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Streptococcus pneumoniae (the pneumococcus) is a common colonizer of the human
nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization
results in millions of infections and over one million deaths per year, mostly in individuals
under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm
communities in the nasopharyngeal environment, but the specific role of biofilms and their
interaction with the host during colonization and disease is not yet clear. Pneumococci
in biofilms are highly resistant to antimicrobial agents and this phenotype can be
recapitulated when pneumococci are grown on respiratory epithelial cells under conditions
found in the nasopharyngeal environment. Pneumococcal biofilms display lower levels of
virulence in vivo and provide an optimal environment for increased genetic exchange both
in vitro and in vivo, with increased natural transformation seen during co-colonization with
multiple strains. Biofilms have also been detected on mucosal surfaces during pneumonia
and middle ear infection, although the role of these biofilms in the disease process is
debated. Recent studies have shown that changes in the nasopharyngeal environment
caused by concomitant virus infection, changes in the microflora, inflammation, or other
host assaults trigger active release of pneumococci from biofilms. These dispersed
bacteria have distinct phenotypic properties and transcriptional profiles different from
both biofilm and broth-grown, planktonic bacteria, resulting in a significantly increased
virulence in vivo. In this review we discuss the properties of pneumococcal biofilms, the
role of biofilm formation during pneumococcal colonization, including their propensity for
increased ability to exchange genetic material, as well as mechanisms involved in transition
from asymptomatic biofilm colonization to dissemination and disease of otherwise sterile
sites. Greater understanding of pneumococcal biofilm formation and dispersion will
elucidate novel avenues to interfere with the spread of antibiotic resistance and vaccine
escape, as well as novel strategies to target the mechanisms involved in induction of
pneumococcal disease.
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BACKGROUND
Streptococcus pneumoniae colonizes the upper respiratory tract
in humans. Colonization occurs on the mucosal surface of the
nasopharynx during childhood and persists asymptomatically in
healthy individuals into adulthood (Gray et al., 1981; Hogberg
et al., 2007). Pneumococcal carriage rates are greater in children
compared to adults, with approximately 20–50% carriage rate in
children and 5–20% in adults in higher resourced countries while
even higher rates are seen in resource poor settings where up
to 90% of children and over half of adults are colonized (Gray
et al., 1980; Revai et al., 2008; Huang et al., 2009; Pebody et al.,
2009; Mackenzie et al., 2010; Korona-Glowniak and Malm, 2012;
Adegbola et al., 2014). Despite a low attack rate, transition from
asymptomatic colonization to disease occurs often enough that
the pneumococcus remains a leading cause of acute otitis media,
pneumonia, sepsis, and meningitis globally (Sleeman et al., 2006;

O’brien et al., 2009; Black et al., 2010). In 2011, S. pneumoniae
caused an estimated 2,858,000 severe pneumonia episodes and
411,000 deaths worldwide in children under the age of 5 (Walker
et al., 2013). The burden of disease is highest in resource poor set-
tings where the lack of nutrition, antibiotics, and vaccines make
the population particularly susceptible to disease.

PROPERTIES OF PNEUMOCOCCAL BIOFILMS
INTRODUCTION
Biofilms are highly-structured communities of cells that pro-
duce an extracellular matrix and adhere to abiotic or biolog-
ical surfaces (Costerton et al., 1999; Donlan and Costerton,
2002; Stoodley et al., 2002). Antibacterial resistance is an inher-
ent characteristic of biofilms and the protective biofilm matrix
enables evasion of host immune responses, facilitating persis-
tence, and dissemination of bacteria (Costerton et al., 1999;
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Donlan and Costerton, 2002; Chole and Faddis, 2003; Lewis,
2008; Sanchez et al., 2011b). In this context, resistance refers to
an increased tolerance to antibacterials rather than a decreased
susceptibility due to changes in the genome, such as mutations or
obtaining antibiotic resistance genes. Pneumococcal colonization
precedes disease and has been known to be more challeng-
ing to eradicate than invasive disease in patients as treatment
with antimicrobial agents do not eliminate the majority of bac-
teria carried in the nasopharynx (Cohen et al., 1997, 1999;
Dabernat et al., 1998; Dagan et al., 1998, 2001; Varon et al.,
2000; Garcia-Rodriguez and Fresnadillo Martinez, 2002). Thus,
a reasonable explanation for the decreased sensitivity of pneumo-
cocci to antimicrobial treatment during carriage is the formation
of biofilm communities in the nasopharynx (Waite et al., 2001;
Oggioni et al., 2006; Munoz-Elias et al., 2008; Trappetti et al.,
2009; Sanchez et al., 2011b).

The original literature investigating pneumococcal biofilm for-
mation in vivo detected biofilms during disease states such as
otitis media, chronic rhinosinusitis, with some evidence for clus-
tering of bacteria also during pneumonia (Hall-Stoodley et al.,
2006; Sanderson et al., 2006; Hoa et al., 2009; Reid et al., 2009;
Sanchez et al., 2011b). More recent data indicate that biofilm
bacteria detected at disease sites represent asymptomatic colo-
nization and, therefore, the presence of biofilms at sterile sites
during disease presumably form a reservoir from which virulent
bacteria may seed off under the right conditions, resulting in a
role for biofilm bacteria in the disease process (Oggioni et al.,
2006; Weimer et al., 2010; Sanchez et al., 2011b).

The vast majority of in vitro studies have been performed
primarily on abiotic surfaces (Moscoso et al., 2006; Oggioni
et al., 2006; Garcia-Castillo et al., 2007; Munoz-Elias et al., 2008;
Domenech et al., 2009; Parker et al., 2009; Trappetti et al., 2009,
2011b,c; Sanchez et al., 2010, 2011a; Tapiainen et al., 2010; Camilli
et al., 2011)., mimicking the classical models set up for organisms
that confer problems in patients by producing biofilms on abiotic
surfaces associated with medical devices. The extent of relevance
these in vitro studies have in vivo is unclear as most of the biofilm
formation experiments were conducted over short periods of time
on abiotic surfaces that, as far as we know, are not major natu-
ral environments for the pneumococcal life cycle. For the same
reason, in vitro studies on abiotic surfaces conducted for longer
periods of time have unclear in vivo implications (Allegrucci
et al., 2006; Allegrucci and Sauer, 2007; Vandevelde et al., 2014).
Additional studies utilizing clinical isolates to study biofilms with
longer biofilm formation times have been unable to show any
association between the ability to produce in vitro biofilms on abi-
otic surfaces and in vivo virulence (Lizcano et al., 2010; Tapiainen
et al., 2010). Furthermore, controversy exists in the literature
regarding the correlation between biofilms grown in vitro on abi-
otic surfaces and their infectivity in vivo where investigators have
suggested that biofilm bacteria are more likely (Trappetti et al.,
2011b) or less likely (Sanchez et al., 2011b) to cause invasive
disease. Our data at this point support the notion that biofilm
bacteria are less virulent in invasive disease models (Marks et al.,
2013). The virulence of biofilm bacteria will be covered in more
depth in a separate review in this topic series by Orihuela et al.
(Cross-reference to Orihuela review) (Gilley and Orihuela, 2014).

