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Ability of Serum Glial Fibrillary Acidic Protein, Ubiquitin
C-Terminal Hydrolase-L1, and S100B To Differentiate
Normal and Abnormal Head Computed Tomography
Findings in Patients with Suspected Mild or Moderate

Traumatic Brain Injury

Robert D. Welch,1 Syed I. Ayaz,1 Lawrence M. Lewis,2 Johan Unden,3 James Y. Chen,4 Valerie H. Mika,1

Ben Saville,5 Joseph A. Tyndall,6 Marshall Nash,7 Andras Buki,8 Pal Barzo,9 Dallas Hack,10 Frank C. Tortella,11

Kara Schmid,12 Ronald L. Hayes,13 Arastoo Vossough,14 Stephen T. Sweriduk,15 and Jeffrey J. Bazarian16

Abstract

Head computed tomography (CT) imaging is still a commonly obtained diagnostic test for patients with minor head injury

despite availability of clinical decision rules to guide imaging use and recommendations to reduce radiation exposure

resulting from unnecessary imaging. This prospective multicenter observational study of 251 patients with suspected mild

to moderate traumatic brain injury (TBI) evaluated three serum biomarkers’ (glial fibrillary acidic protein [GFAP],

ubiquitin C-terminal hydrolase-L1 [UCH-L1] and S100B measured within 6 h of injury) ability to differentiate CT

negative and CT positive findings. Of the 251 patients, 60.2% were male and 225 (89.6%) had a presenting Glasgow Coma

Scale score of 15. A positive head CT (intracranial injury) was found in 36 (14.3%). UCH-L1 was 100% sensitive and

39% specific at a cutoff value >40 pg/mL. To retain 100% sensitivity, GFAP was 0% specific (cutoff value 0 pg/mL) and

S100B had a specificity of only 2% (cutoff value 30 pg/mL). All three biomarkers had similar values for areas under the

receiver operator characteristic curve: 0.79 (95% confidence interval; 0.70–0.88) for GFAP, 0.80 (0.71–0.89) for UCH-L1,

and 0.75 (0.65–0.85) for S100B. Neither GFAP nor UCH-L1 curve values differed significantly from S100B ( p = 0.21 and

p = 0.77, respectively). In our patient cohort, UCH-L1 outperformed GFAP and S100B when the goal was to reduce CT

use without sacrificing sensitivity. UCH-L1 values <40 pg/mL could potentially have aided in eliminating 83 of the 215

negative CT scans. These results require replication in other studies before the test is used in actual clinical practice.
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Introduction

Computed tomography (CT) is a frequently used diagnostic

test for patients with mild and moderate traumatic brain injury

(TBI), but it is considered to be unnecessary for many patients.1,2

Overuse of CT for evaluating patients with mild TBI (mTBI) has

continued despite the availability of clinical decision rules,3,4 in-

creasing awareness of potential hazards of ionizing radiation ex-

posure,5,6 and some professional society’s recommendations to

reduce CT imaging.7 This has led to a search for an easily obtained

and objective test that can, in the early post-injury period and with

high sensitivity, predict which patients with mTBI will have an

acute intracranial lesion found on head CT. A highly sensitive test,

even with only moderate specificity, would provide clinicians with

a new tool that would be useful in reducing CT use for patients with

suspected mTBI.

Over the last two decades, there has been increasing interest in

several serum proteins that could potentially predict the presence of

a brain injury from head trauma. These proteins are released as a

result of blunt or rapid deceleration forces to the head that cause

injury to the neurons and supporting glial cells. The most widely

studied biomarker for this purpose is S100B,8–15 a protein that is

released after astroglial injury.16 It has been suggested that a S100B

biomarker level below a threshold level can safely eliminate the

need to obtain a CT scan in patients with mTBI.17

The Scandinavian Neurotrauma Committee 2013 guidelines for

the management of minimal, mild, and moderate head injuries in

adults included the use of S100B as a blood sample derived

screening test for CT-proven traumatic intracranial hemorrhage

(ICH).17 In the United States, however, this has not yet been widely

accepted and has not seen broad clinical use. The American College

of Emergency Physicians (ACEP) clinical policy for neuroimaging

and decision making for adults with mTBI in 2008 gave a ‘‘Level C’’

