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Sammanfattning

Dagens samhälle är allt mer beroende av elektroniska hjälpmedel s̊asom smarta
telefoner, läsplattor, datorer osv. Prestandakraven ökar i en allt högre takt och
därför m̊aste även den bakomliggande teknologin följa samma trend. De flesta
av oss vill att den nya mobiltelefonen ska ha s̊a hög kameraupplösning som
möjligt men f̊a av oss tänker p̊a att detta medför en större mängd data. Den
nya 4G telefonen förväntas ocks̊a kunna ladda upp dessa högupplösta foton
och videoklipp p̊a Internet snabbare än den gamla slitna GSM telefonen. Den
ska dessutom vara lika billig i inköp. Man inser snabbt att detta ställer stora
krav p̊a den bakomliggande kommunikationsteknologin. I denna avhandling
analyseras därför de praktiska utmaningarna hos en potentiell lösning.

Snabb och tillförlitlig dataöverföring tillsammans med hög bandbreddsef-
fektivitet är viktiga designaspekter i ett modernt kommunikationssystem som
t.ex. 3G ,WiFi och LTE. Bandbreddseffektivitet är i grova drag ett m̊att
p̊a hur mycket data ett kommunikationssystem kan överföra per tidsenhet
och hertz (Hz). Idag baseras all konventionell teknologi p̊a att de olika in-
formationsbitarna, ettorna och nollorna, ska kunna behandlas oberoende av
varandra p̊a mottagarsidan. Denna avhandling undersöker en väsentligt an-
norlunda metod, nämligen att interferens mellan bitarna införs avsiktligt p̊a
sändarsidan med hjälp av den s̊a kallade faster-than-Nyquist (FTN) tekniken.
Detta medför i sin tur att bitarna stör varandra vilket resulterar i att motta-
garen inte kan behandla dem var för sig. Denna signaleringsteknik introduc-
erades redan 1975 av James Mazo, forskare p̊a Bell Laboratories i USA, och
har sedan dess utökats i m̊anga riktningar. Tidigare arbete inom omr̊adet har
p̊avisat signifikanta vinster i bandbreddseffektivitet men ocks̊a p̊apekat att
mottagaren blir alltför komplex för praktisk realisering. I denna avhandling
föresl̊ar vi ett antal l̊agkomplexitetslösningar för mottagning av denna typ av
självstörande signaler. V̊ar slutsats är att de teoretiska vinsterna i bandbred-
dseffektivitet, som tidigare p̊avisats, är fullt möjliga att uppn̊a i praktiken d̊a
v̊ara l̊agkomplexitetsmottagare har mycket god prestanda för praktiska kom-
plexitetsniv̊aer.
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vi Sammanfattning

Den första delen av avhandlingen behandlar l̊agkomplexitetsmottagare och
relaterade stabilitetsproblem. Nya algoritmer presenteras tillsammans med
en rad viktiga förbättringar vilka tillsammans radikalt reducerar mottagarens
komplexitet utan att nämnvärt öka antalet felaktigt mottagna bitar.

Den andra delen analyserar effekten av de mottagarinterna beräkningarna
p̊a prestandan, kvoten mellan antalet felaktigt mottagna bitar och det totala
antalet bitar, hos tv̊a i grunden olika mottagarmodeller. En av dessa tv̊a
standarmodeller är välundersökt i litteraturen. Även om deras slutresultat är
identiska vid optimal mottagning, s̊a är de interna beräkningarna i allmänhet
annorlunda för de tv̊a modellerna. Icke optimala mottagare, dvs. mottagare
som utför ett mindre antal beräkningar, behöver därför inte generera samma
slutresultat. Färre beräkningar medför i regel viktiga energibesparingar hos
batteridrivna enheter samt billigare produktionskostnader. Utöver detta s̊a
föresl̊as och utvärderas nya typer av mottagarmodeller som arbetar emellan de
tv̊a standardmodellerna.

Den sista delen av avhandlingen ägnas åt ett annat tillvägag̊angssätt för
att reducera antalet beräkningar. S̊a kallade kanalkortningsmottagare op-
timeras ur ett icke konventionellt perspektiv. Istället för att reducera an-
talet beräkningar genom en förbättrad inre mottagarstruktur, s̊a försöker en
kanalkortningsmottagare att neutralisera effekterna av omgivningen (kanalen)
och därefter arbeta med en förenklad kanalmodell. Ramverket som används för
kanalkortning i denna avhandling är mer generell än vad som tidigare använts
inom omr̊adet.



Abstract

Fast and reliable data transmission together with high bandwidth efficiency are
important design aspects in a modern digital communication system. Many
different approaches exist but in this thesis bandwidth efficiency is obtained
by increasing the data transmission rate with the faster-than-Nyquist (FTN)
framework while keeping a fixed power spectral density (PSD). In FTN con-
secutive information carrying symbols can overlap in time and in that way in-
troduce a controlled amount of intentional intersymbol interference (ISI). This
technique was introduced already in 1975 by Mazo and has since then been
extended in many directions.

Since the ISI stemming from practical FTN signaling can be of significant
duration, optimum detection with traditional methods is often prohibitively
complex, and alternative equalization methods with acceptable complexity-
performance tradeoffs are needed. The key objective of this thesis is therefore
to design reduced-complexity receivers for FTN and general linear channels
that achieve optimal or near-optimal performance. Although the performance
of a detector can be measured by several means, this thesis is restricted to bit
error rate (BER) and mutual information results. FTN signaling is applied
in two ways: As a separate uncoded narrowband communication system or
in a coded scenario consisting of a convolutional encoder, interleaver and the
inner ISI mechanism in serial concatenation. Turbo equalization where soft
information in the form of log likelihood ratios (LLRs) is exchanged between
the equalizer and the decoder is a commonly used decoding technique for coded
FTN signals.

The first part of the thesis considers receivers and arising stability problems
when working within the white noise constraint. New M-BCJR algorithms for
turbo equalization are proposed and compared to reduced-trellis VA and BCJR
benchmarks based on an offset label idea. By adding a third low-complexity
M-BCJR recursion, LLR quality is improved for practical values of M . M here
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viii Abstract

measures the reduced number of BCJR computations for each data symbol.
An improvement of the minimum phase conversion that sharpens the focus of
the ISI model energy is proposed. When combined with a delayed and slightly
mismatched receiver, the decoding allows a smaller M without significant loss
in BER.

The second part analyzes the effect of the internal metric calculations on
the performance of Forney- and Ungerboeck-based reduced-complexity equal-
izers of the M-algorithm type for both ISI and multiple-input multiple-output
(MIMO) channels. Even though the final output of a full-complexity equalizer
is identical for both models, the internal metric calculations are in general dif-
ferent. Hence, suboptimum methods need not produce the same final output.
Additionally, new models working in between the two extremes are proposed
and evaluated. Note that the choice of observation model does not impact the
detection complexity as the underlying algorithm is unaltered.

The last part of the thesis is devoted to a different complexity reducing ap-
proach. Optimal channel shortening detectors for linear channels are optimized
from an information theoretical perspective. The achievable information rates
of the shortened models as well as closed form expressions for all components
of the optimal detector of the class are derived. The framework used in this
thesis is more general than what has been previously used within the area.



Preface

This Ph.D. thesis is based on the results of my research at the Department of
Electrical and Information Technology (EIT) at Lund University. The material
has partly appeared in the following journal and conference papers:

[1] A. Prlja and J.B. Anderson, “Reduced-complexity receivers for
strongly narrowband intersymbol interference introduced by faster-than-
Nyquist signaling,” IEEE Transactions on Communications, vol. 60, no.
9, pp. 2591–2601, September 2012.

[2] A. Prlja, F. Rusek, M. Lončar, “A Comparison of Ungerboeck
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Chapter 1

Introduction

A tremendous progress in communication technology has been made in the last
two decades. For example mobile telephony, which was primarily meant for
voice-based communication, has evolved rapidly and today non-voice services
are overtaking voice-based communications. Advances in computer networking
on the other hand laid the foundation for the largest global medium for infor-
mation exchange, the Internet. As a result, there is an ever increasing need
for improving the existing technologies which more efficiently can exploit the
available resources.

Modulation theory has, since the pioneering work of Nyquist [1], been
mainly based on the concept of memoryless transmission which greatly sim-
plifies the receiver design and the theoretical analysis. The symbols in different
time intervals were independent and they were transmitted in a fashion such
that there was no intersymbol interference (ISI) present at the receiver. In 1948
and 1949 Shannon [2, 3] brought a radical change to communications with the
development of information theory. He discovered that highly reliable com-
munication is possible if the symbols are encoded in groups. He also proved
that such a construction is possible if the time signals are generated using sinc
pulses. Most communication technologies therefore maintained the memoryless
assumption in the modulation part (see Figure 2.2). Although this assumption
can be made optimal in theory, in practice it can lead to significant capacity
penalties due to non-ideal components. Therefore, in this thesis, ISI is inten-
tionally introduced using the concept of Faster-than-Nyquist (FTN) signaling.
FTN provides improved spectral efficiency that cannot be reached by commu-
nication systems based on orthogonal (Nyquist) signaling. Section 2.5 of this
thesis reviews the FTN signaling concept.

1



2 Reduced Receivers for Faster-than-Nyquist Signaling and General ...

Decoding of signals using trellises or trees plays a crucial role in digital
communications. In fact, many signal detection problems in wireless communi-
cations can be approached with trellis and tree decoding techniques. One such
example is the detection of FTN signals. In FTN intersymbol interference is
introduced by transmitting signals at a higher signaling rate than allowed by
the Nyquist orthogonality criterion. Each received signal can in the presence of
ISI be represented as a function of the most recent input symbol and the past
L input symbols, where L is the length or memory of the ISI sequence. This
signal structure can be modeled by a finite state machine (FSM) process and
consequently be described using a trellis [4]. MIMO and frequency selective
communication channels are other examples where tree and trellis detection
can be employed.

A well-known algorithm that operates on a trellis is the Viterbi algorithm
(VA) developed in 1967 [5]. Due to its high computational complexity for
long ISI responses and large constellation sizes, the Viterbi algorithm is often
impractical. Instead, the M-algorithm by Anderson in 1969 [6] can be used. It
explores only a part of the tree/trellis and in that way the overall computational
effort is reduced. For a description of the M-algorithm, see Section 2.3.

The invention of turbo codes [7, 8] was a major step forward in communica-
tions. The turbo processing principle developed by Hagenauer [9] has been ap-
plied to concatenated communication systems in order to improve their overall
system performance. This iterative exchange of soft information between two
soft-input soft-output component decoders will be frequently used in this the-
sis. Turbo equalization [10], also known as iterative equalization and decoding,
is one such application. Instead of using conventional hard-output component
decoders, turbo equalization uses a soft-input soft-output ISI equalizer and a
soft-input soft-output outer decoder which produce and exchange log likelihood
ratios. In this way the turbo equalizer can approach the optimal performance,
the performance of joint equalization and decoding, with practical complexity
levels. More details about the basic principles of turbo equalization are given
in Section 2.7.

Some well-known soft-output algorithms are the Bahl-Cocke-Jelinek-Raviv
(BCJR) algorithm [11], also known as the maximum a posteriori (MAP) de-
coder and the soft-output Viterbi algorithm (SOVA) [12]. Both algorithms
require a realization of the complete trellis and are therefore often not prac-
tical to implement. In this thesis, reduced-complexity trellis and tree based
soft-input soft-output algorithms for FTN signaling and general linear chan-
nels are proposed. The objective is to design low-complexity receivers which
can produce reliable log likelihood ratios.
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A reduced-complexity soft-output algorithm for iterative detection is the
well-known M-BCJR algorithm proposed by Franz and Anderson [13]. By us-
ing the M-algorithm, they reduced the complexity of the BCJR algorithm. A
similar algorithm called the T-BCJR algorithm was also proposed in [13]. In
Chapter 3 of this thesis a new improved M-BCJR algorithm is proposed. An-
other soft-input soft-output algorithm is the soft-output M-algorithm (SOMA)
[14] which is a reduced complexity variant of SOVA. A soft-output sequential
decoder known as the LIST-sequential (LISS) decoder was proposed by Kuhn
and Hagenauer in [15]. A popular reduced-complexity technique for turbo de-
tection of MIMO channels is the sphere decoder proposed by Hochwald and
ten Brink [16]. Note that the impressive amount of literature on reduced-
complexity techniques prevents a full treatment in this thesis.

In Chapter 4 the performance of reduced-complexity algorithms based on
two different discrete-time observation models is studied. Even though the final
output of a full-complexity detector is identical for both models, the internal
metric calculations are different and hence reduced-complexity methods based
on the two models need not produce the same final output. Chapter 5 considers
channel shortening detectors for linear channels, optimized from an information
theoretical perspective. Chapter 6 summarizes the thesis and gives a discussion
on possible future work.
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Chapter 2

Basic Principles of Linear
Modulation

In this chapter, an introduction to time-continuous linear modulation systems
is given. Mathematical models for the linear modulation system and the com-
munication channel are formulated and some basic detection algorithms, giving
rise to equivalent discrete-time models of the communication system, are pre-
sented. Note that this chapter only introduces results required for the remain-
ing part of the thesis. For more details and complete derivations, the reader is
referred to [17, 18, 19, 20].

2.1 Single Carrier Linear Modulation

The signal transmission method considered in this thesis is the simple and
practical linear modulation whose baseband form can expressed as

s(t) = sa(t)
△
=

∞∑

k=0

akh(t− kT ) (2.1)

where a = {a0, a1, a2, . . .} is the information carrying symbol sequence (possi-
bly complex-valued) and h(t) is a real-valued continuous modulation pulse. In
order to satisfy frequency assignment requirements on the system, the spectrum
of (2.1) is modulated to a carrier frequency fc before transmission, yielding the
radio frequency (RF) representation

5



6 Reduced Receivers for Faster-than-Nyquist Signaling and General ...

sRF
a (t)sa(t) R(·)

√
2ej2πfct

Figure 2.1: A simple device for information transmission via carrier modulation.

sRF
a (t) =

√
2R{sa(t)ej2πfct}. (2.2)

HereR{·} denotes the real part of a complex number, fc is the carrier frequency
in Hz and the superscript “RF” denotes a modulated signal. Note that the
baseband signal (2.2) has its frequency support concentrated around f = 0. A
simple model of the device that generates the bandpass signal sRF

a (t) from the
baseband signal sa(t) is shown in Figure 2.1. It is also assumed that the signal
s(t) is bandlimited to W positive Hz, where W is referred to as the bandwidth of
s(t). This bandlimitation is achieved by bandlimiting the modulation pulse h(t)
to W Hz. Additionally, in order to avoid frequency overlaps in the transmitted
signal, it is assumed that W ≪ fc.

Now consider the communication system in Figure 2.2. The binary infor-
mation sequence u is encoded by an encoder with code rate Rc producing the
binary sequence v. The length of v is given by the length of u divided by
Rc. The encoding introduces a structured dependence among the encoded bits
which in general improves the communication performance. The mapper in
Figure 2.2 now maps the binary codeword v onto the sequence a consisting
of symbols from the symbol alphabet Ω. A modulator uses the sequence a as
input in order to produce a sequence of analog signal waveforms sa(t) to be
transmitted. Finally, an additive white Gaussian noise (AWGN) channel with
noise n(t) follows resulting in the received signal r(t), i.e., r(t) = sa(t) + n(t).
The symbols {ak} in this thesis do not need to be independent. However, it
is assumed that the encoder/mapper combinations are such that they generate
uncorrelated output streams which can be expressed as

E[aka∗
m] = σ2

aδ[k −m] (2.3)

where E denotes the expectation operator, ∗ denotes complex conjugation and
δ[·] is the Kronecker delta function. These notations will be used throughout
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ENCODER MAPPER MODULATOR

AWGN

u v a sa(t) r(t)

Figure 2.2: A system model of a communications system in additive white
Gaussian noise (AWGN). After encoding and mapping, the information carry-
ing signal is formed by (2.1).

the thesis. Another requirement is that the data symbols at their output are
equiprobable, i.e.,

Pr(ak = a′) =
1

|Ω| . a′ ∈ Ω (2.4)

In (2.4) Pr(·) denotes a probability mass function (PMF) while a probability
density function (PDF) will be denoted p(·) throughout. In this thesis convolu-
tional and low-density parity-check codes (LDPC) are used for encoding. The
symbol alphabet Ω is assumed to be time-invariant. It is also a balanced one,
that is

∑

ak∈Ω

ak = 0.

2.1.1 Bit and Block Error Rate

Since in general the received signal r(t) is distorted and noisy, the receiver will
in a random manner produce erroneous decisions. In order to quantify this as
a communication performance measure we next define the average number of
information bit errors per detected information bit, the bit error rate Pb (alter-
natively BER, bit error ratio or bit error probability). The uncoded sequence
u consisting of N information bits is to be communicated across a linear chan-
nel. As in Figure 2.2 these bits are in general encoded which produces a longer
sequence of bits, v. After mapping onto the discrete alphabet Ω the symbol
sequence a is sent across the channel as analog waveforms. After filtering and
sampling the receiver observes the sequence y and produces an estimate û of
the information sequence u. This is usually made in two stages, demodulation
and decoding. Note that demapping is often included in the demodulation
process. The demodulation stage converts the received analog signal into a se-
quence of information carrying numbers containing both distortion and noise.
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This sequence is then fed to the decoder’s input which, by following a certain
decoding rule, produces the estimate û of the binary uncoded sequence u.

Consider now the sequence u and let uk denote its kth information bit and

let Pk
△
= Pr(ûk 6= uk) be its error probability. The bit error rate Pb can now

be defined as

Pb
△
=

∑N−1
k=0 Pk

N
. (2.5)

In the same manner we can define the block error rate (BLER), denoted PN
b ,

as the probability that the receiver outputs an incorrect sequence û, that is

PN
b

△
= Pr(û 6= u). (2.6)

Even though these quantities should be as small as possible, in many cases
and due to different constraints one needs to specify a desired value. Typical
desired values of Pb are in the range 10−2−10−9 depending on the application.
From (2.6) we have that

PN
b = Pr




⋃

0≤k≤N−1

{ûk 6= uk}



 (2.7)

and by using the union bound, we obtain the following upper limit

PN
b = Pr




⋃

0≤k≤N−1

{ûk 6= uk}



 ≤
N−1∑

k=0

Pr (ûk 6= uk) = NPb. (2.8)

Moreover, we have that

PN
b ≥ Pr (ûk 6= uk) , k = 0, . . . , N − 1.

We can now write

N−1∑

k=0

PN
b ≥

N−1∑

k=0

Pk

which gives

PN
b ≥ Pb. (2.9)



Chapter 2. Basic Principles of Linear Modulation 9

Finally PN
b can be bounded by combining (2.8) and (2.9):

Pb ≤ PN
b ≤ NPb. (2.10)

2.1.2 Bandwidth Properties

The power spectral density (PSD), denoted Φsa
(f), of the wide-sense cyclosta-

tionary process sa(t) is a function describing the distribution of the power as a
function of frequency. It is given by the Fourier transform of the autocorrela-
tion of sa(t). In order to proceed with the bandwidth (and Euclidean distance)
calculations we introduce the autocorrelation function of h(t), denoted λ(t). It
is defined as

λ(t)
△
=

∫ ∞

−∞
h(τ)h∗(τ − t) dτ (2.11)

or alternatively

λ(t) = h(t) ⋆ h∗(−t), (2.12)

where ⋆ is the convolution operator. From (2.11) it follows that the modulation
pulse energy, denoted Ep, is given by

Ep
△
=

∫ ∞

−∞
|h(t)|2 dt = λ(0). (2.13)

The autocorrelation of sa(t) is

φsa
(τ + t, t)

△
= E[sa(τ + t)s∗a(t)]

=

∞∑

j=0

∞∑

k=0

h(τ + t− jT )h∗(t− kT )E[aja
∗
k]

= σ2
a

∞∑

k=0

h(τ + t− kT )h∗(t− kT ). (2.14)

Since sa(t) is a wide-sense cyclostationary process with period T , its time-
average autocorrelation function is
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φ̄sa
(τ)

△
=

1

T

∫ T

0

φsa
(τ + t, t) dt

=
σ2

a

T

∫ T

0

∞∑

k=0

h(τ + t− kT )h∗(t− kT ) dt

=
σ2

a

T

∫ ∞

−∞
h(τ + t)h∗(t) dt

=
σ2

a

T
λ(t). (2.15)

By now taking the Fourier transform of (2.15), we obtain the power spectral
density of sa(t):

Φsa
(f)

△
= F{φ̄sa

(τ)}
(2.16)

=
σ2

a

T
Λ(f), |f | < W

where, according to (2.12), Λ(f) = F{λ(t)} is given by

Λ(f) = H(f)H∗(f) = |H(f)|2. (2.17)

Combining (2.16) and (2.17) results in

Φsa
(f) =

σ2
a

T
|H(f)|2. (2.18)

Note that |H(f)|2 is symmetric around f = 0 since the modulation pulse h(t)
is real-valued. The bandwidth is in this thesis defined as the smallest single
scalar number W such that

Φsa
(f) = 0, |f | > W (2.19)

This is shown schematically in Figure 2.3. From the average power P of sa(t)
given by
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2W

0

0 W

|H(f)|

|Sa(f)|

−fc fc

f(Hz)

f(Hz)

Figure 2.3: An example of the frequency content in the bandpass signal sRF
a (t).

P = φ̄sa
(0) =

σ2
a

T
Ep (2.20)

we can now obtain the average symbol energy Es according to

Es
△
= T φ̄sa

(0) = σ2
aλ(0) = σ2

aEp. (2.21)

The average energy per information bit is given by

Eb
△
=

Es

Rc log2 |Ω|
=

σ2
aEp

Rc log2 |Ω|
. (2.22)

If not otherwise stated, in this thesis it is assumed that h(t) is unit energy, i.e.,

Ep =

∫ ∞

−∞
|h(t)|2 dt = 1

so that (2.21) and (2.22) become

Es = σ2
a

Eb =
σ2

a

Rc log2 |Ω|
.

Finally we introduce the normalized bandwidth Wnorm so that different com-
munication setups can compared. It is defined as the ratio between the total
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consumed bandwidth and the total information bit rate. If Ndim denotes the
number of dimensions spanned by (2.1), the normalized bandwidth becomes

Wnorm
△
=

NdimWT

Rc log2 |Ω|
, Hz− s/bit. (2.23)

A real sa(t) gives Ndim = 1 while Ndim = 2 for complex sa(t). The physical
data bits carried by a communication system is the product of its bandwidth
W and its time T , divided by Wnorm. For example, a 1 MHz width system
working for 2 seconds carries 2× 106/Wnorm bits.

2.1.3 Frequency Selective and Flat Channels

Intersymbol interference (ISI) is in this thesis introduced either by a frequency
selective communication channel or by filtering and pulse shaping at the trans-
mitter. Section 2.5 considers an example of the last, called faster-than-Nyquist
(FTN) signaling where the signals are intentionally allowed to overlap in the
time-domain. If instead the radio frequency modulated signal sRF

a (t) from (2.2)
is exposed to a multipath environment, represented by its real-valued impulse
response cRF(t), the received signal rRF

a (t) equals [17]

rRF
a (t) =

∫ ∞

−∞
cRF(τ)sRF

a (t− τ) dτ + nRF(t)

= R
{(∫ ∞

−∞
cRF(τ)e−j2πfcτsRF

a (t− τ) dτ

)

ej2πfct

}

+nRF(t) (2.24)

where nRF(t) is additive white Gaussian noise with mean E[nRF(t)] = 0 and au-
tocorrelation E[nRF(t)nRF(t+τ)] = N0δ(τ). The noise nRF(t) can be expressed
as

nRF(t) =
√

2R{n(t)ej2πfct} (2.25)

where n(t) is complex-valued AWGN with mean E[n(t)] = 0 and autocorrela-
tion E[n(t)n∗(t + τ)] = N0δ(τ). By further defining

c(τ)
△
= cRF(τ)e−j2πfcτ (2.26)
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Channel

r(t) = c(t) ⋆ sa(t) + n(t)c(t)

n(t)

sa(t)

Figure 2.4: A baseband model of a communications system exposed to a mul-
tipath environment.

we note that the integral in (2.24) represents convolution of sa(t) with a com-
plex baseband channel impulse response (CIR) c(τ). A complex-valued base-
band model of (2.24) equals

r(t) = c(t) ⋆ sa(t) + n(t)

=

∞∑

k=0

ak

(

c(t) ⋆ h(t− kT )
)

+ n(t)

=
∞∑

k=0

akb(t− kT ) + n(t) (2.27)

where

b(t)
△
= c(t) ⋆ h(t). (2.28)

Since the spectrum of sa(t) is changed by the channel (the Fourier transform
of c(t)⋆sa(t) is C(f)Sa(f) where C(f) = F{c(t)} and Sa(f) = F{sa(t)}), c(t)
represents a frequency selective channel. Figure 2.4 shows a simple baseband
model of the multipath environment channel c(t) with additive noise. A non-
frequency selective channel, also known as a flat channel is obtained if c(t) =
δ(t), i.e., there is no multipath in the environment. Note that, in this thesis, it
is always assumed that the receiver has perfect knowledge of the channel c(t).

2.1.4 The Squared Euclidean Distance

In order to detect data reliably it is relevant to investigate how different two
analog signals, corresponding to data sequences a0 a1, are. It is easier for the
receiver to distinguish the two signals if the difference is large which eventually
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leads to a smaller probability of error in optimal detection. One important
measure of the difference, closely related to the bit error rate, is the squared
Euclidean distance defined as

D2(a0,a1)
△
=

∫ ∞

−∞
|sa0

(t)− sa1
(t)|2 dt

=

∫ ∞

−∞

∣
∣
∣
∣
∣

∞∑

k=0

(a0,k − a1,k)h(t− kT )

∣
∣
∣
∣
∣

2

dt

=

∫ ∞

−∞

∣
∣
∣
∣
∣

∞∑

k=0

ekh(t− kT )

∣
∣
∣
∣
∣

2

dt

=

∞∑

j=0

∞∑

k=0

eje
∗
k

∫ ∞

−∞
h(t− kT )h∗(t− jT ) dt (2.29)

where e is an error event defined as e
△
= a0 − a1 and where the notation a0,k

denotes the kth symbol in the sequence a0. Since (2.29) only depends on the
difference a0 − a1 we can define

D2(e)
△
= D2(a0,a1) (2.30)

where the error symbols e in an error event belong to an error symbol alphabet
E . In the simple case Ω = {+1,−1} we have that E = {+2, 0,−2}. An
alternative expression of the the squared Euclidean distance is obtained if (2.11)
is substituted into (2.29):

D2(e) =

∞∑

j=0

∞∑

k=0

ejλ((j − k)T )e∗k

=

∞∑

j=0

∞∑

k=0

ejgj−ke∗k (2.31)

where gk is the baud rate (signaling rate) sampled autocorrelation function of
h(t), i.e.,

gk
△
= λ(kT ). (2.32)
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The sampled matched filter outputs, which define the so-called Ungerboeck
observation model in the following chapters, depend directly on the samples
gk. Therefore the same notation as in (2.32) will be used throughout the
thesis.

Since D2(e) in (2.31) depends on the average symbol energy Es it is not
possible to compare communication systems with different pulse shapes and
symbol alphabets if the value of Es varies. Therefore a more appropriate mea-
sure is the normalized squared Euclidean distance defined as

d2(e)
△
=

D2(e)

2Eb
=

Rc log2 |Ω|
2σ2

a

D2(e) (2.33)

The asymptotic error probability of any linear signaling, neglecting mul-
tiplicities, depends strongly on the normalized minimum squared Euclidean
distance [20] defined as

d2
min

△
= min

e6=0
{d2(e)}. (2.34)

This important measure is found by performing a minimization over all error
events allowed by the outer code. In the uncoded case the minimization in
(2.34) is instead performed over all possible error events. Henceforth, d2

min will
be referred to as minimum distance. Note that d2

min in (2.34) depends on h(t).

2.1.5 T -Orthogonal Pulses

A pulse h(t) is said to be T -orthogonal (or orthogonal under T -shifts) if it
satisfies

∫ ∞

−∞
h(t)h(t− kT ) dt = 0, k = ±1,±2, . . . , (2.35)

where T , here and throughout, is the symbol interval. Note that this implies
that the sampled autocorrelation function gk in (2.32) is gk = δ[k]. Since a
T -orthogonal pulse is uncorrelated with a shift of itself by any multiple of T ,
it is possible to find any symbol ak in the noise-free signal sa(t) by performing
the correlation integral

∫ ∞

−∞
sa(t)h(t−kT ) dt=

∫ ∞

−∞





∞∑

j=0

ajh(t− jT )



h(t−kT ) dt=ak

∫ ∞

−∞
|h(t−kT )|2 dt.

(2.36)
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If in (2.13) Ep = 1, the right-hand side of (2.36) equals ak. In fact, if the signal
sa(t) is fed to a matched filter (MF), i.e., a filter with transfer function H∗(f),
and followed by sampling each T seconds, the whole sequence a is obtained.

If gk 6= δ[k], intersymbol interference (ISI) is present. The memory of the
ISI response {gk}, given by the smallest L such that

gk = 0, |k| > 0 (2.37)

determines the complexity of a tree/trellis based detection algorithm. An ISI
channel of memory L and a modulation alphabet Ω is represented by a size-|Ω|L
trellis. Since a more challenging receiver design is undesirable a first objective
is to choose a pulse h(t) that fulfills gk = δ[k] with as small bandwidth as
possible. There is however a tradeoff between the two; reducing the bandwidth
will in general increase the length of the ISI response.

The narrowest bandwidth of any T -orthogonal pulse is 1/2T Hz and the
corresponding pulse is the sinc pulse:

hsinc(t) =
sin(πt/T )

πt/T
. (2.38)

Its Fourier transform is in fact a square pulse, i.e.,

Hsinc(f) =







√
T , |f | ≤ 1/2T

0, |f | > 1/2T.
(2.39)

In order to reduce the amplitude variations in the signal sa(t) and the
temporal tails of the sinc pulse, a common class of T -orthogonal pulses with a
smoother spectra, the root raised cosine (root RC) class, can be used instead.
A pulse from this class is defined by its Fourier transform which satisfies

|H(f)|2 =







T, |f | ≤ (1− β)/2T

T cos2
(

πT
2β

(

|f | − 1−β
2T

))

, (1− β)/2T < |f | ≤ (1 + β)/2T

0, |f | > (1 + β)/2T.
(2.40)

The extra bandwidth is defined through the parameter β, 0 ≤ β ≤ 1, also
known as the “rolloff” or excess bandwidth factor. A root RC pulse is ban-
dlimited to (1 + β)/2T , i.e., its bandwidth is a fraction β greater than the
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Figure 2.5: Root RC pulses with three different excess bandwidths β.

bandwidth of a sinc. By setting β = 0 we in fact obtain a sinc pulse. Nyquist
showed [1] that a sufficient condition for T -orthogonality is that the Fourier
transform of the pulse is antisymmetric around the point f = 1/2T . This
condition is satisfied by the root RC family whose time domain expression is

h(t) =







1√
T

sin (π(1−β)t/T )+(2βt/T ) cos (π(1+β)t/T )
(πt/T )(1−(4βt/T )2) , t 6= 0,± T

4β

1√
T

(

1− β + 4β
π

)

, t = 0

β√
2T

(
1 + 2

π

)
sin
(

π
4β

)

+
(
1− 2

π

)
cos
(

π
4β

)

, t = ± π
4β .

(2.41)

Figure 2.5 shows the time domain representation of h(t) as root RC pulses
with three different excess bandwidths β, β = 0, 0.3, 0.6. The solid curve
corresponds to β = 0, i.e., the sinc pulse. It is clear that a larger excess
bandwidth results in a narrower pulse with much smaller amplitude oscillations.
Since root RC pulses have infinite time support, they must be truncated in
practice. It is however important to assure that the truncation is not made too
early which could improve the receiver error rate and give a false test result.
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Figure 2.6: Squared Fourier transforms of root RC pulses with different β.