While these studies have been essential in building our under-
standing of pneumococcal accretion and biofilm formation, stud-
ies with more complex model systems that include physiological
conditions and components modeling host–pneumococcal inter-
actions have only recently shed more light on the phenotype of
biofilm bacteria. In a study by Parker et al. bacteria recovered
after adhering to epithelial cells had an increased ability to form
biofilms on abiotic surfaces compared to bacteria with no previ-
ous exposure to epithelial cells (Parker et al., 2009). Also, Sanchez
et al. found that biofilm bacteria grown on abiotic surfaces
adhered better to epithelial cells than planktonic, broth grown
bacteria (Sanchez et al., 2011b). These two studies, supported by
studies in other human pathogens (Konkel et al., 1997; Sulaeman
et al., 2012), demonstrate a relationship between epithelial cell
adherence and biofilm formation, however, the studies have not
investigated the role of this relationship during pneumococcal
colonization.

FORMATION OF WELL-ORGANIZED AND STRUCTURED BIOFILMS
DURING NASOPHARYNGEAL COLONIZATION
Researchers have speculated that pneumococci form biofilms in
the nasopharynx in vivo (Waite et al., 2001; Oggioni et al., 2006;
Munoz-Elias et al., 2008; Trappetti et al., 2009; Sanchez et al.,
2011b). Recently, Marks et al. showed for the first time that pneu-
mococci form highly structured biofilms during colonization of
the murine nasopharynx (Marks et al., 2012a) BALB/c mice were
inoculated intranasally with the pneumococcal strain EF3030, a
clinical isolate known to be non-invasive and an efficient colo-
nizer in murine models (Balachandran et al., 2002; Palaniappan
et al., 2005; Shah et al., 2009). After 48 h, the pneumococcal car-
riage was 5 × 106 organisms per nasopharyngeal tissue, similar
to other studies using EF3030 (Briles et al., 2003; Palaniappan
et al., 2005; Shah et al., 2009). Scanning electron microscopy
(SEM) images of excised nasopharyngeal tissue showed coloniza-
tion on ciliated epithelium with a higher bacterial burden and
increased biofilm density in posterior sections of the nasopharynx
compared with the anterior sections (Figure 1A) (Marks et al.,
2012a). In the anterior region we found pneumococcal single cells
or diplococci scattered in the tissue. In contrast, aggregated and
interconnected cells with tower and filamentous structures cov-
ered in extracellular matrix were observed in the posterior region
layered on top of the ciliated epithelium. Other bacterial species
were not identified in nasal tissues of the infected mice and no
bacterial growth was observed in uninfected mice. These data
have been confirmed by the Orihuela group that found biofilm
formation on nasal septa during colonization of the murine
nasopharynx (Blanchette-Cain et al., 2013). In their study, they
found that biofilm formation during colonization required the
CiaR/H two component system and that PsrP and SpxB had a
major impact on bacterial aggregation, whereas CbpA, LuxS, and
LytA had only modest effects.

BIOFILMS DISPLAY INCREASED RESISTANCE TO ANTIMICROBIAL
AGENTS
Formation of bacterial biofilms confers greatly increased resis-
tance to antimicrobial agents (Costerton et al., 1999; Donlan and
Costerton, 2002; Chole and Faddis, 2003; Lewis, 2008; Sanchez
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FIGURE 1 | Biofilm morphology. Scanning electron micrographs of biofilm
communities formed (A) on the epithelial mucosa in vivo, (B) on epithelial
cells grown in vitro and (C) on a glass substratum in vitro. The major image
in each panel shows the biofilm at 2000x magnification and the insert in the
upper right corner shows an increased magnification of 10,000x. ECM =
extracellular matrix, used here instead of the more conventional EPS
(extracellular polymeric substance) as secretion of specific polymeric
substances have not yet been identified or characterized in Streptococcus
pneumoniae, and the matrix is not well defined. RBC = red blood cell,
Spn = Streptococcus pneumoniae, Matrix = biofilm matrix composed of
extracellular substances and cellular debris. In general, the in vivo biofilms
display a high degree of matrix formation that originated primarily from
lysed bacterial cells and consists of cellular debris and DNA. Biofilms from
in vitro cultures on epithelial cells show less encapsulation in matrix and
more naked bacterial cells. However, biofilms formed on glass are much
less developed with less biomass and almost no matrix formation.

et al., 2011b). The biofilm structure functions as a shield and pro-
tects the bacteria from the antimicrobials. Increased resistance, in
this sense, has partly been attributed to a somewhat lower pen-
etration of antibiotics into the biofilm structure but is probably
equally or more associated with an adaptive phenotype shift of the
biofilm bacteria (De Kievit et al., 2001; Drenkard and Ausubel,
2002; Nguyen et al., 2011; De La Fuente-Nunez et al., 2013).
However, resistance to antimicrobial agents can be discussed as
tolerance to antibiotics or as a result of acquired genes due to
genetic exchange as will be discussed below in Section Role of
Biofilm Formation during Pneumococcal Colonization. Biofilm
bacteria constitute a heterogeneous population, with many bac-
teria in a more sessile state, having the “persister” phenotype
described by Lewis (2008) or expressing other adaptive changes
to resist environmental stressors (De La Fuente-Nunez et al.,
2013).

This appears true also in pneumococcal biofilms. In our stud-
ies, treatment with gentamicin was used to test the functional
and structural organization of the biofilm as the antibiotic is
bactericidal against planktonic bacteria but does not penetrate
well-organized biofilms effectively (Carmen et al., 2004; Abdi-
Ali et al., 2006; Bartoszewicz et al., 2007). We also examined the
effect of penicillin, a commonly used antibiotic, to provide clin-
ically relevant results. Pneumococci closely associated with the
murine nasopharyngeal tissue are highly resistant to gentamicin
and penicillin while loosely associated bacteria are eradicated at
a much lower concentration of antibiotics (Marks et al., 2012a),
supporting the previous findings that showed a higher persistence
of colonizing bacteria than those causing disease (Cohen et al.,
1997, 1999; Dabernat et al., 1998; Dagan et al., 1998, 2001; Varon
et al., 2000; Garcia-Rodriguez and Fresnadillo Martinez, 2002)
and that biofilms are inherently more resistant to antibacterial
agents (Costerton et al., 1999; Donlan and Costerton, 2002; Chole
and Faddis, 2003; Lewis, 2008; Sanchez et al., 2011b). Enhanced
resistance to aminoglycoside and beta-lactam antibiotics may also
result from oxygen limitation as shown in Escherichia coli (Tresse
et al., 1995, 1997). Altogether, these data suggest that biofilm for-
mation during colonization may provide one mechanism that the
pneumococci utilize to persist during antibiotic exposure in the
human host.

MODELS TO STUDY BACTERIAL–HOST INTERACTIONS IN VITRO
A challenge in any study of host–bacterial interactions is to reca-
pitulate in vivo findings using in vitro models. As described
above (Section Introduction), the majority of work with pneu-
mococcal biofilms has relied on in vitro model systems in which
host-specific factors have not been included or examined. The
nasopharyngeal environment contains a mucosal surface of res-
piratory epithelium and their secretions. This environment pro-
vides challenges to the bacterial organisms with low nutrient
availability and also a lower temperature than the remaining body
(approximately 32–34◦C rather than 37◦C) (Keck et al., 2000;
Sahin-Yilmaz and Naclerio, 2011).