recommendation for the use of S100B as a screening tool to assess

the need for CT imaging in patients with mTBI and no other extra-

cranial injuries,7 but the 2012 Eastern Association for the Surgery

of Trauma guidelines stated that there was not enough evidence to

warrant reliance on S100B to determine the need for head CT.18

More recently, other biomarkers have begun to receive more

attention for a potential role in detecting brain injury. These include

glial fibrillary acidic protein (GFAP) and ubiquitin carboxyl-

terminal hydrolase-L1 (UCH-L1). GFAP is a protein expressed in

astroglia cells, but unlike S100B, GFAP is not found in significant

amounts in extracerebral cells.16 Previous studies have demon-

strated that elevated levels of GFAP in patients with mTBI are

associated with abnormal findings on imaging of the brain,12 can

predict the need for surgical intervention,19 and are able to dif-

ferentiate between patients in motor vehicle crashes with ortho-

pedic injuries and those who had mTBI.19 McMahon and

associates20 recently reported that elevated levels of GFAP mea-

sured within the first 24 h after injury could help reduce unneces-

sary CT scans without sacrificing sensitivity in cohorts including

patients with mild, moderate, and severe TBI and may outperform

S100B for the detection of intracranial lesions on CT for patients

with mild TBI.13

UCH-L1 is a deubiquitinase present in neurons.14,21 Elevated

serum levels of this protein have been correlated with brain injury

and clinical outcome.22 There is some evidence for GFAP but only

little evidence for UCH-L1 regarding the early diagnostic utility of

these biomarkers in patients with mTBI, and these studies include

only small numbers of patients with head CT positive acute intra-

cranial lesions.23

Given the limitations of S100B as an ideal single biomarker for

pre-CT screening of patients with mTBI, it was postulated that

other biomarkers, such as GFAP and UCH-L1, could be useful in

screening for acute intracranial lesions among patients with mTBI.

Therefore, the goal of this pilot study was to conduct the first

evaluation of the early (within 6 h of injury) diagnostic character-

istics of GFAP and UCH-L1 to exclude the presence of acute in-

tracranial lesions on head CT in adult patients with mTBI. We also

compared the diagnostic characteristics of UCH-L1 and GFAP with

S100B. These results will be used to derive potential threshold

values for screening patients with mTBI to determine the need for a

head CT scan.

Methods

Patients and study procedures

This prospective multicenter observational study included pa-
tients 18–80 years of age who were evaluated and treated at one of
seven study site hospital emergency departments (EDs) for a blunt
closed head injury and potential mild to moderate TBI. The hos-
pitals were composed of Level 1 and 2 trauma centers, a nontrauma
center, and included both U.S. and European sites (Table 1). Eli-
gible patients were those with an initial Glasgow Coma Scale
(GCS) score of 9–15 who underwent emergency head CT scan for
evaluation of the head injury as deemed necessary by the attending
ED physician.

No formal rules for obtaining a CT were used so as to best reflect
current practice in the United States or Europe, but all sites were
aware of and considered available clinical decision rules to guide
the need for brain imaging. Included patients presented within 4 h
of injury, completed the required CT scan as part of routine care,

Table 1. Description of Study Site Hospitals

Study site Location Annual ED volume Designation

Washington University, Barnes-Jewish Hospital St. Louis, MO 95,000 Level I
University of Florida, Shands Hospital Gainesville, FL 66,000 Level I
Gwinnett Medical Center–Lawrenceville Atlanta, GA 100,000 Level II
Dekalb Medical–North Decatur Atlanta, GA 92,000 Non-trauma
Wayne State–Detroit Receiving Hospital Detroit, MI 90,000 Level I
University of Pécs Medical Center Pecs, Hungary 25,000O Level 1*
Albert Szent-Györgyi Medical Center–University of Szeged Szeged, Hungary 90,000 Level 1*

ED, emergency department.
OThe ED volume is >25,000/year, and the facility cares for more than 2000 neurotrauma cases/year.
*This is equivalent to a Level 1 facility in the United States.
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and had blood drawn for analysis within 6 h of injury. Table 2
details the full inclusion and exclusion criteria.

Institutional Review Board approval was obtained at each study
site, and each site also obtained approval by the ethics board of the
U.S. Army Medical Research and Materiel Command (USAMRMC)
Office of Research Protections (ORP) Human Research Protection
Office (HRPO) Department of Defense. Baseline patient data col-
lected included demographics, medical history, substance use, GCS
scores, and circumstances related to and the mechanism of injury. This
was used to describe the study patient’s general characteristics only.

Serum sampling and handling

Blood samples were collected at time of study enrollment and
every 6 hours up to the time of discharge (either ED or hospital) or
up to 24 h (maximum of five samples during index visit). Patients
who were seen at follow-up (Day 35 – 5 days) had another sample
obtained when feasible. Blood samples were processed and the
resulting serum was stored at -80�C and then shipped on dry ice to
a central repository for storage until time of testing as per a pre-
defined specimen handling procedure.

Serum analysis for GFAP, UCH-L1, and S100B

Serum samples were analyzed for UCH-L1 and GFAP concen-
tration by the Banyan enzyme-linked immunosorbent assay at a later
time by technicians blinded to clinical data and CT results. The
assay was performed as follows: the test sample was added to the
well of a 96-well microtiter plate that had been coated with a capture
antibody specific to the antigen of interest (UCH-L1 or GFAP).
Following a set incubation period during which any antigen present
in the sample binds to the capture antibody, unbound material was
removed by washing with buffer. Horseradish peroxidase (HRP)-

conjugated detection antibody was then added to the well, binding to
a second site on the antigen. Following a set incubation period,
excess detection antibody was removed by washing with buffer.