In Figure 2.6 squared Fourier transforms of root RC pulses with the same
three values of β as in Figure 2.5 are shown. Even though a larger β simplifies
the implementation of a linear modulation system (by increasing the band-
width), it does not change the error performance of communication systems
signaling at the rate 1/T , for frequency flat channels.

2.1.6 Symbol Alphabets

In this thesis three different symbol alphabets Ω are considered. If the in-
formation is placed only in the amplitude the modulation method is called
pulse amplitude modulation (PAM). Even though other amplitude alternatives
are possible, the conceptually simplest choice is to let the symbols ak in (2.1)
be real and taken from the balanced and equispaced M -PAM (M -ary PAM)
alphabet defined as

ΩM−PAM = {−(M − 1),−(M − 3), . . . , (M − 3), (M − 1)}

where |Ω| = M and M is usually a power of two, i.e., M = 2k where k is an
integer. The corresponding error symbol alphabet E is given by
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EM−PAM = {−2(M − 1),−2(M − 2), . . . , 2(M − 2), 2(M − 1)}.

Consider now the normalized minimum Euclidean distance of an M -PAM
alphabet in orthogonal signaling with a T -orthogonal modulation pulse and a
flat channel. The error event that results in the smallest Euclidean distance is
in fact an error event consisting of the single error symbol ek = 2 for all possible
M . It is easy to show that the corresponding normalized minimum Euclidean
distance, often referred to as the matched filter bound in the literature, equals

d2
min = d2

MF
△
=

6 log2(M)

M2 − 1
. (2.42)

The normalized bandwidth Wnorm is derived next. Since the M -PAM al-
phabet is real-valued, Ndim in (2.23) is Ndim = 1. If further a T -orthogonal
root RC pulse with excess bandwidth β is assumed, the normalized bandwidth
of an uncoded system (Rc = 1) is given by

Wnorm =
1 + β

2 log2(M)
.

In case of a complex-valued Ω, there are two standard alphabets: phase
shift keying (PSK) and quadrature amplitude modulation (QAM). In contrast
to PAM, the information in PSK is placed only in the phase. The M -PSK
alphabet is defined as

ΩM−PSK = {ej2πn/M , 0 ≤ n ≤M − 1}

where M is again a power of two, i.e., M = 2k, k an integer and j is the
imaginary unit throughout the thesis. Note that all symbols within an M -PSK
alphabet have equal energy. This property is important for efficient hardware
implementation since the transmitted signal has smaller amplitude variations.
The normalized minimum Euclidean distance of an M -PSK alphabet in orthog-
onal signaling equals

d2
min = 2 log2(M) sin2(π/M). (2.43)



20 Reduced Receivers for Faster-than-Nyquist Signaling and General ...

1
1 3 5 7

7

5

3

Q

I

Figure 2.7: An I/Q diagram of a 64-QAM constellation.

In QAM the information to be transmitted is placed as amplitude values
on two orthogonal signals, often referred to as the in-phase (I) component and
quadrature (Q) component. The M -QAM alphabet is defined as

ΩM−QAM = {A + jB A,B ∈ Ω√
M−PAM}

where it is assumed that M = 22k, k an integer. The definition of M im-
plies that some values of M cannot be reached, i.e., there exists for example
no standard 32-QAM. However for M = 22k+1, k an integer, so-called cross-
constellations can be used instead [20]. An example of an I/Q diagram for a
64-QAM constellation is shown in Figure 2.7. Note that 4-QAM and 4-PSK
are identical except for a rotation. In this thesis they are both referred to as
QPSK (quadrature PSK).

The normalized minimum Euclidean distance of an M -QAM alphabet in
orthogonal signaling is given by

d2
min =

3 log2(M)

M − 1
. (2.44)
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AWGN

r(t) = sa(t) + n(t)

n(t)

sa(t)

Figure 2.8: A model of the AWGN channel.

By comparing (2.42) with (2.44), we realize that d2
min of a

√
M -PAM alphabet

equals that of an M -QAM alphabet. The normalized bandwidth for both M -
QAM and M -PSK in an uncoded system with h(t) taken as a root RC pulse
with excess bandwidth β is

Wnorm =
2(1 + β)

2 log2(M)
=

1 + β

log2(M)
.

2.2 Maximum-Likelihood Sequence Estimation

Whenever ISI is present in the received signal, sequence detection can be per-
formed. This section considers the maximum-likelihood sequence estimation
(MLSE) algorithm when the communication channel is assumed to be the
AWGN channel, i.e., when the received signal r(t) can be expressed as

r(t) = sa(t) + n(t). (2.45)

As in Section 2.1.3, it is assumed that n(t) is a complex-valued white Gaussian
process with mean E[n(t)] = 0 and autocorrelation

E[n(t)n∗(t + τ)] = N0δ(τ). (2.46)

Additionally, it is assumed that the data transmission is uncoded, i.e., u = v.
Even if there is no multipath in the environment, that is c(t) = δ(t), there can
still be need for sequence detection if the ISI is intentionally introduced in the
transmitter as will often be the case in this thesis.

In order to detect the data symbols a from the received signal r(t), MLSE
can be applied at the receiver. The MLSE decoding rule is
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kT

r(t) x
h∗(−t)

Figure 2.9: An efficient way to generate the sequence x from the received signal
r(t).

â
△
= arg max

a
p(r(t)|a), (2.47)

where p(r(t)|a) is the conditional probability density function (PDF) of r(t)
given that the sequence a is sent. It is possible to show [17] that (2.47) is
optimal if and only if all symbol sequences a are equiprobable. Further, it
is well-known [17] that for an AWGN channel, the optimization in (2.47) is
equivalent to minimizing the Euclidean distance between the received signal
and the estimated signal, i.e.,

â = arg min
a

∫ ∞

−∞
|r(t)− sa(t)|2 dt

= arg min
a

∫ ∞

−∞
|r(t)|2 − 2R{r(t)s∗a(t)}+ |sa(t)|2 dt. (2.48)

Note that the term
∫
|r(t)|2 dt has no impact on the minimization (does not

depend on a) and can therefore be omitted. By inserting (2.1) in (2.48), the
minimization of the Euclidean distance reduces to the maximization

â = arg max
a

∫ ∞

−∞

(

R{r(t)s∗a(t)} − 1

2
|sa(t)|2

)

dt

= arg max
a

∫ ∞

−∞

(

R
{

r(t)

∞∑

k=0

a∗
kh∗(t− kT )

}

− 1

2
|sa(t)|2

)

dt

= arg max
a

∞∑

k=0

R{a∗
kxk} −

∫ ∞

−∞

1

2
|sa(t)|2 dt, (2.49)

where
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xk
△
=

∫ ∞

−∞
r(t)h∗(t− kT ) dt. (2.50)

The sequence x = [x0, x1, x2, . . .] can be obtained by applying a matched fil-
ter h∗(−t) together with baud rate sampling at the receiver. This is shown
schematically in Figure 2.9. Furthermore, the sequence x is a set of sufficient
statistics for detecting a. By inserting the expression for r(t) in (2.50), the
samples xk become

xk =

∞∑

j=0

aj

∫ ∞

−∞
h(t− jT )h∗(t− kT ) dt +

∫ ∞

−∞
n(t)h∗(t− kT ) dt

=
∞∑

j=0

ajgk−j + ηk, (2.51)

where the sequence g = [g−L, . . . , g0, . . . , gL] is ISI if gk 6= δ[k]. Likewise, the
noise sequence η is a colored sequence if gk 6= 0 for k 6= 0. An equivalent
discrete-time model of (2.45) is therefore

x = a ⋆ g + η. (2.52)

The model in (2.52) is in this thesis referred to as the Ungerboeck observation
model [21]. The noise sequence η is Gaussian with zero mean and autocorre-
lation

φη(j, j + k) = N0gk. (2.53)

A so-called Forney observation model is often preferred to the Ungerboeck
model due to the whiteness of the noise at its output. Forney proposed [4] that
the sampled MF outputs could be modeled as a trellis structure as follows. The
outputs could be filtered with a discrete-time whitening filter (see Figure 2.10)
in order to produce the sequence y given by

y = a ⋆ f + w. (2.54)

The sequence f is a causal (L + 1)-tap long ISI response sequence with au-
tocorrelation g while w is a random Gaussian sequence with zero mean and
autocorrelation
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FILTER

WHITENINGr(t) x
h∗(−t)

kT

y

Figure 2.10: Forney generation of the sequence y from the received signal r(t).

φw(j, j + k) = N0δ[k]. (2.55)

The sequence y also forms a set of sufficient statistics, i.e., knowing y is suf-
ficient to perform MLSE. However, a practical implementation of the Forney
observation model can in some cases suffer from filter stability problems. This
issue is considered in Chapter 3 where modifications and improvements of the
discrete-time models are proposed.

2.2.1 Spectral Factorization

The whitening filter in Figure 2.10 can be obtained by so-called spectral fac-
torization, briefly explained in this section. The transmitted signal for a data
symbol sequence a and a discrete-time causal ISI response f (Forney observa-
tion model) can be expressed as

sk =
∞∑

j=0

akfk−j . (2.56)

The autocorrelation of the discrete sequence f is according to previous section

gk =

∞∑

j=−∞
fjfj+k. (2.57)

In [22] it is shown that the z-transform of gk, denoted G(z), can be expressed
as

G(z) = cnc∗n

Nz∏

i=1

(1− ǫiz
−1)(1− ǫ∗i z) (2.58)

where cn is a normalization constant while ǫi and ǫ∗i are the zeros of G(z).
Furthermore, it is always possible to choose
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V (z) = cn

Nz∏

i=1

(1− ǫiz
−1) (2.59)

satisfying

V ∗(1/z∗) = c∗n

Nz∏

i=1

(1− ǫ∗i z) (2.60)

which together result in

G(z) = V (z)V ∗(1/z∗). (2.61)

Note that there are many different ways to construct V (z). If vj denotes the
output sequence from the inverse z-transform of V (z), i.e., vj = Z−1{V (z)}, it
is obvious that in general vj is different from fj . Since Z−1{V ∗(1/z∗)} equals
v∗
−j , an alternative expression of the autocorrelation in (2.57) is

gk =
∞∑

j=−∞
vjvj+k. (2.62)

A minimum phase sequence, denoted vMP
j is obtained by taking the inverse

z-transform of a V (z) constructed from (2.59) with |ǫi| ≤ 1, i.e., with zeros on
or inside the unit circle. The corresponding whitening filter equals 1/V ∗(1/z∗).
It should be pointed out that all sequences {vj} produce the same minimum
Euclidean distance (depends on the autocorrelation gk) and have equivalent
detection properties with optimal detection.

This section ends with a simple example. Assume the following unit-energy
discrete-time causal ISI response f

f =
1√
8

[1, 0, 1, 2, 1, 0, 1] . (2.63)

The corresponding autocorrelation sequence g is given by

g =
1

8
[1, 0, 2, 4, 3, 4, 8, 4, 3, 4, 2, 0, 1] . (2.64)

By performing spectral factorization of G(z) and choosing V (z) such that |ǫi| ≤
1 we obtain the corresponding minimum phase discrete-time sequence



26 Reduced Receivers for Faster-than-Nyquist Signaling and General ...

1 2 3 4 5 6 7
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Symbol time, T

vMP f

Figure 2.11: Example of two different causal ISI responses having the same
autocorrelation g.

vMP = [.670, .366, .178, .443, .379, −.102, .187] . (2.65)

Both ISI responses are plotted in Figure 2.11. Although they look different,
they have the same PSD, minimum Euclidean distance and optimal detection
properties. Minimum phase concentrates energy to the early taps, in particular

R∑

k=0

∣
∣vMP

k

∣
∣
2 ≥

R∑

k=0

|fk|2 (2.66)

for any R.

2.2.2 The Recursive Structure of the MLSE

This section discusses the recursive structure of the MLSE algorithm, imple-
mented by the Viterbi algorithm (VA). The assumptions are an uncoded data
sequence a and that the reader is familiar with the trellis structure of the
Forney-based algorithm, i.e., an algorithm based on (2.54). Nonetheless a brief
overview is given next.



Chapter 2. Basic Principles of Linear Modulation 27

0 1 2 3

+1

−1

4

State 1

State 2

State 3

State 0

σ5 = [−1,−1]

σ5 = [+1, +1]

σ5 = [+1,−1]

σ5 = [−1, +1]

Figure 2.12: An example of a 4-state binary trellis.

Assume for simplicity a length-N binary (Ω = {+1,−1}) data sequence a

and a causal ISI response f such that

fk = 0, k > L (2.67)

The binary setup above can be associated with a 2L-state trellis of depth N
where each state corresponds to a distinct combination of the L most recent
symbols, that is

σk
△
= [ak−L, ak−L+1, . . . , ak−1] (2.68)

where σk denotes a state at depth k. An example of a 4-state binary trellis
is shown in Figure 2.12 that is, L = 2. A state σk is connected to two dif-
ferent states at depth k + 1. These two states can be uniquely identified by
the symbol pattern corresponding to the origin state at depth k and the tran-
sition symbol at time k. Let σk = [ak−L, ak−L+2, . . . , ak−1] be a state in the
trellis and ak ∈ {+1,−1} be the transition symbol at time k. The two states
that are connected to σk are now given by [ak−L+1, ak−L+2, . . . , ak−1,+1] and
[ak−L+1, ak−L+2, . . . , ak−1,−1] for input +1 and −1, respectively. Clearly, the
succession of states is Markovian. Furthermore a line that connects two states
is called a branch while a sequence of connected states is denoted a trellis path.
An MLSE algorithm selects the most probable data symbol sequence that max-
imizes (2.47). If we assume that all paths begin from the so-called all-zero state,
σ0 = [+1,+1, ...,+1], there exist in total 2N different paths through the trellis.
Since every path represents a distinct symbol sequence the decoding problem
is equivalent to finding the most probable trellis path.
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Consider now the alternative expression of the last term in (2.49) given by

∫ ∞

−∞

1

2
|sa(t)|2 dt =

1

2

∞∑

j=0

∞∑

k=0

aja
∗
kgj−k. (2.69)

From (2.67) we get that g is a finite ISI sequence , i.e., gk = 0 when |k| > L.
By introducing the likelihood function (compare with (2.49))

Θ(a) =
∞∑

k=0

R{a∗
kxk} −

1

2

∞∑

j=0

∞∑

k=0

aja
∗
kgj−k, (2.70)

we notice that Θ(a) can be recursively computed as

Θ(. . . , ak−1, ak) = Θ(. . . , ak−2, ak−1) +R
{

a∗
k

(

xk −
1

2
g0ak −

L∑

l=1

glak−l

)}

.

(2.71)

Since the term
∑L

l=1 glak−l is a contribution from the past L symbols, the
same trellis state representation as in the Forney-based algorithm can be used.
Even though the length of the autocorrelation sequence g is 2L+1, the number
of states in an Ungerboeck-based algorithm is |Ω|L, that is exponential in L.
The trellises have the same branching structure but since the branch labels
and computation rules are different, the performance of reduced-complexity
algorithms based on the two observation models is in general different. This is
investigated in Chapter 4 of this thesis.

By using the same notation as in (2.68), we can now define the so-called
survivor metric of the VA as

Θ̃(σk+1)
△
= max

[a0,...,ak−L]
Θ(. . . , ak−1, ak). (2.72)

Finally, combining (2.71) and (2.72) results in

Θ̃(σk+1) = R{a∗
kxk}+ max

σk→σk+1

Θ̃(σk)− 1

2
a∗

kg0ak −R{a∗
k

L∑

l=1

glak−l}. (2.73)
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Figure 2.13: Conditional output PDFs of the AWGN channel with binary in-
puts. This channel can be characterized by |Ω| conditional PDFs p(r|a).

2.2.3 MLSE Error Performance

The error performance of the MLSE algorithm is considered in this section.
Let us begin by defining the probability of a symbol error as

Ps
△
= Pr(âk 6= ak) (2.74)

where âk is an MLSE estimated symbol at depth k. Since there exists no closed
form expression of Ps in the case of ISI, upper bounds must used. In order to
proceed with the results we introduce the complementary Gaussian distribution
function, also known as the Gaussian tail function, defined as

Q(x)
△
=

1√
2π

∫ ∞

x

e−t2/2 dt. (2.75)

An upper bound to Ps is now given by [4, 23]

Ps ≤
∑

e∈Xe

Q

(√

d2(e)
Eb

N0

)

medH(e). (2.76)
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In (2.76) Xe denotes the set of all possible error events while me and dH(e)
are the multiplicity and Hamming weight of the error event e, respectively. In
the case of a binary symbol alphabet, Ω = {+1,−1}, it can be shown that the
multiplicities me equal

me = 2−dH(e). (2.77)

Furthermore, by exploiting that d2(e) = d2(−e), dH(e) = dH(−e) and me =
m−e, the summation in (2.76) can be done only over those events e = [e0, e1, . . .]
which have e0 = 2 with me given by

me = 21−dH(e). (2.78)

For more general cases the reader is referred to [17, 19].
Since, according to Figure 2.13, Q(x) has a steep descent towards 0, the

dominating terms in (2.76) are those corresponding to the minimum distance.
In fact, Forney showed in [4] that if the sum in (2.76) converges, there exist
constants K1 and K2 such that

K1Q

(√

d2
min

Eb

N0

)

≤ Ps ≤ K2Q

(√

d2
min

Eb

N0

)

. (2.79)

The first error probability Pee, that is the probability that an error event
starts at depth k, given that there are no errors up to this depth, can be defined
as

Pee
△
= Pr(âk 6= ak|âk−L = ak−L, . . . , âk−1 = ak−1) (2.80)

By omitting the factor dH(e) in (2.76), an upper bound to Pee is obtained.

2.3 The M-algorithm

Even though the MLSE algorithm from previous section is the optimal sequence
detector, its complexity is exponential in the length of the ISI response L. If the
size of the underlying trellis, |Ω|L, becomes too large a realization of the MLSE
algorithm is not practical. Therefore, it is important to consider suboptimum
reduced-search trellis decoders. One well-established technique, introduced by
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Anderson in 1969 [6], is the M-algorithm which is briefly described next. This
decoder will be frequently used throughout the thesis.

The M-algorithm is a suboptimal trellis-search technique which reduces the
complexity of trellis decoding by traversing only a part of the trellis. At each
depth k, only the M most likely states (survivors),

{σ1
k, σ2

k, . . . , σM
k } (2.81)

with the highest cumulative metric values Θ̃(·) are extended to depth k+1 while
the remaining paths are discarded. The M-algorithm is therefore also known as
list decoding since the set of M subpaths form a list of size M . Furthermore,
no branch is to be extended from a discarded state. The retained states are the
states that lie closest in Euclidean distance to the received signal. When a new
signal vector is received, the M-algorithm extends the M retained states to the
next trellis interval, generating up to M |Ω| new states. In this thesis, duplicates
in the list are not allowed. The algorithm then identifies the survivor for each
new state and sorts the set of new paths according to their cumulative metric
values. The most promising M are retained while the rest are discarded. The
M-algorithm repeats this process until the end of the trellis is reached. A path
that reaches the end of the trellis with the highest cumulative metric Θ̃max(·)
is denoted the approximated ML path.

The main advantage of the M-algorithm over decoding techniques such as
the T-algorithm and the stack algorithm is that it performs the same number
of computations at each trellis depth k. It is therefore relatively easy to specify
the parameter M in order to meet a desired computational complexity level.
The total number of branch metric computations in a depth N trellis, when
extending only the best M survivors from one depth to the next, is reduced from
|Ω|L|Ω|N to M |Ω|N . However sorting of M |Ω| states according to their metric
value is required at each depth k. In fact, there is no need for a complete sorting.
Instead it is enough to find the M best values which is a linear operation in M
[24].

In [25, 26] it was shown that the M-algorithm is optimal in the sense of
minimizing the probability of correct path loss among the constant-complexity
breadth-first search decoders. Variants of the algorithm can be found in [27,
28, 29].

Suboptimal decoders either traverse a small part of a full trellis or all pos-
sible paths in a reduced size trellis. Decoders like the M-algorithm that only
move in the forward direction are called breadth-first decoders while decoders
that allow backward motion are called backtracking decoders. The breadth-
first trellis class of decoders can be further classified into one-way decoders
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and two-way decoders. One-way decoders like the VA perform only a single
recursion while two-way decoders like the BCJR in Section 2.4.1 perform one
forward and one backward recursion. Examples of one-way decoders from the
first class are the very popular soft output VA (SOVA) presented by Hage-
nauer and Hoeher in [12] and its reduced complexity variant, the soft output
M-algorithm (SOMA), proposed in [14]. Other reduced complexity decoders
from the breadth-first class can be found in [30, 31]. Two examples from the
backtracking class are the Fano and the stack algorithm. A complete treatment
of decoders from both classes is given in [32, 33].

2.4 Maximum a Posteriori Symbol-by-Symbol

Decoding

Optimal methods for minimizing the bit error rate and the block error rate are
nonlinear and based on maximum-likelihood (ML) estimation. In the presence
of a priori information about the transmitted data a this turns into maximum
a posteriori probability (MAP) estimation. This section considers the MAP
symbol-by-symbol trellis decoder proposed by Bahl, Cocke, Jelinek and Raviv
in 1974 [11]. It is commonly referred to as the BCJR algorithm.

Let Pr(â = a) = 1 − Pr(â 6= a) be the probability of a correct decision of
the transmitted symbol sequence at the receiver. Further, let p(y) be the PDF
of the received sequence y = [y0, y1, y2, . . .] from (2.54). Then, the probability
that the decision â is correct can be expressed as

Pr(â = a) =

∫

y

Pr(â sent|y)p(y) dy. (2.82)

The objective of an optimal decoder is to minimize the error probability or,
equivalently, maximize the probability of a correct decision. The right-hand
side of (2.82) is maximized when the term Pr(â sent|y) is maximized for each
y. Thus, upon observing the received signal y, the optimal decision rule is

â = arg max
a

Pr(a sent|y). (2.83)

The decision rule in (2.83) is known as the maximum a posteriori (MAP) rule.
This receiver minimizes the probability of detecting an erroneous message. We
can alternatively write

Pr(a sent|y) =
p(y|a sent)Pr(a sent)

p(y)
. (2.84)
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Since p(y) is independent of a it can be omitted in the maximization. If,
additionally, all symbol sequences a are equiprobable, the maximization in
(2.83) is equivalent to

â = arg max
a

p(y|a sent). (2.85)

The term p(y|a) is called the likelihood of a while a decoder defined by (2.85)
is, according to Section 2.2, known as a maximum likelihood (ML) decoder.
This decoder is optimal in the case of equiprobable symbol sequences a. In
this thesis, we in fact assume that a is uniformly distributed.

Consider now a MAP sequence equalizer which finds the most probable
data sequence â according to (2.83). Since both (2.52) and (2.54) are sufficient
statistics for optimal detection we can write

â = arg max
a

Pr(a|x) = arg max
a

Pr(a|y)

where x and y are received observations from (2.52) and (2.54), respectively.
Furthermore, Pr(a) in (2.84) is known as the a priori sequence probability and
it is possibly provided from a convolutional code decoder in an iterative turbo
loop. If independent data symbols can be assumed, Pr(a) factorizes into

Pr(a) =

N−1∏

k=0

Pr(ak)

where N is the sequence length. One of the main reasons why the Forney
observation model is often preferred over the Ungerboeck model is the whiteness
of the noise samples at the receiver which, together with the independence
assumption, allows the following factorization

p(y|a) =
N−1∏

k=0

p(yk|a). (2.86)

Since each term in (2.86) is given by

p(yk|a) ∝ exp
(

− 1

N0

∣
∣
∣yk −

L∑

l=0

flak−l

∣
∣
∣

2)

(2.87)

the VA branch metric at kth trellis stage is proportional to Pr(ak)p(yk|a).
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In contrast to the Forney model, the received observations x of the Unger-
boeck model are corrupted by colored noise which prohibits the factorization
(2.86). Instead the likelihood Pr(x|a) can be factorized [21] as

p(x|a) ∝
N∏

k=0

ϕ(xk,a) (2.88)

where ϕ(xk,a) is given by

ϕ(xk,a) , exp

(

2

N0
a∗

k

(

xk −
g0

2
ak −

L∑

l=1

glak−l

))

. (2.89)

2.4.1 The BCJR Algorithm

A MAP symbol decoder decides in favor of the symbol âk, using the following
decision rule

âk = arg max
ak

Pr(ak|x) = arg max
ak

Pr(ak|y). (2.90)

This decoder also provides soft information about the symbols, in the form
of logarithmic a posteriori (APP) ratios, sometimes referred to as L-values,
defined as

L(ak|y)
△
= log

(
Pr(ak = +1|y)

Pr(ak = −1|y)

)

= log

(∑

a:ak=+1 Pr(a|y)
∑

a:ak=−1 Pr(a|y)

)

. (2.91)

In (2.91) we have, for simplicity, assumed a binary PAM (2-PAM) alphabet,
Ω = {+1,−1}, and the Forney observation model. The APP ratio can further
be expressed as

L(ak|y) = log

(∑

(σ,σ′)∈S+ p(σk = σ, σk+1 = σ′,y)
∑

(σ,σ′)∈S− p(σk = σ, σk+1 = σ′,y)

)

(2.92)

where S+ and S− are the sets of trellis state pairs (σk, σk+1) at depth k that
correspond to ak = +1 and ak = −1, respectively. Note that in (2.92) we have
also assumed time-invariant trellises.

The BCJR algorithm computes probabilities of states and paths in a trel-
lis, given the channel outputs y = [y0, y1, . . . , yN−1] and the a priori data
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probabilities. It efficiently computes logarithmic APP ratios by exploiting the
factorization

p(σk = σ, σk+1 = σ′,y) = αk(σ)γk(σ, σ′)βk+1(σ
′). (2.93)

Here, the recursively calculated forward and backward trellis metrics of the
state σ at kth trellis depth are denoted αk(σ) and βk(σ), respectively. The
metric of the branch connecting the states (σ, σ′), denoted γk(σ, σ′), can in the
case of the Forney model, be expressed as

γk(σ, σ′) = p(σ, yk|σ′) = Pr(ak)p(yk|a) (2.94)

where the likelihoods p(yk|a) are given by (2.87) while, in the Ungerboeck
model,

γk(σ, σ′) = Pr(ak)ϕ(xk|a) (2.95)

where ϕ(xk,a) is given by (2.89).
Starting from the initial all-zero state at the root of the trellis, the forward

metric is computed recursively in a forward trellis pass according to

αk+1(σ
′) =

∑

σ∈S
αk(σ)γk(σ, σ′) (2.96)

with the initialization α0 = [1, 0, . . . , 0], where S is the set of states that can
reach state σ′ at depth k + 1 (in binary transmission there are 2). Similarly,
the backward recursion, initialized with βN = [1, 0, . . . , 0]T, starts at the end
of the trellis and proceeds towards the root, computing at each trellis depth k

βk(σ) =
∑

σ′∈S
βk+1(σ

′)γk(σ, σ′). (2.97)

The superscript “T” denotes the transpose operator throughout this thesis.
Now S is the set of states reached from the state σ at depth k. Note that, in
the Forney observation model, the backward recursion starts at trellis depth N
from the all-zero state, i.e., βN = [1, 0, . . . , 0]T. In the Ungerboeck model the
trellis is not terminated in the all-zero state and consequently the backward
recursion must instead be initialized with βN (σ) = 1/|Ω|L, for all σ.

The probabilistic interpretation of the forward and the backward state met-
rics in the Forney model is
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αk(σ) = p(σ, y0, y1, . . . , yk−1)

βk+1(σ) = p(yk+1, yk+2, . . . , yN−1|σ)

This interpretation of the state metrics is not valid in the Ungerboeck model.
In [34] it is shown that the function ϕ(xk,a) is not a true PDF but since
(2.88) holds, Viterbi equalization can be performed. Additionally, a BCJR-
type algorithm for ISI (based on (2.88)) is derived and it is shown that its
output is equivalent to the output of a standard Forney-based BCJR. However
this statement is only true when optimal detection is adopted. In Chapter
4 it is shown that reduced-complexity equalizers, based on the two models,
will in general produce different outputs. Note that the BCJR-type algorithm
from [34] has the same computational complexity as the Forney-based BCJR
algorithm.

2.5 Faster-than-Nyquist Signaling

This section reviews some of the underlying ideas of faster-than-Nyquist (FTN)
signaling. This signaling method has existed in some form since 1975 and it is
based on the fact that pulse amplitude modulation (PAM) signals of the form

∑

akh(t− kT ) (2.98)

where h(t) is a T -orthogonal pulse, can be sent faster than the Nyquist sig-
naling rate 1/T without any loss in minimum Euclidean distance. Thus, the
asymptotic error rate behavior of an optimal decoder remains unchanged. FTN
signaling increases the data transmission rate by reducing the time-spacing
between adjacent pulses below the Nyquist rate while keeping a fixed power
spectral density (PSD). Note that the PSD shape, in case of IID inputs, in
(2.18) only depends on the modulation pulse h(t). FTN provides improved
spectral efficiency that cannot be reached by communication systems based on
orthogonal (Nyquist) signaling.

The technique was introduced already in 1975 by Mazo [35]. He showed that
binary T -orthogonal sinc(·) pulses in (2.98) could be sent faster (symbol time
τT, τ < 1) without loss in minimum Euclidean distance. In fact, the symbol
time can be reduced to 0.802T without any distance loss. In other words,
1/0.802 ≈ 25% more bits could be carried in the same bandwidth without
affecting the asymptotic error rate. He called this faster-than-Nyquist signaling
and the value 0.802T is called the Mazo limit. Even though the asymptotic error
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probability in optimal detection remains unaffected (above the Mazo limit),
FTN violates the Nyquist orthogonality criterion and consequently a controlled
amount of intentional intersymbol interference (ISI) is introduced. The Nyquist
orthogonality criterion states that in order to carry 1/T bits/s, a baseband
bandwidth of at least 1/2T Hz is required.

Due to significant spectral sidelobes, Foschini concluded in [36] that FTN
cannot be competitive. However, in his work the ISI support was limited to a
small duration. Since then, the concept of FTN has been extended in many
ways: The modulation can be coded, it can be nonbinary [37], in a general
way it also applies to nonlinear modulation [38], the pulse does not need to be
sinc(·) or even orthogonal. The concept can be applied in frequency as well as
in time, by placing OFDM-like subcarriers closer than orthogonality allows [39].
Extensions of the FTN idea to multicarrier setups were proposed in [40, 41,
42]. BER results show that for the same bandwidth consumption multicarrier
systems are superior to the single carrier system. In [43, 44] FTN receivers and
related issues are studied. Additionally, a chapter in [45] is devoted to FTN
signaling.

If the sinc(·) pulses arrive faster than 1/T , the Nyquist orthogonality cri-
terion is violated and ISI introduced. Hence, a more complex maximum-
likelihood sequence estimation receiver is required in order to eliminate the
effects of the intentional ISI. If the receiver is able to cope with the interfer-
ence, the spectral efficiency of the system will be improved. This is also true
for any other T -orthogonal pulse. In every case there will be a closest pack-
ing (a smallest τ and/or a closest subcarrier spacing) at which the minimum
Euclidean distance first falls below the isolated pulse value. This is the Mazo
limit to signaling with this h(t) and alphabet. In [43], limits for root RC pulses
with non-zero excess bandwidth β are derived. Additionally, [43] gives an early
study of receivers for FTN signaling. Mazo limits for other pulse shapes, in-
cluding those which are not orthogonal for any shift T , are derived in [46]. An
interesting problem from a mathematical point of view is to find the minimum
Euclidean distance of FTN signals. Some early work on this topic appears in
[47, 48]. An extension to non-binary signaling over ISI with a non-rational z-
transform is given in [49, 50]. In [49, 51, 52] it is shown analytically that FTN
capacity is often higher than the capacity of memoryless modulation. Some
of the major results from [49, 51, 52] will be stated in this section. In [53] it
is shown that binary faster-than-Nyquist signaling can, asymptotically in the
signaling rate, achieve the so-called PSD capacity defined as

CPSD =

∫ ∞

0

log2

(

1 +
2P

N0
|H(f)|2

)

df bits/s (2.99)
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Figure 2.14: System model of a serially concatenated communication system
with encoding and intersymbol interference. Π denotes an interleaver.

where P is the average signal power and P |H(f)|2 is the signal PSD. In (2.99),
|H(f)|2 is normalized to unit integral. Later in this section, we will put the
capacity in (2.99) further into the context. Results on precoding for FTN
appear in [54]. Concatenated coding systems based on FTN that operate close
to the theoretical capacity bounds were introduced in [55]. An example of a
serially concatenated communication system with encoding and intersymbol
interference is illustrated in Figure 2.14. In [56] FTN is for the first time
considered in a MIMO setup. According to [57], the pulse shape h(t) that
results in the most favorable Mazo limit is nearly Gaussian. Note that the
Gaussian pulse is not orthogonal for any shift kT . A method that improves
the spectral efficiency of a linear modulation system by reducing the spacing
between adjacent signals in both time and frequency domains, is, together with
some low-complexity detectors, proposed in [58, 59]. The application of time
and frequency packing to optical links has recently been considered in [60].
An extension of [59] to a more complex receiver structure appeared recently
in [61]. Spectrally efficient FTN-type communication systems together with
related hardware implementation issues are considered in [62, 63, 64, 65, 66].