Our group has developed an in vitro model to simulate
the upper respiratory tract, the site of pneumococcal coloniza-
tion (Marks et al., 2012a). Biofilms grown on abiotic surfaces

Frontiers in Cellular and Infection Microbiology www.frontiersin.org January 2015 | Volume 4 | Article 194 | 3

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Chao et al. Pneumococcal biofilms in carriage and disease

were delayed in growth and had lower biomass and lacked
structures seen in biofilms grown on epithelial cells or in vivo
during nasopharyngeal colonization (Figure 1), suggesting that
interactions with epithelial cells play an important role in biofilm
formation (Parker et al., 2009; Sanchez et al., 2011b). Biofilms
grown on live or fixed epithelial substrata formed complex
biofilms with high biomass, similar matrix formation, general
architecture and organization, and functional characteristics (e.g.,
antibiotic resistance) as biofilms formed in vivo in the mouse
nasopharynx, thereby providing a suitable in vitro surrogate
model for biofilm formation in vivo (Figure 1B). Both healthy
human respiratory epithelial cells grown and differentiated in
an air-liquid interphase and bronchial carcinoma cells support
robust biofilm development (Figure 1B). This was not observed
when biofilms were grown under the same conditions on plas-
tic surfaces (Figure 1C). Moreover, the differences in structure
and maturation also impacted on levels of gentamicin resis-
tance; with biofilms grown on abiotic surfaces having decreased
antibiotic resistance compared to biofilms grown on epithelial
substrata. These phenotypic differences may indicate that abi-
otic surfaces lack important in vivo features to support optimal
biofilm formation. There is one other group that has used epithe-
lial cells as a substratum for biofilm formation. Vidal et al. used
both paraformaldehyde-fixed HEp-2 epithelial and A549 lung
carcinoma cells to produce static biofilms in vitro and also pro-
duced biofilms in a flow chamber bioreactor (Vidal et al., 2013).
Consistent with our studies, the biomass of the biofilms was sig-
nificantly higher in the presence of epithelial cells, and in their
system more biomass was associated with the lung cells than the
HEp-2 cells. Using this system, the authors were able to verify
their earlier studies showing that both competence induction and
autoinducer production is important for early biofilm formation
(Vidal et al., 2011, 2013).

Environmental factors such as temperature and nutrient avail-
ability also impact biofilm formation. An environment of 34◦C
results in more dense and functional biofilms than biofilms
formed at 37◦C, measured both through morphology in SEM and
by resistance to antimicrobial agents. These data suggest that the
physiological temperature of the nasopharyngeal niche provides
more optimal conditions to support biofilm formation. Finally,
nutrient availability also impacts biofilm formation as nutrient-
rich media did not support biofilm development as well as media
containing fewer nutrients (Marks et al., 2012a,b).

CORRELATION BETWEEN BIOFILM FORMATION AND THE ABILITY FOR
IN VIVO COLONIZATION
To validate the degree of correlation between our in vitro biofilm
model and in vivo colonization, we compared the functional
biofilm formation of pneumococcal strains with the bacterial
burden during colonization of the same strains. The ability to
form biofilms on epithelial cells directly correlated with the abil-
ity to colonize the murine nasopharynx (Marks et al., 2012a).
Specifically, clinical isolates (EF3030 and BG8826) known to
be effective colonizers of the murine nasopharynx (Lipsitch
et al., 2000; Briles et al., 2003) formed more developed biofilms
with higher biomass and biofilm-specific antibacterial resis-
tance on epithelial cells than more invasive strains that are

known to colonize the murine nasopharynx less effectively (D39,
WU2, and SP670) (Benton et al., 1995; Briles et al., 2003;
Mizrachi-Nebenzahl et al., 2003; Orihuela et al., 2003). Moreover,
colonization-deficient strains in the D39 background that lacked
virulence-associated factors, such as autolysin, pneumolysin, and
PspC formed less structured, more antibiotic-sensitive biofilms,
whereas pneumococci lacking PspA that is not associated with
early colonization showed normal biofilm formation (Marks
et al., 2012a). These differences were not observed in biofilms
formed on abiotic surfaces.

ROLE OF BIOFILM FORMATION DURING PNEUMOCOCCAL
COLONIZATION
Forming biofilms during colonization may serve several purposes
for pneumococci. The biofilm provides a protective environ-
ment, in which the bacteria can adapt to coexist with the host
by down-regulating factors involved in inducing inflammation
in favor of factors used to scavenge nutrients from the harsh
environment in the nasopharynx. This will be discussed more
below in Section Distinct Phenotypic Properties of Dispersed
Pneumococci. Another benefit of biofilm communities is the
closeness of bacterial cells to each other as well as the proximity to
DNA that makes up part of the extracellular matrix, providing an
excellent environment to exchange genetic material to promote
survival and adaptation to the host environment.

Pneumococci are highly competent organisms and their
genome sequences show extensive signs of horizontal transfer
of genetic material. The mechanism of competence initiation,
DNA uptake and integration has been well studied in S. pneumo-
niae (Johnsborg and Havarstein, 2009) since the first observation
of natural genetic transformation by Griffith (1928). Horizontal
gene transfer is important for adapting to environmental stresses
(Stewart and Carlson, 1986; Johnsborg et al., 2007), as it enables
the acquisition of novel traits and the spread of antibiotic resis-
tance (Majewski et al., 2000; Hakenbeck et al., 2001; Claverys
et al., 2007). Previous studies have reported low levels of sponta-
neous DNA uptake and transformation in S. pneumoniae strains
in vivo (Griffith, 1928; Ottolenghi and Macleod, 1963; Conant
and Sawyer, 1967; Zhu and Lau, 2011). However, these in vivo
studies were performed in the context of sepsis or other disease
states where the level of biofilm formation is low. Additionally,
most of the studies investigating natural transformation have
used hypercompetent lab strains derived from Avery’s experi-
ments (Avery et al., 1944) or clinical isolates that require the addi-
tion of synthetic competence-stimulating peptide (CSP) (Pozzi
et al., 1996; Wei and Havarstein, 2012).

Epidemiological studies suggest that colonizing bacteria rather
than bacteria from invasive disease are the source of horizon-
tal transfer or spread of antibiotic resistance between strains
(Christenson et al., 1997; Nasrin et al., 1999; Ronchetti et al.,
1999; Domenech et al., 2009) and that resistance selection occurs
mainly in pneumococci colonizing young children, an age-group
that has high carriage rates and exposure to antibiotics that conse-
quently favor the selection of drug-resistance (Duchin et al., 1995;
Samore et al., 2001; Brugger et al., 2009). This is supported by
studies suggesting that natural transformation in the nasophar-
ynx is facilitated by co-colonization of multiple pneumococcal
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strains (Donkor et al., 2011; Leung et al., 2011). In addition, pneu-
mococcal biofilm formation during colonization of the nasophar-
ynx has been shown to up-regulate competence genes (Oggioni
et al., 2006; Trappetti et al., 2011a).