A chemiluminescent substrate was then added to the well. The
HRP enzyme catalyzes a specific reaction with the chemilumi-
nescent substrate, which produces light that was detected with a
96-well plate-based luminometer. The amount of light generated is
proportional to the amount of detection antibody and thus UCH-L1
or GFAP in the test sample and was compared with light generated
from wells containing known antigen concentrations representing a
calibration curve. Samples were tested in duplicate, and high and
low positive controls were included with each plate. The lower
limit of quantification (LLOQ) and lower limit of detection
(LLOD) for UCH-LI are £30 pg/ml and £10 pg/mL and for GFAP
£30 pg/ml and £20 pg/mL, respectively.

S100B concentrations were determined using an electro-
chemiluminescence immunoassay designed for in-vitro diagnostic
testing (Roche, Cobas 6000). Results are given as S-S100 in lg/L
with the standard normal reference intervals of 0.00–0.09 lg/L.
Although various cutoff values have been proposed, for the pur-
poses of this study, an S100B ‡0.10 lg/L (100 pg/mL) was con-
sidered to be abnormal and could indicate a traumatic abnormality
on head CT.17,24

Assay results were not available to the treating clinician and were
not used to guide treatment. For this main analysis, we only considered
results for the first sample collected within 6 h of injury. For all bio-
markers, results were reported in picograms/milliliter (pg/mL). Be-
cause other studies used different units of measurement—we provided
the units in the original referenced manuscripts and the equivalent
in pg/mL for the above S100B sample measurement section and in
the following results and discussion section where needed.

Head CT scans

Each subject’s head CT images were reviewed by an indepen-
dent committee consisting of three blinded board-certified neuro-
radiologists. The neuroradiologists determined whether a CT scan
was positive—defined as the presence of an acute trauma-related
intracranial lesion. Table 3 lists the criteria for what was deemed a
positive finding. A procedure outlining the criteria and process to
be followed for scoring the CT scans was developed before the
reading and interpretation of any of the CT images. Two of the
neuroradiologists who had no access to any other clinical or labo-
ratory data, except subject age and sex, reviewed all of the study
subjects’ CT scans. Any discrepancy with respect to CT-positive or

Table 2. Inclusion/Exclusion Criteria

Inclusion criteria
� The subject was ‡18 years of age and no more than 80 years

of age.
� Acceleration or deceleration closed injury to the head that

was either self-reported or witnessed.
� Presented to an emergency department (ED) within 4 h of injury.
� An initial Glasgow Coma Scale score of 9–15 in the ED

performed by the Principal Investigator (PI) or trained study
personnel.
� ED workup included a head computed tomography (CT) scan

(based on standard practice and/or decision rules).
� Informed consent was obtained from the subject or his or her

legal representative; oral consent for the initial blood draw
and/or deferred consent to 24 h was allowed for patients who
were unable to consent at initial evaluation or exception from
the informed consent requirement by use of ‘‘community
consent’’ if approved by an Institutional Review Board.
� The PI deemed the subject to be an appropriate study

candidate.

Exclusion criteria
� Participation in another clinical study that may affect the

results of either study.
� Time of injury was not able to be accurately determined.
� Head CT not done as part of clinical emergency care.
� Primary diagnosis of ischemic or hemorrhagic infarct.
� Not available for 35 day follow-up visit.
� Venipuncture not feasible.
� Blood donation within 1 week of screening.
� The subject was otherwise determined medically unsuitable

for study participation.

Table 3. Definition of Acute Intracranial Lesion

Acute intracranial lesion is defined as any trauma induced or
related finding. Acute lesions may include the following and
the number of each finding:

N
Extra-axial lesions
� Acute epidural hematoma (EPH) 3
� Acute subdural hematoma (SDH) 21

Cortical contusion 10
Ventricular compression 3
Ventricular trapping 0
Brain herniation 0
Intraventricular hemorrhage 1
Hydrocephalus 1
Subarachnoid hemorrhage 27
Petechial hemorrhagic or bland sheer injury 0
Brain edema 0
Post-traumatic ischemia 0
Intracerebral hematoma 0
Dural venous sinus injury and/or thrombosis 0

GFAP, UCHL-1, AND S100B TO CLASSIFY HEAD CT FINDINGS 205



CT-negative was adjudicated by a third blinded radiologist and, in
those instances, was the final interpretation. Interrater reliability
between the two primary radiologists was determined using the
Cohen Kappa statistic.

Outcomes

For this study, the primary clinical outcome of interest was the
results of the head CT scan (positive/negative) among patients with
the first blood sample drawn within 6 h of injury.