The remainder of Section 2.5 is organized as follows. In Section 2.5.1 the
system model for FTN signaling is given. Section 2.5.2 considers the capacity
of FTN signals and presents some already existing capacity results.

2.5.1 System Model

Consider ordinary linearly modulated signals whose baseband form is

sa(t) =

∞∑

k=0

akh(t− kτT ), τ ≤ 1 (2.100)

where ak are real equiprobable independent and identically distributed data
symbols drawn from an alphabet Ω and h(t) is a real unit-energy T -orthogonal
baseband pulse. This signaling form with τ = 1 underlies many practical



Chapter 2. Basic Principles of Linear Modulation 39

modulations, e.g., TCM and the subcarriers in orthogonal frequency-division
multiplexing (OFDM) (in OFDM the data symbols ak are complex). The
signaling rate is 1/τT . By setting τ = 1 we obtain an orthogonal system. This
ISI-free signaling will be referred to as Nyquist signaling while the case τ < 1 is
called FTN signaling. Note that in the latter the signaling time is T = τT < T ,
i.e., there exists an integer n where

∫

h(t)h(t− nT ) dt 6= 0. (2.101)

Most often in this thesis the modulation pulse h(t) in (2.100) is much narrower
band than 1/2τT Hz and consequently severe ISI is introduced. Decoding of
signals at a signaling rate near the Mazo limit is relatively simple. However,
for smaller τ , leading to attractive combinations of bandwidth-energy efficiency
and, in particular, higher bit densities, the decoder must be more complex. If,
additionally, the signals are encoded, one needs to rely on iterative detection
schemes. Section 2.7 describes the principles of an iterative receiver structure
called turbo equalization.

Instead of transmitting faster, consider now transmission of wider pulses in
time, that is, pulses given by

hwide(t) =
√

τh(τt), (2.102)

where one keeps the transmission rate of 1/T . Since the widening factor is 1/τ ,
the new pulse is T-orthogonal where T = T/τ ≥ T . Consequently, the same
discrete-time model as before is obtained for the new system. In fact, both
systems are equivalent in terms of needed SNR versus bandwidth efficiency,
measured by the normalized bandwidth.

With IID symbols the PSD from (2.18) for signals of the form (2.100) be-
comes

Φsa
(f) =

σ2
a

τT
|H(f)|2 (2.103)

where

σ2
a = E[|ak|2]. (2.104)

By inserting f = 0 into (2.103), the average power P of an FTN transmission
equals
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P =
σ2

a

τT
. (2.105)

Furthermore, an AWGN channel follows (2.100). The received signal

r(t) = sa(t) + n(t) (2.106)

where n(t) is real white noise, is filtered with a filter matched to h(t) and
sampled each τT in order to produce the sequence

xk =

∫ ∞

−∞
r(t)h∗(t− kτT ) dt (2.107)

which, according to Section 2.2, forms a set of sufficient statistics for detection.
An equivalent discrete-time model of (2.106) is therefore

x = a ⋆ g + η

where, if gk 6= δ[k], the sequence g = [g−L, . . . , g0, . . . , gL] is ISI and η is a
sequence of colored Gaussian noise. Note that we in general do not encounter
finite ISI, i.e., there exists no number L such that gk = 0, k > L. Furthermore,
we have that

gk =

∫ ∞

−∞
|H(f)|2 ej2πkτTf df

=

∞∑

k=−∞

∫ 1/2τT

−1/2τT

∣
∣
∣
∣
H

(

f +
k

τT

)∣
∣
∣
∣

2

ej2πkτTf df

=

∫ 1/2τT

−1/2τT

∞∑

k=−∞

∣
∣
∣
∣
H

(

f +
k

τT

)∣
∣
∣
∣

2

ej2πkτTf df

=

∫ 1/2τT

−1/2τT

|Hfo(f)|2 ej2πkτTf df, (2.108)

where |Hfo(f)|2 is the folded pulse spectrum

|Hfo(f)|2 △
=

∞∑

k=−∞

∣
∣
∣
∣
H

(

f +
k

τT

)∣
∣
∣
∣

2

, −1/2τT ≤ f ≤ 1/2τT. (2.109)
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By applying a matched filter and sampling at the rate 1/τT the spectrum of the
received ISI sequence is folded around 1/2τT . This is the well-known spectrum
folding that occurs from sampling [17]. Note that any transfer function H(f)
that gives rise to the same ISI sequence g has statistically equivalent detection
properties. Therefore H(f) and Hfo(f) can be interchanged.

Let us conclude this section by formally stating the Mazo limit. We remind
the reader that the minimum Euclidean distance of a balanced equispaced
M -PAM alphabet and orthogonal transmission is given by the matched filter
bound in (2.42).

Definition 1. The Mazo limit is the smallest value τM that fulfills d2
min = d2

MF

when τ = τM.

For 2-PAM and root RC pulses from Section 2.1.5 with excess bandwidths
β = {0, 0.1, 0.2, 0.3} the Mazo limits, rounded off to three digits of precision,
are τM = {0.802, 0.779, 0.738, 0.703}, respectively.

2.5.2 The Capacity of FTN Signaling

Shannon showed in [3] that a signal of bandwidth W Hz spans ≈ 2WT in-
dependent dimensions during a time interval of T seconds. In other words a
bandlimited signal of W Hz is completely specified by a set of 2WT numbers
during T seconds. These numbers can be viewed as coordinates in a 2WT
dimensional space. Furthermore, Shannon proved that these numbers can be
transmitted by means of time shifted sinc pulses. Consequently, during T sec-
onds, roughly 2WT data symbols a = [a1, . . . , a2WT ] can be sent.

Consider now linearly modulated signals of the form (2.1) where the data
symbols {ak} are assumed to be equiprobable and IID. All possible sequences a

are allowed unless the sequence a is encoded. Then, the design of the underlying
code typically determines the subset of possible data sequences. Let the signals
have an average power P and a rectangular PSD in the interval [−W,W ] where
W is the one-sided width of the signal PSD. The highest transmission rate over
the AWGN channel in (2.45) with noise power spectral density N0/2 is given
by

C = W log2

(

1 +
P

WN0

)

bits/s. (2.110)

This is Shannon’s classical capacity result from [3]. If the signals have a smooth
PSD P |H(f)|2 it can be approximated with many rectangular pieces, small
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channels, which by application of integral calculus extends (2.110) to (2.99).
The term capacity is in this thesis reserved for signals with a PSD P |H(f)|
in AWGN while constrained capacity is the maximum information rate under
some restriction such as a certain symbol alphabet or FTN signaling. If we let
I(y;x) = h(y) − h(y|x) be the mutual information between the sequence y

and x, where h(·) is the differential entropy operator, the information rate is
defined as

I
△
= lim

N→∞
I(y;x)/N bits/ch.use (2.111)

where N is the sequence length. The capacity in (2.110) can in principle be
achieved by a transmitting sa(t) of the form in (2.1) with T = 1/2W [67], that
is

sa(t) =

∞∑

k=0

aksinc(t− k/2W ) (2.112)

where {ak} is a sequence of Gaussian data symbols and sinc(t) is the sinc
pulse in (2.38). However, since the sinc pulse is impractical, smoother pulses
such as the root RC pulse in Section 2.1.5 are used instead. Despite the extra
bandwidth, the optimal detection properties remain the same and so does also
the capacity in (2.110). Let us now compare the capacity in (2.110) with that
in (2.99) which is repeated here

CPSD =

∫ ∞

0

log2

(

1 +
2P

N0
|H(f)|2

)

df bits/s. (2.113)

In [49] it is shown that practical non-sinc T -orthogonal pulses h(t), antisym-
metric around the point (1/2T, |H(0)|2/2), can only increase (2.113) compared
to signaling with hsinc(t). Hence the capacity in (2.113) is higher than that
in (2.110). However, this capacity increase cannot be achieved by orthogonal
signals based on a non-sinc H(f). FTN, on the other hand, utilizes the full po-
tential of a given PSD shape [49]. The antisymmetric property of T -orthogonal
pulses was extended by Gibby and Smith into [68]

∞∑

k=−∞

∣
∣
∣
∣
H

(

f +
k

T

)∣
∣
∣
∣

2

= T, ∀f. (2.114)

Let us now derive the capacity of FTN signaling. Henceforth, the only
assumption on the data symbols is that {ak} are IID. Consider one of the
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discrete-time models ((2.52) or (2.54)) presented in Section 2.2 and let Pr(a) =
∏

Pr(a) be the probability mass function of the the data sequence a. Assume
also that N data symbols, aN = [a1, . . . , aN ], are to be transmitted. The
constrained capacity of a general ISI channel then equals

CDT
△
= sup

pa(a)

lim
N→∞

1

N
I(xN ;aN ) (2.115)

= sup
pa(a)

lim
N→∞

1

N
h(xN )− h(xN |aN ) bits/ch.use,

or the same expression with y instead of x. The subscript “DT” stands for
discrete time. With Gaussian inputs, [67, 69], the capacity in (2.115) is given
by

CDT =
1

2π

∫ π

0

log2

(

1 +
σ2

a

σ2
G(λ)

)

dλ (2.116)

where

G(λ) =
∑

k

gke−jλk =

∣
∣
∣
∣
∣

∑

k

fke−jλk

∣
∣
∣
∣
∣

2

= |F (λ)|2 (2.117)

is the Fourier transform of the ISI sequence g, here given in angular frequency.
In order to find the constrained capacity of FTN signaling, we need to find
G(λ) of the corresponding ISI. It can be shown that [49]

G(λ) =
1

τT

∞∑

k=−∞

∣
∣
∣
∣
H

(
λ

2πτT
+

k

τT

)∣
∣
∣
∣

2

=
1

τT

∣
∣
∣
∣
Hfo

(
λ

2πτT

)∣
∣
∣
∣

2

. (2.118)

Hence, G(λ) is proportional to the folded spectrum of |H(f)|2 around the
frequency f = λ/2πT . From (2.118) the folded spectrum satisfies

|Hfo(f)|2 = τTG(2πτfT ). (2.119)

By normalizing the constrained capacity in (2.116) by the signaling rate 1/τT
we get

CFTN
△
=

1

τT
CDT bits/s. (2.120)
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Finally, inserting (2.118) into (2.116), and performing a variable change, results
in

CFTN =
1

2πτT

∫ π

0

log2

(

1 +
PτT

σ2
G(λ)

)

dλ (2.121)

=
1

2πτT

∫ π

0

log2

(

1 +
P

σ2

∣
∣
∣
∣
Hfo

(
λ

2πτT

)∣
∣
∣
∣

2
)

dλ

=

∫ 1/2τT

0

log2

(

1 +
2P

N0
|Hfo(f)|2

)

df bits/s

where we have used that σ2
a = PτT and σ2 = N0/2. By setting τ = 1 in

(2.121) we obtain the constrained capacity of orthogonal or Nyquist signaling.
If we denote this capacity CN we obtain

CN =
1

2T
log2

(

1 +
2PT

N0

)

bits/s (2.122)

where we have used that |Hfo(f)|2 = T since G(2πτTf) in (2.119) equals 1
(no ISI). Under the same assumptions, the following theorem was proved in
[49, 52].

Theorem 1. Unless h(t) is a sinc pulse, there exists τ such that

CFTN > CN.

For h(t) = hsinc(t), CFTN = CN. Hence, by increasing the signaling rate
above 1/T for non-sinc T -orthogonal pulses, it is possible to achieve a higher
constrained capacity than with orthogonal signaling.

Note that by setting τ = 1/2WT in (2.121), the capacity CFTN is maxi-
mized, i.e., it equals the capacity in (2.113). In other words, by signaling at the
rate 1/2WT , no folding of the spectrum occurs in (2.121). For non-sinc h(t)
and a signaling rate of 1/T , the capacity in (2.121) is strictly lower than that in
(2.113). Additionally, a smaller τ than 1/2WT is meaningless with Gaussian
inputs. This is, however, not the case for discrete symbol alphabets. For more
FTN capacity results the reader is referred to [49, 70].
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2.6 General Linear Channels

In Chapters 4 and 5 of this thesis MIMO channels which constitute a more
general class of linear channels, are considered. A discrete-time model of a
general linear vector-channel is given by

y = Ha + w. (2.123)

where y is an Nr×1 received vector, H is an Nr×Nt, possibly complex-valued,
matrix that represents the linear channel and a is an Nt × 1 vector of trans-
mitted data symbols chosen from a constellation Ω. A linear communication
channel is characterized by the fact that the output signal, without noise, is
a linear mapping of the input signal. Gaussian noise is assumed throughout,
i.e., w is an Nr×1 vector of complex Gaussian noise samples w ∼ CN (0,Rw),
where Rw is the noise correlation matrix

Rw = E[ww∗]. (2.124)

The noise vector w contains colored noise samples if

Rw 6= N0INr×Nr
. (2.125)

Many different communication systems can be represented by the discrete-
time linear model in (2.123). In this section we will show that they merely differ
in the structure of the channel matrix H and the noise correlation matrix Rw.
Let us begin with ISI channels.

2.6.1 ISI Channels

The single carrier channel in Section 2.2 is a linear channel. The output of its
discrete-time representation is a convolution, a linear operation, of the channel
impulse response g or f in (2.52) and (2.54) respectively, and the input signal
a.

Consider now a finite ISI response g (Ungerboeck observation model) of
length 2L + 1, i.e. g = [g−L, . . . , g0, . . . , gL] and assume that there are N
symbols in the sequence a = [a0, . . . , aN−1]

T. For the sampling instances kT ,
k = 0, 1, . . . , N − 1, (2.52) can equivalently be expressed as

y = Ga + η (2.126)
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where the channel matrix G has the following form

G =













g0 . . . gL

g∗1 g0 . . . gL

...
. . .

g∗L g∗L−1 . . . gL

. . .

g∗L . . . g0













(2.127)

and

a =








a0

a1

...
aN−1








. (2.128)

The dimension of the channel matrix G is N×N since Nt = Nr = N . The noise
η is a vector containing colored Gaussian noise samples from (2.52). Finally,
the noise correlation matrix Rw is a Hermitian matrix where the element at
position (i, j) equals N0gi−j .

Consider now the Forney observation model (2.54) where the noise η is
whitened. The causal ISI response is given by f = [f0, . . . , fL] so that the
discrete-time linear channel model in (2.123) becomes

y = Fa + w (2.129)

where F takes the form

F =
















f0

...
fL . . . f0

. . .

fL . . . f0

...
fL
















(2.130)
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and w is a vector containing white Gaussian noise (WGN) samples. Since
Nt = N and Nr = N+L, the dimension of the channel matrix F is (N+L)×N .

In this thesis it is assumed that the ISI sequences g and f are perfectly
known at both the transmitter and the receiver. This directly implies that the
channel matrix H in (2.123) is perfectly known as well as the the noise correla-
tion matrix Rw. In the case of deterministic channels where the ISI sequence
is completely determined by the modulation pulse h(t), this assumption is rea-
sonable. However, in the case of frequency selective channels c(t), only a good
enough estimate of the channel can be expected. In digital subscriber lines
(DSL) it is possible to obtain reliable estimates of the communication channel
[71], which is not always the case for radio channels.

2.6.2 MIMO Channels

In the previous section, the mathematical model in (2.123) represents a time-
sampled sequence, i.e., the elements yk are sample values of the received signal
at different time instances k. In multiple-input multiple-output (MIMO) sys-
tems multiple antennas are used at the transmitter (Tx) and the receiver (Rx),
providing additional degrees of freedom in one time slot. Now y represents the
received signal across the receiving antenna array during a single channel use.
This idea of using multiple antennas at both the transmitter and the receiver
was introduced in [72, 73, 74] and further analyzed in, for example, [75, 76].

The channel matrix element hi,j at position (i, j) in H represents the chan-
nel impulse response between receiver antenna i and transmitter antenna j.
This is shown schematically in Figure 2.15 for a 2 × 2 MIMO system. In this
thesis only the case with no ISI is considered. A common assumption [77],
although not always realistic, is that the elements {hi,j} are independent and
identically distributed (IID) complex Gaussians, i.e., hi,j ∼ CN (0, σ2). The
noise sequence w in (2.123) is then assumed to be a sequence of white Gaus-
sian noise (WGN) samples, i.e., Rw = N0INr×Nr

. This model is the MIMO
counterpart of the Forney ISI-signal (2.54). However, in Chapter 4, we also
consider the MIMO counterpart of the Ungerboeck ISI-signal (2.52) given by

x = H†y (2.131)

where † throughout denotes the Hermitian transpose operator. It is common
to impose a constraint on the average energy of the transmitted symbol vector
a, that is

E[a∗a] ≤ P0. (2.132)
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h1,2

h1,1

h2,2

h2,1

Figure 2.15: System model of a 2×2 MIMO system with transmitter (Tx) and
receiver (Rx).

At the receiver, the vector y or x is observed across the Rx antenna array
and can now be jointly processed in order to estimate the transmitted symbol
vector a. However, a MIMO channel depends on the transmission environ-
ment which determines how fast the channel changes from one use to another.
These channel variations are usually characterized by the so-called coherence
time TC and the coherence bandwidth BC . If the variations are small, it is
possible to obtain reliable estimates of the channel. A popular method is to
send known symbols, pilot symbols, from the transmitter to the receiver [78].

After decoding, the receiver obtains an estimate Ĥ of the true channel H. The
accuracy of the estimate can be improved by devoting more resources to the
training phase but this in general leads to degraded bandwidth efficiency. The
two most common techniques for obtaining an estimate of H are feedback and
channel reciprocity. In the feedback technique, Ĥ is sent from the receiver to
the transmitter on a feedback link. If the channel varies rapidly, more frequent
feedback of the estimates Ĥ is required. In channel reciprocity it is assumed
that the estimated channel from the transmitter to the receiver, the forward
channel, is equivalent to the channel from the receiver to the transmitter, the
backward channel. However, in reality the two channels are not necessarily
close in time and frequency [77].

Even though perfect channel estimates Ĥ are difficult to obtain in practice,
in this thesis we always assume that Ĥ = H.
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2.7 Basic Principles of Turbo Equalization

Figure 2.16 shows a serially concatenated communication system and the corre-
sponding iterative receiver structure for turbo equalization. Turbo equalization
was first proposed in [10] for serially concatenated schemes where the mapper
together with the ISI channel act as the inner encoder. The method, originally
developed for turbo codes (concatenated convolutional codes), is now applied
to various communication problems. Note that, even though only serially con-
catenated schemes are treated in this thesis, the turbo principle [9] can also be
applied to parallel concatenations.

The iterative scheme is composed of two constituent blocks, the inner and
the outer soft-input soft-output decoders. The inner ISI-decoder is commonly
referred to as the equalizer. Additionally, an interleaver (and de-interleaver)
rearranges the symbols within a block and in that way decorrelates errors be-
tween the nearest symbols. Since the two constituent blocks share the symbol
sequence a (input to the inner decoder and a shuffled version of the output
from the outer decoder) the idea behind the iterative process is to let the two
jointly agree on a final decision on â, not û. By exchanging soft information in-
stead of only hard symbol estimates, the BER performance is in general greatly
improved. However this usually increases the complexity of the decoding al-
gorithms. The situation is made worse by the need to perform equalization
and decoding several times for each data block. In Figure 2.16, and frequently
throughout this thesis, convolutional codes are employed for the outer code
while the intentional ISI introduced by FTN signaling most often acts as the
inner ISI mechanism.

There are other possible detection strategies for the serially concatenated
scheme. Optimal MAP/MLSE-based receivers that directly output û from
r suffer from high computational load since, due to the interleaver, the state
space is exponential in the block size. This fact restricts the MAP/MLSE-based
approach to rather small block sizes. A non-iterative simple solution would be
to first equalize the ISI channel with a hard-output equalizer which produces
the estimate â. Now, in order to obtain a final output û, the outer decoder uses
a de-interleaved version of the estimated sequence, Π−1(â), as input. The main
drawback with this method is that the inner decoder generates hard outputs.
An obvious improvement is therefore to replace the hard-output inner decoder
with a decoder that generates soft values. There are many possible candidates
in the literature but an often used method is the MAP-based BCJR algorithm.
Note that the outer decoder needs to decode a probabilistic channel in order
to produce the final output û.

In general, optimum and suboptimum MAP-based techniques are used for
equalization of the ISI channel. A key objective in this thesis is therefore the
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Figure 2.16: Serial concatenated communication system with an iterative re-
ceiver performing turbo equalization.

complexity reduction of such algorithms. All approaches use the same iterative
structure and vary only in the type of equalizer. The equalizer in Figure 2.16
computes, at each depth k, the APPs Pr(ak = a|r) where a ∈ Ω and r is
the received sequence. For simplicity, in this thesis binary PAM (2-PAM)
is assumed, i.e., the signal constellation alphabet Ω is Ω = {+1,−1}. The
extrinsic LLRs, Lext(a), which are fed to the decoder as a priori information,
can now be found by subtracting the a priori LLRs, L(a), from the a posteriori
L-values generated by the equalizer, i.e.,

Lext(ak) , log

(
Pr(ak = +1|r)

Pr(ak = −1|r)

)

− log

(
Pr(ak = +1)

Pr(ak = −1)

)

. (2.133)

Note that the a priori LLRs are provided by the decoder but, since there is no a
priori information available in the initial iteration, we have that L(ak) = 0,∀k.
The independence assumption (ideal interleaver and large block sizes) together
with the concept of treating extrinsic information as a priori are the two main
features of any system applying the turbo principle. Extrinsic information is,
in the probabilistic domain, generated information about a certain symbol ak

when only accounting for information about the other symbols aℓ, ℓ 6= k.
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Now consider the outer decoder. At each depth k, the decoder computes
the APPs Pr(vk = a|L(v)) given only the a priori LLRs L(v) = Π−1(Lext(a)).
The a priori information is subtracted in order to obtain the extrinsic LLRs

Lext(vk) , log

(
Pr(vk = +1|L(v))

Pr(vk = −1|L(v))

)

− log

(
Pr(vk = +1)

Pr(vk = −1)

)

(2.134)

which are then passed to the inner decoder to be used as a priori information.
After an initial detection of a received block, the iterative process is repeated
a predefined number of iterations (alternatively a suitably chosen termination
criterion stops the process). In the final iteration, the outer decoder only
computes the data bit estimates

ûk , arg max
uk

Pr(uk = u|L(v)). (2.135)

In this thesis, only the optimal (in terms of BER) MAP symbol detector,
realized using the BCJR algorithm, is considered for decoding. Since BCJR
equalization for large constellations Ω and/or long ISI responses is too complex
to be carried out, various reduced complexity methods based on the same
algorithm will be used for the equalizer. Finally it is important to note that a
turbo equalization setup with full complexity is reduced complexity compared
to the optimal MAP/MLSE detector. More material on turbo equalization can
be found in the standard references [79, 80, 81, 82, 83, 84]. For LDPC outer
codes, the message-passing algorithm is used.

2.8 EXIT Charts

A popular tool, based on the concept of extrinsic information, for analyzing
the behavior and performance of turbo decoding in the fall-off region is the
extrinsic information transfer chart, commonly called the EXIT chart. This
technique enables the selection of appropriate equalization methods and error
correction codes for a given scenario. EXIT charts, developed by Stephan ten
Brink [85], plot the mutual information of the component soft-input soft-output
decoders in a turbo system where the soft output of one decoder becomes the
a priori input of the other. For the next iteration their roles are interchanged.
Note that only the extrinsic LLRs are used as output (a priori input value
is subtracted from the APP soft output LLR) which avoids propagation of
known information. Even though there exist other related methods based on
variances and BERs, the powerful EXIT chart technique will be frequently used
throughout this thesis.
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Figure 2.17: Iterative receiver structure.

Now consider serially concatenated systems as depicted in Figure 2.14. The
corresponding iterative receiver structure with the component decoders (inner
and outer) is shown in Figure 2.17. The EXIT chart technique views the com-
ponent decoders as non linear LLR transforming elements since the conditional
extrinsic LLRs at their input are non linearly transformed into hopefully bet-
ter quality outputs. Denote now the sequence of extrinsic LLR inputs to each
component decoder LA

ext(a) and the corresponding output sequence LE
ext(a).

A meaningful iteration implies now that the quality of LE
ext(a) must be better

than the quality of LA
ext(a) where quality of L

A/E
ext (a) is measured by the mutual

information I(L
A/E
ext (a);a). In [85] and based on empirical results, ten Brink

suggested that the extrinsic LLRs can be modeled with the following Gaussian
distribution

L
A/E
ext (a[k]) = µa[k] + n[k] (2.136)

where µ is the mean value and n[k] is an independent Gaussian random variable
with variance σ2 and mean zero. Further a standard assumption is that

µ =
σ2

2
.

By applying the suggested model (2.136), independent (ideal interleaver as-
sumption) a priori extrinsic LLRs LA

ext(a) can be generated. The input-output
behavior of each component decoder can now be analyzed. Additionally, the
mutual information can be computed as [85]

IA = I(LA
ext(a);a) =

1√
2πσ

∫ ∞

−∞
e−(λ−µ)2/2σ2

(1− log2(1 + e−λ)) dλ.
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Figure 2.18: EXIT chart example of a serially concatenated system consisting of
the outer (7,5) convolutional code and the inner ISI mechanism. The iterative
decoding trajectory implies that 4 iterations are performed in the decoder.

Since the output sequence LE
ext(a) is not a sequence of independent Gaussian

variables, the computation of I(LE
ext(a);a) is more difficult. There are no

analytical formulas for the output extrinsic information at the moment, other
than in very simple cases. Consequently, I(LE

ext(a);a) must be found through
computer simulations of the component decoders. The computation of IE

proceeds as follows:

1 Generate Gaussian LLRs LA
ext(a) with mutual information I(LA

ext(a);a) =
IA by following the method proposed in [85].

2 Provide the corresponding received signal to the decoder (only in the case
of the inner decoder) and find the output extrinsic LLRs LE

ext(a) using
the Gaussian LLRs from Step 1 as input.

3 Estimate the empirical distribution of LE
ext(a) denoted pE(λ|a).

4 Compute the output extrinsic information IE using the following formula
[85]:
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IE =
1

2

∑

a=±1

∫ ∞

−∞
pE(λ|a) log2

(
2pE(λ|a)

pE(λ|a = −1) + pE(λ|a = +1)

)

dλ.

Note that the output extrinsic information IE is an empirical function of the
component decoder itself, the input extrinsic information IA and, in the case
of the inner decoder, Eb/N0. This is denoted as

IE = Tinner(x), 0 ≤ x ≤ 1

where the function argument x is the input information IA. The corresponding
notation for the outer decoder is

IE = Touter(x), 0 ≤ x ≤ 1.

Figure 2.18 shows an EXIT chart example of a serially concatenated system.
The two component decoders exchange extrinsic information, which can be
seen in the two-dimensional chart. The EXIT function for the inner decoder,
Tinner(x), is plotted with its input extrinsic information IA on the horizontal
axis and its output extrinsic information IE on the vertical axis. The function
representing the outer decoder, on the other hand, is plotted with IA on the
vertical axis and IE on the horizontal axis, i.e., the lower curve is a reflection
of Touter(x). The decoding trajectory can now be followed by stepping between
the two curves in the following manner:

Iteration 1: Tinner(0) = I inner
E = Iouter

A

Touter(I
outer
A ) = Iouter

E = I inner
A

Iteration 2: Tinner(I
inner
A ) = I inner

E = Iouter
A

Touter(I
outer
A ) = Iouter

E = I inner
A

...
...

...
...

...
...

The iterative process will converge to the intersection point only if there is an
open tunnel between the curves and if the number of performed iterations is
sufficient. One complete iteration in the chart is represented with the combina-
tion of one vertical and one horizontal line. Note that the decoding trajectory
predicted by an EXIT chart is only accurate for large block lengths. More
complete information on EXIT charts can be found in [86, 87, 88, 89, 90].



Chapter 3

Reduced-Complexity
Receivers for Strongly
Narrowband ISI Introduced
by FTN Signaling

This chapter proposes new M-algorithm BCJR (M-BCJR) algorithms for low-
complexity turbo equalization and applies them to severe intersymbol interfer-
ence (ISI) introduced by faster-than-Nyquist signaling. These reduced-search
detectors are evaluated as detectors over the uncoded ISI channel and in iter-
ative decoding of coded FTN transmissions. In the second case, accurate log
likelihood ratios are essential and therefore a 3-recursion M-BCJR that provides
this is introduced. Focusing signal energy by a minimum phase conversion is
also essential; an improvement to this older idea is proposed. The new M-
BCJR algorithms are compared to reduced-trellis VA and BCJR benchmarks
based on the offset label idea. Additionally, this chapter considers various off-
set label strategies and chooses the best performing one (in terms of BER) as a
benchmark for the proposed M-BCJRs. The FTN signals carry 4–8 bits/Hz-s
in a fixed spectrum, with severe ISI models as long as 32 taps. The general
conclusion of the chapter will be that the combination of coded FTN and the
reduced-complexity BCJR is an attractive narrowband coding method. This
chapter is partly based on [91].

55
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3.1 Problem Under Consideration

This chapter investigates the design and complexity of receivers when a con-
volutionally coded transmission is strongly band limited and the receiver is of
the soft-input soft-output type. The modulation method is faster-than-Nyquist
(FTN) signaling, i.e., linear modulation with a baseband pulse h(t) according
to

s(t) =

√

Es

T

∑

k

akh(t− kτT ), τ ≤ 1 (3.1)

where {ak} are binary independent and identically distributed (IID) symbols
with zero mean and unit variance, Es is the average modulation symbol energy,
and h(t) is an arbitrary unit energy T -orthogonal pulse. An additive white
Gaussian noise (AWGN) channel with noise power spectral density N0/2 follows
s(t). Form (3.1), with τ = 1, underlies many practical modulations.

The objective of this chapter is two-fold: To explore iterative receivers for
coded narrowband FTN signaling and to find new reduced-complexity BCJR
algorithms for use in iterative decoding. The new algorithms follow the well-
known M-algorithm idea, meaning that the BCJR recursions are based only
on the M dominant terms at each trellis stage. In an iterative scheme log
likelihood ratios (LLRs) are passed around between two component decoders
based on the BCJR algorithm. The quality of the LLRs strongly affects perfor-
mance. Unfortunately, the M-algorithm degrades the LLR quality. However,
signals can be pre-processed to make better use of the retained M terms in the
BCJR recursions. The contributions of this chapter are improved minimum
phase modeling, new BCJR and M-BCJR algorithms that produce high qual-
ity LLRs, together with test results for coded FTN. The outcome is receivers
for narrowband coding that work reasonably close to the optimal receiver with
practical complexity.