INCREASED NATURAL TRANSFORMATION IN BACTERIA DURING
COLONIZATION COMPARED WITH SEPSIS
To further study the in vivo signals and host conditions involved in
increased natural transformation between strains in vivo, we per-
formed experiments using our in vitro biofilm model as well as
investigated transformation during colonization. When BALB/c
mice were inoculated intranasally or intraperitoneally with equal
numbers of S. pneumoniae strains SP670 (a clinical penicillin-
resistant strain) and D39-C08P2 (a laboratory strain with an ery-
thromycin cassette inserted downstream of the dihydrolipoamide
dehydrogenase gene), natural transformation only occurred in
bacteria colonizing the nasopharynx (Marks et al., 2012b). The
transformation efficiency (the ratio of the number of double-
resistant colonies over the total recovered population) indicated
that colonizing bacteria in the murine nasopharynx showed a sur-
prisingly high level of natural transformation (efficiency of ∼ 1 ×
10−2) whereas the natural transformation efficiency during sepsis
was very low and similar to what has been presented in the litera-
ture (efficiency of 3 × 10−9) (Figure 2). Thus, the transformation
efficiency during colonization was approximately 107-fold higher
than during sepsis. Also, sequential nasopharyngeal colonization,
where one strain was inoculated and left to colonize the animals
for 48 h before the other strain was added intranasally, had simi-
lar transformation efficiencies as when the strains were inoculated
simultaneously (Figure 2). This model better mimics the natu-
ral, sequential acquisition of strains and the combined data is in
agreement with epidemiological studies suggesting that coloniz-
ing bacteria are the predominant source of horizontal transfer of
genes between strains (Christenson et al., 1997; Nasrin et al., 1999;
Ronchetti et al., 1999; Doit et al., 2000).

FIGURE 2 | Transformation efficiency in biofilm cultures and during

nasopharyngeal colonization. Transformation efficiency of antibiotic
resistance elements between S. pneumoniae strain SP670 (PenR) and
D39-C08P2 (ErmR). Mice were co-colonized with both strains at the same
time, colonized sequentially with one strain added to the nares of mice 48 h
prior to the second strain, or both strains were used for co-infection in a
septicemia model in mice. Transformation efficiency was measured as the
number of double-antibiotic resistant colonies divided by total recovery of
bacteria from each condition.

The in vivo data could be corroborated in vitro using biofilms
grown on epithelial cells at 34◦C (Marks et al., 2012b). Seeding
epithelial cells with equal numbers of the two antibiotic-resistant
strains resulted in high numbers of double-resistant organisms.
The highest transformation frequency was observed between
48 and 72 h after inoculation, which corresponded directly to
the time points when the average competence gene expression
in the biofilm population was highest. As our previous work
demonstrated that pneumococcal biofilm formation occurs dur-
ing nasopharyngeal colonization (Marks et al., 2012a) and trans-
formation efficiency is increased in co-colonization or serial
colonization compared to sepsis (Marks et al., 2012b), this sug-
gests that biofilm formation plays a role in the increased genetic
exchange seen during colonization. This is in agreement with
another study showing more efficient gene transfer among strep-
tococci in early biofilm structures (Wei and Havarstein, 2012).
Moreover, several studies show that the matrix of most biofilms
contains high concentrations of DNA that originate from lysis
of bacterial cells in the biofilm (Thomas et al., 2009; Kiedrowski
et al., 2011; Liu and Burne, 2011; Montanaro et al., 2011). Lysis
can be obtained through autolysis but may also result from phage-
mediated bacterial host lysis, enhancing pneumococcal biofilm
development as measured by biomass and cell viability (Carrolo
et al., 2010). In addition, it is known that the pneumococcal
process of fratricide releases DNA from a subfraction of the pop-
ulation by triggered cell lysis due to competence development
(Steinmoen et al., 2002). Biofilm growth may therefore provide
an optimal environment for genetic exchange, further suggested
by data where encapsulated strains that show no natural transfor-
mation in vitro during growth in broth can integrate resistance
cassettes during biofilm growth with a transformation efficiency
of 10−3 to 10−4 after addition of extracellular chromosomal
DNA (1 µg/mL) without exogenous addition of CSP or antibiotic
pressure (Marks et al., 2012b).

MECHANISMS OF INCREASED NATURAL TRANSFORMATION IN
BIOFILMS
Induced competence
Biofilms have been shown to upregulate competence genes com-
pared with broth-grown bacteria (Oggioni et al., 2006; Trappetti
et al., 2011a). As mentioned above, it appears that competence
is continuously upregulated during biofilm growth on epithelial
cells. This does not necessarily mean that the total population of
the biofilm is competent all the time. Rather, biofilms are hetero-
geneous and dynamic populations, suggesting that although the
average competence gene expression in a biofilm is continuously
high, this most likely reflects up- and down-regulation of com-
petence in subpopulations within the biofilms. Under optimal
biofilm-growth conditions, the constant presence of exogenous
CSP did not increase the already high transformation efficiencies
in biofilms (Marks et al., 2012b). However, when biofilms were
formed under sub-optimal conditions such as in the presence
of rich media (Todd-Hewitt medium containing yeast extract,
THY) or at 37◦C rather than 34◦C, or on abiotic surfaces, addi-
tion of CSP significantly improved both biofilm formation and
transformation efficiencies. The role of competence induction in
biofilm formation is supported by several investigators that have
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shown that inclusion of competence stimulating peptide increases
the biomass of biofilms (Oggioni et al., 2006; Trappetti et al.,
2011c). These differences were not seen in assays testing natural
transformation during planktonic growth.

Capsule down-regulation
Capsule expression is affected by environmental factors (Selinger
and Reed, 1979; Kim and Weiser, 1998; Weiser et al., 2001;
Hammerschmidt et al., 2005) and phenotypic variation can occur
in the transition from nasopharyngeal carriage to invasive dis-
ease (Waite et al., 2003). Transparent variants with thinner cap-
sule are predominantly found during initial colonization while
opaque strains with thicker capsule are found during invasive dis-
ease (Weiser et al., 1994; Cundell et al., 1995; Kim and Weiser,
1998; Kim et al., 1999). Increased capsule expression results in
decreased transformation efficiency (Ravin, 1959) and only unen-
capsulated strains have been found to be naturally transformable
in broth. We have found that the capsule locus is downregu-
lated in biofilms compared with bacteria grown in broth (Marks
et al., 2012b). Similar results have been presented in another study
where biofilms grown on an abiotic substratum were compared
with planktonic cultures (Hall-Stoodley et al., 2008). Altogether,
these data suggest that capsule down-regulation during biofilm
formation and colonization result in the increased transformation
efficiency seen during biofilm growth.

Epithelial interactions
As the down-regulation of capsule was more pronounced when
grown on epithelial cells than when biofilms formed on abi-
otic surfaces (Hall-Stoodley et al., 2008; Marks et al., 2012b),
epithelial cells may play a major role in this regard. This is sup-
ported by a study from Hammerschmidt’s laboratory showing
that pneumococci downregulate their capsule when adhering to
epithelial cells (Hammerschmidt et al., 2005). In our dual-strain
biofilm studies, biofilms formed both on prefixed epithelial cells
or glass displayed an elevated level of transformation efficiency
(Marks et al., 2012b). However, the presence of a prefixed epithe-
lial substratum resulted in a higher transformation efficiency
than observed on glass. This further indicates the significance of
bacteria–host interactions for optimal biofilm formation, which
in turn potentiates effective transformation.