Data analysis and reporting

A descriptive analysis for all subjects was performed. Patient
groups (CT positive and CT negative) were described using pro-
portions and means or medians where appropriate. For data analyses,
any biomarker value below the detectible limit was coded as 0 pg/mL.
The exception to this was for the scatter plots that used a log linear
y-axis for which a value of 0.01 pg/mL was used (0 pg/mL is not a
valid value using the log scale). The Spearman correlation coef-
ficients were calculated for each biomarker pairing. Logistic re-
gression was used to determine area under the receiver operator
characteristic (AUROC) curve for all three biomarkers indepen-
dently and also for a single model with all three biomarkers col-
lectively. Probability output from the logistic regression models
and graphical displays were used to evaluate clinically relevant
cutoff values for positive and negative values for GFAP, UCH-
L1, and S100B.25 A nonparametric approach was used to com-
pare the correlated ROC curves without adjustments for pairwise
comparisons.26

Sensitivity and specificity were calculated for the primary and
secondary outcomes. Because there would be little acceptance of
missed injury on CT scan, our goal was to maximize sensitivity to
100% at the expense of specificity. This allowed for determination
of the number of CT scans that could potentially be safely elimi-
nated when screening using each biomarker. We also examined
threshold values that would result in sensitivity ‡95% and ‡90% for
comparison of specificity.25 For GFAP and UCH-L1, we calculated
individual sensitivity and specificity values. We also implemented
a combined biomarker strategy: if either GFAP was ‡100 or UCH-

L1 ‡40 (chosen based on our data for optimal UCH-L1 sensitivity),
the test was considered positive. For the reporting of S100B, we
used the Scandinavian recommendation of >0.10 lg/L (100 pg/mL)
for patients injured within 6 h of serum sampling as the standard
cutoff value.17

A sensitivity analysis (in this instance meaning varying the as-
sumptions of the diagnostic tests) that examined patients with an
initial sample obtained within 4 h (ACEP guidelines) of injury was
performed to evaluate for diagnostic capability of the biomarkers at
times closer to injury and times that may be more favorable to the
standard S100B values.7 Because the cut points for UCH-L1 and
GFAP were optimized to our data, we also re-examined the
AUROC curves and graphical data to determine whether a different
cut point value for S100B would improve the diagnostic capability
of that test for our data. This was done so not to ‘‘favor’’ the new
diagnostic markers (GFAP and UCH-L1) over S100B.

There were no formal hypotheses for this study, and it was not
designed to provide a definitive assessment of the studied bio-
markers’ test characteristics. The study was, rather, descriptive and
exploratory in nature, and the results will be used as an adjunct to
help derive biomarker cutoff values for a future validation trial. The
analysis included proportions with associated exact Clopper-
Pearson 95% confidence intervals (CIs), means with standard de-
viation (SD), and medians with 25th and 75th percentiles where
appropriate. The p values were only used for comparing AUROC
curve data.

Recommended guidelines for reporting results of diagnostic
tests were followed.27,28 These results are not to be considered as
evidence to reject a null hypothesis. All data analyses were per-
formed using SAS� 9.4 and R 3.1.0.

Results

The study enrolled 290 patients; 26 were initially excluded for a

variety of reasons, leaving a total of 264 patients who had data for at

least one blood sample and the required CT results. Excluded were

13 more subjects because the initial blood sample draw was past the

6-h time window, leaving a study sample size of 251 patients for

this main analysis. Of those, only 231 subjects had an adequate

sample volume for the analysis of all three markers (20 patients did

FIG. 1. Flow diagram describing excluded and included patients with mild to moderate traumatic brain injury. CT, computed
tomography; UCH-L1, ubiquitin carboxyl-terminal hydrolase-L; GFAP, glial fibrillary acidic protein.
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not have enough blood sample volume to test S100B). Figure 1

outlines the study patient selection process.

The mean age of all patients was 45.6 – 18.4 years and 60.2%

(95% CI; 53.8%–66.3%) were male. The main mechanisms of injury

were falls and/or motor vehicle crashes. Of the 251 observations, 206

observations were classified as negative by both primary radiologists,

33 were classified as positive by both primary radiologists, and 12

received discrepant positive and negative classifications from the two

primary radiologists (95% agreement; Kappa = 0.82, 95% CI 0.71–

0.91). After final diagnosis, adjudicated by a third independent radi-

ologist, 36 patients (14.3%; 95% CI 10.3%–19.3%) had a CT scan

that was positive for an acute intracranial lesion. Table 3 shows the

findings among patients with positive head CT scan results. Note that

the number of findings add up to more than 36 because many patients

had more than one CT abnormality.

All except one of the head CTs were positive for some type of

blood (ICH); one patient had a nonhemorrhagic contusion. Of the 251

study patients, 225 (89.6%; 95% CI 85.2%–93.1%) had an initial

GCS of 15 of whom 24 (10.7%) had a positive CT scan. Among

patients with a GCS <15 (n = 26), 12 (46.2%) had a positive CT scan.

Median values for all biomarkers were higher among CT positive

patients. Table 4 details these and other patient characteristics.