Since FTN signals are continuous, a receiver contains a matched filter, sam-
pler and possibly a post filter, which together reduce the signaling to a discrete-
time convolution of the data [a0, a1, . . .] (binary in this chapter) with the ISI
tap set f = [f0, f1, . . . , fL]. This provides a 2L-state trellis for the channel.
Suitable receiver models are derived in Section 3.2, which have the property
that zero-mean IID Gaussians with variance N0/2 are added to the discrete
convolution values. The FTN signaling is applied in two ways, by itself as an
uncoded narrowband communication system and as the inner ISI mechanism in
a coded system with iterative decoding. These are shown schematically in Fig.
3.1. The first embraces the elements in the dashed box, and will be referred to
as “simple detection” of ISI while the second is turbo equalization [10].
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Figure 3.1: Turbo equalization with a simple detection inner coder (dashed
box).

Since the intentional ISI introduced by FTN with small τ is severe, it is
necessary to reduce the complexity of the ISI-BCJR block in Fig. 3.1. Coded
FTN offers an attractive combination of bandwidth reduction and coding gain,
but a reasonable receiver is needed. Reduced complexity can be achieved in
two basic ways: By reducing the state size of the model f , a reduced-trellis ap-
proach, or by reducing the search of a given trellis, a reduced-search approach.
This chapter mainly focuses on the second and uses the first as a performance
benchmark. In Chapter 5 on the other hand, optimal channel shortening de-
tectors that belong to the first class, are considered. Early work with reduced
search decoders primarily treats non-iterative applications where log likelihood
ratios are not needed. However, in iterative detection the decoder needs to
produce soft information about the symbols. An efficient but impractical (for
large L) implementation is the well-know BCJR algorithm [11]. A selection of
papers on M- or other reduced complexity BCJRs is [13, 92, 93, 94, 95, 96]. A
factor graph based approach has been presented in [97].

It has been known for some time that the receiver front end processing
should provide the reduced-search detector with a minimum phase input (see
[92, 98] and the more recent [96, 99]). A straightforward solution is to cascade
the matched filter/sampler by an all-pass filter that produces a max phase out-
put, and then reverse the output frame. Minimum phase moves energy to the
front of the ISI model, which directs the reduced search more efficiently (mini-
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mum phase will not improve a full 2L-state Viterbi algorithm (VA) or BCJR).
Energy focusing also aids reduced-trellis decoders, and in order to have a fair
benchmark it will be employed there too. Section 3.2 discusses the minimum
phase concept further, and proposes a novel extension to it that focuses energy
in a more favorable way than simply calculating the mathematically correct
minimum phase model.

An important role in this chapter is played by the normalized minimum
squared Euclidean distance d2

min between two signals of form (3.1). The error
probability of maximum likelihood simple detection of the {ak} tends in loga-
rithm to meQ(

√

d2
minEs/N0), asymptotically in the ratio Es/N0, where me is

a multiplicity factor that depends on the most likely error events and whether
bit error rate (BER) or event error rate (EER) is of interest. A union bound es-
timate formed from events at several distances near d2

min is a good estimate for
simple detection of ISI at moderate to high Es/N0. Some details on bounding
and distance finding are given in Section 2.2 but more complete results appear
in coding texts, e.g. ref. [20]. As the state size of a reduced-complexity VA
or BCJR algorithm gets reduced, its error rate will at some point depart from
this ML estimate. Distance-based estimates are thus essential for deciding the
minimum required size of an algorithm. For binary {ak}, d2

min ≤ 2, and the
special case d2

min = 2 means that the ISI-affected signal can be detected with
the same log error probability as antipodal signaling except for the factor me;
that is, asymptotically the effect of the ISI can be removed.

For encoding, this chapter only considers convolutional codes. Above a
certain Es/N0, called the threshold, it can be shown that the iterations converge
to the BER of the convolutional code alone over an antipodal (ISI free) channel
with the same Es/N0. Below this threshold, convergence is to a much higher
BER.

According to Chapter 2 the BCJR algorithm consists of forward and back-
ward linear recursions, instead of the VA’s unidirectional add-compare-select.
As such, its behavior is rather different from the VA’s. There is also a major
difference between an algorithm that calculates full LLRs and one that makes
decisions about bits, i.e., calculates the LLR sign. Accurate LLRs are essen-
tial in iterative decoding of FTN signals and producing them is a considerable
challenge for the M-algorithm. Earlier work on this subject appears in [96].
However, it is concluded here that the key to high quality LLRs is to add a
third, low complexity recursion.
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3.1.1 Three Reasons for FTN

The algorithms in this paper apply to general ISI, but the intentional ISI
introduced by FTN signaling is interesting for several reasons.

(i) It is severe, meaning that it has a combination of large state space,
small d2

min, and z-plane zeros on or near the unit circle. It is difficult to assess
the effect of complexity reduction unless there is significant complexity to
reduce. In Sections 3.4 and 3.5 it is found that many of the ISI models in the
literature provide a too easy target for reduction.

(ii) FTN is also interesting for theoretical reasons. According to Section
2.5, the signals have a fixed PSD shape, given by the Fourier transform of h(t)
in (3.1). Such signals have a Shannon constrained capacity for the PSD, given
by

∫ ∞

0

log2

(

1 +
2P |H(f)|2

N0

)

df,

where P is the total power and P |H(f)|2 is the signal PSD. In general, this
capacity cannot be reached by codes based on orthogonal pulses with PSD
P |H(f)|2, such as the coded modulations and turbo codes in common use.
Recently it has been shown that asymptotically as τ → 0, this capacity can
be achieved with binary FTN signals [53]. Studies of best convolutional codes
have demonstrated that M-BCJR iterative decoders reach to 1–2 dB from this
PSD capacity, with complexity and block length comparable to other iterative
decoding [100].

(iii) A third reason for FTN signals is that they provide a proper exper-
imental design for narrowband signaling. This chapter explores the behavior
of reduced BCJRs as the bandwidth gets reduced and decoding becomes more
complex. With narrowband signals receiver error performance is sensitive to
the entire shape of the signal PSD, not just to a measure like 3 dB bandwidth.
Minimum distance studies show [20] that removal of only a small power from
the outer spectrum can change the minimum distance of a signal set signifi-
cantly; this is the “escaped distance” problem ([20], Chapter 6). These effects
grow more pronounced as the bit density carried in bits/Hz-s grows. If a small
extra power appears in the stopband—for example, through too-early trun-
cation of the model f—receiver error rate can improve, and give a false test
result for that model. FTN signals provide a way to increase the transmission
bit density, by reducing τ , while maintaining the same PSD shape.
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3.1.2 The Choice of FTN Pulse Shape

Although any FTN pulse shape h(t) could be taken, in this chapter h(t) is
the unit-energy root raised-cosine (rRC) T -orthogonal pulse with 30% excess
bandwidth. Its spectrum is zero outside ±1.3/2T Hz. Setting τ = 1 gives the
widely used rRC orthogonal pulse. As τ drops below 1, pulses are sent “faster”
but the PSD shape remains the same, namely, a raised cosine. The bit density
in the uncoded case is 2/τ data bits/Hz-s (taking 3 dB bandwidth as a scale
unit). The asymptotic error rate remains Q(

√

2Es/N0) for τ ≥ .703, the Mazo

limit. Thereafter, it is ≈ Q(
√

d2
minEs/N0), where d2

min declines with τ . The
Mazo limit itself depends on the pulse excess bandwidth, i.e., d2

min will fall
below 2 at a different τ . Optimizing h(t) within a suitable framework is an
interesting future topic but some work on this subject is given in Section 3.7.

The remainder of this chapter is organized as follows. Section 3.2 presents
a suitable receiver front end and an improved discrete-time model, that yield
white noise and easy control of spectrum and minimum phase. In Section 3.3
benchmark offset VA and BCJR for severe ISI are considered. Sections 3.4
and 3.5 present and evaluate novel M-BCJR algorithms for simple detection
and iterative decoding. Other M-BCJR branching strategies are presented
in Section 3.6 while Section 3.7 considers the FTN pulse excess bandwidth.
Section 3.8 summerizes the chapter.

3.2 Generating Discrete-Time System Models

The conversion of continuous FTN signals to discrete time is considered in
this section. Many methods are possible, and by choosing one the discrete-
time signal model f seen by the detector/decoder is created. When choosing a
method for this chapter, three priorities are considered: Signals with spectral
zero regions must be handled in an accurate, straightforward way, noise at the
detector input should be white, and the model should be minimum phase.

In this chapter, the following model of the conversion to discrete time
(henceforth called “conversion/model”) is adopted. This model was introduced
in [101]. It assumes linear modulation by h(t) at rate 1/τT and an AWGN
channel, and then processes the signal according to Figure 3.2.

The filter B(z) creates a maximum phase output, which is reversed block-
wise to form a minimum phase output. The matched filter is matched to some
pulse φ(t) and sampled at the faster rate 1/τT . Let {φ(t− jτT )}, j an integer,
be an orthonormal basis for h(t), such that

h(t) =
∑

cjφ(t− jτT ) (3.2)



Chapter 3. Reduced-Complexity Receivers for Strongly Narrowband ISI
Introduced by FTN Signaling 61

DETECTOR
ALLPASS FILTERMATCHED FILTER

FRAME REVERSE
B(z)φ∗(−t)

r(t) a

kτT

y

Figure 3.2: Model of the conversion to discrete time.

where

cj =

∫

h(t)φ(t− jτT ) dt. (3.3)

The basis pulse φ(t) is chosen so that {cj} are the energy-normalized samples
h(jτT ) of h(t).1 The pulse h(t) is infinite-response and time-symmetric, and
there is a J such that c = {cj}, j = −J, . . . , J will capture all but δ of the pulse
energy, any δ > 0. Since the {φ(t − jτT )} are τT -orthonormal, the matched
filter samples satisfy two important properties:

• Filtered noise samples are white Gaussian random variables

• Euclidean distance between two noise-free continuous signals from (3.1)
can be calculated from their samples.

Two other well-established conversion/models in the literature are the
whitened matched filter (WMF) model (also known as the Forney model) and
the Ungerboeck model. In the Ungerboeck observation model, the receive
filter is matched to h(t) and sampled each τT . There follows no whitening;
instead a special detector works with colored noise. A BCJR algorithm for the
Ungerboeck model was explored in [34]. The sampler creates a discrete time
model of the channel and the FTN and its outputs x are sufficient statistics for
estimating a. According to Section 2.2, they satisfy x = a ⋆ g + η; expressed
through z-transforms this is

X(z) = A(z)G(z) + N(z). (3.4)

Here g is the sampled autocorrelation function of h(t),

1A condition for this is that the Fourier transform of φ(t) is constant over the bandwidth
of h.
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Figure 3.3: An example of a 4th-order FIR filter.

gk =

∫

h(t)h(t + kτT ) dt (3.5)

and η is colored Gaussian noise with correlation sequence gN0/2.
The WMF receiver filter is also matched to h(t) and sampled each τT . How-

ever, there follows a whitening filter. The whitening filter decorrelates η and
is constructed from g by spectral factorization of G(z) into V (z)V ∗(1/z∗); for
details see Section 2.2.1 and [17, 49]. After whitening by the filter 1/V ∗(1/z∗),
what remains can be expressed as ỹ = a ⋆ v + w or in z-transform

Ỹ (z) = A(z)V (z) + W (z) (3.6)

where w is white Gaussian noise with variance N0/2. The so-called WMF
model of the channel is V (z), and v represents causal ISI with the property
v[n] ⋆ v[−n] = g.

In fact, many spectral factorizations are possible. Since g is a correlation,
the factorization can take place such that V ∗(1/z∗) has zeros within the unit
circle; the whitener 1/V ∗(1/z∗), implemented as a finite impulse response (FIR)
filter, is thus stable and the channel model becomes V (z) with all zeros outside
the unit circle. In signal processing, a FIR filter is a filter whose impulse
response is of finite duration, i.e., it settles to zero in finite time. FIR filters
can be both discrete-time and continuous-time as well as digital or analog.
The impulse response of an Nth-order discrete-time FIR filter lasts for N + 1
samples before it settles to zero. A 4th-order FIR filter is illustrated in Figure
3.3.

The model V (z) above is in fact the maximum phase model for g, which
is a strong inconvenience for reduced decoders. However, it can effectively be
converted to a minimum phase model by decoding the signal blocks backwards.
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We thus can construct a practical whitener and minimum phase discrete model
provided that there exists V (z) with all zeros outside the circle. This is, how-
ever, often not directly possible with FTN signaling for a fundamental reason.
Important practical pulses h(t), such as the root raised cosine (root RC), have
spectrum equal to zero outside a certain bandwidth. For example, the root
RC pulse with excess bandwidth β is zero outside (1 + β)/2T Hz. In FTN
signaling at the higher rate 1/τT , this value decreases in comparison to the
folding frequency 1/2τT , and there will eventually be a null zone in the range
((1 + β)/2T, 1/2τT ) Hz. This prohibits the Forney observation model; the ISI
v can at most synthesize a countable number of frequency nulls. The spectrum
|H(j2πf)|2 is |G(ej2πf )|, and thus a finite order G(z) can place spectral zeros
at only finitely many frequencies.

Many practical FTN cases fall into this difficulty. One solution is to find a
finite G(z) approximation with quartets of zeros on the unit circle. The zeros
must occur in quartets because V (z) and V ∗(1/z∗) each require a conjugate
pair. The model may then be refined by splitting the quartet of zeros so that
one conjugate pair is slightly inside the circle and one is outside. Note that
the adopted conversion/model, illustrated in Figure 3.2, does not fall into this
difficulty. The received noise samples are already white, hence there is no need
for whitening.

Chapter 4 analyzes the effect of Ungerboeck and Forney metrics on the
BER performance for receivers of the M-algorithm type.

3.2.1 Improving the Minimum Phase Model

Turning to the allpass B(z), in the first instance the B(z) that makes f max-
imum phase is sought. Allpass filters affect neither the statistics of the noise
(it is still white) nor the minimum distance of a signal set ([20], Chapter 6).
This is true for any allpass. Maximum phase is achieved by a particular B(z),
the one that reflects outside the unit circle the zeros {zi} of C(z) =

∑
cjz

−j

that lie inside the circle; that is, the poles of B(z) lie at {zi} and the zeros lie
at {1/zi}. Zeros of C(z) on the unit circle are not reflected.

With a reduced-complexity detector, there in fact exist B(z) that improve
the error rate even more than the mathematically correct B(z). Reduced-
complexity algorithms need a steep energy growth in the model taps f . Suppose
that B(z) produces a more rapid growth, but also a length-Kp low-energy
precursor. Since the precursor energy is low, the algorithm can ignore it with
almost no effect, i.e., it can work with a f whose first Kp taps are set to zero.
Consequently the detector is slightly mismatched to the true channel model.
The key issue is: For a given complexity does the better performance exceed
the loss from the mismatch. This is a major optimization problem. However,



64 Reduced Receivers for Faster-than-Nyquist Signaling and General ...

−5 0 5 10 15
−0.4

−0.2

0

0.2

0.4

0.6

0.8

30% rtRC min phase (τ=1/2) 

super min phase 

Figure 3.4: Illustration of super minimum phase modeling at FTN τ = 1/2.
Mathematically correct minimum phase response f based on 61 pulse samples
(circles); super minimum phase response (squares).

this section lists specific B(z) found through extensive searching. An M-BCJR
algorithm working with a model f generated by these B(z) can achieve the
same bit error rate with 2–4 times smaller M . Such an improved model will be
called super minimum phase.

The super minimum phase B(z) leads to significant BER improvements.
The physical decoder/detector remains the same, except that it runs Kp stages
behind the present trellis stage and it computes branch labels ignoring the pre-
cursor. This Kp-delayed decoding is an essential element of the super minimum
phase method.

An illustration of minimum and super minimum phase models f for the
30% rRC FTN pulse stretched in time by τ = .5 is now given. The central
pulse samples are (note that these are not plotted in Figure 3.4)

{cj} = {h(jτT )} = {. . . , .040,−.109,−.053, .435, .765,

.435,−.053,−.109, .040, . . .} (3.7)
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The maximum phase conversion of 61 of these, reversed, is plotted in Fig. 3.4.
Now consider only the center-most 9 samples, the ones between the dots in
(3.7). With only these, the reversed max phase conversion is

{.375, .742, .500,−.070,−.216, .014, .077,−.032, .004} (3.8)

and the B(z) that creates it is

B(z) =
.107− .561z−1 + z−2

1− .561z−1 + .107z−2
. (3.9)

Even though the energy of the new model (3.8) rises faster it lacks the re-
quired PSD. If the full model (3.7) is instead filtered by the B(z) from (3.9),
the outcome will have the correct spectrum, since B(z) is an allpass. The sig-
nificant parts of the outcome are plotted (squares) in Fig. 3.4. The values at
times 0, . . . , 8 are nearly identical to (3.8); what is added is a precursor and the
values at 9, 10, . . .. The latter points will not affect the M-BCJR complexity.
The precursor however increases its complexity but if it can be ignored with-
out damaging the error performance, this new B(z) will be a superior allpass
because it leads to a faster rise of the main ISI model energy.

Figure 3.5 plots the improved FTN models f presented to the receiver
processor for the main tests in this chapter. The unit-energy models for τ =
.703, .5, .35, .25 are respectively

f = [.553,.793,−.084,−.171,.154,−.064,.006,.010,−.012,.015,

−.016,.013,−.008] (3.10)

f = [−.005 ,−.003 ,.007 ,−.011 ,−.001 ,.034 ,−.019 ,.003 ,.375,.741,

.499,−.070,−.214,.019,.087,−.020,−.028,.017] (3.11)

f = [.025 ,.012 ,−.024 ,.008 ,.191,.464,.623,.506,.176,−.123,

−.196,−.075,.060,.080,.013,−.035,−.022] (3.12)

f = [−.010 ,−.013 ,−.007 ,.005 ,.011 ,.004 ,−.008 ,.001 ,.060,

.181,.339,.473,.520,.443,.262,.047,−.120,−.182,−.138,

−.037,.055,.092,.070,.018,−.025,−.037,−.021,.003,

.016,.012,.0004,−.008]. (3.13)
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Figure 3.5: Improved unit-energy discrete-time channel models, as seen by the
ISI equlizer. FTN τ = .703, 1/2, .35, 1/4.

The precursor values are written in italic in (3.11)–(3.13); all detectors
replace these with zeros and work at a delay Kp. The first τ is the Mazo limit
for the 30% rRC h(t). The last three models are super minimum phase, with
the allpass filter found from a search among B(z) obtained from truncations of
h(t). Note that they have taps in the pattern [low energy precursor] + [high
energy part] + [long decaying tail]. Insignificant taps before and after have
been removed.2 The test of whether too many taps have been dropped is the
model spectrum, and these are plotted for each τ in Figure 3.6. Compared to
the ideal rRC spectra, spectral sidelobes must appear, but these are down at
least 30 dB. Models with sidelobes down only 15–20 dB can have significantly
better minimum distance than the true FTN signals, and the receiver will show
an artificially low bit error rate.

The τ = .5 case generates mild ISI and a 50% bandwidth reduction; τ = .35
is severe ISI and a reduction to ≈ 1/3; the .25 case is extreme ISI and a
reduction to 1/4. The signal sets created by these ISIs have square minimum
distances of 1.02, .56 and .20, which are energy losses of 2.9, 5.5 and 10.0 dB
compared to antipodal signaling.

2In tests the transmitted signal generation uses a few extra small taps, as insurance that
the PSD is maintained.
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Figure 3.6: Spectra of the channel models (dashed), compared to ideal 30%
root RC spectra (solid); FTN τ = 1/4, .35, 1/2, .703, 1. X-axis is 2fT .

3.2.2 Other ISI Models

The following non-FTN discrete-time models from the literature will be used to
compare with earlier work. They are much simpler, and the proposed M-BCJR
will need to pursue only 2–3 paths to achieve near-ML performance. The model

f = [
√

.45,
√

.25,
√

.15,
√

.1,
√

.05] (3.14)

features in early turbo equalization papers [10, 93]. It is minimum phase and
d2
min = 1.12; the asymptotic VA equalizer EER is ≈ .5Q(

√

1.12Es/N0). The
model

f = [.1762, .3163, .4765, .5326, .4765, .3163, .1762] (3.15)

appears in several papers [102]; it is minimum phase and has d2
min = .2616.

This tap set is said to have the least d2
min of any L = 6 set with binary input.

The model [1, 0, 1, 2, 1, 0, 1]/
√

8 was studied in [96]. It has d2
min = 2. In this

chapter it will appear in its minimum phase form, which is

f = [.670, .366, .178, .443, .379. − .102, .187]. (3.16)

Note that the super minimum phase idea is not useful with these short models.
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3.3 Reduced-Trellis Benchmarks: The Offset

BCJR and Viterbi Algorithms

This section sets up reduced-trellis benchmark detectors based on the full VA or
BCJR, applied here to simple detection of uncoded ISI. Section 3.5 compares
the benchmark error performance to the proposed reduced-search M-BCJR
methods. Finding a fair benchmark is challenging and in fact, considerable
trellis reduction is possible without significant error rate loss. Since algorithms
that process reduced trellises are quite simple, the M-BCJR state search needs
to be small in order to compete. The goal of this section is to distinguish the
two types of complexity reduction, and see how they compare in FTN. Further
requirements for a benchmark are that it must work within the constraints of
Section 3.2, which are white noise and error performance implied by the full
signal set d2

min. The main result in this section is a competitive offset-based
benchmark BCJR which associates a single offset state with all its main states.
A modified method for retaining backward recursion values makes this reduced-
trellis BCJR a fair benchmark for the proposed M-BCJRs in Section 3.4. The
concept of main and offset states is defined next.

A key to reducing the state space of the VA or BCJR is to favor high-energy
model taps, if it can be done simply, without increasing the error rate. It is
assumed that the algorithms are preceded by the Section 3.2 conversion/model,
so that the model f is minimum/super minimum phase, with energy focused
near the present symbol. The following offset receiver will then reduce the
complexity induced by the low-energy tail: Instead of generating trellis branch
labels ℓ (at trellis stage k) as

ℓ =

L∑

j=0

fjak−j (3.17)

where the total memory L is the sum of the high energy and long tail lengths
and symbols . . . , ak−1, ak are the symbols following the precursor, form them
instead from

ℓ =

m∑

j=0

fjak−j +

L∑

j=m+1

fjak−j . (3.18)

Symbols ak−m, . . . , ak−1 comprise the size-m reduced VA/BCJR main state,
and stem from high energy symbols, while the ak−L, . . . , ak−m−1 comprise the
offset state. The second term is an offset to the label ℓ created by early symbol
history. A set of offset symbols can be associated with each main state but its
symbols do not form part of the algorithm’s state variable. However, all L + 1
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taps contribute to a label. In the add-compare-select step of the benchmark
offset VA, the offset states of the survivors, together with the oldest main state
bit, become the offset states for each new main state. Trellis searching focuses
on high energy taps while small taps contribute only to the labels.

This sort of trellis reduction was devised in the 1970s [103] as a way to
handle large state spaces of long-response systems, and was applied to ISI
problems by several authors in the 1980s. In the best known [30], Duel-Hallen
and Heegard calculate d2

min for the VA receiver as a function of the main state
size m. Studies of the VA then and now [99] show that under narrowband ISI
a large truncation is possible without significant loss in d2

min. Offset BCJR
receivers have been studied since the mid 1990s, although not for narrowband
ISI. A major work is Colavolpe et al. [93], which gives a full list of references.

A different strategy to reduce trellis size is to add non-allpass prefiltering
to the conversion/model. Even though they appear promising [93, 104, 132],
these methods color the noise and reduce d2

min, and are not explored further.
Ref. [104] presents error rate results, which are used for comparison in the
sequel.

3.3.1 The Benchmark VA

The benchmark VA performance is considered next. The offset VA is quite
different from the BCJR and its benchmark achieves near-optimal error per-
formance with memory m 1–2 smaller under severe ISI. First considered is the
τ = .5 FTN case in Figure 3.7. The offset VA is the standard kind [30], which
associates an offset state with each main state. The test setup is: Size N = 800
frames of random ±1 data, with enough frames to give 40–100 error events.
Note that errors occur in groups called events which consist of a number of
related bit errors. The frames are terminated before and after by L ‘+1’ sym-
bols. The VA output symbol is decided L+35 symbols before the present trellis
stage. Error events are taken to begin when the receiver output state splits
from the transmitter state path and to end after 5 output data are correct.
BER is about 3 times EER at higher Es/N0 and 4–5 times at lower.

The objective is to find the smallest m that leads to essentially ML perfor-
mance. The solid curves plot error event rates (EER) for the super minimum
phase model (3.11) at main state memories 2,4,6; it is clear that 24–26 states
are needed, and consequently this benchmark state size is about 32. The dot-
ted curves show the offset VA with the mathematically correct minimum phase
model derived from (3.7) for the same memories m. Clearly this modeling is
worse than the super minimum phase, especially for short memories.
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Figure 3.7: Error event rates versus Es/N0 for the offset VA with mathemat-
ically correct (dots) and super (solid) minimum phase channel models. FTN
signals with τ = 1/2. Main state memory 2, 4, 6.

3.3.2 The Benchmark BCJR Algorithm

Consider now the benchmark BCJR algorithm based on the offset-label idea.
Recursions (2.96)–(2.97) are applied to the main state in (3.18), computing
the 2m+1 branch labels while exploiting the second-term label offsets (similarly
to [93]). In the case of long narrowband ISIs, stemming from practical FTN
signaling, it is observed that certain changes to the offset label computation
improve performance. In the interests of a fair benchmark comparison, they
are described next.

Offset Label Strategies

The heart of the BCJR is the trellis branch metric γk. According to (2.94) the
branch metric of the branch connecting the states (σi, σj) can, in the case of
the Forney model, be expressed as

γk(σi, σj) = p(ISI in state σi at time k, yk | ISI in state σj at time k − 1)

= Pr(ak)p(yk|a) (3.19)
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where yk is the kth channel output from (2.54) and Pr(ak) is the a priori
probability of the symbol ak. By combining (2.87), (3.18) and (3.19) we obtain
the following alternative expression of the branch metric:

γk(σi, σj) ∝ Pr(ak) exp
(

− 1

N0

∣
∣
∣yk − ℓi,j

∣
∣
∣

2)

∝ Pr(ak) exp
(

− 1

N0

∣
∣
∣yk −

m∑

j=0

fjak−j

︸ ︷︷ ︸

“main′′

−
L∑

j=m+1

fjak−j

︸ ︷︷ ︸

“offset′′

∣
∣
∣

2)

. (3.20)

Its elements contribute whenever a label ℓi,j is close to a received sample yk.
Whereas the VA “picks winners”, continually dropping path segments that fall
short, the BCJR counts every contributing region of the trellis. Hopefully,
using a reduced main state, correct regions can be pointed out and an accurate
LLR computed. In the case of narrowband ISI, the labels ℓi,j in both the VA
and BCJR depend strongly on both the main and the offset states. In fact,
since the ISI model taps corresponding to the offset states are rather small,
only a reasonable approximation of the latter is needed. Despite this, our tests
indicate that the offset label must be present.

After the frame reversal in Figure 3.2, the application scenario for ISI is as
follows. The forward recursion α is taken to be the one proceeding left to right
in the direction of time, the direction in which the ISI model phase is minimum.
At the extension to trellis stage k + 1, the alignment of the ISI model taps,
state symbols and forward metrics, αs, is

fL, . . . . . . , f1, f0

. . . , ak−L, ak−L+1, . . . , ak−1, ak −→ extension forward

. . . , αk, αk+1

with the symbols corresponding to the main state and the focus of ISI model f

energy to the right and where the notation αk = [αk(σ1), αk(σ2), . . .], i.e., the
components run over the states. The main state at trellis depth3 k is defined
by the symbols at stages k −m, . . . , k − 1, i.e.,

σk,main = [ak−m, ak−m+1, . . . , ak−1]. (3.21)

3Recall that depth k is the trellis stage where the symbol ak is being exploited for the
first time. See Figure 2.12.
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Figure 3.8: Computation of the offset label/labels using tentative paths/paths.

The extension to stage k + 1 computes αk+1; all such αk+1(σj) are stored.
When extending the forward recursion to stage k + 1 a decision about which
symbol/symbols enters/enter the so-called tentative path/paths at stage k −m
must be made. In the benchmark BCJR this is done using the different offset
label strategies, described later in the section. One of them, denoted single
offset algorithm, will be chosen for comparison with the proposed M-BCJRs.
The tentative path is a decided symbol path used only for the computation of
label offsets. This is shown schematically in Figure 3.8. The decision about
which symbol enters the tentative path is made using only the information in
the forward metrics. Furthermore, the symbols ak−L, ak−L+1, . . . , ak determine
the label on their respective branch at stage k.

In the backward recursion of the proposed benchmark BCJR algorithm, la-
bels are formed from m main state symbols and L−m offset symbols that lie
in the α-decided tentative path. In other words, the offsets in (3.20) are com-
puted using the tentative path from the forward recursion. Since the backward
recursion starts from the end of the reversed frame the situation is aligned

fL, . . . . . . , f1, f0

extension backward ←− ak−L, . . . , ak−1, ak

βk, βk+1 βk+2, . . .

The β vectors do not need to be stored. Instead, βk+1 can be immediately
used together with corresponding αk to find the LLR at stage k and from it
an improved update to the kth symbol in the tentative path. Note that the
updated tentative path is much better than the α-decided path; it typically
leads to one tenth the bit error rate.

Here are some of the approaches to a reduced state BCJR that have been
investigated within this scenario.
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(i) True offset algorithm: In this strategy a different offset state is asso-
ciated with each main state. A method is needed to choose which offset state
survives after the move forward to new main states at stage k + 1. In analogy
to the VA, it is the offset + main path that makes the largest contribution to
the new forward metric αk+1(σj). This strategy performs worse than the other
proposed strategies. A simple but effective alternative has proven difficult to
find.

(ii) Single offset algorithm: This method associates the same offset state
with all main states. The new offset symbol is taken as the oldest main state
symbol that leads to the larger set of αk+1 contributions at stage k + 1 (2m of
these stem from each symbol value). In performance and complexity, this is in
fact the best performing strategy found.

(iii) VA aided BCJR: While the BCJR calculates state probabilities and
not symbol decisions, the VA decision path is a good enough tentative path,
even when the VA is strongly reduced. A reduced-trellis BCJR which uses the
VA decision path as its tentative path needs about one unit smaller m than a
BCJR of type (ii). However, when the VA complexity is accounted for, there
is no overall improvement.

(iv) Iterating: Multiple passes of any of the preceding can be executed
which improves the estimate accuracy of the forward and the backward met-
rics. Each new forward recursion can use the LLR-determined path from
the previous backward recursion for its tentative path. The tentative paths
thus constantly improve. However, the accuracy so obtained is not worth the
complexity of the additional iterations.

The conclusion is that only a single offset state should be associated with
all the main states, not a different one for each state, as in the standard offset
VA. Furthermore, the symbols used to compute the offset in (3.20) should be
soft values, not ±1. A solution to this comes from the definition of the forward
state metric α in the BCJR, which has the form

αk(σj) , p(Observe y1, . . . , yk ∩ ISI in state σj at time k).

By summing αk over the states in Lk−m
+1 , the set of states that have entering

symbol +1 at stage k −m, we obtain
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π+1 =
∑

σj∈Lk−m
+1

αk(σj)

= p(Observe y1, . . . , yk ∩ +1 sent at time k −m) (3.22)

and similarly for π−1. The probability of +1 at the oldest main state stage can
now be estimated as

p̂+1 =
π+1

(π+1 + π−1)

and similarly for p̂−1. These enable early decisions about ak−m, i.e., the prob-
abilities are used to decide which symbol enters the tentative path. Although
not as reliable as those based on the two-recursion BCJR, they are good enough
for calculating a single offset contribution from small ISI model taps. Further-
more a simple and effective soft decision about ak−m is its expected value, that
is

âk−m = p̂+1 − p̂−1.

A highly likely ±1 is respectively ≈ ±1 and a completely uncertain symbol is
0, meaning that the corresponding ISI tap is ignored in the offset computation.
The single soft offset innovation can improve the BER of an offset BCJR used
for simple detection by 10 fold. Further details are given in [101].