Nutrient availability
Other studies have shown that ion and nutrient concentrations
play a role during transformation of planktonic pneumococcal
cultures (Lacks and Greenberg, 1973; Chen and Morrison, 1987;
Trombe, 1993). As previously mentioned, pneumococci grown
in varying nutrient conditions show different abilities to form
biofilms that correspond with their ability to promote transfor-
mation. Limited nutrients seems to be important for optimal
biofilm formation as rich, complex media (THY) resulted in poor
biofilm formation with low transformation efficiencies compared
to biofilms formed in chemically defined media (CDM) (Marks
et al., 2012b). Therefore, the nutrient environment seems to
influence genetic exchange through its initial effects on biofilm
formation.

Nasopharyngeal temperature
Temperature has been found to modulate competence devel-
opment in pneumococci cultures (Lacks and Greenberg, 1973;
Steinmoen et al., 2003) and studies of the role of temperature
on transformation efficiency in broth cultures have indicated that
transformation efficiency peaks around 32–34◦C and decreases
with increasing and decreasing temperatures (Hotchkiss, 1957).
During colonization of the upper respiratory tract, pneumococci
are exposed to temperatures of about 34◦C, which are closer to
the optimal temperature for transformation than is body tem-
perature. Dual-strain biofilms consisting of strains with separate
antibiotic-resistance markers were able to form at 37◦C although
with lower biomass than seen at 34◦C (Marks et al., 2012b).
However, temperature was extremely important for natural trans-
formation in biofilms as no transformants could be recovered
at the higher temperature while high transformation efficiency
was seen at 34◦C. For one strain pair, biofilms did not form at
37◦C, whereas at 34◦C this strain pair was able to form biofilms
with high transformation efficiency. Similar results were seen
in single-strain biofilms with the addition of exogenous DNA,
although differences between the two temperatures were not
as distinct. However, biofilms with comparable biomasses had
similar transformation efficiencies.

Biofilm formation occurs during colonization of the
nasopharynx by S. pneumoniae. This niche has specific growth
conditions, including epithelial interactions, nutrient availability,
and temperature that are optimal for the formation of biofilms.
In contrast to planktonic growth, downregulation of capsule
and induction of competence occurs in biofilms. Together these
environmental factors are important both for pneumococcal
biofilm formation in vitro and during nasopharyngeal coloniza-
tion in vivo, as well as for the ensuing increased genetic exchange
and natural transformation.

POPULATION DYNAMICS AND INCREASED FITNESS
Natural genetic transformation in the biofilm environment serves
to increase the adaptation of the bacteria to a changing host
environment and thus increases the fitness of the organism.
Our mechanistic studies of biofilm-associated transformation
revealed a separate mechanism whereby biofilms can promote
fitness. We used a PspC- and PspA-negative strain (TRE121;
erythromycin-resistant and tetracycline resistant) to investigate
whether the pspC locus required for colonization (Balachandran
et al., 2002) could be repaired if grown in the presence of the
wild-type strain. Repair could then be observed by detecting
only erythromycin-resistant bacteria carrying the PspA mutation
as PspA is not required for early colonization. Mice inoculated
with pspA/pspC null pneumococci alone were rapidly cleared.
However, intranasal inoculation of a mixture of TRE121 and D39
pneumococci resulted in a population with the pspC gene (ery-
thromycin resistant and tetracycline sensitive) repaired genetically
and functionally. These studies supported that natural transfor-
mation during co-colonization can improve fitness by expanding
the gene pool available for adaptation to the host environment
(Marks et al., 2012b).

However, in the same experiment, where TRE121 were co-
colonized with wild type D39, we were also able to isolate the
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original PspC- and PspA-negative mutant, that when colonized
alone was rapidly cleared. When performing our transformation
experiments there seemed to be a trend, although not statistically
significant, of increased biomass in multi-strain biofilms than
single-species biofilms with equal inocula. Further investigations
of dual-strain biofilms in vitro revealed that poor biofilm formers
showed an increased biomass in the presence of good biofilm-
forming strains. This increased fitness was not directly associated
with acquisition of genetic factors as strains had the same colo-
nization efficiency before and after co-colonization experiments.
This fitness increase was also observed in co-colonization experi-
ments with unencapsulated and encapsulated strains. In addition
to providing an optimal environment for genetic exchange, co-
colonization may also provide a haven for poorly colonizing
strains when an effectively colonizing strain is also present. These
data are supported by epidemiological studies showing the detec-
tion of rare serotypes or non-typeable pneumococci significantly
more often in individuals colonized with multiple strains than
with single strains (Brugger et al., 2010).

MECHANISM OF TRANSITION FROM ASYMPTOMATIC
BIOFILM COLONIZATION TO DISSEMINATION AND DISEASE
Pneumococcal colonization of the nasopharynx is frequent in chil-
dren (20–90%, with the higher numbers observed in resource-poor
settings (Hill et al., 2006; Coles et al., 2011; Kwambana et al., 2011;
Abdullahi et al., 2012)), and decreases, although not completely,
in adulthood. Colonization always precedes infection (Kadioglu
et al., 2008), however, the mechanism involved in the transition
from biofilm colonization to disease is not entirely clear. Numerous
studies have suggested that pneumococcal infection is associated
with preceding or concomitant virus infections (Henderson et al.,
1982; Chonmaitree et al., 1986, 2012; Kim et al., 1996; McCullers,
2006; Bakaletz, 2010; Pettigrew et al., 2011; Launes et al., 2012;
Chertow and Memoli, 2013; Short et al., 2013) while other studies
suggest that virus infections increase bacterial growth or dissoci-
ation from the nasopharyngeal tissue (Diavatopoulos et al., 2010;
Vu et al., 2011). For example, Influenza A virus (IAV) is associ-
ated with an increased susceptibility to pneumococcal pneumonia
(Morens et al., 2008; Shrestha et al., 2013; McCullers, 2014). IAV
pathogenesis involves invasion and killing of respiratory epithe-
lial cells, increased bacterial adhesion receptors in the respiratory
niche, and suppression of immune responses to S. pneumoniae
(McCullers and Bartmess, 2003; Sun and Metzger, 2008; Koppe
et al., 2012; McCullers, 2014). Furthermore, IAV infection is asso-
ciated with increased spread between infant mice, suggesting a
role for IAV in release of pneumococci from biofilm colonization
in order to spread between individuals (Diavatopoulos et al.,
2010). While virus infection and host signals seem to influence
nasopharyngeal biofilm communities, the exact mechanism(s)
whereby transition from asymptomatic colonization to disease
occur have been less studied.