The Spearman correlation coefficients were 0.49 for GFAP and

UCH-L1, 0.37 for GFAP and S100B, and 0.77 for UCH-L1 and

Table 4. Patient Characteristics

CT negative 85.7% (total n = 215) CT positive 14.3% (total n = 36) All subjects (total n = 251)

Age (mean – SD) 44.3 – 18.1 53.7 – 17.7 45.6 – 18.4

Sex
Female 41.4% (89) 30.6% (11) 39.8% (100)
Male 58.6% (126) 69.4% (25) 60.2% (151)

Race
White 66.5% (143) 91.7% (33) 70.1% (176)
Black 27.4% (59) 2.8% (1) 23.9% (60)
Other 6.1% (13) 5.6% (2) 6.0% (15)

Employment status (n = 243)
Employed 47% (98) 41% (14) 46% (112)
Unemployed 23% (49) 18% (6) 23% (55)
Student 9% (19) 0% (0) 8% (19)
Homemaker 1% (3) 0% (0) 1% (3)
Retired 19% (40) 41% (14) 22% (54)

Alcohol
Yes 24.2% (52) 33.3% (12) 25.5% (64)
No 75.8% (163) 66.7% (24) 74.5% (187)

Drugs
Yes 15.4% (33) 5.6% (2) 13.9% (35)
No 84.7% (182) 94.4% (34) 86.1% (216)

Smoke
Yes 31.6% (68) 33.3% (12) 31.9% (80)
No 68.4% (147) 66.7% (24) 68.1% (171)

Mechanism of injury (n = 250)O

MVC 39% (84) 17% (6) 35.9% (90)
Assault 12% (25) 11% (4) 11.6% (29)
Fall 50% (107) 75% (27) 53.4% (134)
Sports 3% (7) 0% (0) 2.8% (7)

Loss of consciousness (LOC)
Yes 63.7% (137) 75.0% (27) 65.3% (164)
No 32.6% (70) 19.4% (7) 30.7% (77)
Unknown 3.7% (8) 5.6% (2) 4.0% (10)

LOC information (n = 250)
Self-reported 57.0% (122) 36.1% (13) 53.8% (135)
Witnessed 43.0% (92) 63.9% (23) 45.8% (115)

GCS
15 93.5% (201) 66.7% (24) 89.6% (225)
14 5.1% (11) 16.7% (6) 6.8% (17)
13 0.5% (1) 11.1% (4) 2.0% (5)
9–12 0.9% (2) 5.6% (2) 1.6% (4)

GFAP (median; 25th, 75th) 7.8 (2.7, 22.1) 110.5 (20.4, 431.8) 10.3 (3.5, 37.4)
UCH-L1 (median; 25th, 75th) 56.2 (24.4, 104.3) 132.3 (98.2, 269.2) 65.8 (39.6, 125.2)
S100B (median; 25th, 75th) 100 (70, 190) 215 (160, 410) 120 (70, 230)

CT, computed tomography; SD, standard deviation; MVC, motor vehicle collision; GCS, Glasgow Coma scale; GFAP, glial fibrillary acidic protein;
UCH-L1, ubiquitin carboxyl-terminal hydrolase-L.
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FIG. 2. Scatter plots for glial fibrillary acidic protein (GFAP), ubiquitin carboxyl-terminal hydrolase-L (UCH-L1), and S100B stratified
by computed tomography (CT) results. (A) All biomarker values; (B) biomarker values £1200 pg/mL; (C) biomarker values £400 pg/mL.
Color image is available online at www.liebertpub.com/neu
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FIG. 3. Scatter plots for glial fibrillary acidic protein (GFAP), ubiquitin carboxyl-terminal hydrolase-L (UCH-L1), and S100B
stratified by presenting Glasgow Coma Scale (GCS) score (all values £400 pg/mL for resolution). (A) GFAP; (B) UCH-L1; (C) S100B.
CT, computed tomography. Color image is available online at www.liebertpub.com/neu
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S100B. There were 45 subjects who had GFAP levels below de-

tectable levels (4 had a positive CT scan), 2 patients had UCH-L1

levels below detection (none had a positive CT scan), and all S100B

values obtained were in the detectible range.

Figure 2A shows scatter plots of the three biomarker results. The

plots include all individual patients stratified by CT result. So the

reader can better examine for potential false-negative values, only

those patients with values less than or equal to 1200 pg/mL (Fig.

2B) and 400 pg/mL (Fig. 2C) for each biomarker are shown. This

effectively reduces the scale on the y-axis for the corresponding

biomarker also stratified by CT scan result. Figures 3A–C show

similar scatter plots for all three biomarkers, but in this case stra-

tified by the Glasgow Coma Scale score; with all values capped at

400 pg/mL for better visual resolution. For these figures, only

biomarker values less than or equal to 400 pg/mL were included

because the lower values are of most importance.

All three biomarkers had similar values for the AUROC curves:

0.75 (95% CI; 0.65–0.85) for S100B, 0.79 (0.70–0.88) for GFAP,

and 0.80 (0.71–0.89) for UCH-L1. When a direct comparison was

performed, neither GFAP nor UCH-L1 differed significantly from

S100B ( p = 0.21 and p = 0.77, respectively; see Fig. 4A–D). The

slight difference in AUROC curve values for the biomarkers when

calculated individually was a result of the logistic regression pro-

cedure excluding 20 patients with missing values for S100B

FIG. 4. Area under the receiver operating characteristic (ROC) curve comparison for all (A) biomarkers in the model (n = 231) and for
each individual marker (n = 251 for glial fibrillary acidic protein [B] and ubiquitin carboxyl-terminal hydrolase-L [C] and n = 231 for
S100B [D]). Color image is available online at www.liebertpub.com/neu
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(complete case analysis), but the results were nearly identical. We

also examined the predictive values of two biomarkers compared

with one marker alone and, regardless of the pairing (for example,

GFAP and UCH-L1 compared with either marker alone), the

AUROC curves were no more predictive than the AUROC curve of

a single biomarker.

