two time periods, c) The average S deposition during 2005/06-2007/08,
Figure 5. Deposition of inorganic nitrogen (NO$_3$+NH$_4$) 1996/97 & 2007/08, open field (bulk) measurements. a) N deposition 1996/97, b) Significant changes (increase or decrease), c) N deposition 2007/08.
Figure 6. Deposition of non-marine S in throughfall (kg S ha\(^{-1}\) yr\(^{-1}\)) interpolated with the Inverse distance weighted (IDW) method, based on the SWETHRO sites: a) 1991/92, b) 1996/97, c) 2001/02, d) 2006/07. The black dots show active monitoring sites during the different time periods. Yearly mean values were calculated for hydrological years, October – September.
Figure 7. Sulphur (SO$_4$ -S) concentration in soil water sampled at 50 cm depth in 1996/97-1998/99 (median value), mg l$^{-1}$ (a), significant changes from 1996/97 to 2007/08 (b) and sulphur concentrations 2005/06-2007/08 (median value) (c).
Figure 8. ANC (Acid Neutralizing Capacity) in soil water sampled at 50 cm depth in 1996/97-1998/99 (median value) (a), significant changes from 1996/97 to 2007/08 (b) and ANC 2005/06-2007/08 (median value) (c). Note that the scale is reversed compared to Figure 7 and 9.
Figure 9. Inorganic aluminium concentration in soil water sampled at 50 cm depth in 1996/97-1998/99 (median value), mg l\(^{-1}\) (a), significant changes from 1996/97 to 2007/08 (b) and inorganic aluminium concentration 2005/06-2007/08 (median value) (c).
Figure 10. pH in soil water sampled at 50 cm depth in 1996/97-1998/99 (median value), mg l\(^{-1}\) (a), significant changes from 1996/97 to 2007/08 (b) and inorganic aluminium concentration 2005/06-2007/08 (median value) (c). Note that the scale is reversed compared to Figures 7 and 9.
Figure 11. Nitrate-nitrogen (NO$_3$-N) in soil water sampled at 50 cm depth on 60 active sites (a). Values are shown as the median from measurements 2005/06 – 2007/08, three measurements per year. The squares in the map highlights the four sites for which time series from 1996/97 to 2007/08 are shown (b and c). The time series for Högbrännna and Arkelstorp illustrates the difference between north and south Sweden, respectively (b). The time series for Vallåsen and Alandsryd illustrates the effect of a storm incident in January 2005 causing increased nitrate concentrations in soil water (c).
Figure 12. S concentration, pH and ANC in soil water sampled at 50 cm depth at Alandsryd (August 1989 to December 2004) and Klippan in southern Sweden (January 1990 – November 2004).
Figure 13. A. The historic SO$_4$-S deposition, represented by values from 1991/92, used to distinguish different S deposition regions. B. The ANC-pH relation in soil water in the different S deposition regions. The ANC-pH-relation is built on the median of data from autumn 2005 to summer 2008. Sites where soil chemistry in recent years have been strongly affected by storms (seven sites) were excluded.
Table 1. Parameters measured within the Swedish Throughfall Monitoring (SWETHRO) Network.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Air conc.</th>
<th>Deposition</th>
<th>Soil water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphur dioxide (SO_2)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen dioxide (NO_2)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonium (NH_3)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozone (O_3)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Alkalinity</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sulphur (SO_4-S)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Nitrate (NO_3-N)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ammonium (NH_4-N)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Chloride (Cl)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sodium (Na)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Kjeldahl nitrogen, Kj-N</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductivity</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic aluminium</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inorganic aluminium</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total aluminium</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>