INFLUENZA A VIRUS INFECTION PROMOTE BIOFILM DISPERSAL IN
VITRO AND TRANSITION TO DISEASE IN VIVO
In vitro biofilm dispersal
Using IAV as a model system we have recently attempted
to address the factors associated with disruption of biofilm

colonization in the nasopharynx. Previous models with human
respiratory epithelial cells (HRECs) have been limited by short
coexistence times between the bacteria and epithelial cells
(Hakansson et al., 1996; Marks et al., 2012a; Vidal et al., 2013).
We recently developed a static biofilm model with live cultures of
HRECs that survived with biofilm bacteria for up to 72 h and per-
mitted the study of the role of virus infection on biofilm integrity
(Marks et al., 2013).

Pneumococcal biofilms that were first formed on fixed HRECs
were moved to live cells and were allowed to reestablish a biofilm
for 24 h. At this time, IAV infection of the epithelial cells were
performed. At 24 h after IAV infection, the total bacterial load
did not differ between cells infected or not infected with virus.
However, about 10-fold more bacteria were found in the super-
natant than in the biofilm communities associated with the
virus-infected epithelium. The increased bacterial numbers in the
supernatant was found for several pneumococcal strains and was
not associated with detachment of cells.

In vivo transition to disease
As IAV infection of epithelial cells in vitro results in release of bac-
teria from biofilms, we investigated the impact of IAV infection
on pneumococcal colonization in vivo (Marks et al., 2013). Mice
were colonized intranasally with EF3030 or D39 pneumococci for
48 h, the mice were then inoculated with IAV, and bacterial bur-
den in various tissues was measured at days 1 and 5 post infection.
EF3030 biofilms maintained stable colonization of the nasophar-
ynx over 5 days, with a slightly higher level of colonization in
the IAV-infected population. The increased colonization after IAV
infection has been observed in earlier studies (Hirano et al., 1999;
Tong et al., 2000; Garcia-Rodriguez and Fresnadillo Martinez,
2002; Diavatopoulos et al., 2010) and was recently shown to rely
on increased growth of pneumococci due to increased availability
of sialic acid from IAV neuraminidase activity (Siegel et al., 2014).
Associated with the increased colonization, dissemination into
the lungs and the middle ear of EF3030 increased over time in the
presence of IAV. For D39, colonization was higher in the IAV pop-
ulation but total colonization decreased over time and, although
IAV caused dissemination both into the lungs and the middle
ear, the initial dissemination and bacterial burden decreased over
time. These results showed that IAV infection could cause active
egress of bacteria from biofilms and that those bacteria could dis-
seminate in the host to otherwise sterile sites where they caused
infection.

THE ROLE OF IAV-INDUCED CHANGES IN THE HOST ENVIRONMENT ON
BIOFILM DISPERSAL AND TRANSITION TO DISEASE
In vitro biofilm dispersal
Upon IAV infection, a 10-fold increased ATP concentration was
detected in the biofilm supernatant at 24 h, which was similar
both in fold-change and in levels detected in the nasopharyngeal
lavage fluid from mice infected with IAV for 24 h. Extracellular
ATP as well as the recently described IAV-induced sympato-
mimetic response resulting in release of norepinephrine (NE) in
the nasopharyngeal secretions constitutes well described “dan-
ger signals” potentially recognized by bacterial cells (Grebe et al.,
2010; Xi and Wu, 2010). Additionally, symptomatic IAV infection
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is likely to cause increased or changed nutrient availability in the
nasopharynx and is usually accompanied with fever, two addi-
tional factors that were shown above to have a negative impact
on biofilm formation and genetic transformation (Marks et al.,
2012b). To avoid host cell-mediated responses, potential host
agents induced by virus infection were applied exogenously to
biofilms formed on fixed epithelia. The addition of NE, ATP,
glucose, or HREC lysate induced dispersal of bacteria from tissue-
attached biofilm communities into the supernatant, predomi-
nantly in the form of diplococci, a pneumococcal morphology
previously found in the bloodstream or sputum of patients and
animals (Tomasz et al., 1964). Exposure to febrile-range hyper-
thermia (FRH) at an elevated temperature of 38.5◦C showed
similar results and the combination of 38.5◦C and HREC cell
lysates showed additive effects, suggesting that during IAV infec-
tion the combined effect of the changing host environment likely
produced the dispersal of bacteria from biofilms.

In vivo transition to disease
Similar to our in vitro studies above, host signals (ATP, NE,
glucose, and FRH) resulted in dispersion of EF3030 and D39
from the nasopharynx and caused dissemination of pneumococci
into the lungs or middle ear. These data show that host-derived
inter-kingdom signals alone or in conjunction with IAV infec-
tion cause active dispersal of bacteria from the biofilm, which

can subsequently disseminate to normally sterile sites and cause
symptomatic infection (Marks et al., 2013). The mechanisms
of IAV-induced transition from colonization to infection are
depicted in Figure 3. The recognition of host factors by bacteria
is an underexplored area (Hughes and Sperandio, 2008; Pacheco
and Sperandio, 2009) where the main examples of how bacteria
recognize the host environment is associated with sensory mem-
brane kinases of two component systems and with a few exam-
ples known where bacteria can recognize and bind host-specific
molecules such as cytokines. Future studies focused on under-
standing how bacteria recognize changes in their environment
will be of great interest to understand host–pathogen interac-
tion both during colonization and infection. A better knowledge
of these mechanisms may help provide novel strategies to avoid
transition to infection.

DISTINCT PHENOTYPIC PROPERTIES OF DISPERSED
PNEUMOCOCCI
IN VIVO PHENOTYPE OF DISPERSED, PLANKTONIC, AND BIOFILM
POPULATIONS
It has been shown that biofilm bacteria display lower virulence
in vivo than broth-grown bacteria (Blanchette-Cain et al., 2013;
Qin et al., 2013). However, the specific virulence phenotype
of bacteria that are actively released from biofilms in response
to a changing host environment (increased temperature, virus

FIGURE 3 | Diagram of pneumococcal recognition of influenza-induced

host responses leading to dispersal and transcriptional change. Infection
with influenza A virus (IAV), which may include virus-induced host cell
damage, leads to changes in the pneumococcal niche environment including
virus-induced host responses such as increased temperature (fever), nutrient

availability (glucose), extracytoplasmic ATP, norepinephrine, and
proinflammatory cytokines. Pneumococci recognize these inter-kingdom
signals by an unknown mechanism, leading to dispersal and changes in the
transcriptome and resulting in pneumococcal populations with distinct
phenotypic properties.
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infection, etc.) has not been well described. Using an in vivo
murine model of colonization and dissemination, we were able
to confirm that actively-dispersed bacteria have a distinct phe-
notype from biofilm or planktonic, broth-grown bacteria (Marks
et al., 2013). In general, the dispersed pneumococci were able to
colonize the nasopharynx as well as the other populations, but
disseminated into the lungs and middle ear at a higher degree
than both planktonic, broth-grown bacteria and biofilm bacteria.
This is in agreement with a previous study where opaque, broth-
grown bacteria were able to translocate to the lungs and brain of
mice while transparent, biofilm-derived bacteria remained in the
nasopharynx (Trappetti et al., 2011b).