Simple Detection Performance

The general behavior of the single offset BCJR in simple detection, as a function
of the offset and precursor size, differs little from the offset VA, although the
BCJR in our FTN tests requires 1–2 extra units of main state memory to
achieve the same error performance. Figure 3.9 compares benchmark VA and
BCJR EERs at main state memories m = 2, 4, 6, 7, for uncoded FTN with
τ = .5, .35 and super minimum phase models (3.11)–(3.12). The same test
setup as in Figure 3.7 is adopted and both form tentative symbol estimates at
a delay m. The bold lines are the Q-function estimates, based on the full model
f .4 The figure shows that the single offset BCJR needs only 32 states (m = 5)

4A distance study shows that the d2

min
-causing error difference sequence is 2,−2, 2 for

τ = .5, with coefficient 1/4 (see [99] for details, and [20] for a general treatment). Thus the

full-state VA has EER ≈ .25Q(
√

1.02Es/N0). The τ = .35 and .25 cases are more complex.
The most probable error events at τ = .35 have differences 2,−2 and 2,−2, 0, 2,−2; these
combine to yield an EER close to .35Q(

√

.56Es/N0) for Es/N0 =10–15 dB.
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Figure 3.9: Benchmark error event rates vs. Es/N0 for simple ISI detection
with offset VA (solid) and single offset BCJR (dash dot) at main state memory
m. Heavy lines are Q-function estimates.

at τ = .5 and 64–128 (m = 6–7) at τ = .35. The offset VA needs somewhat
less. This m is also predicted for the VA by the reduced-trellis d2

min algorithm
in [30]. With τ = .25 (not shown) the offset VA needs about 29 states, and the
BCJR about 213. These numbers are a benchmark for the M-BCJR results in
Section 3.4. Observations for the non-FTN ISI tap sets (3.14)–(3.16) are given
at the end of Section 3.4.

In this section an offset-based benchmark BCJR, denoted single offset
BCJR, has been proposed. It computes the offset labels using soft symbol
values, estimated using the method presented in the section. Additionally, the
backward recursion of the single offset BCJR is modified in order to improve
the LLR quality in a heavily reduced receiver. Simulation results presented
in Section 3.5 show that the single offset BCJR outperforms a reduced-trellis
BCJR which completely ignores the contribution from the small ISI taps cor-
responding to the offset states, and it is therefore a fair benchmark for the
proposed M-BCJRs in Section 3.4.
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3.4 Proposed M-BCJR Algorithms

This section proposes three new reduced-search M-BCJR algorithms and tests
them in simple detection of ISI. The basic M-algorithm for reduced-search
of trees and trellises is well known. As a general procedure, the algorithm
proceeds breadth-first through a tree structure of metric values, keeping only
the dominant M paths at each tree stage. In the M-BCJR, the M-algorithm is
applied both in the forward and the backward recursion, finding the dominant
M αk(σi) and βk(σj) which, hopefully, are close to the values that a BCJR
would find (at the kth time instance). For moderate to severe ISI, the branch
metric matrices γk are very sparse, and most non-zero elements are very small.
A useful view is that the M-search implements a sparse matrix calculation in
which the vector αk or βk at each stage is limited to M active components.

The product of the {αk} and {βk} produce the set {λk} through λk(σj) =
αk(σj)βk(σj), σj a state at stage k. Log likelihood ratios are obtained from
these via

LLR(ak) , log

(
Pr(ak = +1|y, LLRin)

Pr(ak = −1|y, LLRin)

)

= log

(∑

σj∈L+1
λk(σj)

∑

σj∈L−1
λk(σj)

)

. (3.23)

Here L±1 are the sets of states reached by ak = ±1, for which nonzero α and β
have both been found. A problem in a heavily reduced search is that one of the
sets L±1 is often empty. In case of an empty set, the numerator or denominator
in (3.23) must be replaced by some backup method.

The most straightforward M-BCJR now follows. It works well in simple
detection of ISI, and hence it is called simple detection M-BCJR. Recursions
start and end in state 0 (all +1 symbols). Inputs to the algorithm are the noisy
channel outputs y and a priori probabilities of the symbols. Outputs are the
signed LLR values in (3.23). The list of M dominant paths, the M-list, consists
of two sublists, one containing α or β values at stage k and one containing the
corresponding trellis states. It is straightforward to extend the algorithm to
non-binary alphabets and/or MIMO setups.

Forward Recursion. Starting at k = 0, perform at stage 1, 2, . . . , N − 1:

I The forward recursion in (2.96) is computed from the M nonzero values
retained in αk. There are M outcomes corresponding to symbol ak+1 = 1
and M to−1; only the 2M corresponding branch metrics γk are computed
and stored.

II Trellis paths may merge at stage k+1. The algorithm detects and removes
merges, leaving only one survivor per node whose α value is the sum of
the incoming values.
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III M largest α values are found and stored for stage k + 1 and for the β
recursion.

Backward Recursion. Starting at k = N , perform at stage N,N − 1, . . . , 2:

IV The backward recursion in (2.97) is computed from the M nonzero values
retained in βk+1. There are M outcomes corresponding to symbol +1 and
M to −1; only the 2M corresponding branch metrics γk are computed.

V Trellis paths may merge at stage k. The algorithm detects and removes
merges, leaving only one survivor whose β value is the sum of the incoming
values.

VI M largest β values are found, subject to the following condition: β paths
must be kept if their state and stage overlap with that of a stored α. The
M-list is then completed with non-overlapping paths.

Completion. Starting at k = 0, perform at stage 0, 1, . . . , N − 1:

VII Compute the LLR from (3.23). If L+1 or L−1 is empty, the respective
λ-sum in (3.23) is set to ǫ, where ǫ is a reserve value set a priori.

The offset state idea is not needed in the M-BCJR; it should simply retain
all L state symbols for each of the M paths. It is essential, however, that the M-
BCJR ignores the precursor symbols, and it is therefore slightly mismatched to
the channel. The merges removed in steps II and V are unlikely, and these steps
can be removed without significant performance loss. The idea of a reserve ǫ
in step VII and of pursuing β paths that overlap α paths in step VI were both
proposed in [96] (the α path list was called the “survivor list”). However, in
this thesis the overlapping paths are only given first priority; other β paths
are extended for a total of M . The efficiency of this strategy may be seen
by observing the search dynamics. During most of the transmission, there are
only 1–2 paths in the search overlap, and almost always one of these is correct.
Errors occur during rare noise bursts, but it is precisely here that the search
is chaotic; the extra β paths are needed in case they merge to α paths a few
trellis stages later.

3.4.1 Comments on Complexity

In this section only on the approximate order of the computations is considered.
Steps 3 and 6, which find the best M , are equivalent to finding the median
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Figure 3.10: Error event rates for simple ISI detection vs. Es/N0 in dB for the
simple detection M-BCJR (dotted lines); shown for comparison are offset VA
(dash-dot) and Q-function estimate (solid).

of a group of items. An important property of median finding is that its
computation is linear in M . The M-algorithm does not order a list, which
would require order M log M . In keeping with this, a true M-algorithm is the
one where all computation is of order M . The search for the median is thus
implemented in order M , but so is also removal of state merges in steps II and V
and finding the overlap of α and β in step VI. The key to the last two is keeping
all path lists in state order, which is itself a linear operation. Details of these
linear procedures are omitted. Since there are two recursions,5 computation
has the approximate order 2M , with M the number of trellis states visited at
each stage; by this measure the offset BCJR has twice the complexity of the
offset VA.

3.4.2 M-BCJR in Simple Detection

Figure 3.10 plots the EER for this M-BCJR algorithm used as a simple de-
tector at the ISI intensities τ = .5, .35, .25. The algorithm decides symbols

5The backup recursion in the algorithm that follows in Section 3.4.3 is much smaller than
M and its contribution can safely be neglected.
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from the LLR sign at its output. Heavy lines show Q-function estimates. For
comparison, performances are plotted for the 256- and 4096-state offset VA,
for τ = .35 and .25 respectively. The simple detection M-BCJR can perform
better than the offset VA, especially at τ = .25, because a practical VA cannot
be large enough to deal with every detail of the severe ISI. The M-BCJR needs
only M = 3, 7, 20 respectively for the three FTN cases at higher Es/N0, and
somewhat more at lower. The appearance of such an upper limit to M is typ-
ical of one-pass M-algorithm searching of code and modulation trellises. Not
shown in the figure are results for τ = .703, the Mazo limit; here only M = 3
is required.

Comparisons to Earlier Work

Most of the ISI examples in the literature are mild, and we now compare to
some of these. Magarini et al. [104] investigate alternatives to the benchmark
offset VA, using ISI model (3.15). Same EER and BER results are obtained for
the offset VA (Figures 6 and 7 of [104]), which here needs m = 4 (16 states).
However, they are able to improve this benchmark performance somewhat with
a non-allpass prefilter receiver. The simple detection M-BCJR with only M = 7
improves upon their prefilter result by 1.5 dB and in fact lies on the full ML
bound for BER given in [104].6

Fertonani et al. [96] consider ISI (3.16) with d2
min = 2 in a turbo equalization

configuration. The M-BCJR with M = 6 applied to simple detection of ISI
(3.16) achieves BER close to 3Q(

√

2Es/N0), which is the asymptotic estimate
from distance analysis.

3.4.3 Backup and Smoothed Backup M-BCJR

When an accurate LLR is needed, as in iterative decoding in the next section,
the simple detection M-BCJR is not sufficient. A serious problem is that
an empty L±1 set normally occurs when Es/N0 takes practical values. The
M-search is then quite sure of the correct symbol, one set is empty and there is
no estimate of the LLR magnitude at all, other than the ǫ set a priori. Several
solutions exist in the literature. This section proposes a practical one which
adds a third, low complexity recursion, whose purpose is to produce a backup
LLR magnitude when the two M-BCJR recursions do not. The following
algorithm, called the backup M-BCJR is proposed. It replaces step VII with:

6The dominant error events lead to a BER estimate ≈ 2Q(
√

.31Es/N0).
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L+1 orL−1 empty

αs for +1

αs for -1

Figure 3.11: Backup M-BCJR example, showing α and β recursions, hard
decision path, and backup recursion.
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New step VII. Decide the symbols from the sign of (3.23), noting when
L±1 is empty. In a third recursion, compute a symbol probability from the αs
only, as follows. From each node of the decided symbol path, trace forward
through the ISI trellis a certain length of stages; αs that stem from the decided
branch form the probability of one symbol outcome and αs in the “incorrect
subset” of the node form the probability of the other outcome. The traces
are performed with a small M-search of size MB (typically MB = 2 works well).

The necessary search for all the decided nodes at once can be arranged in
a simple way. The search gives a backup estimate of P [ak = +1]/P [ak = −1],
to be used when one (or both) of L±1 is empty; otherwise (3.23) is used. A
sketch of the entire backup M-BCJR procedure with M = 3 is illustrated in
Figure 3.11. First, the α recursion is performed, followed by the β recursion.
The β paths, shown dotted, must follow the α paths as a first priority, and
in this case they are shown as overlapping. Shown third is the decided path
that results from the whole first two recursions. Finally, a backup search with
MB = 2 is shown for a branch that was decided to be −1.

The backup LLR values can be noisy in a heavily reduced M -search, espe-
cially in the early iterations of a turbo decoder, and therefore a useful technique
is to smooth them. A simple moving average filter, such as .2z + .6 + .2z−1,
can improve the BER of the iterative decoder, if only applied to the backup
values in the first iteration. This third scheme is called the smoothed backup
M-BCJR.

3.5 Turbo Equalization

This section evaluates the BER performance of turbo equalization when the
smoothed backup M-BCJR performs the ISI detection. Whereas only the sign
of the LLRs was needed for simple ISI detection, turbo decoding requires rea-
sonably accurate absolute values, especially in the early iterations. This is
provided by the smoothed backup M-BCJR. It will be compared with two
reduced-trellis benchmark BCJRs, the memory-m single offset BCJR proposed
in Section 3.3 and a truncated BCJR that simply calculates its branch labels
based on the mtr +1 dominant taps with no label offsets. EXIT charts [85] are
used to monitor convergence behavior.

3.5.1 Turbo Loop Stability

Since a practical implementation of the optimal detector is often prohibitively
complex, reduced complexity methods can be used instead. A heavily reduced
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detector, compared to the full ISI state space |Ω|L where Ω is the symbol
alphabet, is often unable to produce exact soft information about some of
the detected symbols or bits. In the worst case there could be no realibility
information at all. These detectors can in general determine the sign of the log
likelihood ratios with reasonably low error probability. However, the absolute
values are unknown.

One of the reasons is the irregularity of a reduced trellis. The magnitude of
the terms summed in the numerator and in the denominator of (3.23) may differ
a lot, resulting in over-estimated LLRs. In an iterative scheme, over-estimated
LLRs for correctly detected symbols or bits can speed up the convergence rate
while over-estimated LLRs for incorrectly detected data can severly degrade
the overall performance. In a heavily reduced search one of the sets L±1 can
be empty. This can occur when all paths corresponding to a certain symbol at
depth k have been discarded.

A possible solution is to a priori assign a constant value ǫ to either the
numerator or the denominator in (3.23), as done in Section 3.4. Alternatively,
a constant value can be assigned directly to the LLRs for these symbols. The
latter is known as LLR clipping [105]. However, if a large number of bits require
such assignment, which is often the case for a heavily reduced detector, this
method easily fails. An SNR-aware improvement of the LLR clipping method
based on error probability estimates in List MIMO detection was proposed in
[105]. Additionally, a complete list of references, covering the LLR clipping
method is given in [105].

As M decreases, there is an increasing number of bits with undetermined
LLRs. The values M in the tests performed in this chapter are chosen with
practical receivers and good performance at reasonable SNR in mind. Measure-
ments show that one of the sets L±1 is empty at 50–80% of the trellis stages
and consequently some sort of LLR reserve procedure is essential. This result
is expected since the M-BCJR algorithm tends to over-estimate the LLRs for
small values of M .

Since low-quality and over-estimated LLRs affect the stability and conver-
gence of the iterative detector, some way needs to be found to keep it under
control. As a complement to the backup M-BCJR, it is beneficial to scale the
likelihoods passed around the turbo loop by a “gain” g ≤ 1. In the simulations
the extrinsic LLRs are therefore scaled by

√
g before each component decoder.

Gains were also suggested in [96].
In Figure 3.12, the effect of the scaling gains g is shown for a serially con-

catenated setup with a (7,5) convolutional encoder and the τ = 0.35 FTN
channel in (3.12). Turbo equalization BER results for the backup M-BCJR
with M = 6 and MB = 2 are shown. The blocklength N = 5000 and 10
iterations are performed. The results indicate that there exists an optimal
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Figure 3.12: Turbo equalizer BER vs. Eb/N0 for τ = 0.35 and different scaling
gains g. The backup M-BCJR with M = 6 and MB = 2 is employed and 10
iterations are performed.

g, which is reasonably constant across SNR, and that, without increasing the
overall complexity, huge performance improvements are possible. By choosing
an appropriate g the convergence to the performance of the underlying code
occurs at a considerably lower SNR. In Figure 3.12 the optimal value of g is
≈ 0.3. Note that without scaling of the extrinsic LLRs the BER performance
is severely degraded. The value of g depends on the the whole setup, that is,
the choice of the component decoders (including the value of M), blocklength
N and the SNR. However, once the optimal g is found for a setup, the overall
complexity remains unaltered.

3.5.2 Simulation Results

The turbo equalization setup is as follows: A block of N information bits is
encoded by the (7,5) rate 1/2 feed-forward convolutional encoder, generating a
length 2N codeword. The encoded sequence feeds a size 2N random interleaver
whose output is mapped to binary symbols (0 → +1, 1 → −1). The signal is
terminated so that the transmission begins and ends in the all +1 ISI state.
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Figure 3.13: Turbo equalizer BER vs. Eb/N0 for τ = 1/2, comparing single
offset BCJR (dashed), smoothed backup M-BCJR (solid) and truncated BCJR
(dotted) for different complexities.

Iterative decoding as in Figure 3.1 is performed, applying one of the three
BCJRs as the ISI equalizer. All three ignore precursors when forming labels. In
the smoothed backup M-BCJR smoothing is applied only at the first iteration
with the smoother [1, 3, 1]/5. The convolutional decoder is a full-state BCJR
(4 states). In this chapter the signal-to-noise ratio (SNR) is defined as Eb/N0

where Eb = 2Es.
The component decoders exchange soft information in the form of LLRs,

hopefully converging to a decision about the data. A complete loop is one
“iteration”. The block length is N = 12000 and 20 iterations are performed
(60 for τ = .25). Fewer iterations and shorter block lengths (N ≈ 1000) are
more practical in hardware, and these performed almost as well, but more care
is needed to assure loop stability. Decoder tests are run until ≥ 50 blocks with
errors occur.

Improved quality of the LLRs and stabilizing loop gains allow a smaller
value of M . Simulation results show that the best loop gains in our setups lie
near .4 for τ = .5 and .35, and .25 for τ = .25. These values are used and they
are much larger than those in [96]. In [82] and [106] it has been shown that
recursive precoding leads to additional gains in turbo equalization but such
a precoder has not been employed here. The performance of the considered
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Figure 3.14: Turbo equalizer BER vs. Eb/N0 for τ = 0.35; single offset BCJR,
smoothed backup M-BCJR and truncated BCJR as in Fig. 3.13.

system can therefore never be better than the performance of the underlying
convolutional code, shown as a bold dashed ‘CC’ line in the figures. However,
for FTN this performance is obtained at a considerably higher rate in bits/Hz-s.

A constant M over the iterations is employed in this chapter. However, the
first few iterations are the most important, and both M and the scaling gain
g should vary with the iterations; this should be explored in future work. The
first iteration is precisely the simple detection of Section 3.4, so a suggestion
for at least the starting Ms are the values found there.

Figure 3.13 shows BER results for the smoothed backup M-BCJR, single
offset and truncated BCJRs when τ = .5 with taps (3.11). The relatively mild
ISI is not difficult for the first two, but the truncated BCJR suffers from energy
loss caused by a too-early truncation and fails to converge to the CC line at
high SNR. For M = 2 the smoothed backup M-BCJR performs better than the
memory-1 single offset BCJR, which has similar complexity, and it achieves
very nearly the CC-line BER at SNR ≈ 5 dB. For higher complexities the
smoothed backup M-BCJR and single offset BCJR are similar but the last is
clearly superior to the truncated BCJR, which shows that some of the long-tail
taps cannot be ignored.

The situation changes when the FTN signaling rate increases. Figure 3.14
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Figure 3.15: An EXIT chart at Eb/N0 = 7 dB, showing extrinsic vs. a priori
information for block length 12000. Dashed curve represents the smoothed
backup M-BCJR with M = 5 and τ = 0.35; solid curve shows the (7,5) outer
convolutional code.

plots the τ = .35 case, which is a much more severe ISI. The smoothed backup
M-BCJR efficiently removes the ISI even when M ≤ 5. It is superior to the
single offset BCJR for all complexities. The reduced trellis of the truncated
BCJR is now much smaller than the effective state space of the ISI, causing
severely degraded BER. Even for mtr = 5 the truncated BCJR is unable to
eliminate the effects of the intense ISI. Accounting for the long tail taps makes it
possible for the single offset BCJR to achieve the CC performance even though
the number of main states is equivalent to that of the truncated BCJR. The
reduced-search M-BCJR clearly prevails at this higher ISI intensity. Its turbo
convergence threshold can be determined through a study of EXIT charts, with
the system converging to the CC line when there is an open tunnel between
the EXIT curves. Figure 3.15 shows the case τ = .35, M = 5 and Eb/N0 = 7
dB, for which there is a narrow tunnel; Figure 3.14 verifies that there indeed
is convergence to the CC line with M = 5 for the first time at about 7 dB.

Turbo equalization (60 iterations) for the extreme ISI case with τ = .25 and
the 32-tap channel model (3.13) is shown in Figure 3.16 for several M . Here the
stability of the turbo loop is very sensitive to the scaling gain g and the block
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Figure 3.16: Turbo equalizer BER vs. Eb/N0 for τ = 1/4; smoothed backup
M-BCJR with M = 20–100. CC reference lies far below the SNR axis.

length. Lengths less than 12000, smaller M and g too large severely degrade
the BER. The M in the smoothed backup M-BCJR needs to be in the range
25–100, compared to 20 in simple detection of ISI and many thousands for the
two reduced-trellis benchmark BCJRs. Depending on M , sharp convergence
thresholds lie in the range 9–10.5 dB; after the last point shown for each curve
there is a sudden fall to the CC line, which is located far below the SNR axis.

As further insight into the role of the backup recursion, Figure 3.17 shows
the M-BCJR BER for several backup MB when τ = .35. A heavily reduced
search with M = 6 leads to empty L sets for 80% of the LLRs. The case
MB = 0 corresponds to the simple detection M-BCJR with a small, fixed re-
serve value ǫ whenever an L set is empty. Its BER performance is 3 dB worse
than the backup M-BCJR with MB = 4. However, most of the performance
gain is obtained with only MB = 2. A comparison is also made to published
M-BCJRs of which the most important one appears in [96] and is similar to the
simple detection M-BCJR without steps IV and VI. Its BER performance is
shown with both mathematically correct minimum and super minimum phase
models.7 The figure shows that both the backup recursion and the super min-

7The mathematically correct minimum phase model is obtained from 60 or more central
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Figure 3.17: Turbo equalizer BER vs. Eb/N0 for backup M-BCJR with MB =
0, 1, 2, 4, with comparison to algorithms from [94] and [96]. The second is tested
with both mathematically correct and super minimum phase model (3.12).
FTN τ = .35 and M = 6.

imum phase idea are needed and that the gain from both innovations is about
4 dB. A final comparison in Figure 3.17 is made to the M*-BCJR algorithm of
Sikora and Costello [94]. It has similar performance to the backup M-BCJR
with MB = 2, but it is much more complex.

Comparisons to Earlier Work

Colavolpe et al. [93] report results for turbo equalization with tap set (3.14) and
the 16-state recursive systematic convolutional code (23,35). They use an offset
BCJR, block size 2048 data bits, and scaling gain g = .15. Their system needs
6 iterations and a 16-state BCJR to reach the CC line BER at 5 dB, although

samples of h(t) and begins with ≈ .031, .142, .344, . . .. To obtain a fair comparison, the
receiver in [96] is delayed by Kp = 1 (see Section 3.2) and its first tap is set to 0. Its
performance will otherwise be worse than shown in Figure 3.17.
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8 states performs well (Figure 5 of [93]).8 With the same setup (except that
g = .44), the smoothed backup M-BCJR with M = 3 and MB = 2 needs only
4 iterations at SNR 5 dB and 3 iterations at 6–7 dB. Even if we account for
the complexity of a complete backup recursion, the overall complexity is lower
than that in [93].

Fertonani et al. [96] test several M-BCJR decoders with ISI (3.16) and the
(7,5) convolutional code, as mentioned in Section 3.4. Their M-BCJRs need
6–8 paths and 20 iterations to reach the CC line (see Figure 5, [96]). The
smoothed backup M-BCJR needs M = 3 and only 5–11 iterations, depending
on the SNR. The poorer performance in [96] probably stems from the lack of
a backup recursion and any minimum phase conversion.

3.6 Other M-BCJR Algorithms

In order to reduce the negative effects on the receiver error rate caused by
empty L±1 sets, the backup M-BCJR from Section 3.4 adds a third forward
recursion. In this section a different approach is considered. Instead of adding
a third low-complexity recursion, the M-BCJRs proposed here are constrained
to retain a certain number of states (with their α values) corresponding to the
less probable input symbol at each trellis depth k. They all construct a reduced
trellis in the forward recursion based on the M retained αk(σj). As in Section
3.4, state duplicates are not allowed in the M-list. However, in this section
there is no side condition that β paths must be kept if their state and stage
overlap with that of a stored α.

Furthermore, a genie-aided M-BCJR algorithm, denoted by G1, which has
access to the exact values of αk(σj) and βk(σj) for all depths k (computed
with a full-complexity BCJR), will be used as a benchmark. It computes the
LLR-values LLR(ak) in (3.23) using only the M largest values αk(σj). A
mathematical formulation of the genie-aided detector G1 is given in Chapter 4.

Let also SM and S6M denote the set states with M largest forward metrics α
and the set of the remaining states at a certain depth, respectively. The noisy
channel outputs y and a priori probabilities of the symbols are inputs to the
algorithms while outputs are the LLR values in (3.23).

The following M-BCJR branching strategies have been investigated within
this scenario.

Strategy 1: After a forward extension to trellis depth k and before the
removal of state duplicates there are M states with most recent input ak =
+1 and M states with ak = −1. Let S+1 and S−1 denote the set of states

8However, Douillard et al. [10] report that only 3 iterations are needed at 6–7 dB SNR.
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with most recent input +1 and -1 at depth k, respectively. By summing the
forward metrics of the states in each set, decide which input symbol has a larger
contribution at depth k. Take M/2 best states, i.e. states with largest forward
metrics, from this set and store them in the M-list. Complete the list with
M/2 best states from the set with the smaller contribution of forward metrics.
If M is an odd number, store ⌈M/2⌉ best states from the set with the larger
contribution and complete the list with (M−⌈M/2⌉) best states from the other
set. Throughout, ⌈·⌉ denotes the ceiling function. The backward recursion β
in (2.97) is computed independently from α. However, if the backward metric
of a state σj at depth k equals 0, i.e. βk(σj) = 0, it is replaced with βk,min

where βk,min is the smallest non-zero backward metric in the M-list at depth
k. Note that, in this strategy, the M-list in the forward recursion may contain
states from the set S6M .

Strategy 2: This M-BCJR is constrained to, at each trellis depth k, keep
at least one state from the set with the smaller contribution of forward metrics.
After sorting and removal of merges, M best states are stored. Assume now
that the M-list only contains states from the set S+1. An M-BCJR based on
this strategy replaces the state with the smallest metric in the M-list with the
best state from the set S−1. The backward recursion is identical to that in the
previous strategy.

Strategy 3: In Strategy 1 the number of stored αs from each set S+1

and S−1 is, unless M is an odd number, independent of their metric contri-
butions. In this strategy their metric contributions determine the fraction of
states stored in the M-list from the respective set. After sorting and removal
of merges, the forward metrics at depth k are normalized as

∑

j

αk(σj) = 1. (3.24)

Furthermore, let

A+
k =

∑

σj∈S+1

αk(σj) (3.25)

and similarly for A−
k . If now S+1 is the set with the largest contribution at

depth k, then store the best ⌈A+
k M⌉ states from S+1 for stage k +1. Complete

the M-list with the best states from S−1. The backward recursion is the same
as in the previous two strategies.
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Figure 3.18: Turbo equalizer BER vs. Eb/N0 for τ = 1/2, comparing the
different M-BCJRs for M = 8.

Strategy 4: In this M-BCJR no constraint is imposed on the forward
recursion α other than that only the M best states at each depth k are retained.
In the backward recursion, βk,min replaces all βk = 0 as before.

Strategy 5: As Strategy 4 but without the βk,min feature. It is mostly
used as a comparison.

The same turbo equalization setup as in Section 3.5 is adopted. However,
the blocklength N is here set to N = 5000 and 10 iterations are performed.
The ISI channel is the τ = 1/2 FTN channel in (3.11). All proposed strategies
ignore precursors when forming labels.

The BER results for M = 8 are shown in Figure 3.18. A comparison of
the BER performance for Strategy 1 and 2 indicates that forcing the M-BCJR
to retain many paths which are not among the best M is not a good strategy.
However, by letting the M-BCJR only keep the dominant M αs at each depth
as in Strategy 4 is also inferior to forcing it to always retain at least one path
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from each set S±1 as in Strategy 2. Strategy 2 is in fact the best performing
strategy among the proposed 5. A possible explanation is that the negative
effects of a constrained forward recursion are smaller than the corresponding
gains in the form of improved quality of the soft information exchanged in
the turbo loop. The metric contributions of the sets S+1 and S−1 are not
appropriate measures to determine the fraction of states stored in the M-list
from the respective set. This is clearly indicated in Figure 3.18 by the poor
performance of Strategy 3.
Finally, by comparing the BER performance of M-BCJR algorithms based on
Strategy 4 and 5, we can conclude that the βk,min feature in the backward
recursion can improve the BER performance slightly. However, this might not
be the case when the value of M approaches the full complexity value |Ω|L. All
proposed strategies in this section have much inferior performance compared
to the performance of the genie-aided M-BCJR, G1, shown as a benchmark.
However, according to Figure 3.18 the backup M-BCJR from Section 3.4 with
M = 6 and MB = 2 outperforms all 5 M-BCJRs presented in this section.
Despite this it is still bounded away from the performance of G1.

3.7 FTN Pulse Excess Bandwidth Optimization

The objective of this section is to establish the best excess bandwidth β when
h(t) is a root raised cosine pulse with excess bandwidth 0 ≤ β ≤ 1; if β = 0
a sinc pulse is obtained. The one-sided baseband bandwidth W is given by
W = (1 + β)/2T . Additionally, the Section 3.5 turbo equalization setup (here
with N = 5000) and the outer (7,5) convolutional code are assumed.

An open convergence tunnel between the EXIT curves is observed for all τ
above a certain threshold. Above it the error performance of the concatenated
system is virtually identical to the that of the outer convolutional code. The
threshold depends on the SNR; this section uses the SNR where the (7,5) code
alone achieves BER 10−5, that is, Eb/N0 = 5.85 dB. The EXIT chart in Figure
3.19 shows a case near the threshold τ , where the convergence tunnel is narrow.

In Figure 3.20 turbo equalization receiver tests are shown for β=.1, .2, .3, .4.
The component decoder for the FTN signaling is the Section 3.5 truncated
BCJR that calculates its labels based on the mtr + 1 dominant taps with no
offsets. The ISI response is truncated to memory 6, i.e., mtr = 6 (64 states); 10
iterations in the turbo equalization have been performed. The plot shows BER
versus τ . The critical thresholds where the error rate departs from ≈10−5 are
clearly seen and lie in the range .30–.43 for the different β.

In order to compare different β the bandwidth consumption must be taken
into account. If a system based on β = .4 can have more compression than one
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Figure 3.19: An EXIT chart at Eb/N0 = 5.85 dB, showing extrinsic vs. a priori
information for block length 5000. Dashed curve is from root RC pulse with
β = .3 and τ = .32; solid curve is from (7,5) outer convolutional code.

based on β = .2, it cannot necessarily be claimed that β = .4 is better, since .4
uses more bandwidth. The plot must show BER against the normalized band-
width Wnorm, which is W/R, where W is the one-sided baseband bandwidth and
R the data bit rate. We have that Wnorm = W/R = ((1 + β)/2T )/(1/2τT ) =
(1 + β)τ . Figure 3.21 shows the same plot as in Figure 3.20 but now against
the normalized bandwidth. According to the figure, the best β are β = .4 and
.3, which are slightly better than β = .2 and .1. This has significant practical
importance since larger β are easier to implement.

3.8 Conclusions

Several BCJR algorithms whose calculation of recursions is limited to M sig-
nificant terms have been proposed and compared to reduced-trellis VA and
BCJR benchmarks based on the offset label idea. Various offset label strate-
gies have been considered; the best performing one (in terms of BER) serves as
a benchmark for the proposed M-BCJRs. The application has been to simple
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Figure 3.20: Receiver BER tests versus τ for systems based on root RC pulses
with excess bandwidth β. All systems operate at Eb/N0 = 5.85 dB.

ISI removal and turbo equalization of channels with spectral zeros and strong
narrowband ISI, where M is much smaller than the effective ISI state space.
Several important innovations have been proposed. An improvement to the
minimum phase allpass filtering sharpens the focus of the ISI model energy.
When combined with a delayed and slightly mismatched receiver, the decoding
allows a smaller M without significant loss in BER. By adding a third low-
complexity M-BCJR recursion, LLR quality is improved for practical values
of M , leading to a major BER improvement in turbo equalization. Other in-
novations are the use of single tentative soft symbol estimates to improve the
reduced-trellis benchmark BCJR and a modified method for retaining back-
ward recursion values. All these improvements work together to create a turbo
equalizer of reasonable complexity, which in an FTN application can lead si-
multaneously to an energy saving of 4 dB and a bandwidth reduction of 35%
compared to binary orthogonal signaling.
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Figure 3.21: Receiver tests for systems based on root RC pulses with excess
bandwidth β, plotted against the normalized bandwidth (1 + β)τ . All systems
operate at Eb/N0 = 5.85 dB.