Threshold values for the biomarkers were determined for our

study population that provided for high sensitivity at the expense of

specificity. For our primary outcome, UCH-L1 was 100% sensi-

tive and 39% (95% CI 33%–46%) specific at a value ‡40 pg/mL

(specificity was 40%, 95% CI 33%–47% when using a cutoff of

41 pg/mL; Table 5). In contrast, GFAP was 100% sensitive and

0% specific at a cutoff of 0 pg/mL, indicating that using the GFAP

value associated with 100% sensitivity within 6 h of injury, the

test could not reliably determine which patients had negative

head CTs. At a sensitivity of 100%, S100B had a specificity of

only 2%. In addition, S100B was only 91% sensitive and 44%

specific at the recommended 100 pg/mL threshold. The combined

biomarker strategy (both GFAP and UCH-L1) resulted in the

same sensitivity and specificity estimates as that of UCH-L1

alone.

Table 5 provides a summary of the sensitivity and specificity at a

variety of biomarker threshold values (with associated 95% CIs) and

details the threshold biomarker values determined for sensitivity

‡95% and ‡90% and the same resulting test characteristics for pa-

tients evaluated at 4 h post-injury.

Of the three patients with abnormal CT findings that would have

been missed by S100B (<100 pg/mL), one had a subdural hema-

toma; the second patient had a subdural hematoma with a cortical

hemorrhagic contusion and subarachnoid hemorrhage, and the third

had a hemorrhagic contusion with subarachnoid hemorrhage and

depressed skull fracture. For two patients, the mechanism of injury

was a fall and the third was physically assaulted. All three presented

with a GCS score of 15.

When implementing a combined strategy of all three markers

(positive if GFAP ‡100, UCH-L1 ‡40, or S100B ‡100), the re-

sulting sensitivity remained at 100%, but specificity decreased to

0.29 and 0.26 at 6 h and 4 h, respectively (not in table).

Finally, we examined the results for and GFAP and UCH-L1 when

only considering the 231 patients having all biomarker data. For GFAP,

specificity was 0.00, but for UCH-L1, 100% sensitivity was obtained

at a concentration of 40.9 pg/mL (95% CI 0.89–1.00) and sensitivity

was 0.40 (95% CI 0.33 to 0.47), neither reflecting a selection bias.

Discussion

This prospective observational study evaluated three biomarkers

for potential usefulness to exclude an acute intracranial injury

as determined by CT scan in patients with mild to moderate TBI.

Both S100B and GFAP have been studied in patients with mild to

moderate TBI with the former being extensively evaluated. For

UCH-L1, however, only limited information in patients with mTBI

Table 5. Sensitivity, Specificity, and 95% Confidence Intervals for Biomarkers at 6 and 4 Hours Post-Injury

Biomarker
Threshold for a

positive test (pg/mL) Sample size Sensitivity (95% CI) Specificity (95% CI)

6 hoursO GFAP & UCH-L1N 100 GFAP
40 UCH-L1

251 1.00 (0.90, 1.00) 0.39 (0.33, 0.46)

4 hoursO GFAP & UCH-L1N 100 GFAP
40 UCH-L1

251 1.00 (0.89, 1.00) 0.37 (0.30, 0.44)

6 hoursO GFAPU (=100%) 0 251 1.00 (0.90, 1.00) 0.00 (0.00, 0.02)
GFAP (‡ 95%) 0 251 1.00 (0.90, 1.00) 0.00 (0.00, 0.02)
GFAP (‡90%) 0 251 1.00 (0.90, 1.00) 0.00 (0.00, 0.02)
GFAP 15 251 0.81 (0.64, 0.92) 0.67 (0.61, 0.74)
UCH-L1U (=100%) 41 251 1.00 (0.90, 1.00) 0.40 (0.33, 0.47)
UCH-L1 (‡ 95%) 44 251 0.97 (0.85, 1.00) 0.42 (0.36, 0.49)
UCH-L1 (‡ 90%) 67 251 0.92 (0.78, 0.98) 0.58 (0.51, 0.65)
UCH-L1 35 251 1.00 (0.90, 1.00) 0.34 (0.28, 0.41)
S100BU (=100%) 30 231 1.00 (0.89, 1.00) 0.02 (0.00, 0.04)
S100B (‡95%) 80 231 0.97 (0.84, 1.00) 0.30 (0.24, 0.37)
S100B (‡90%) 120 231 0.91 (0.75, 0.98) 0.54 (0.47, 0.61)
S100Ba 100 231 0.91 (0.75, 0.98) 0.44 (0.37, 0.51)