Actively-dispersed bacteria also induced a higher level of
inflammation. Histological examination 7 days after coloniza-
tion showed that mouse tissue infected with dispersed bacteria
resulted in denudation of the epithelium, later supported in other
studies (Blanchette-Cain et al., 2013), and had the presence of
pronounced leukocyte infiltrates in the lungs and middle ear cav-
ity. In agreement with the low bacterial load found in the tissues
infected with biofilm-grown bacteria, there were no inflamma-
tory infiltrates present. However, the nasal epithelium had shorter
cilia compared to mock-infected mice. Mice inoculated with
planktonic, broth-grown bacteria displayed a mixed phenotype,
showing areas of epithelial denudation and some inflammation
in the middle ear and lungs. Histological results were very similar
between D39 and EF3030 pneumococci with the exception that
no D39 bacteria were isolated from the middle ear.

After direct aspiration of bacterial populations into the lungs
of mice, biofilm bacteria were cleared over time, induced mini-
mal inflammation, and did not disseminate into the bloodstream.
In contrast, temperature-dispersed biofilm bacteria caused high
levels of bacterial burden in the lungs with three out of six
mice challenged with EF3030 and all of the mice challenged with
D39 showing pneumococcal dissemination into the bloodstream.
Histological analysis of the lungs infected with dispersed bacte-
ria showed a dense leukocyte infiltrate with hemorrhagic lesions,
while planktonic, broth-growth bacteria showed a moderate bac-
terial burden in the lungs, resulting in moderate inflammation.

These phenotypes were not only specific to tissue infections.
Intraperitoneal challenge with EF3030 or D39 biofilm bacteria
resulted in rapid clearance of the bacteria from the bloodstream.
D39 bacteria are well-characterized for their invasive potential
(Smith et al., 2002) and resulted in a higher bacterial titer in
the blood after 24 h. Actively-dispersed D39 bacteria showed an
even more aggressive phenotype where the mice were more symp-
tomatic and the majority of the mice had to be euthanized before
24 h based on becoming moribund (Figure 4). The phenotype
was especially interesting when the strain EF3030 was used, as
this strain when grown in broth failed to induce bacteremia and
direct injection of 108 CFUs of EF3030 broth-grown bacteria were
cleared within the 24 h. In contrast, injection of approximately
105 CFUs of EF3030 bacteria dispersed from biofilms after IAV
infection or exposure to heat or extracellular ATP resulted in sep-
ticemia in all mice, with some mice becoming moribund before
the end of the experiment (Figure 4). Interestingly, dispersed
organisms caused a higher level of inflammation in the blood-
stream and the animals became moribund at significantly lower

FIGURE 4 | Biofilm dispersion and infection. Mice were inoculated
intraperitoneally with mechanically disrupted biofilm bacteria (Biofilm;
green), broth-grown bacteria (Planktonic; blue), or heat-dispersed bacteria
(Heat; red). Bacterial burden was measured in the blood after 24 h for
EF3030 bacteria or 48 h for D39 bacteria or when mice became moribund.
An X represents a mouse that was euthanized before the end of the
experiment. ∗∗∗P < 0.001.

bacterial levels in the blood. These results indicate that actively-
dispersed pneumococci, that show high virulence and inflam-
matory potential, produce infection in animals that more closely
resembles invasive pneumococcal disease in humans (Marks et al.,
2013). Actively-dispersed pneumococci may thus provide a model
that better mimics the physiological phenotype during human
infection.

DISPERSED BACTERIA ARE A DISTINCT POPULATION DIFFERENT
FROM BIOFILM OR PLANKTONIC, BROTH-GROWN BACTERIA
The major differences in the virulence phenotype of biofilm
bacteria, broth-grown bacteria, and actively-dispersed pneumo-
cocci suggest that these populations are distinct and likely have
major differences in their transcriptional profiles. Previous stud-
ies have shown that some virulence genes are down-regulated
in biofilm bacteria compared to broth-grown bacteria (Sanchez
et al., 2011b) and that changes in the host environment results
in alterations of pneumococcal transcriptional profiles (Orihuela
et al., 2004b; Ogunniyi et al., 2012). These environmental signals
include IAV-induced host responses such as rises in temperature
(fever), nutrient availability, ion concentrations, and proinflam-
matory cytokines (Bakaletz, 2010; Grebe et al., 2010; Weiser,
2010) that trigger biofilm dispersal, leading to a distinct popu-
lation of biofilm-dispersed bacteria showing an increased ability
to disseminate and cause disease (Marks et al., 2013).

TRANSCRIPTIONAL DIFFERENCES IN ACTIVELY-DISPERSED
PNEUMOCOCCI
To better understand the transcriptional profiles of dispersed
bacteria, gene expression profiles of dispersed bacteria were com-
pared to expression profiles in planktonic, broth-grown bacteria
and to biofilm bacteria grown on fixed or live epithelial cells
for 48 h using qRT-PCR of selected genes (Marks et al., 2013).
Similar to previous work, competence genes were up-regulated
in biofilm-grown bacteria compared to dispersed and planktonic,
broth-grown populations while other genes involved in viru-
lence, such as cps (capsule), ply (pneumolysin), pavA (adhesin),
and licD2 (opaque phenotype), were down-regulated during
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biofilm growth, consistent with previous reports (Sanchez et al.,
2011b; Marks et al., 2012b). More importantly, planktonic, broth-
grown bacteria had different expression of lytA, licD2, and pavA
compared with dispersed bacteria, the latter population show-
ing significantly higher expression. These differences in gene
expression suggests that the three populations are phenotypically
distinct. Besides virulence differences, actively-dispersed pneu-
mococci had a higher opaque to transparent ratio, adhered poorly
to HRECs, but invaded and killed HRECs more effectively, as well
as induced higher levels pro-inflammatory cytokine responses
from the exposed HRECs (Marks et al., 2013).

In addition to the gene targeted RT-PCR approach, we used
RNA-seq to obtain a global transcriptional profile among dif-
ferent samples, and identified complex alterations in the pneu-
mococcal transcriptome in response to IAV-induced changes in
the environment (Pettigrew et al., 2014). Among the actively-
dispersed pneumococcal populations, IAV-induced dispersion
had the most impact on the pneumococcal transcriptome com-
pared to biofilm-grown bacteria. This was seen in both the
fold-change and the number of differentially regulated genes.
When combining the changes observed in IAV-, heat-, and ATP-
dispersed populations of pneumococci, 90 differentially regu-
lated genes were significantly changed in the same direction in
at least two out of three dispersed populations compared to
biofilm-grown bacteria. In general, carbohydrate metabolism,
stress response, and known virulence factors were up-regulated
in dispersed populations while genes associated with competence,
amino acid metabolism, pyrimidine and purine metabolism,
translation, and some regulatory genes were downregulated.
These data correlate very well with a recent study demonstrating
an increased expression of genes involved in cell wall biosynthe-
sis, translation, and purine and pyrimidine metabolism in biofilm
bacteria (Yadav et al., 2012). The data also correlate in part with
a recent proteomics analysis that showed a changed metabolism
in biofilm bacteria (Allan et al., 2014). However, as this analy-
sis compared biofilms to planktonic, broth-grown bacteria that
are very different in their transcriptional profile to actively dis-
persed bacteria, a direct comparison of the results are difficult
to make.