This chapter also considered receivers and arising stability problems when
working within the white noise constraint. Chapter 4 on the other hand in-
vestigates the effect of the internal metric calculations on the performance of
Forney- and Ungerboeck-based reduced-complexity equalizers.
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Chapter 4

A Comparison of
Ungerboeck and Forney
Models for
Reduced-Complexity
Detection

This chapter investigates the effect of Ungerboeck and Forney metrics on the
bit error rate performance for reduced-complexity receivers of the M-algorithm
type. As already stated in Chapter 2, it is possible to define a maximum-
likelihood receiver for both observation models. In the Forney observation
model (2.54) the branch metric for ISI channels is given by (2.87). In the
Ungerboeck model (2.52) the noise at the receiver is colored. However, a
maximum-likelihood receiver can still be realized using (2.89) instead of (2.87).
Even though the final output of a full-complexity detector is identical for both
observation models, the internal metric calculations are different. Hence, sub-
optimum methods based on the two models need not produce the same final
output. Uncoded and serially concatenated systems with ISI and MIMO chan-
nels are considered. An example of a serially concatenated system with en-
coding and ISI is shown in Figure 2.14. Additionally, new models, referred
to as middle models, working in between the Ungerboeck and Forney models
are proposed and evaluated. Based on simulation results, it is demonstrated
that practical Forney decoders outperform those operating on the Ungerboeck
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model for high signal-to-noise ratios, while the situation is reversed for low SNR
levels. A simple method for finding the optimal choice of observation model
(in BER sense) is proposed and tested. Mutual information results are given
and an analysis of the SNR-asymptotic detector behavior is performed. This
chapter was partly presented in [107].

4.1 Introduction

Reduced-complexity detection of intersymbol interference and multiple-input
multiple-output (MIMO) channels based on the Forney and Ungerboeck ob-
servation models is considered. As shown in Chapter 2, ISI can be introduced
by a frequency selective communication channel or by filtering and pulse shap-
ing at the transmitter. In MIMO systems, multiple antennas are used at the
transmitter and the receiver to improve communication performance, for ex-
ample, to increase the data throughput, which is the main reason why they
have attracted attention in wireless communications. In both ISI and MIMO
channels, equalization is required at the receiver.

The maximum-likelihood receiver, which can efficiently be realized using
the Viterbi algorithm, is often prohibitively complex, and alternative detection
methods with an acceptable complexity-performance tradeoff are needed. This
chapter considers reduced-complexity receivers of the M-algorithm type, and
investigates the effect of the Ungerboeck and Forney metrics on the BER per-
formance. Although the performance of a receiver can be measured by several
means, this chapter is restricted to BER and mutual information results. Both
coded and uncoded transmission over an ISI/MIMO channel, as depicted in
Figure 4.1 is considered. In case of multiple transmit and receive antennas, the
ISI block is replaced with a MIMO block and data symbols are transmitted
block-wise.

As already mentioned in Chapter 3, Forney showed in 1972 [4] that the
sampled outputs of a filter, matched to the receive signal pulse, provide suffi-
cient statistics for optimum detection. Since white noise is often preferred, the
sampled matched filter (MF) outputs are filtered by a whitening filter which
yields the Forney observation model [4]. In [21] Ungerboeck proposed a receiver
that works directly on the MF output without whitening. The MF output is
commonly referred to as the Ungerboeck model.

It is possible to formulate tree/trellis based detection for both observation
models. Even though the final output of the VA or the BCJR decoder is identi-
cal for both models, the internal metric calculations are different. This chapter
also introduces new models working in between the Ungerboeck and Forney
models, which will be referred to as middle models. The computational com-
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Figure 4.1: Transmitter and iterative receiver structure in a communication
system with coding and ISI/MIMO.

plexity of a tree/trellis based algorithm is determined by the number of visited
nodes/states. For an ISI channel of memory L and a modulation alphabet Ω,
the trellis has |Ω|L states. Consequently, detection using a BCJR algorithm
for large constellations and/or ISI channels of large memory is too complex.
Consider now an Nr × Nt MIMO system (Nr ≥ Nt) where Nr is the number
of receive antennas and Nt is the number of transmit antennas. It is possible
to recast the case Nr > Nt to Nr = Nt via a QR-decomposition of the channel
matrix H [108]. More details are given in Chapter 5. Hence, in the rest of
the chapter it is assumed that Nr = Nt = N . An N × N MIMO system can
now be graphically visualized as a tree of depth N with |Ω| outgoing branches
per node. Since the number of leaf nodes is |Ω|N , optimum detection can be
applied only in rather small setups. When N and/or Ω are large, suitable al-
ternatives are suboptimum algorithms which effectively reduce the tree/trellis
state space. For ISI there are various solutions in the literature, e.g., the DFSE
[109], the RS-BCJR [93], the T-BCJR [13], the M-BCJR [13] and improved
versions [95, 110] including our backup M-BCJR proposed in Chapter 3, the
M*-BCJR [94] and the techniques presented in [111] and [112]. All these al-
gorithms, except for [109] and [111], are based on the Forney model. There
are many promising tree/trellis based low-complexity MIMO detectors and
some examples are the soft-output sphere detector [113] and the soft-output
M-algorithm (SOMA) [14], to just mention a few.

This chapter investigates the performance of reduced-complexity detectors
that operate on the Ungerboeck model, and compares it with the Forney model.
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Simulation-based results are presented together with an analysis of the asymp-
totic detector behavior. The asymptotic behavior of reduced-complexity ISI
detectors in the high SNR regime was first studied in [114]; this chapter extends
the analysis to the low SNR regime and to MIMO systems. In a related work
by Badri-Hoeher et al. [115], a comparison of Ungerboeck and Forney models
was conducted for reduced-complexity multi-user detectors. The conclusions
of [115], however, do not translate to the reduced-complexity ISI detection.
Motivated by the impressive performance of the M-BCJR algorithms from the
previous chapter, the M-BCJR algorithm is chosen as the preferred method
in this chapter. Note that the basic M-algorithm is optimal in the sense of
minimizing the probability of correct path loss among the constant-complexity
breadth-first search algorithms [25, 26].

The rest of the chapter is organized as follows. In Section 4.2 the sys-
tem models for ISI and MIMO channels are given. Section 4.3 discusses MAP
and approximate MAP methods for sequence and symbol detection. An SNR-
asymptotic detector behavior analysis is performed in Section 4.4. Finally,
Section 4.5 and 4.7 present numerical results for the M- and M*-BCJR algo-
rithm respectively while conclusions are drawn in Section 4.8.

4.2 System Model

4.2.1 ISI channels

Consider a linearly modulated transmit signal whose baseband form is

s(t) =
∞∑

k=0

akh(t− kT ), (4.1)

where {ak} are possibly encoded, uniformly distributed data symbols with zero
mean and unit variance belonging to the alphabet Ω, while h(t) is a continuous
pulse which represents the combined effect of the transmit filter and the channel
impulse response (CIR), generating finite ISI. Without loss of generality, it is
assumed that h(t) is a unit energy pulse, that is, Ep =

∫
|h(t)|2dt = 1. Finally,

ideal channel estimation at the receiver side, that is, perfect synchronization
and perfect knowledge of the lSI coefficients and the noise variance is assumed.

The received signal is given by r(t) = s(t) + n(t), where n(t) is complex
white Gaussian noise with one-sided power spectral density (PSD) N0. Even
though all simulation results for ISI channels in this chapter are based on a
baseband model, i.e., 2-PAM with a real h(t), the representation of MIMO
channels is complex and therefore, throughout this chapter, all formulas are
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given in this more general form. As already mentioned in Chapter 2, Forney
showed [4] that the sampled matched filter outputs

xk =

∫ ∞

−∞
r(t)h∗(t− kT )dt (4.2)

form sufficient statistics to estimate the transmitted data from the received
signal r(t). Here h∗(t) denotes the complex conjugate of h(t). By inserting the
expression for r(t) into (4.2), the sampled matched filter outputs become

xk =

L∑

l=−L

glak−l + ηk (4.3)

where

gl =

∫ ∞

−∞
h(t)h∗(t− lT )dt (4.4)

ηk =

∫ ∞

−∞
n(t)h∗(t− kT )dt.

Note that the noise samples ηk are no longer white and that the unit-energy
assumption, Ep = 1, implies that g0 = 1. Equation (4.3) will be referred to as
the Ungerboeck observation model. Further assumed is that the autocorrelation
coefficients satisfy gl = 0 for |l| > L; optimal detection then requires |Ω|L trellis
states. The correlation of the colored noise samples ηk is E[ηkη∗

k−l] = glN0.
The Forney or white noise observation model is often preferred over the

Ungerboeck model mostly due to the whiteness of the noise at its output. In
this model the sampled MF outputs are filtered with a discrete-time whitening
filter producing the sequence y in (2.54) which, for convenience, is repeated
here in a slightly different form

yk =

L∑

l=0

flak−l + wk. (4.5)

In (4.5), f = [f0, f1, . . . , fL] is a causal (L + 1)-tap long ISI response sequence
and the noise samples {wk} are independent complex Gaussians with variance
σ2 = N0. Note that, hereinafter, bold letters are used for vectors (lower case)
and matrices (upper case). In agreement with (4.4), g is the autocorrelation
sequence of f . The causal sequence y also forms a set of sufficient statistics.
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Hence, in the case of optimal detection the two models have equivalent detection
properties.

There exist many possible whitening filters with the white-noise-at-the-
output property. However, it is well known that the minimum-phase solution
is the one best suited for reduced-search decoders (see [92, 98] and the more
recent [99, 112]). This is due to the fact that in a minimum-phase model, the
signal energy is concentrated in the front taps, which directs the reduced search
more efficiently. Therefore, throughout this chapter, when a whitening filter
is used it is assumed that it results in the minimum-phase impulse response
f . Further improvements of the minimum phase idea are proposed in Chapter
3. However, in the same chapter it is shown that due to spectral zero regions
in practical FTN signaling the Forney observation model may be prohibited.
Chapter 3 gives a solution to this modeling problem which leads to white noise
but without a formal WMF. Therefore, in this chapter, the notation Forney
observation model includes all types of signaling that can be represented with
the discrete-time model in (4.5).

An interesting fact in the Ungerboeck model is that the observations xk

contain contributions from both the past and the future L symbols, unlike in
the Forney model where observations depend only on the current data symbol
ak and the L past symbols [ak−1, ..., ak−L]. This is clearly seen if (4.3) is
decomposed according to

xk =
−1∑

l=−L

glak−l

︸ ︷︷ ︸

“future′′

+ ak
︸ ︷︷ ︸

“present′′

+
L∑

l=1

glak−l

︸ ︷︷ ︸

“past′′

+ηk. (4.6)

One of the objectives of this chapter is to show that this fundamental difference
has a crucial effect on the BER performance of reduced-complexity tree/trellis
decoders.

4.2.2 MIMO channels

Next consider transmission of a linearly modulated signal through a MIMO
channel affected by additive white Gaussian noise (AWGN). The received signal
sample at kth time instance is given by

yk = Hak + wk (4.7)
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where ak = [ak,1, ak,2, . . . , ak,N ]T are modulation symbol tuples chosen from an
alphabet ΩN and H is the channel matrix representing the N ×N MIMO sys-
tem. It is assumed that all coefficients {hi,j} are independent and identically
distributed (IID) complex Gaussians with unit variance (1/2 in each dimen-
sion), denoted as CN (0, 1) and wk is IID CN (0, N0I). Note that, as already
pointed out in Chapter 2, the ISI model (4.5) can be seen as a special case of
the MIMO model (4.7) where the channel matrix H has the following form:

H =
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Although the results for MIMO channels can be extended to other modulation
alphabets, this analysis is restricted to uniformly distributed symbols drawn
from the M-QAM alphabet Ω = {±A±Bj} where

A,B ∈
√

3

2(M−1)
{1, 3, ..., (

√
M − 1)}.

Note that the M-QAM alphabet above has been properly normalized such that

E[|ak,l|2] = 1.

As before, the MIMO channel is assumed to be perfectly known at the re-
ceiver. After a QL-decomposition, model (4.7) can equivalently be expressed
as (henceforth the index k is omitted)
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ỹ = La + w̃ (4.8)

where ỹ = Q†y, w̃ = Q†w and H = QL. The matrix L is lower triangular
and “†” denotes the Hermitian transpose operator. Since the nth entry of ỹ

equals

ỹn =

n∑

m=0

ℓnmam + w̃n, (4.9)

ỹ can be represented with a tree of depth N with in total |Ω|N leaf nodes.
While (4.9) is the MIMO counterpart of the Forney ISI-signal in (4.5) it is

also possible to define the MIMO counterpart of the Ungerboeck ISI-signal in
(4.3) by a matrix multiplication with L†, that is

x = L†ỹ. (4.10)

In fact, a further strength of the Ungerboeck representation of the MIMO chan-
nel in (4.7) is that there is no need to perform any QL- or QR-decomposition
[116]. Instead the vector x in (4.10) can be obtained directly by a matrix
multiplication of (4.7) with H†, that is

x = H†y = Ga + η (4.11)

where we have defined G
△
= H†H and where H†w = η. Note that G =

H†H = L†L. In the remainder of this chapter it is assumed that a QL-
decomposition of the channel matrix H is always performed and hence the
notation y is always used instead of ỹ.

4.3 Optimum and Suboptimum Detection

This section discusses MAP and approximate MAP methods for sequence and
symbol detection. In Section 4.3.1 the path metric for MAP sequence detection
is given for both ISI and MIMO channels while Section 4.3.2 introduces the so-
called middle models. Finally, in Section 4.3.3, optimum and suboptimum
symbol detection is considered.
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4.3.1 Path Metrics for MAP Sequence Detection

ISI Channels

According to Section 2.4, a MAP sequence detector finds the most probable
data sequence â such that

â = arg max
a

Pr(a|x) = arg max
a

Pr(a|y) (4.12)

where x and y are received vectors containing Ungerboeck and Forney observa-
tions (see (4.3) and (4.5)) while Pr(·|·) denotes a conditional probability mass
function. The whiteness of the noise samples at the receiver in the Forney ob-
servation model allows the factorization (2.86) where each term p(yk|a) is given
by (2.87). Combined with the data independence assumption, the branch met-
ric for ISI channels at kth trellis stage is proportional to Pr(ak)p(yk|a). This
chapter works in the log-domain so that (2.87) becomes

log p(yk|a) ∝ − 1

N0

∣
∣
∣yk −

L∑

l=0

flak−l

∣
∣
∣

2

. (4.13)

Note that, for the optimization problem in (4.12), the term 1/N0 can be re-
moved if the inputs are equiprobable. However, since this need not be the case
in general, 1/N0 will be kept throughout the chapter.

The colored noise in the Ungerboeck model prohibits the factorization in the
form of (2.86). Nevertheless, the log-likelihood log p(x|a) can still be factorized
[21] as

log p(x|a) ∝
B−1∑

k=0

ϕ̃(xk|a) (4.14)

where B is the length of the received sequence and where, for ISI channels,
ϕ̃(xk|a) is given by

ϕ̃(xk|a) ,
2

N0
a∗

k

(

xk −
ak

2
−

L∑

l=1

glak−l

)

. (4.15)
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MIMO Channels

Consider now MIMO channels represented by (4.9). The corresponding log-
likelihood log p(y|a) is given by

log p(y|a) ∝ −‖y −La‖2
N0

. (4.16)

From (4.8) we have the following commonly used factorization

log p(y|a) ∝
N∑

k=1

−|yk − (La)k|2
N0

(4.17)

which allows a straightforward implementation of Forney-based MAP detec-
tion. Note that eq. (4.17) is the MIMO counterpart (in log-domain) of the
Forney metric in ((2.86) and (2.87)) for ISI channels. By using the definition
G = L†L and reminding the reader that x is the Ungerboeck MIMO signal in
(4.10), we obtain the following alternative expression of (4.16):

log p(y|a)∝−‖y −La‖2
N0

=−y†y − 2R{y†La}+ a†Ga

N0
(4.18)

=
1

N0

N∑

k=1

[
−|yk|2 + gkk|ak|2 − 2R{xka∗

k}

+2R{a∗
k

k−1∑

m=1

gmkam}
]

=
1

N0

N∑

k=1

[

−|yk|2+

(
N∑

n=k

|ℓnk|2
)

|ak|2

+2R
{

a∗
k

[
k−1∑

m=1

(
N∑

n=k

ℓ∗nkℓnm

)

am−xk

]}]

,

where R{·} denotes the real part of a complex number. Similarly to ISI chan-
nels, we now move from the notation log p(y|a) to log p(x|a) where the latter
can be expressed as
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log Pr(x|a) ∝
N∑

k=1

ϕ̃k(xk|ak, ..., a1) (4.19)

where

ϕ̃k(xk|ak, ..., a1) = − 1

N0

[

gkk|ak|2 + 2R
{

a∗
k

[
k−1∑

m=1

gmkam − xk

]}]

. (4.20)

This type of recursive factorization is the MIMO counterpart of the Ungerboeck
metric for ISI channels (4.14). It was first applied to MIMO setups in [116].
Since ϕ̃k(xk|ak, ..., a1) is only a function of current and past symbols, the same
tree as in Forney-based detection can be used to calculate log p(x|a).
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k = 1 : − 1

N0
|y1 − ℓ11a1|2 = − 1

N0

(

|y1|2 + |a1|2|ℓ11|2 − 2R{y∗
1ℓ11a1}

)

k = 2 : − 1

N0
|y2 − ℓ21a1 − ℓ22a2|2 = − 1

N0

(

|y2|2 + |a2|2|ℓ22|2

+ |a1|2|ℓ21|2 − 2R{y∗
2ℓ21a1}

︸ ︷︷ ︸

UBM1

−2R{y∗
2ℓ22a2}+ 2R{a∗

1ℓ
∗
21ℓ22a2}

)

k = 3 : − 1

N0
|y3 − ℓ31a1 − ℓ32a2 − ℓ33a3|2 = − 1

N0

(

|y3|2 + |a3|2|ℓ33|2

+ |a1|2|ℓ31|2 − 2R{y∗
3ℓ31a1}

︸ ︷︷ ︸

UBM1

−2R{y∗
3ℓ33a3}+ 2R{a∗

1ℓ
∗
31ℓ33a3}

+ |a2|2|ℓ32|2 − 2R{y∗
3ℓ32a2}+ 2R{a∗

1ℓ
∗
31ℓ32a2}

︸ ︷︷ ︸

UBM2

+2R{a∗
2ℓ

∗
32ℓ33a3}

)

.

4.3.2 Middle Models

Next, it is shown that there exist other models, middle models, where the
tree/trellis metrics are calculated in a different manner than in the Forney and
Ungerboeck observation models. For simplicity this section begins with a 3× 3
MIMO setup example for which the Forney and Ungerboeck metrics at different
tree depths are calculated. The input-output channel model (4.17) is assumed.
Now the Forney branch metric at kth tree depth is given by the expressions at
the top of this page.

If the terms marked UBMk are instead calculated at the kth tree depth
the Ungerboeck model is obtained, see (4.20). Note that, in the Forney ob-
servation model, the computation of the tree/trellis metrics which depend on
a specific symbol ak is spread over the time instances k, k + 1, ..., N while in
the Ungerboeck model the computation is performed as early as possible. The
middle models are models working in between these extremes. More specifi-
cally, in a middle model with an offset p, the computation of the marked terms
is performed p steps earlier than in a Forney model. The following metric is
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computed in a general p offset middle model at tree/trellis depth m:

− 1

N0

(
m−1∑

n=1

(
|an|2|ℓm+p,n|2 − 2R{y∗

mℓm+p,nan}
)

+

p
∑

q=0

(
|am|2|ℓm+q,m|2 − 2R{y∗

m+qℓm+q,mam}
)

+
m−1∑

n=1

m−n−1∑

t=1

2R{a∗
nℓ∗m+p,nℓm+p,n+tan+t}

+
m−1∑

n=1

p
∑

q=0

2R{a∗
nℓ∗m+q,nℓm+q,mam}

)

.

Observe that the term −|ym|2/N0 has been left out since it has no influence
on the detection outcome, i.e., it is constant with respect to a. The middle
model above is equivalent to the Forney model if p = 0 while the Ungerboeck
model is obtained when p = N (assuming a N ×N MIMO system). In Section
4.5 middle models are evaluated and compared to the two already established
models when suboptimum reduced-complexity algorithms are used.

4.3.3 MAP Symbol Detection

This section considers optimum and suboptimum MAP symbol detection. Ac-
cording to Section 2.4, a MAP symbol detector minimizes the symbol error
probability by finding, at each time instant k, the most probable symbol âk

according to

âk = arg max
ak

Pr(ak|x) = arg max
ak

Pr(ak|y)

where x and y are vectors of received observations from (4.3) and (4.5). In
iterative detection, soft information in the form of logarithmic a posteriori
probability (APP) ratios, is exchanged between the component blocks. If, for
notational simplicity, binary 2-PAM signaling is assumed, i.e. Ω = {±1}, the
logarithmic APP ratio, provided by a MAP symbol detector, can be expressed
as

L(ak) , log

(
Pr(ak = +1|x)

Pr(ak = −1|x)

)

= log

(∑

a:ak=+1 Pr(a|x)
∑

a:ak=−1 Pr(a|x)

)

. (4.23)
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For ISI and MIMO channels, the MAP symbol detector can be efficiently re-
alized using the BCJR algorithm [11] based on the factorization (2.86). A
BCJR-type algorithm, based on (2.88), was derived in [34] and it was shown
that its output is equivalent to the output of a Forney-model-based BCJR.

Since the BCJR algorithm is often prohibitively complex, alternative detec-
tion methods with an acceptable complexity-performance tradeoff are needed.
This section describes the M-BCJR algorithm, which is the reduced-search
method used in this chapter. It is similar to the Chapter 3 simple detection
M-BCJR with minor differences in steps IV and VI. For reading convenience
the adopted M-BCJR is again given in steps. However, in this chapter it is
described without the binary symbol alphabet assumption made in Chapter 3.

A state σk is, in case of ISI channels, defined by the L (N for MIMO
channels) most recent symbols, i.e. σk = [ak−L, . . . , ak−1]. Same notations as
in Chapters 2 and 3 are used; the recursively calculated forward and backward
tree/trellis metrics of the state σ at kth tree/trellis depth are denoted αk(σ)
and βk(σ) respectively and the metric at time k of the branch connecting the
states (σ, σ′) is denoted γk(σ, σ′). The M-BCJR algorithm finds the largest M
αk(σ) and βk(σ) and based on these, it computes the logarithmic APP ratios
(4.23) in the same manner as the BCJR algorithm. For simplicity, the Forney
observation model (4.5) and ISI channels are assumed but it is straightforward
to extend all steps to the Ungerboeck model and/or MIMO setups. Recursions
start and end in the all-zero state. The adopted M-BCJR proceeds as follows:

Forward Recursion. Starting at k = 0, perform at stage 1, 2, . . . , (B + L− 1):

I The forward recursion is computed from the M nonzero values retained
in αk. There are M outcomes corresponding to each symbol in Ω; only
the |Ω|M corresponding branch metrics γ are computed and stored.

II Trellis paths may merge at stage k+1. The algorithm detects and removes
merges, leaving only one survivor per node whose α value is the sum of
the incoming values.

III M largest α values are found and stored for stage k + 1 and for the β
recursion.

Backward Recursion. Starting at k = (B + L − 1), perform at stage (B + L−
2), (B + L− 3), . . . , 2:

IV The backward recursion is computed from the M nonzero values retained
in βk+1 over the branches from step I. There are in total |Ω|M outcomes
at each depth.
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V Trellis paths may merge at stage k. The algorithm detects and removes
merges, leaving only one survivor whose β value is the sum of the incoming
values.

VI M largest β values are found and stored for stage k − 1 and for the
completion stage. If the backward metric of a state σ at depth k equals
0, it is replaced with βk,min where βk,min is the smallest non-zero backward
metric in the M-list at depth k. Unlike the simple detection M-BCJR from
Chapter 2, the M-BCJR used in this chapter does not need to retain β
paths if their state and stage overlap with that of a stored α.

Completion. Starting at k = 0, perform at stage 0, 1, . . . , (B + L− 1):

VII Compute the approximate logarithmic APP from (4.23). If the sum in
either the numerator or the denominator equals 0, i.e., there is no overlap
between α and β, the respective sum is set to ǫ, where ǫ is a backup
constant set a priori. In the simulations ǫ = 10−12.

A different algorithm, the M*-BCJR algorithm, is considered in Section 4.6.
This reduced complexity MAP detector was proposed in [94] and shows very
good performance on ISI channels. The algorithm retains M states at each
trellis depth, but rather than eliminating the remaining states they are merged
into the M survivor states. Section 4.6 presents and evaluates different merging
strategies while Section 4.7 treats the effect of Ungerboeck and Forney metrics
on the M*-BCJR performance.

4.4 The Asymptotic SNR Regime

The asymptotic behavior of the two observation models in the high and low
SNR regimes is analyzed in this section. For simplicity a real and unit energy
ISI pattern with g0 = 1 is assumed together with 2-PAM data sequences a and
an M-algorithm with M = 1. Note that in the M = 1 case there is no trellis
pruning, i.e., only a single path is explored which is equivalent to detection
with a standard decision feedback (DF) equalizer. It is further assumed that
the current tree/trellis state is correct, i.e., it is assumed that the detector
holds the correct path a[0,k−1] at tree/trellis depth k − 1. The high SNR
asymptotic regime was considered in [114]. For completeness the main results
are summarized here, before proceeding with the study of the low SNR regime.
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The high SNR case (N0 → 0) and the Forney observation model (4.5) are
studied first. The received signal sample at kth trellis depth, can be expressed
as

yk = f0ak +

L∑

l=1

flak−l + wk.

Since correct tree/trellis state at stage k− 1 is assumed, there will be no influ-

ence from the past symbols, i.e., the term
∑L

l=1 flak−l in yk can be removed. In
the high SNR regime, the noise wk vanishes and consequently the kth received
signal sample equals

yk = f0ak.

The SNR for determining ak based on yk is hence infinite. The M = 1 case
in the M-algorithm is thus sufficient for correct sequence detection when the
Forney observation model is used. As we will show next, this may not be the
case when the Ungerboeck observation model is adopted.

Now consider the Ungerboeck observation model with the same assump-
tions. The influence from the past symbols (

∑L
l=1 glak−l) can be removed from

(4.6) and with vanishing noise ηk, the kth received signal sample xk reduces to

xk = ak +

−1∑

l=−L

glak−l.

A correct path loss in the M-algorithm with M = 1 at trellis stage k can thus
occur if

∣
∣
∣
∣
∣

−1∑

l=−L

glak−l

∣
∣
∣
∣
∣
> |ak|.

Since the maximum of the left-hand side is
∑−1

l=−L |glak−l|, a sufficient1 and
necessary condition for a correct path loss with M = 1 is:

1Note that (4.24) is a sufficient condition that a correct path loss can possibly occur.
With long input blocks, the probability goes to one that the L most recent symbols are such
that a correct path loss occurs somewhere in the block.
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−1∑

l=−L

|gl| − 1 > 0. (4.24)

Condition (4.24) is fulfilled by ISI responses of closed-eye type. Consequently,
for a long input block in the Ungerboeck observation model and in the high
SNR case, the sequence â, estimated by the M-algorithm with M = 1, is
equivalent to the transmitted sequence â = a if and only if the considered ISI
is of open-eye type, i.e.,

−1∑

l=L

|gl| < 1. (4.25)

Hence, in the high SNR regime, a significant performance difference between
Forney and Ungerboeck detectors (in favor of Forney) is expected.

By a straightforward extension of (4.24) into a MIMO setup, the following
condition for a correct path loss at any depth with M = 1 is obtained:

N∑

ℓ=k+1

|gkℓ| − gkk > 0, ∀k, (4.26)

where gkℓ are the elements of the matrix G.
Now consider the low SNR case. The signal to interference plus noise ratio

(SINR) has a crucial impact on the branching procedure in a signal tree/trellis.
If the Forney observation model (4.5) and M = 1 are assumed, the SINR at
any trellis stage is given by

SINRF =
|f0|2
N0

.

In the Ungerboeck observation model (4.3), on the other hand, the SINR be-
comes

SINRU =
|g0|2

g0N0 + If

where If is the interference energy from the “future” symbols in (4.6), i.e.,
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If =

−1∑

l=−L

|gl|2. (4.27)

If now N0 approaches infinity, it can be observed that SINRU ≥ SINRF since
g0 =

∑L
l=0 |fl|2 ≥ |f0|2. Consequently, in the low SNR regime, the probability

of correct path loss is smaller in the Ungerboeck observation model. This will
be confirmed by simulation results in Section 4.5.

At depth k in a MIMO setup, the SINR expressions translate into

SINRF =
|ℓkk|2
N0

.

and

SINRU =
|gkk|2

gkkN0 + If

and consequently the same conclusions as in the ISI case hold.

4.5 M-BCJR Receiver Tests

This section presents receiver test results which provide insights into the dif-
ferences between the observation models when reduced complexity M-BCJR
detection is used. The following unit-energy ISI channel models have been
used in the tests:

f =[.2448,.4774,.6868,.4428,.2106] (4.28)

f =[−.0049 ,−.0028 ,.0069 ,−.0109 ,−.0007 ,.0341 ,−.0185 ,.0034 ,.3746, (4.29)

.7408,.4989,−.0700,−.2143,.0187,.0873,−.0196,−.0277,.0168]

f =[.0248 ,.0122 ,−.0243 ,.0076 ,.1910,.4642,.6230,.5063,.1763, (4.30)

−.1226,−.1965,−.0746,.0604,.0797,.0134,−.0347,−.0222]

f =[.5000,.5000,−.5000,−.5000] (4.31)

The length-Kp taps whose values are written in italic in (4.29) and (4.30) are, in
the case of Forney observation model, replaced with zeros in the detector which
then works at a delay Kp; including these taps will increase the complexity
without almost any improvement of the BER performance. The model (4.28)
is the minimum phase equivalent of the standard memory L = 4 Proakis-C
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channel. It has d2
min = 0.63 which is a 5.02 dB loss compared to binary 2-

PAM signaling. Models (4.29) and (4.30) are super minimum phase discrete
time models of continuous FTN signals which appeared in Chapter 3. They
correspond to FTN signaling with the 30% rRC h(t) when τ = 1/2 and 0.35
respectively. As already mentioned earlier in this chapter, in practical FTN
signaling the WMF model may be prohibited due to spectral zero regions.
However, in this chapter all types of signaling that can be represented using
the discrete-time model in (4.5) is included in the Forney observation model.
The last model (4.31) is the EPR4 channel which has d2

min = 2.
The corresponding ISI channel models in the Ungerboeck observation model

are given in (4.32)-(4.35). Note that only L + 1 ISI taps are shown [g0, . . . , gL]
since the autocorrelation g satisfies g−k = g∗k, for all k.

g =[1,.8421,.5242,.2089,.0516] (4.32)

g =[1,.6236,.0003,−.1754,.0000,.0731,−.0009,−.0282,.0015,.0064, (4.33)

−.0041,−.0011,.0024,−.0002,−.0007,.0003,.0001,−.0001]

g =[1.8026,.3546,−.0424,−.1848,−.1015,.0332,.0830,.0425, (4.34)

−.0146,−.0340,−.0199,−.0024,.0028,.0004,−.0011,−.0006]

g =[1,.2500,−.5000,−.2500] (4.35)

The section now begins with uncoded transmission over ISI channels corre-
sponding to the inner encoder part of Figure 4.1.