4 hoursO GFAPU (=100%) 0 251 1.00 (0.89, 1.00) 0.00 (0.00, 0.02)
GFAP (‡95%) 0 251 1.00 (0.89, 1.00) 0.00 (0.00, 0.02)
GFAP (>90%) 4 251 0.90 (0.74, 0.98) 0.30 (0.24, 0.37)
UCH-L1U (=100%) 44 251 1.00 (0.89, 1.00) 0.40 (0.33, 0.48)
UCH-L1 (‡95%) 64 251 0.97 (0.83, 1.00) 0.54 (0.47, 0.62)
UCH-L1 (‡90%) 74 251 0.90 (0.74, 0.98) 0.60 (0.53, 0.67)
S100BU (=100%) 80 231 1.00 (0.88, 1.00) 0.28 (0.22, 0.35)
S100B (>95%) 90 231 0.96 (0.82, 1.00) 0.36 (0.29, 0.44)
S100B (‡90%) 120 231 0.93 (0.76, 0.99) 0.53 (0.45, 0.60)
S100Ba 100 231 0.93 (0.76, 0.99) 0.42 (0.34, 0.49)

CI, confidence interval; GFAP, glial fibrillary acidic protein; UCH-L1, ubiquitin carboxyl-terminal hydrolase-L1
NIf either GFAP UCH-L1 was above the threshold, it was considered to be a positive test. If both were below the threshold, the test was negative.
OTime from reported injury to blood sample obtained.
USensitivity and specificity results for each target sensitivity level (100%, ‡95%, and ‡90%) and resulting biomarker threshold values.
aThis is at the recommended threshold of 100 pg/mL for S100B.
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is available, particularly related to early screening for CT abnor-

malities in patients with mild to moderate TBI.

Therefore, we conducted the first study designed to evaluate test

characteristics of the three biomarkers in the same patient cohort

with the goal of determining optimal testing strategies and applying

the results to a larger cohort of patients with mild to moderate TBI.

Our results demonstrate that early biomarker screening for patients

with mild to moderate TBI potentially can provide the clinician

with objective evidence needed to reduce CT use.

This study was not designed to determine biomarker capability

to differentiate patients with or without any brain injury but rather

to differentiate patients with head injury who have a negative

versus positive head CT scan. Therefore, it is likely patients en-

rolled in this study who had a negative head CT scan could still

have had neuronal and glial cellular damage that resulted in ele-

vated biomarker levels. This and other factors may have led to the

high degree of overlap in biomarker levels (particularly with GFAP

and S100B) between CT negative and CT positive patients. In fact,

a recent study reported that MRI during the subacute phase (1–2

weeks) post-injury detected injuries in more than 20% of patients

who had negative CT finding on initial evaluations. This indicates

that blood biomarkers coupled with advanced MRI imaging are

complimentary in the diagnosis of mTBI cases.20,29

Because there is no true ‘‘gold-standard’’ for the early diagnosis

of mTBI, there still may be utility in considering the possibility that

patients with elevated biomarkers may have sustained actual brain

injury despite having a negative CT scan. This concept requires

further study.

Of the three biomarkers evaluated in this study, UCH-L1 had the

best test performance when used to differentiate between subjects

with normal versus abnormal CTs. Within 6 h of injury, a UCH-L1

level above 40 pg/mL detected all 36 patients with an acute intra-

cranial lesion as determined by a reference CT scan. Given the

estimate of 39% specificity, we could have potentially eliminated

83 (95% CI 70–98 scans) of the 215 negative CT scans performed

in our study population. The sensitivity and specificity when com-

bining GFAP and UCH-L1 was the same as UCH-L1 alone, indi-

cating that UCH-L1 was the driving biomarker at the given 6-h time

interval. The value of these tests appears to be in the ability of a

specified threshold value to reduce the need to obtain a head CT

(‘‘rule-out’’ an abnormal CT) among patients with mild to moderate

TBI as opposed to using a high value to ‘‘rule-in’’ a positive scan.

Three patients with abnormal CT findings would have been missed

by S100B (<100 pg/mL) at the 6-h time limit. These three patients

presented with a GCS score of 15, had important injuries, and would

require at least observation. Because this study was not designed to

determine need for surgery, we do not know whether the patients

required surgery or other invasive neurosurgical procedures.

Analysis of biomarker test characteristics using AUROC curve

analysis did not reveal any significant difference between S100B

and either UCH-L1 or GFAP. AUROC curves, however, reflect the

combination of sensitivity and specificity across the entire range of

each. Rather than focusing on a single summary statistic such as the

AUROC curve, it is often more useful to define the most important

aspect of the test being studied.27,28,30

For our study, we determined that test sensitivity was the critical

test characteristic, and lower levels of specificity would be tolerated.

This was because of the a priori decision that the defined screening

tests should miss little to no cases of acute intracranial lesions. It was

hoped that with optimal sensitivity, that the specificity of the bio-

marker would still be high enough to safely reduce the number of

negative CT scans and the tests would be acceptable to practicing

physicians. Although on this derivation cohort, UCH-L1 had 100%

sensitivity with a fairly good (39%) specificity, the study sample

size was not large enough to have a high level of certainty, and a

validation study on a larger patient cohort is warranted.