Among the 20 out of 90 genes that were regulated in different
directions in the dispersed populations, eight were genes involved
in bacteriocin production and secretion. These genes were upreg-
ulated in IAV- and heat-dispersed pneumococci that showed the
highest virulence in our murine model and were down-regulated
in the ATP-dispersed population that showed the least virulent
phenotype, suggesting a potential role of bacteriocins in vir-
ulence. Overall, similar patterns were seen in the comparison
between actively-dispersed and planktonic, broth-grown bacteria.

The RNA-seq data showing differentially expressed genes
involved in carbohydrate metabolism corresponded well with the
direct measurement of glucose metabolism among the pneu-
mococcal populations, with a higher production of intracellu-
lar ATP and lactate secretion (main product of pneumococ-
cal glucose fermentation) in dispersed populations compared
to biofilm-grown bacteria. In addition, biofilm bacteria had a
lower baseline ATP level, suggesting low metabolic activity. Genes
regulating carbohydrate metabolism have been associated with

tissue-specific disease (Orihuela et al., 2004a; Iyer and Camilli,
2007; Ogunniyi et al., 2012), which is a similar pattern seen
with the more virulent dispersed populations showing upregula-
tion of genes associated with carbohydrate metabolism. However,
there was not a direct correlation between glucose metabolism
and virulence among the pneumococcal populations. In addition,
there was variability in gene regulation and glucose metabolism
among heat- and ATP-dispersed populations even though heat-
dispersed pneumococci were more similar though not as virulent
as IAV-dispersed while ATP-dispersed pneumococci were the least
virulent dispersed population. These data indicate that virulence
and transcriptional changes in response to environmental signals
are complex.

CONCLUSIONS
Colonization by S. pneumoniae precedes disease and studies have
shown that colonization is a necessary step in pneumococcal
pathogenesis (Weiser, 2010; Simell et al., 2012). While there is evi-
dence for the role of biofilms in disease (Hall-Stoodley et al., 2006;
Sanderson et al., 2006; Hoa et al., 2009; Reid et al., 2009; Sanchez
et al., 2010; Weimer et al., 2010; Sanchez et al., 2011b; Trappetti
et al., 2011b; Blanchette-Cain et al., 2013), the role of biofilms in
pneumococcal colonization has only recently been investigated.
Asymptomatic colonization occurs within complex multicellu-
lar biofilm communities (Munoz-Elias et al., 2008; Marks et al.,
2012a) while pneumococci from the blood and sputum exist
as diplococci (Tomasz et al., 1964). Host–bacterial interactions
are necessary for optimal biofilm formation displaying increased
antibiotic resistance (Marks et al., 2012a). Furthermore, envi-
ronmental conditions in this niche are important for increased
genetic exchange and increased fitness either by expanding the
genes available or through protective effects (Marks et al., 2012b).
As summarized in Figure 5, these sessile, predominately transpar-
ent phase communities down-regulate virulence factors and show
increased adherence, low invasiveness and toxicity to HRECs, and
elicit low cytokine responses (Marks et al., 2013). Biofilm bacte-
ria found during colonization are avirulent, but are a source of
pathogenic bacteria upon signals from IAV-induced changes in
the environment (Marks et al., 2013).

Respiratory viruses trigger host responses and signals result-
ing in changes in the niche environment, including nutrient
availability, temperature, and ion concentration that play an
important role in the pneumococcal transition from commen-
sal bacteria to disease-causing pathogen (Marks et al., 2013)
(see Figure 4). Furthermore, actively-dispersed pneumococci
have distinct transcriptional profiles compared to biofilm or
planktonic, broth-grown bacteria, showing upregulation of car-
bohydrate metabolism and bacteriocin production and down-
regulation of genes associated with competence, amino acid
metabolism, purine and pyrimidine metabolism, and other regu-
latory genes (Pettigrew et al., 2014). Dispersion may be an impor-
tant survival strategy as exposure of asymptomatically colonized
mice with host responses induced dissemination of pneumo-
cocci into the lungs and middle ear. Recognition of these host
responses suggests that inter-kingdom signaling in an impor-
tant mechanism of transition from asymptomatic colonizer to
pathogen.
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FIGURE 5 | Comparison of biofilm and dispersed pneumococcal

populations. Biofilm-grown and biofilm-dispersed bacteria are distinct
populations with different transcriptional profiles and phenotypic properties. In
general, biofilm bacteria upregulate genes associated with competence while
dispersed bacteria upregulate genes associated with virulence. Furthermore,
genes associated with carbohydrate metabolism, bacteriocin production and
secretion, stress response, and virulence factors are upregulated in dispersed
populations compared to biofilm-grown bacteria while genes associated with
colonization such as competence and fratricide, genes involved in amino acid
metabolism, purine and pyrimidine metabolism, and translation are
downregulated. This is in agreement with glucose metabolism assays where
biofilm bacteria ineffectively produce ATP or secrete lactate in contrast to the
rapid metabolism of glucose seen in actively-dispersed populations. In
addition, biofilm bacteria are predominantly transparent in contrast to

primarily opaque dispersed bacteria with upregulation of capsule expression.
In vitro studies indicate that biofilm bacteria are less virulent and show
increased adherence to human respiratory epithelial cells (HRECs). In
contrast, dispersed bacteria are less adherent and have an increased ability to
invade and kill HRECs with a higher induction of key cytokines involved in
pro-inflammatory responses from exposed HRECs. In vivo studies show that
both populations are able to colonize the murine nasopharynx, however,
dispersed bacteria colonize more weakly and result in dissemination with a
significantly higher bacteria load. In the mouse septicemia model, dispersed
populations are virulent while biofilm bacteria are quickly cleared from the
blood. When comparing infected mouse tissue, biofilm bacteria resulted in
shorter, intact cilia with no inflammatory infiltration. This is in contrast to the
denudation of epithelia and large inflammatory infiltrates seen in tissue
infected with actively-dispersed bacteria.

FUTURE STUDIES
Our recently developed biofilm models have been instrumental in
increasing our knowledge regarding pneumococcal colonization
of the nasopharynx and the transition to invasive disease. Further
understanding of pneumococcal biofilm formation will be impor-
tant for addressing the spread of antibiotic resistance, serotype
switching, vaccine escape, and protective effects in the context
of co-colonization. In addition, biofilms have induced com-
petence and capsule downregulation associated with increased

transformation, which may be important for future models
studying genetic exchange.

IAV-induced responses triggered the dispersion of a distinct
population of pneumococci, suggesting that pneumococci rec-
ognize inter-kingdom signals. This model of pathogenesis with
co-infection of IAV and pneumococci may be adapted to model
co-infection and the transition to disease for other upper respi-
ratory tract commensals that also experience increased virulence
after IAV infection (e.g., Staphylococcus aureus). In addition, our
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model could also be used to study a wider range of pneumococcal
strains, such as clinical isolates that are not currently virulent in
mouse models.

Future studies capitalizing on the RNA-seq data should focus
on the role of carbohydrate metabolism, bacteriocin receptors,
and other genes encoding surface proteins upregulated during
invasive disease as these may represent novel targets for develop-
ing therapeutics. The transcriptional differences found between
the pneumococcal populations explain the differences in vir-
ulence, however, future goals will involve understanding the
mechanism involved in the induction of disease.
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