4.5.1 Uncoded Transmission over ISI/MIMO Channels

M-BCJR Results for Uncoded ISI

Consider uncoded 2-PAM transmission over the channel (4.28). The informa-
tion block length used in the simulations is B = 5000 and the algorithm decides
on the symbols based on the sign of its LLR output. Figure 4.2 shows BER
performance (versus Es/N0) of the M-BCJR detectors, based on the two obser-
vation models, for different values of M . Note that the average symbol energy
Es is normalized to 1 in all simulation setups. Solid lines correspond to Forney
model while dotted lines correspond to Ungerboeck model. Clearly, there is
a crossover point between the two; at low SNR levels the Ungerboeck model
prevails while the situation to the right of the crossover points (higher SNR) is
reversed. In order to visually clarify these points for two values of M , a small
part of the figure is enlarged; the crossover points for M = 4 and 6 are at
Es/N0 ≈ 2 and 4 dB respectively. For larger M these move to a higher SNR
and a lower BER. Note that at Es/N0 = 14 dB, the M-BCJR based on the
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Figure 4.2: Uncoded BER performance of the Forney- and Ungerboeck-based
M-BCJR detectors for different values of M , 2-PAM inputs and the 5-tap
Proakis-C ISI channel.

Forney observation model with M = 8 is only ≈ 0.2 dB away from the BER
estimate Q(

√

.63Es/N0) while the M-BCJR based on the Ungerboeck model
has a much higher BER.

Figure 4.3 shows results for more severe ISI of the closed-eye type, i.e., the
τ = 0.35 FTN ISI model. It is observed that the Ungerboeck-based detector
completely fails at medium and high SNR levels, suffering from a high error
floor. This error floor, which confirms the conclusions from Section 4.4, is
eliminated only when the number of preserved states M approaches the full-
complexity value. Even though both observation models generate equivalent
outputs with optimal detection, these results confirm that it is important to
choose an appropriate model when reduced-complexity detection is performed.
The M-BCJR based on the Forney model with M ≥ 8 is, at Es/N0 = 14 dB,
again very close to the estimate Q(

√

.56Es/N0) ≈ 3× 10−5.
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Figure 4.3: Uncoded BER performance of the Forney- and Ungerboeck-based
M-BCJR detectors with different values of M for the τ = 0.35 FTN channel
and 2-PAM inputs.

M-BCJR Results for Uncoded MIMO

In the case of ISI channels it was assumed that the channel state information
was perfectly known. The ISI channel is time invariant and hence the crossover
points between the two observation models could be predicted precisely enough
using the average SNR value. In MIMO channels on the other hand the average
SNR is fixed but the instantaneous SNR can vary significantly from one channel
realization to another. Therefore a method for choosing the best observation
model for each realization of H is needed in order to improve the overall system
performance. In addition to the instantaneous SNR we have looked at other
channel properties that might aid us in the choice of model.

Consider now a 4 × 4 MIMO setup with 4-QAM inputs. Two relevant
channel properties of the MIMO channel (4.7) are the condition number
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Figure 4.4: Channel realization statistics in loglog scale, generated with an M-
BCJR detector with M = 3, for optimal (in BER sense) choice of observation
model in a 4 × 4 MIMO setup with 4-QAM inputs. Black dots correspond to
Forney model while grey squares correspond to Ungerboeck model. The dashed
line illustrates the border where the BER performance of both observation
models is almost identical (on average); to the left of this line the optimal
choice is the Ungerboeck model, while to the right it is the Forney model.

κ[G] =
λMAX [G]

λMIN [G]

where λMAX [G] and λMIN [G] are the maximal and minimal eigenvalues of G,
and the channel realization energy defined as

√

(1/N0)/N ||H ||2. Note that
2-norm has been applied in the calculation of the condition number.

Figure 4.4 plots the optimal choice of model versus channel realization prop-
erties in loglog scale, generated with an M-BCJR detector with M = 3. The
optimal choice (in the BER sense) of observation model is in the case of Forney
model represented with black dots while grey squares correspond to Unger-
boeck model. For every channel matrix H realization, the error rate results
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Figure 4.5: Uncoded BER performance of the Forney- and Ungerboeck-based
M-BCJR detectors with different values of M in a 4 × 4 MIMO setup with
4-QAM inputs.

have been averaged over at least 500 noise realizations. In order to distinguish
the choice of model, we have divided the plot into disjoint regions using straight
lines (linear functions with different slope) in the log-domain. The dashed line
illustrates the border where the BER performance of both observation models
is almost identical (on average); to the left of this line the optimal choice is the
Ungerboeck model, while to the right it is the Forney model.

Our tests show that there are almost no gains in choosing the best model
using the condition number compared to the case where only channel realization
energy is considered (a straight vertical line). Hence we conjecture that the
best choice of observation model (Forney or Ungerboeck model) is only very
weakly dependent on the structure of the channel matrix H but is strongly
dependent on the instantaneous SNR. Dividing the plot based on only the
channel realization energy will be referred to as the energy-based method. Other
channel properties could possibly improve upon the energy-based method but
they are not explored further. Figure 4.5 shows BER performance of M-BCJR
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Figure 4.6: Channel realization statistics in loglog scale, generated with an M-
BCJR detector with M = 3, for optimal (in BER sense) choice of observation
model in a 4 × 4 MIMO setup with 4-QAM inputs. Black dots correspond to
Forney model, grey squares correspond to Ungerboeck model while grey circles
correspond to the middle model with offset p = 1.

detectors (for different M) based on the two observation models in a 4×4 MIMO
setup with 4-QAM inputs. Also shown are the results of the proposed energy-
based method (dashed lines) which performs well in both the high and low SNR
regimes. In a small region (SNR ≈ 2 – 4 dB), it outperforms detectors based on
both the Forney and Ungerboeck observation models. Note that, although the
energy-based method relying on the instantaneous SNR would outperform a
possible average SNR method, the average SNR can be used with only a small
BER penalty. Additionally, Figure 4.5 confirms the existence of a crossover for
MIMO setups.

By allowing middle models represented with grey circles, a similar plot to
Figure 4.4 has been made (see Figure 4.6. It shows that, for specific channel
realizations, the middle model with offset p = 1 is the optimal choice of model.
However, its statistics are scattered over large areas of the plot, and no simple
method to distinguish it when choosing the optimal model has been found.



Chapter 4. A Comparison of Ungerboeck and Forney Models for
Reduced-Complexity Detection 121

0 1 2 3 4 5 6 7 8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

 

 

M = 4, Forney model

M = 4, Ungerboeck model

M = 6, Forney model

M = 6, Ungerboeck model

M = 8, Forney model

M = 8, Ungerboeck model

BCJR (16 states)

(7,5) CC

Figure 4.7: Coded BER performance of the Forney- and Ungerboeck-based M-
BCJR detectors in a turbo scheme (10 iterations) with different values of M
for the 5-tap Proakis-C ISI channel, a memory 2, rate 1/2 outer convolutional
code and 2-PAM inputs.

4.5.2 Coded Transmission over ISI/MIMO Channels

Turbo Equalization for Coded ISI

Next consider coded transmission over ISI channels, as shown in Figure 4.1. The
transmitter setup is as follows: A block of 5000 information bits, encoded by
the outer (7,5) rate 1/2 feed-forward convolutional encoder, feeds a size 10000
random interleaver whose output is mapped to a symbol from the modulation
alphabet Ω before being transmitted over an AWGN channel. Signals are
terminated so that the transmission begins and ends in a pre-defined ISI state,
for example σ = [+1,+1, . . . ,+1].

This scheme can be viewed as serially concatenated coding, where the map-
per together with the ISI channel act as an inner encoder. The iterative prin-
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Figure 4.8: Coded BER performance of the Forney- and Ungerboeck-based M-
BCJR detectors in a turbo scheme (10 iterations) with different values of M
for the τ = 1/2 FTN channel, a memory 2, rate 1/2 outer convolutional code
and 2-PAM inputs.

ciple for equalization and decoding can thus be applied at the receiver, as first
proposed in [10]. The outer decoder in the turbo scheme is a full-state BCJR
(4 states) while the inner decoders are the M-BCJR detectors based on the two
observation models. Soft information is passed around the loop 10 times be-
fore a final decision is made. Note that turbo equalization requires reasonably
accurate absolute values while, in the uncoded case, only the LLR sign was
needed.

Turbo equalization BER results for channels (4.28) and (4.29) and 2-PAM
inputs are shown in Figure 4.7 and 4.8 respectively for several choices of M . The
benchmark performance, since no precoding is employed (see [82] and [106]),
is the ISI-free performance of the underlying outer code in AWGN, which is
shown in the plots as a bold dashed ‘CC’ line. Additionally, for comparison
in Figure 4.7, the performance of a 16-state BCJR detector is plotted. A
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Figure 4.9: Coded BER performance of the Forney- and Ungerboeck-based M-
BCJR detectors in a turbo scheme (10 iterations) with different values of M
for the τ = 0.35 FTN channel, a memory 2, rate 1/2 outer convolutional code
and 2-PAM inputs.

closer inspection of the figures reveals that the crossover point between the two
models is still present. Forney-based detectors perform slightly better at higher
SNR, while the situation is reversed at low SNR. Note that, for M = 6 and
8 in Figure 4.7, the ultimate performance is first reached by the Ungerboeck-
based detectors. The SNR range here corresponds to the left-hand side of the
detector’s operating range considered in Figure 4.2, where the performance
difference between the two models is not as drastic as in the right-hand side.
With M = 8 states, the performance of the Ungerboeck-based detector is very
close to that of the 16-state BCJR.

Figure 4.9 shows coded BER performance of the Forney- and Ungerboeck-
based M-BCJR detectors for the more severe FTN ISI channel (4.30) and 2-
PAM inputs. The results verify that the Ungerboeck-based detectors indeed
outperform the Forney-based detectors at practical SNR values. Since the
crossover point now appears at a much lower error rate, the Ungerboeck model
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Figure 4.10: Receiver tests after 5 iterations of LDPC encoded transmissions
over the EPR4 channel with 2-PAM inputs. The LDPC code is the irregular
(32400,64800) standardized code in DVB-S.2.

is clearly the appropriate choice of model.
A different setup is considered in Figure 4.10. A block of 32400 informa-

tion bits is, after encoding by the irregular rate 1/2 (32400,64800) LDPC code,
standardized in DVB-S.2 [117], and mapping to 2-PAM symbols, transmitted
over the EPR4 channel (4.31). The signal is corrupted by AWGN before be-
ing processed by an iterative scheme. The impressive results after 5 global
iterations (20 internal in the LDPC decoder) show that the Ungerboeck-based
M-BCJR detectors perform better than those based on the Forney model. For
small values of M the differences in BER performance are significant. However,
as M approaches the full complexity value M = 8, the differences are rather
small. This is an expected outcome since optimal detectors based on the two
observation models have equivalent detection properties.

Now consider again the same serially concatenated setup but for LDPC
codes with other code rates: the rate 1/3 irregular (21600,64800) LDPC code,
the rate 3/4 irregular (48600,64800) LDPC code and finally the rate 9/10 ir-
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Figure 4.11: Receiver tests after 5 global iterations of LDPC encoded trans-
missions with different code rates over the EPR4 channel with 2-PAM inputs
and for M = 5.

regular (58320,64800) LDPC code all chosen from the DVB-S.2 standard [117].
The inputs are again symbols from a 2-PAM alphabet and the same number
of global and internal iterations is performed. Figure 4.11 shows the BER
performance of Forney- and Ungerboeck-based M-BCJR detectors for M = 5
and different code rates. Also shown for comparison are the BER results for
the rate 1/2 irregular (32400,64800) LDPC code. According to Figure 4.11,
the best performing M-BCJRs for all tested code rates are those based on the
Ungerboeck model. For a lower code rate, i.e. when more redundancy is added,
the performance gains of using an Ungerboeck-based M-BCJR are larger. For
the highest rate, that is rate 9/10, the BER curves are almost identical. This is
an expected outcome since a higher code rate implies a higher required SNR in
order to reach a target BER. Recall that Ungerboeck-based M-BCJRs perform
better than those based on the Forney observation model for low SNRs.
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Figure 4.12: Receiver tests after 5 global iterations of LDPC encoded trans-
missions with different code rates over the EPR4 channel with 2-PAM inputs
and for M = 6.

In Figure 4.12 simulation results for the M = 6 case are shown. As expected,
the performance differences for all tested code rates are now smaller. Despite
this, the M-BCJR detectors that result in the lowest error rates are those based
on the Ungerboeck observation model.
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Figure 4.13: Coded BER performance of the Forney- and Ungerboeck-based
M-BCJR detectors in a turbo scheme (10 iterations) with different values of M
for a 4 × 4 MIMO setup, a memory 2, rate 1/2 outer convolutional code and
4-QAM inputs.

Turbo Equalization for Coded MIMO

Figures 4.13 and 4.14 show turbo equalization results after 10 iterations for 4×4
and 8 × 8 MIMO setups with 4-QAM inputs. The results are averaged over
> 1000 channel matrix H realizations where the elements hi,j are independent
and identically distributed complex Gaussians with unit variance, i.e., hi,j ∼
CN (0, 1). According to Section 4.2, the Forney observation model is obtained
by performing a QL-decomposition of the channel matrix H in (4.7) which
results in

y = La + w (4.36)

where L is a lower triangular matrix.
The Ungerboeck model in MIMO is obtained by a matrix multiplication
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Figure 4.14: Coded BER performance of the Forney- and Ungerboeck-based
M-BCJR detectors in a turbo scheme (10 iterations) with different values of M
for a 8 × 8 MIMO setup, a memory 2, rate 1/2 outer convolutional code and
4-QAM inputs.

with L† (alternatively a matrix multiplication of (4.7) with H†), that is

x = L†y = Ga + η (4.37)

where G = L†L = H†H. Encoding is performed with the outer (7,5) convo-
lutional code. Again, the figures confirm the predictions from Section 4.4 even
though the performance differences between the two models here are rather
small. Note that they grow (more obvious in Figure 4.14) with the decreasing
size of M . When the value of M approaches the full complexity value, the
performance of M-BCJR detectors based on the two models is close to optimal
where they are expected to perform equivalently.
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Figure 4.15: Mutual information between the output of the M-BCJR algo-
rithm and the transmitted 2-PAM symbol sequence for the 5-tap Proakis-C ISI
channel. Solid curves correspond to the Forney model while the dotted ones
correspond to the Ungerboeck model.

4.5.3 Performance Evaluation via Mutual Information

In this section mutual information is used as an detector performance mea-
sure in an uncoded system. The BCJR-once bound is considered, as defined
by Kavčić in [118]. It is the ultimate limit for separate non-iterative equaliza-
tion/decoding of the channel and the outer code. Analytical computation of
the BCJR-once bound

IA = I(a;L(a)) (4.38)

between the transmitted sequence a from (4.1) and the sequence of L-values
L(a) generated by an detector is prohibitive in practice. However, with the
independence assumption of ak, one can consider the marginal PDF of the de-
tector output, f̃(l|α) , f̃(L(ak) = l|ak = α), and use it to calculate I(a;L(a)).



130 Reduced Receivers for Faster-than-Nyquist Signaling and General ...

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
A

I E

 

 

M = 6, Forney model

M = 6, Ungerboeck model

(7,5) CC

E
b
/N

0
 = 4.5 dB

Figure 4.16: An EXIT chart at Eb/N0 = 4.5 dB, showing extrinsic IE vs.
a priori IA information for M-BCJR detectors based on the Forney and the
Ungerboeck observation models with M = 6 and for 2-PAM inputs. The
channel is the 5-tap Proakis-C ISI channel and the information sequence is
encoded using the (7,5) outer convolutional code.

Calculation of mutual information was introduced in Section 2.5. Since the
marginal PDF stemming from an ISI channel with binary equiprobable inputs
satisfies f̃(l|1) = f̃(−l| − 1), IA can be obtained by evaluating the integral

IA = 1−
∫ ∞

−∞
f̃(l|1) log2(1 + e−l)dl. (4.39)

By using an empirical estimate of the marginal density f̃(l|1), (4.39) is eval-
uated numerically. The observation sequences y and x are formed from 107

information bits. M-BCJR detectors, based on the two observation models and
with no a priori information, are applied to these sequences and a histogram
of all L(ak) where ak = 1 is used to estimate f̃(l|1).

Figure 4.15 shows IA for the setup considered in Figures 4.2 and 4.7, that
is an uncoded system with 2-PAM inputs transmitted over the 5-tap Proakis-C
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ISI channel in (4.28) followed by AWGN. Clearly, in the high SNR region, it
can be observed that the mutual information obtained with the Ungerboeck-
based detector is below that obtained with the Forney-based detector. The
latter shows good performance (close to a full BCJR) even for M = 4 while
the Ungerboeck-based detector performs poorly. In the low SNR region, on the
other hand, the Ungerboeck model yields higher IA than the Forney model. The
mutual information crossover between the two observation models corresponds
rather well to the BER crossover in Figure 4.2.

For the coded setup in Figure 4.7 it is not sufficient to only consider the
mutual information IA. Instead, according to Section 2.8, EXIT charts can be
used to monitor the iterative convergence behavior of the detectors based on
the two observation models. An EXIT chart for the coded setup at Eb/N0 = 4.5
dB and for M = 6 is shown in Figure 4.16. The Ungerboeck-based M-BCJR
is clearly the best performing detector. This is in fact confirmed by the turbo
equalization results in Figure 4.7. For low a priori mutual information IA the
tunnel is wider for the Ungerboeck M-BCJR, allowing it to converge earlier (at a
lower SNR) to the performance of the outer (7,5) convolutional code. Non-ideal
interleavers and short blocklengths make it impossible for the Forney-based M-
BCJR to pass where the tunnel is narrowest. A comparison with Figure 4.15 is
possible for Es/N0 ≈ 1.5 dB (corresponding to Eb/N0 = 4.5 dB). The mutual
information results are in fact the values in the first turbo iteration without
any a priori information, and according to Figures 4.15 and 4.16 the mutual
information values at Es/N0 ≈ 1.5 dB correspond rather well to the left-most
values in the EXIT chart.

4.6 The M*-BCJR Algorithm

The M*-BCJR algorithm [94], computes the L-values (4.23) in the same manner
as the BCJR algorithm; however, similarly as in the M-BCJR [13], at each trellis
stage in the forward recursion only M states with the highest forward metric
are retained. Unlike in the M-BJCR, the remaining states are not deleted, but
rather merged with the surviving states. Merging of two states implies that
their forward metrics are summed up and the branches of the inferior state
are redirected into the surviving state. An illustrative example of the merging
process is shown in Figure 4.17. Such a modified trellis is subsequently used
in the backward recursion. Although merging the states slightly increases the
complexity, it preserves the balance of the branches that carry opposite symbols
at each trellis depth, and thus avoids problems when computing the L-values
in (4.23).

Since a state is an L-tuple of the most recent L symbols, then two states
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merging

σσ

σ′

Figure 4.17: An example of a trellis section before and after merging an excess
state σ′ (shown in red color) into the surviving state σ.

that differ in t ≤ L ending positions (oldest symbols) merge in the trellis after
t steps. If t is small, the metric difference of the paths leading to the common
state is supposed not to be large [94]. If SM and S6M again denote the set
of the M best states and the set of the remaining states at a certain depth,
respectively, then a rule proposed in [94] is that a state σ′ ∈ S6M is merged
with such a state σ ∈ SM that differs in the least number t of the ending
positions. The next subsection discusses the realization of this merging rule
in more detail and also proposes alternative merging strategies. Hereinafter,
binary representation of the states is assumed, i.e., L log2(|Ω|) bits uniquely
define a state. The all-zero state σ0 for a memory L = 3 ISI channel with 4-
PAM inputs is represented with 3 log2(4) = 6 bits, that is σ0 = [0, 0, 0, 0, 0, 0].

4.6.1 State Merging Strategies

The following state merging strategies are considered:

1) If ⊕ denotes the bitwise x-or operator, then the zero bits in σ ⊕ σ′

indicate the positions where the states σ and σ′ coincide. The state merging
can be efficiently realized in the following way: for each state σ′ ∈ S6M compute
the values σ ⊕ σ′ for all σ ∈ SM ; find the state σ which yields the smallest
value of σ ⊕ σ′ (interpreted as a decimal number), and merge σ′ with σ. This
merging rule is denoted R1. It ensures that σ′ ∈ S6M will be merged with the
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state σ ∈ SM that coincides with σ′ in the largest number of leading positions.
In case of a tie, a state with the smaller value of σ ⊕ σ′ is preferred.

2) A modified approach, denoted R2, resolves the above mentioned cases of
a tie, in a different way: if there is more than one state σ ∈ SM that coincides
with σ′ ∈ S6M in the largest number of leading positions, then merge σ′ with
the one that has the smallest forward metric. Good results obtained with this
strategy indicate that the metric values should be taken into account when
merging the remaining states.

3) Motivated by the previous observation, strategy R3 is proposed, which
simply merges all the states from S6M with the state σ ∈SM that has the
smallest forward metric. Note that this strategy is the simplest to implement,
since it does not require any additional computations or sorting procedures
during the merging process, unlike the previous two.

Also tested is to replace the “smallest-metric” choice in R2 and R3 by the
“largest metric”; however, this variant of the algorithm fails completely. This
suggests that, among the chosen M states at each stage, the “good” states with
large metric should be left intact, while the “weak” states should be used to
“collect” the discarded states from S6M .

Approaches R1, R2, and R3 have been tested with various ISI patterns.
The rules R2 and R3 outperform R1, allowing largest complexity reduction,
that is, the smallest M , to reach the specified bit error rate. For a given value
of M , R2 yields the lowest BER, and it will therefore be used hereinafter.

4.7 M*-BCJR Receiver Tests

4.7.1 M*-BCJR Results for Uncoded ISI

Consider first uncoded 2-PAM transmission over an ISI channel of memory L.
The complexity of the BCJR detector is of the order 2L. In the tests, two
standard ISI channel models have been used, both causing severe ISI, and both
of memory L = 4: the minimum-phase equivalent of the Proakis-C channel
(4.28) and the channel (3.14) used in [10] and [94]. However, all the results
presented here are given for the Proakis-C channel only, with the note that all
the observations hold for channel (3.14) as well.

The BER performance of the M*-BCJR detectors, based on the two es-
tablished observation models, with M = 4 states, employing the merging rule
R2, are shown in Figure 4.18. As a reference, the performance of the BCJR
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Figure 4.18: Uncoded BER performance of the Forney- and Ungerboeck-based
M*-BCJR detectors with M = 4, for Proakis-C 5-tap ISI channel.

detector (with M = 16 states) is also shown. The Forney-based M*-BCJR
follows the BCJR performance with a small loss, while the Ungerboeck-based
detector completely fails for the medium and high SNR levels, suffering from a
high error floor. Again, the error floor is eliminated only when M approaches
the full-complexity value (M = 16). In the low SNR region, however, left
from the crossover point at Es/N0 ≈ 2.5 dB, the behavior is reversed and the
Ungerboeck model yields lower BER than the Forney model.

4.7.2 Turbo Equalization for Coded ISI

This section assumes the same transmitter setup as in Section 4.5.2. The M*-
BCJR algorithm is used as inner decoder in the turbo scheme, with the channel
parameters from the previous subsection. A systematic memory 1 convolutional
code with the generator matrix (1+D, 1) = (3, 1)8 was used as the outer code,
and the block length was 1000 information bits. The BER performance of the
scheme is shown in Figure 4.19, for two choices of M , with the benchmark
given by the turbo BCJR detector and the underlying outer code. The M*-
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Figure 4.19: Performance of the Forney- and Ungerboeck-based M*-BCJR de-
tectors in a turbo scheme, after 8 iterations, for Proakis-C 5-tap ISI channel,
and a systematic memory 1, rate 1/2 outer convolutional code with generator
matrix (1 + D, 1).

BCJR detector fails to converge to the BCJR performance if it preserves only
M = 4 states at each depth in the trellis. With M = 6 states, however, the
performance is very close to that of the BCJR detector. It can be observed
that the M*-BCJR detector in the iterative setup performs (almost) equally
well with both Forney and Ungerboeck models. However, Figure 4.19 shows
that there is a crossover point between the two models: Forney-based detection
performs better for higher SNR while Ungerboeck-based detection is the best
choice for low SNR. These observations confirm the previous results based on
the M-BCJR algorithm. The weaker outer code in this section was chosen
deliberately in order to obtain crossover points in Figure 4.19 at moderate
BER.
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Figure 4.20: Mutual information between the output of the M*-BCJR algo-
rithm and the transmitted symbol sequence.

4.7.3 M*-BCJR Mutual Information Results

Figure 4.20 illustrates the mutual information IA (4.39) for the M*-BCJR de-
tector and the 5-tap Proakis-C channel. Dotted lines with diamonds and circles
represent the Ungerboeck model for two different values of M while the cor-
responding solid lines represent the Forney model. Additionally, the mutual
information of a full-complexity BCJR (16 states) is shown for comparison
(solid line with squares). In the high SNR region the mutual information ob-
tained with the Ungerboeck-based M*-BCJR is lower than that obtained with
the Forney-based detector. However, at low SNR the Ungerboeck model pre-
vails and consequently there is a crossover between the models. The BER in

Figure 4.18 equals BER =
∫ 0

−∞ f̃(l|1)dl, while the mutual information is given
by (4.39), thus there cannot be an exact agreement between the mutual infor-
mation and the BER crossover points. For M = 4, the crossover in the iterative
receiver test occurs at Eb/N0 = 6.1 dB, i.e., Es/N0 = 3.1 dB, while the mutual
information chart suggests Es/N0 = 3.5 dB.
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As already pointed out, in the analysis of the iterative equalization process,
it is not sufficient to consider only IA. The mutual information IA is only
involved in the first iteration; in subsequent iterations, influence of a priori
information must be considered – this is the well known EXIT chart technique
[85]. However, IA predicts the BER performance of the turbo equalizer quite
well, which will be explained in the following. If TISI(x) denotes the EXIT
curve for the ISI channel and the detector under investigation, then there is
the following analogy between IA and TISI(x) : if a certain detector and ISI
model is better than another one, then TISI(x) > T ′

ISI(x), 0 ≤ x ≤ 1, instead
of IA > I ′A for the uncoded case. The starting point of TISI(x) is TISI(0) = IA,
while the ending point is TISI(1) = TMLC(0), where ’MLC’ denotes ’memoryless
channel’ (in fact, TMLC(0) = TMLC(x), 0 < x ≤ 1). Thus, the endpoints of all
EXIT curves are the same, and their starting points are determined by IA.
Therefore, when IA > I ′A, it is plausible that TISI(x) > T ′

ISI(x), 0 ≤ x ≤ 1 as
well. This explains the good match between IA and the BER performance of
the turbo equalization.

Although IA is much larger at higher SNR for the M- and M*-BCJR detec-
tors based on the Forney model than for their Ungerboeck-based counterparts,
it is not possible to conclude that in general the Forney-based detection is supe-
rior to the Ungerboeck-based one. The difference in IA may be a consequence
of the algorithm itself, which approximates L-values L(a) with reduced com-
plexity. There are two approximations involved: (i) the L-values are computed
with only M nonzero values αk(σ) at every depth k, and (ii) these M nonzero
αk(σ) are not computed with full complexity, but they are themselves only
approximations.

4.7.4 Genie-Aided Detectors

In this section genie-aided detectors are considered. The objective is to elimi-
nate one of the involved approximations in a reduced-complexity detector and
to optimize the other separately. Already at this point, we would like to in-
form the reader that even if one of the genie-aided Ungerboeck-based detectors
shows excellent performance when approximation (ii) is eliminated, the corre-
sponding branching strategy, when incorporated into a real detector, results in
poor overall performance. In fact, its mutual information IA is lower than that
of the original M*-BCJR.

Detector G1

In order to eliminate approximations (ii) from the discussion above, a genie-
aided detector, denoted by G1, is considered next. A genie provides the exact
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Figure 4.21: Outcome of the genie-aided detector G1. Dotted curves correspond
to the Ungerboeck model and the solid ones to the Forney model.

values of αk(σ) and βk(σ) for all depths k. The L-values L(ak) in (4.23)
are computed using the M largest values αk(σ) only. This method serves
as a benchmark for detectors that construct a reduced trellis in the forward
recursion based on the largest αk(σ). The mathematical formulation of G1 is
as follows: Define δk as the Mth largest metric αk(σ) at depth k, and

α̂k(σ) ,

{

αk(σ), αk(σ) ≥ δk

0, αk(σ) < δk.
(4.40)

The values L(ak) are obtained as in (2.92) but with

p(σk = σ, σk+1 = σ′,x) = α̂k(σ)γk(σ, σ′)βk+1(σ
′). (4.41)

Figure 4.21 shows the mutual information obtained with the genie-aided detec-
tor G1, for the same parameters as in Figure 4.20. It is readily seen that, even



Chapter 4. A Comparison of Ungerboeck and Forney Models for
Reduced-Complexity Detection 139

with G1, the Ungerboeck model still performs poorly in the high SNR region.
Moreover, for a given M , the Forney curve lies strictly above the Ungerboeck
curve, which implies the conclusion that detectors which construct reduced
trellis in the forward recursion (based on the largest αk(σ)), should operate on
the Forney model.

Detector G2

Since the detector G1 does not perform well with the Ungerboeck model, a more
general class of detectors is considered next. These detectors build two inde-
pendent reduced trellises: one in the forward recursion, based on the largest
α-metric, and one in the backward recursion, based on the largest β-metric.
The L-values in (4.23) are obtained from the union of the two trellises (ex-
plained formally below). Such detectors have been investigated in [110] and
[112]. A genie-aided detector G2, which is a benchmark for this class, is con-
sidered. The genie provides all exact αk(σ) and βk(σ) values (computed with
full complexity). For each trellis stage k, define α̂k(σ) according to (4.40) and

β̂k(σ) similarly. The branches that are involved in the computation of L(ak) are

those that have at least one endpoint with nonzero metric α̂k(σ) or β̂k+1(σ
′).

If a certain branch has both endpoints with nonzero α̂k(σ) and β̂k+1(σ
′), its

contribution to L(ak) becomes α̂k(σ)γk(σ, σ′)β̂k+1(σ
′). If, however, a branch

has only one nonzero endpoint, the genie provides the necessary (“missing”)
αk(σ) or βk+1(σ

′) value, and the contribution becomes α̂k(σ)γk(σ, σ′)βk+1(σ
′)

or αk(σ)γk(σ, σ′)β̂k+1(σ
′). For practical detectors of this type, where genie

knowledge is not available, the contribution of such branches is not clearly
defined. In [110] it was proposed how to handle these cases in practice and
compensate for the “missing” endpoint metrics.

The tests show that the outcome of the detector G2 is, in terms of the
mutual information IA, virtually identical to that of G1, cf. Figure 4.21. Thus,
this approach does not seem to benefit from the Ungerboeck model either.

Detector G3

In order to understand and solve the weakness of detection strategies based
on the Ungerboeck model (for more detailed treatment of this problem, see
also [109]), consider again the function ϕ(xk,a), given by (4.15) in log-domain,
which defines the BCJR branch metric. By assuming, as throughout this chap-
ter, a 2-PAM symbol alphabet and a unit energy ISI response, the Ungerboeck
branch metric can be written as
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ϕ(xk,a) = exp

(

2

N0
a∗

k

(

xk −
ak

2
−

L∑

l=1

glak−l

))

. (4.42)

For an arbitrary state at depth k, the ϕ values associated with the outgoing
branches for ak = 1 and ak = −1 are e(2µ−1)/N0 and e(−2µ−1)/N0 , respectively,
where µ = xk −

∑L
l=1 glak−l. The received signal at time instant k can, ac-

cording to (4.6), be written as

xk = ãk + Σp + Σf + ηk, (4.43)

where ã is the actual transmitted symbol sequence and Σp and Σf are the
contributions to xk from past and future symbols respectively. Note that Σf 6=
If in (4.27). The correct path in the trellis (corresponding to the transmitted
sequence ã) passes through the state σ = [ãk−L ... ãk−1] at time point k. This

implies that the sum
∑L

l=1 glak−l in (4.42) is equal to the term Σp in (4.43).
Thus, ϕ(xk,a) equals

ϕ(xk,a) = exp

(
2

N0

[

a∗
k

(
ãk + Σf + ηk

)
− 1

2

])

. (4.44)

We know that in the high SNR region, where the Ungerboeck model shows
poor performance, the approximation ηk ≈ 0 holds. If the term Σf was not
present, the two outgoing branches, corresponding to ak = ãk and ak = −ãk

would have the metric ϕ ∝ e1/N0 and ϕ ∝ e−1/N0 , respectively, and thus the
correct path gets a much larger metric value. But from (4.24) we know that,

when
∑L

l=1 |gl| > 1, corresponding to the closed eye diagram, it is possible that
|Σf | > 1, which implies that ãk + Σf can have the sign opposite from ãk. This
leads to the incorrect path (with ak = −ãk) having a larger metric at depth
k + 1 than the correct path (with ak = ãk). Note that as before this happens
without any noise and that there is a non-zero probability for this to occur.
The correct state at time k + 1, corresponding to ak = ãk, would then have a
small metric αk+1(σ) and would likely be eliminated from the list. Thus, the
correct path in the trellis would be lost, and cannot be recovered. Therefore,
it is proposed to always include both states (corresponding to ak = ±1) into
the set of M surviving states at time k + 1.