The Scandinavian guidelines for treating adult patients with mild

to moderate head injury recommend S100B as an alternative to

head CT when evaluating low-risk patients with either a presenting

GCS of 14 or a GCS of 15 with suspected or confirmed loss of

consciousness or persistent vomiting.17 For our patients, S100B

was 91% sensitive when using the recommended threshold value of

100 pg/mL at 6 h post-injury.

Lowering the threshold for S100B to 30 pg/mL at 6 h allowed

100% sensitivity (95% CI 90–100) but had a specificity of only 2%

(95% CI 0–4), making the test ineffective for decreasing the use of

head CT in this setting. At 80 pg/mL, however, the sensitivity at 6 h

was 97% (with a specificity of 30%, and at 4 h, this same value had

a sensitivity of 100%, with a specificity of 28%. Both of these

specificities are less than the 39% specificity of UCH-L1 at the

cutoff value of 40 pg/mL.

Given the results of previous studies,13,20 it was somewhat sur-

prising that GFAP did not perform as well, but this may be because

the samples were collected before the bigger rise in serum GFAP

levels (data not shown). One recent study suggested that elevated

GFAP levels provided a diagnostic benefit above clinical screening

alone, but this study included GFAP results that were obtained up to

24 h after mild, moderate, and severe TBI.20 Our study included

only patients with mild and moderate TBI who were evaluated

much earlier (within 6 h of injury), making our results more ap-

plicable and useful for ED screening for abnormal CT scans in

patients with head injuries.

Results of biomarker testing performed within 4 h of injury

showed a similar sensitivity for UCH-L1 with specificity that re-

mained reasonably good (37%). For S100B at the same 4 h time

window, sensitivity was 93% (lower 95% CI 76%) and specificity

was 42%. Although this specificity would reduce the number of

unnecessary CT scans, the lower sensitivity is unlikely to be ac-

ceptable to justify the elimination of head CTs in these patients.

Experts and professional societies have suggested that the in-

creasing use of head CT to evaluate patients with mTBI is unjus-

tified.1,2,7,17 Clinical decision rules that can guide physicians on the

use of head CT are well developed and studied3,4,31,32 but have not

seemed to result in decreased utilization of inappropriate CT ex-

aminations among patients with mTBI.1,33

A simple, sensitive, and rapid screening test that could be used in

conjunction with validated clinical decision rules has the potential

to reduce the use of CT scans for patients with mTBI and the

associated radiation exposure and financial costs. It has been sug-

gested that radiation has the potential to cause a small increased

cancer risk to humans.5 Recognition of these potential risks has

resulted in an initiative by the Food and Drug Administration to

reduce radiation exposure as well as publish practice guidelines to

minimize unnecessary CT examinations.34

The results of the current study provide evidence that assess-

ments of serum levels of GFAP and UCH-L1 may achieve this goal

by predicting, with a high sensitivity, acute intracranial lesions

detected by CT while still preserving sufficient specificity to pro-

vide an important reduction in CT use.

Limitations

There were a number of limitations that must be considered

when evaluating this study and its results. Because this study was
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designed to evaluate potentially optimal cutoff values for the bio-

markers, performance of the biomarkers may be inflated. Derived

CIs for specificity (and proportion of eliminated unnecessary CT

scans) was conditioned on both the subjective decision of the CT

scan and on the choice of an appropriate threshold with 100%

sensitivity, and do not reflect the variability inherent in those two

processes. External validation of these potential thresholds is

needed to assess the robustness of these findings.

Our study found that patients presenting with an initial GCS <15

had a high proportion of positive head CTs. Over a third of patients

(6 of 17) with a GCS of 14 had positive scans. This is likely because

of our small number of patients and the relatively high percentage

of positive CT scans and may not represent the usual group of

patients with mTBI who present with an initial GCS of 14. Gen-

eralizability of these results is limited to the study population—i.e.,

patients with an initial GCS of 9–15 who would typically be re-

commended by the ED physician for emergency head CT scan.

The definition of a positive CT included findings other than just

traumatic ICH, but we did exclude isolated skull fracture from the

definition. Practice variation led to the inclusion of a relatively high

percent of patients with positive head CTs relative to that of pa-

tients enrolled in U.S. sites. Given patients were enrolled in the

United States and in Europe, selection of patients varied across

sites. The majority of subjects had a GCS of 15, so these results may

not apply to patients with a GCS score less than 15.

Finally, this study was not designed to determine clinical outcomes

such as need for neurosurgical intervention or death but rather just to

determine the association of specific biomarker values with a positive

finding on head CT—an important first step in reducing CT use.

Conclusion

Our data suggest that when obtained within 6 h of injury, UCH-

L1 and the combination of GFAP and UCH-L1 (at our pre-defined

cutoff values) were very sensitive for a positive CT scan of the head

among patients with mild to moderate TBI. If confirmed in a large

trial with greater numbers of positive CT scans, UCH-L1 and the

combination of GFAP and UCH-L1 could provide the objective

evidence clinicians desire to reduce the use of CT scans among

patients with mTBI. Further study related to other times post-injury

and the utility of repeated test measurements will help further

clarify the utility of these biomarkers.
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