The method described above is formally expressed next. Partition the state
space S as S = {P1, ...,P2L−1}, where each set Pl holds a pair of states (σ, σ′)
such that if (σ̃, σ) ∈ S+ for some state σ̃ ∈ S, then (σ̃, σ′) ∈ S−. Define
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Figure 4.22: Outcome of the genie-aided Ungerboeck-based detector G3.

αl
max,k , max{αk(σ), αk(σ′)}, (σ, σ′) ∈ Pl, and define δk as the (M/2)th

largest metric αl
max,k at each depth k; M is assumed to be an even integer.

Then the survivor states are all states that have nonzero α̂k(σ), where

α̂k(σ) ,

{

αk(σ), αl
max,k ≥ δk, σ ∈ Pl

0, otherwise.
(4.45)

The outcome of this approach, denoted by G3, based on the Ungerboeck model
is shown in Figure 4.22. The performance of G3 is much better than that of G1

and G2. The method works very well even with only two survivor states per
depth.

The branching strategy of G3 can be incorporated into the M*-BCJR algo-
rithm in order to obtain a new practical detector. However, the performance
of this detector is not as good as one would expect from Figure 4.22. In fact,
its mutual information IA is below that of the original M*-BCJR algorithm
shown in Figure 4.20. This suggests that eliminating one approximation in the
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reduced-complexity detector and optimizing the other separately is not a good
approach. The approximations are not independent and should be treated that
way. How to exploit the gain promised by G3 is a topic for future research.

4.8 Summary and Conclusions

This chapter considered the performance of reduced-complexity detectors,
based on the Ungerboeck and the Forney observation models, for coded and
uncoded ISI and MIMO channels. Unlike the Forney model whose channel
observations only depend on the current and past data symbols, observations
in the Ungerboeck model contain contributions from both past and future
symbols. In a MIMO system, the future symbols correspond to the symbols
on the transmit antennas that have not yet been reached by the detection
process. Even though the final output of a full VA or BCJR is identical for
both models the metric calculations are in general different. It is demonstrated
that this fundamental difference has a crucial effect on the performance of
reduced-complexity detectors of the M-algorithm type. It is also concluded
that the Ungerboeck-based detectors perform in general better in the low SNR
region but in some cases even for practical SNR values (see Fig. 4.9). However,
as the SNR increases, detection based on the Forney model performs in general
better.

Additionally, middle models working in between the two extremes were
presented and evaluated. A simple scheme for finding the optimal choice of
observation model (in BER sense) is proposed. The chapter also reflects on the
asymptotic behavior of the two observation models; conclusions drawn there
are confirmed by practical receiver test and mutual information results.

In order to investigate the ultimate performance of standard detectors and
to better understand the poor performance of Ungerboeck-based detectors in
the high SNR region, genie-aided reduced-trellis detectors were considered. One
of the genie-aided detectors, constructed for the Ungerboeck model, succeeds in
reaching the performance of the Forney-based detector. So far we have found
no method which can practically exploit the gains promised by this genie-aided
detector.

Finally, it should be highlighted that the choice of observation model does
not impact the detection complexity as the underlying algorithm is unaltered for
a given M . Hence, the gains reported in this chapter come with no additional
cost.

In the next chapter a different complexity reducing approach is considered.
Channel shortening detectors are optimized from an information theoretical
perspective.



Chapter 5

Optimal Channel
Shortening for MIMO
and ISI Channels

This chapter considers the construction of optimal channel shortening, also
known as combined linear Viterbi detection, algorithms for ISI and MIMO
channels. In the case of MIMO channels, the concept of channel shortening
means a spatial memory reduction among the antennas so that the tree struc-
ture which represents MIMO signals is replaced by a trellis. The optimization
is performed from an information theoretical perspective and the achievable
information rates of the shortened models are derived and optimized. Closed
form expressions for all components of the optimal detector of the class are de-
rived. Furthermore, it is shown that previously published channel shortening
algorithms can be seen as special cases of the derived model. Some parts of
this chapter have appeared in [119].

143
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Figure 5.1: An simplified illustration of the detection process when employing
a channel shortening detector (CSD).

5.1 Introduction

This chapter considers the construction and optimization of reduced complexity
trellis detection methods for ISI and MIMO channels. As already pointed out
in Chapter 3, within trellis detection there are two main directions:

• To process the original trellis, but with reduced complexity so that only
a fraction of the trellis is explored, a reduced-search approach, or

• To construct a reduced trellis which is then processed with full complexity,
a reduced-trellis approach.

Examples from the first class include the sphere detector1 [120], the fixed-
complexity sphere detector [121], the M -algorithm [6], the soft-output M -
algorithm [14], and soft-output sequential detection [15]. This chapter op-
timizes a general framework, first proposed in [122], for detectors from the
second class. The investigated detectors filter the received signal with a chan-
nel shortening filter, and then apply full-complexity trellis processing on the
shortened model. In the case of MIMO transmission, the front-end filter is
replaced with a matrix multiplication that aims at converting the MIMO tree
structure into a much smaller trellis. Figure 5.1 illustrates this process using
the same notations as throughout this chapter. The front-end filter in matrix
form is denoted Hr while the shortened model of the channel is given by Gr.

1The sphere detector is optimal in the case of hard output detection, but not when used
for soft output detection [135]
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The history of channel shortening dates back to the early 70s, sometimes
under the name combined linear Viterbi equalization. Forney showed in 1972
that the Viterbi algorithm implements maximum-likelihood detection of finite-
memory ISI-channels [4]. Shortly after Forney’s discovery, researchers realized
that in many practical scenarios, the duration of the channel response is far
too long for practical implementation of the Viterbi algorithm. This gener-
ated massive research efforts in order to reduce the computational complexity
of the Viterbi algorithm. One approach that appeared promising was chan-
nel shortening. Falconer and Magee in 1973 conducted the first investigation
of channel shortening [123]. Since Falconer and Magee’s work, research on
channel shortening has been continuously published [124]–[132]. So far, all
channel shortening detectors (CSDs) have been optimized from a minimum
mean-square-error perspective, to be made more precise later in the chapter.
The capacity is however the ultimate limit of a communication system, i.e.,
the highest possible transmission rate of a system employing optimal detec-
tion. A receiver that operates on the basis of a mismatched channel model
can on the other hand not achieve capacity. Instead the so-called generalized
mutual information is now the ultimate limit [133, 134]. Our proposed channel
shortening approach maximizes the achievable information rate, corresponding
to the generalized mutual information without the optimization over the input
signal constellation and the distribution, and in that way operates closer to the
ultimate limit. The mean-square-error (MSE) is a suboptimum cost function
since it does not directly correspond to the highest transmission rate (in terms
of generalized mutual information) that can be supported by a shortening de-
tector. The Shannon limit of mismatched detectors, the generalized mutual
information, was derived in [133, 134]. Since a channel shortening detector
approximates the true channel model with a shorter model it falls under the
framework of mismatched detection. Thus, in the early days of channel short-
ening, the tools in [133, 134] for optimizing the shortening detector were not
available. Furthermore, another difference between the approach presented in
this chapter and [123]–[132] is that our approach uses a more general frame-
work for channel shortening. Hence, the detectors derived in this chapter are
out of reach in [123]–[132].

The framework in this chapter is based on [122], but is extended in several
important directions:

• This chapter considers general linear channels, while [122] only treated
ISI channels.

• The framework from [122] is in this chapter optimized for Gaussian in-
puts, and closed form expressions for the filters and the resulting gener-
alized mutual informations are obtained.



146 Reduced Receivers for Faster-than-Nyquist Signaling and General ...

• In this chapter it is discovered that the optimal channel shortening filter
is intimately connected to the conventional MMSE filter. The difference
is that the optimal channel shortening filter is modified to incorporate
the trellis processing. The derived filter differs from the filters used in
[123]–[132].

• For practical coded modulation systems, the detector is slightly modified
so that its error performance is improved. The reason why this is needed
is that the detector is optimized with a mutual information cost func-
tion. Practical coded modulation systems operate at energies somewhat
above that at capacity, and the mutual information optimality does not
translate perfectly to BER-optimality of practical systems.

• This chapter provides the optimized branch labels of the reduced trellis
in closed form.

5.1.1 System Model

Linearly-modulated transmissions over linear vector-channels affected by addi-
tive white Gaussian noise (AWGN) are considered. The received signal can,
according to Chapter 2, be described by the input-output discrete-time model

y = Ha + w (5.1)

where y = [y1, . . . , yNr
]T denotes the received samples, a = [a1, . . . , aNt

]T

denotes the input symbols, and w = [w1, . . . , wNr
]T are independent and iden-

tically distributed zero mean circularly symmetric complex white Gaussian
random variables with variance N0, i.e., w ∼ CN (0, N0INr×Nr

). The Nr ×Nt

complex-valued matrix H describes the linear channel which is assumed to
be perfectly known at the receiver. The input symbols {ak} which are to be
transmitted over the channel belong to a symbol alphabet Ω.

As already stated in Chapter 4, in the case of Nr 6= Nt where Nt = N it is
possible to convert the channel into an N ×N channel as follows. If Nr > Nt,
the channel model can be QR-decomposed into y = QRa + w. The matrix R

can be written as

R =

[

R̃

0Nr−Nt,Nt

]
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where 0Nr−Nt,Nt
is the all-zero matrix of size (Nr − Nt) × Nt and R̃ is an

Nt×Nt upper triangular matrix. This implies that optimal detection of a can
be performed by only considering the first Nt components of y. If we denote
these by ỹ, we can instead work with

ỹ = R̃a + w̃.

In the case Nr < Nt, zeros are appended to the channel matrix. Hence the
channel model

ȳ =

[
H

0Nt−Nr,Nt

]

a + n̄

is considered where ȳ is an Nt × 1 column vector of received samples and n̄ is
an Nt × 1 noise vector. Later in the chapter, no restrictions on the structure
of the channel matrix shall be made, so that appending zeros is “allowed”. In
this way, it can safely be assumed that Nr = Nt = N in the reminder of the
chapter.

The highest rate IR that can be transmitted over the channel (5.1) per input
vector, subject to the fixed symbol alphabet Ω and a certain input symbol dis-
tribution, is referred to as the information rate of the system (capacity requires
an optimization over the input distribution and constellation). According to
Section 2.5, the information rate equals

IR = I(Y ;A)

= h(Y )− h(Y |A) (5.2)

where I(Y ;A) is the mutual information operator and h(·) is the N -dimensional
differential entropy operator defined as

h(Y ) = −
∫

pY (y) log(pY (y)) dy. (5.3)

Note that in this chapter a bold capital letter denotes a random vector while
a bold lower case letter denotes its realization; deterministic matrices are also
written with bold capital letters. Unless stated otherwise, the natural logarithm
is used which means that mutual informations are expressed in nats per channel
use. Observe that if (5.1) is to be used to represent an ISI channel, a scaling
of I(Y ;A) in (5.2) by 1/N is needed.
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QR−decomp. DETECTOR
ây ỹ

Figure 5.2: QR-decomposition of the channel matrix H prior to detection.

In order to reach the ultimate limit IR, a maximum-a-posteriori detector
described in Section 2.4 can be used in order to evaluate the posterior proba-
bilities

pA|Y (A = a|Y = y) , ∀a ∈ ΩN .

As an alternative, the ML rule can be used. The symbolwise MAP detector
is implemented by first performing a QR-decomposition of the channel matrix,
and then running the BCJR algorithm on the remaining tree structure. This
is shown schematically in Figure 5.2. Unless the channel matrix H possesses
some special structure, the complexity of the BCJR algorithm is given by |Ω|N ,
which easily gets prohibitive as N and/or |Ω| become large. In next section
the problem of optimally “shortening” the memory of the channel for signals
described by (5.1) is addressed. The efficiency of the proposed detector which
operates on a shortened model of the channel is measured by the highest com-
munication rate that can be supported when the detector is used. Since the
shortening detector is of reduced complexity, this rate must be strictly less than
IR. The advantage of this approach with respect to more common approaches,
such as measuring the error rate performance of a coded system, is that it
gives an ultimate performance limit characterizing the detector, and does not
depend on the specific outer code adopted.

5.1.2 Reduced Complexity Trellis Based Detectors

According to Chapter 4, the input-output relation of the channel (5.1) is com-
pletely described through

pY |A(y|a) =
1

(πN0)N
exp

(

−‖y −Ha‖2
N0

)

=
1

(πN0)N
exp

(

−y†y − 2R{a†(Hr)†y}+ a†Ga

N0

)

(5.4)
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Figure 5.3: Search tree associated with ML detection of MIMO signals with
N = 4 and BPSK inputs.

where as before G , H†H, R{x} denotes the real part of x and “†” denotes
Hermitian transpose. In [122] a reduced-complexity receiver based on (5.4) is
introduced. It replaces (5.4) with

p̃(y|a) =
1

(πN r)N
exp

(

−y†y − 2R{a†(Hr)†y}+ a†Gra

N r

)

(5.5)

where the mismatched noise density2 N r and the matrices Hr and Gr are
subject to optimization. Note that p̃(y|a) may not be a valid conditional
probability density function, but that will be unimportant later.

Since the term exp(−‖y‖2/N r) is constant with respect to the input a, it is
irrelevant for the detection process and can be removed in the optimization. It
follows that it is possible, without loss of generality, to absorb N r into Hr and
Gr. The mismatched noise density can therefore be set N r = 1. Furthermore,
the constant π−N is also irrelevant for detection purposes and can be removed.
Consequently, instead of working with (5.5), the likelihood p̃(y|a) is redefined
as

p̃(y|a) , exp
(
2R{a†(Hr)†y} − a†Gra

)
. (5.6)

2Note that Nr 6= Nr. The number of receive antennas in a MIMO system is denoted by
Nr, that is with the character r in the subscript while the mismatched noise density uses r
in the superscript. It was also assumed earlier in this chapter that Nr = Nt = N and hence,
Nr will not be used in the reminder of the chapter.
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Figure 5.4: Trellises associated with the channel shortening detectors proposed
in this chapter with ν = 1 (right) and ν = 2 (left). As in Figure 5.3, MIMO
signals with N = 4 and BPSK inputs are assumed.

Observe that the need for trellis processing of (5.5) lies solely in the matrix
Gr. In order to satisfy the reduced memory constraint, i.e., to “shorten the
matrix”, Gr is constrained to satisfy the following property

(Gr)mn = 0 if |m− n| > ν (5.7)

where (Gr)mn denotes the element of the matrix (Gr) at row m and column
n while ν denotes memory of the reduced trellis. Hence, symbolwise MAP
detection based on (5.6), as proposed in this chapter, requires |Ω|ν states. The
branch labels of the underlying trellis are uniquely given by the matrix Gr and
the symbol alphabet Ω.

Some examples of reduced trellises are shown in Figures 5.3 and 5.4. In
Figure 5.3, the full search tree associated with ML detection of a MIMO signal
with N = 4 and BPSK inputs, i.e., Ω = {+1,−1}, is illustrated. In total there
are 24 = 16 leaf nodes, which is a measure of the ML complexity. Figure 5.4
shows examples of reduced trellises corresponding to ν = 1 and 2, respectively.
The search tree in Figure 5.3 has been reduced from 16 leaf nodes into trellises
with only 2 and 4 states, respectively. Hence, in the case of MIMO transmission,
a complexity reduction by a factor |Ω|N−ν is achieved in general.

Conventional channel shortening, [123]–[131], can be seen as the special case
of (5.5) when the matrix Hr factorizes as Hr = W †F and Gr = F †F . Implicit
in such factorization is that F is regarded as the shortened channel, while W is
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the “channel shortener”, i.e., the task of W is to force WH close to F . Since
the term y†y is irrelevant for the detection process, the conventional channel
shortening method implies that (5.4) is replaced by

p̂(y|a) =
1

(πN0)N
exp

(

−‖Wy − Fa‖2
N0

)

(5.8)

where, in order to satisfy the memory-ν constraint, the shortened channel F

should only contain ν + 1 non-zero diagonals.
In this chapter we will compare the proposed channel shortening detector

with the MMSE optimized detector from [123] which minimizes the following
cost function:

min
W ,F

lim
N→∞

1

N
E
[
||Wy − F ã||2

]
(5.9)

where ã are the actual transmitted symbols, i.e., y = Hã+w. Additionally, in
this chapter it is shown that detectors limited to the form (5.8) are not optimal
from a mutual information perspective. The reason is that the matrix Gr in
(5.6) that maximizes the mutual information may not be positive semi-definite,
so that no factorization Gr = F †F exists. Consequently, conventional channel
shortening algorithms are not optimal from a mutual information perspective
since they are restricted to input-output relations of the form (5.8). Finally, it
is remarked that the form (5.8) is not more general than (5.6) in the case of
equal power input symbols, i.e.,

|an|2 = P, ∀an ∈ Ω

for some constant P . This is easiest seen by considering the last term in (5.6),
i.e. exp(−a†Gra). If the mutual information optimal Gr is not positive semi-
definite there is a constant σ which will allow the factorization

F †F = (Gr + σI) = G̃
r
.

By simple manipulations of (5.6) we obtain
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p̃(y|a) = exp
(
2R{a†(Hr)†y} − a†Gra

)

∝ exp
(
2R{a†(Hr)†y} − a†Gra− PσTr(I)

)

= exp
(
2R{a†(Hr)†y} − a†Gra− σa†a

)

= exp
(

2R{a†(Hr)†y} − a†G̃
r
a
)

∝ exp
(

−‖(F †)−1(Hr)†y − Fa‖2
)

= exp
(
−‖Wy − Fa‖2

)

where we in the second and fifth steps have used that any constants in (5.6)
are irrelevant for the detection process.

5.1.3 Achievable Information Rates of the Reduced Com-
plexity Detector

A detector that operates on the basis of p̃(y|a) given in (5.5), instead of the
true conditional density pY |A(y|a), can support an arbitrarily small error prob-
ability if the communication rate is smaller than IAIR where IAIR is referred to
as the achievable information rate.3 Further, it is known that for any strictly
positive p̃(y|a) [136]

IAIR ≥ ILB

, −EY [log2 (p̃(y))] + EY ,A [log2 (p̃(y|a))] (5.10)

where EY denotes the expectation operator with respect to the random variable
Y and

p̃(y) ,
∑

s∈ΩN

p̃(y|s)Pr(s). (5.11)

Note that the lower bound ILB directly depends on the choices of Gr and Hr.
In this chapter the objective is to maximize the lower bound over the choices
of Gr and Hr in order to maximize the achievable information rate IAIR. This
optimization equals

3Observe that this is not the generalized mutual information, which requires an opti-
mization over the input constellation and distribution. The achievable information rate
corresponds to the generalized mutual information without this optimization.
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max
Gr,Hr

ILB

and is treated next.

5.2 Optimization of ILB for Gaussian Inputs

The goal of this section is to maximize ILB which is a complicated task for a
discrete alphabet Ω. However, for Gaussian inputs, a closed form expression
can be obtained. One may ask what the value of an optimized detector for
Gaussian inputs when used for, say, M-QAM inputs really is? But when the
optimized detectors for Gaussian inputs are used for discrete alphabets, Monte
Carlo evaluations [137] will verify that the ensuing ILB is excellent.

Under the assumption of Gaussian inputs, the following can be proved

Proposition 1. With zero-mean, unit-variance, circularly symmetric complex
Gaussian inputs, and a given Hermitian matrix Gr with smallest eigenvalue
larger than −1, the optimal receiver filter is

Hr =
[

HH† + N0I
]−1

H [Gr + I] .

For this Hr, ILB equals

ILB = log (det (I + Gr)) + Tr

(

[Gr + I]H†
[

HH† + N0I
]−1

H

)

− Tr (Gr) .

Proof. The objective is to compute the two terms in (5.10), i.e., −EY [log2 (p̃(y))]
and EY ,A [log2 (p̃(y|a))]. Let Gr = QΛgQ† denote the eigenvalue decomposi-

tion of Gr and set z = Q†a. Using these identities in (5.6) gives,
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p̃(y) =

∫

p̃(y|a)pA(a)da

=
1

πN

∫

exp(−‖z‖2) exp
(

2R{z†Q†(Hr)†y} − z†Λgz
)

dz

=
1

πN

∫ N∏

n=1

exp
(
2R{z†n dn} − |zn|2 [λg

n + 1]
)
dzn

=

N∏

n=1

1

λg
n + 1

exp

( |dn|2
λg

n + 1

)

(5.12)

where λg
n is the nth element of the diagonal matrix Λg, i.e., λg

n = (Λg)nn. In
(5.12) the N × 1 column vector d is defined as d , Q†(Hr)†y. The first term
of (5.10), i.e. the quantity −EY log(p̃(y)), can now be computed as

−EY log(p̃(y)) = −EY

[
N∑

n=1

[

log

(
1

λg
n + 1

)

+
|dn|2

λg
n + 1

]]

=

N∑

n=1

[

log(λg
n + 1)− EY [|dn|2]

λg
n + 1

]

. (5.13)

Define R as the expectation

R , E

[

dd†
]

= E

[

Q†(Hr)†(Ha + w)(Ha + w)†HrQ
]

(5.14)

= Q†(Hr)†E
[
(Ha + w)(Ha + w)†

]
HrQ

= Q†(Hr)†
(
HE

[
aa†] (Hr)† + E

[
ww†])HrQ

= Q†(Hr)†HH†HrQ + N0Q
†(Hr)†HrQ

where we have used that E
[
aa†] = I, E

[
ww†] = N0I and E

[
aw†] =

E
[
wa†] = 0. As before, the matrix 0 is an all-zero matrix. We then arrive at

−EY log(p̃(Y )) =

N∑

n=1

[

log(λg
n + 1)− Rnn

λg
n + 1

]

(5.15)

where Rnn = (R)nn, i.e., the element at row n and column n of the matrix R.
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Now consider the computation of the second term in (5.10). We have that

−EY ,A [log (p̃(y|a))] = EY ,A

[
a†Gra− 2R{a†Hry}

]

= Tr(Gr)− 2R{Tr((Hr)†H)}. (5.16)

By combining the two terms from (5.15) and (5.16), we obtain

ILB =
N∑

n=1

[

log (λg
n + 1)− Rnn

λg
n + 1

− λg
n

]

+ 2R{Tr((Hr)†H)}. (5.17)

Next consider the optimization of (5.17) over Hr. Since Λg is a diagonal
matrix, we have that

N∑

n

Rnn

λg + 1
= Tr(R [Λg + I]

−1
)

= Tr
(

Q†(Hr)†
[

HH† + N0I
]

HrQ [Λg + I]
−1
)

= Tr
(

(Hr)†
[

HH† + N0I
]

Hr [Gr + I]
−1
)

. (5.18)

In order to optimize ILB with respect to Hr we should solve

Hr
opt = arg max

X
f(X) (5.19)

with

f(X) , 2R{Tr(X†H)} − Tr
(

X†
[

HH† + N0I
]

X [Gr + I]
−1
)

.

Since f(X) is a real-valued function of the complex-valued matrix X, we have
that

∇X f(X) =
∂ f(X)

∂R{X} + i
∂ f(X)

∂ I{X}
= 2H − 2

[

HH† + N0I
]

X [Gr + I]
−1

. (5.20)
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By setting ∇Xf(X) = 0 a solution to (5.19) is obtained. The front-end filter
that maximizes ILB in (5.17) is given by

Hr
opt =

[

HH† + N0I
]−1

H [Gr + I] . (5.21)

Inserting (5.21) into (5.17) gives after some manipulations

ILB = log (det (I + Gr)) + Tr

(

[Gr + I]H†
[

HH† + N0I
]−1

H

)

− Tr (Gr)

which proves the proposition.

Interestingly, the optimal front-end filter Hr equals the standard MMSE/Wiener
filter, compensated by the receiver trellis processing, that is

Hr
opt = HMMSE[Gr + I] (5.22)

where HMMSE = [HH† + N0I]−1H. The trellis processing is represented
through Gr + I rather than only Gr. This is a surprising fact since in [138],
the optimal front-end filter of the proposed MMSE based channel shortening
detector equals

H̃
r

opt = HMMSE Gr. (5.23)

It is interesting to observe that the first term of the achievable information
rate, i.e. log (det (I + Gr)), equals the conventional mutual information for a
vector channel with associated Gram matrix Gr. The penalty terms for having
a mismatched channel model are linear in Gr.

Consider now the optimization of ILB. By the eigenvalue assumption in
Proposition 1, it follows that I +Gr is positive definite, hence it has a Cholesky
Factorization I + Gr = U †U . Due to the memory constraint (5.7), it follows
that the upper triangular matrix U only contains ν +1 nonzero diagonals. The
results obtained from the maximization of the achievable information rate over
Gr are summarized in
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Proposition 2. Define

B , −H†
[

HH† + N0I
]−1

H + I. (5.24)

Let B̃
ν

n denote the submatrix

B̃
ν

n =






Bn+1 n+1 · · · Bn+1 min(N,n+ν)

...
. . .

...
Bmin(N,n+ν) n+1 · · · Bmin(N,n+ν) min(N,n+ν)






of B, and let bν
n be the row vector bν

n = [Bn n+1, . . . BN min(M,n+ν)]. For

n = N , B̃
ν

n = 0 and bν
n = 0. Let further uν

n denote the row vector uν
n =

[un n+1, . . . uN min(M,n+ν)], where {unm} are the elements of U . Then

max
Gr

ILB =
N∑

n=1

log

(
1

cn

)

, (5.25)

where the constants cn are given by

cn = Bnn − bν
n(B̃

ν

n)−1(bν
n)†.

The optimal Gr = UU † − I is constructed from

unn =
1√
cn

and

uν
n = −unnbν

n(B̃
ν

n)−1.

Proof. We can manipulate ILB into

ILB = log(det(U †U)) + Tr

(

U

[

H†
[

HH† + N0I
]−1

H − I

]

U †
)

+ Tr(I)

= 2

N∑

n=1

log(unn)− Tr
(

UBU †
)

+ N (5.26)
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where the upper triangular matrix U has elements {unm}m≥n. Let UHΣV †

denote the singular value decomposition of H. Then the matrix B can be
expressed as

B = N0V
[
Σ2 + N0I

]−1
V †

which is always positive definite for N0 > 0. Since no off-diagonal elements
in U appear in the logarithm, (5.26) can be optimized over the diagonal and
off-diagonal elements separately as

max
U

ILB = max
{unn}

[

2

N∑

n=1

log(unn)+N−
[

min
{unm}n+1≤m≤min(n+ν,N)

Tr
(

UBU †
)]
]

.

(5.27)

With the definitions made in the statement of the Proposition, we have

Tr(UBU †) =
N∑

n=1

[unn uν
n]

[
Bnn bν

n

(bν
n)† B̃

ν

n

] [
unn

(uν
n)†

]

.

The derivative with respect to uν
n equals

∂

∂uν
n

Tr(UBU †) = 2unnbν
n + 2uν

nB̃
ν

n.

Setting the derivative equal to zero yields the uν
n that minimizes Tr(UBU †),

and it is

(uν
n)opt = −unnbν

n(B̃
ν

n)−1.

By inserting this expression for uν
n back into (5.27) gives

max
U

ILB = max
{unn}

2

N∑

n=1

log(unn) + N −
N∑

n=1

u2
nncn. (5.28)

Now we need to maximize ILB over the diagonal elements of the matrix U . By
taking the derivative of (5.28) with respect to unn and setting it equal to zero,
we obtain
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uopt
nn =

1√
cn

.

Inserting this into (5.28) maximizes ILB, which is

max
U

ILB =

N∑

n=1

log

(
1

cn

)

. (5.29)

This concludes the proof.

By making use of the matrix inversion lemma [139], the optimal achievable
rate can be expressed as

max
Gr

ILB =

N∑

n=1

log

(
1

cn

)

=

N∑

n=1

log
(

((B̃
ν+1

n−1)
−1)11,

)

. (5.30)

However, no additional insights have been found from this form. Note that
with ν = N − 1, i.e., a full complexity detector, ILB = log(det(I +HH†/N0)).
With ν = 0, the performance of an MMSE detector is obtained. Hence, the
proposed scheme trades detection complexity against achievable information
rate and is general enough to include optimal schemes at full and minimum
complexity.

The special case of ISI channels is treated next.

5.2.1 ISI Receivers

According to Section 2.6, the special case of ISI channels can also be represented
by the discrete-time linear model in (5.1). In this case, the channel matrix H

represents circular convolution with a L-tap discrete-time response h. As N
grows large, the circular convolution represents normal convolution to any given
precision, see [67] for an extensive information-theoretical treatment.

Propositions 1 and 2 can still be applied to derive the corresponding mutual
information optimized detector, but since the block length N is large for ISI
channels, typically 1000 or more, simplifications are possible. The matrices Hr

and Gr are uniquely characterized by the discrete sequences hr and gr. Let
Hr(ω) and Gr(ω) denote their respective Fourier transform defined as
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Hr(ω) =

∞∑

k=−∞
hr

k e−jωk (5.31)

and similarly for Gr(ω). In (5.31) hr
k denotes the kth element of hr.

For ISI channels, the quantity of interest is

ILB = lim
N→∞

1

N
[−EY [log2 (p̃(y))] + EY ,A [log2 (p̃(y|a))]] . (5.32)

In order to get better understanding of ILB, Proposition 1 is translated into an
ISI formulation,

Proposition 3. For ISI channels with transfer function H(ω) and a particular
receiver trellis represented through Gr(ω), where minω Gr(ω) > −1, the optimal
receiver filter is given by

Hr(ω) =
H†(ω)

|H(ω)|2 + N0
(Gr(ω) + 1).

Furthermore, ILB becomes

ILB =
1

2π

∫ π

−π

log(Gr(ω) + 1) +
|H(ω)|2 −N0 Gr(ω)

|H(ω)|2 + N0
dω. (5.33)

Proof. Denote the channel matrix by H = QΛQ†. For circular ISI channels
the matrix Q equals the discrete Fourier transform matrix. Represent also
Hr = QΛrQ† and Gr = QΛgQ†. With these eigenvalue factorizations, the
matrix R simplifies into

R = (Λr)†Λr
[

Λ†Λ + N0I
]

.

Furthermore,

Tr((Hr)†H) = Tr((Λr)†Λ).

Together, this leaves us with
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ILB = lim
N→∞

1

N

∑

n

[

log(λg
n + 1)− λg

n −
Rnn

λg
n + 1

+ 2R{(λr
n)†λn}

]

, (5.34)

where Rnn = |λr
n|2(|λn|2 + N0). By expressing λr

n = |λr
n| exp(iγr

n) and λn =
|λn| exp(iγn), it is clear that ILB is maximized by taking γr

n = −γn. This
yields,

ILB = lim
N→∞

1

N

∑

n

log(λg
n + 1)− λg

n −
Rnn

λg
n + 1

+ 2|λr
n||λn|. (5.35)

Setting the partial derivative of ILB with respect to λr
n to zero gives

∂ILB

∂λg
n

= 2|λn| −
2|λr

n|(|λ|2 + N0)

λg
n + 1

= 0. (5.36)

The solution to (5.36) that maximizes (5.35) is obtained for

|λr
n| =

|λn|(λg
n + 1)

|λn|2 + N0
, (5.37)

which is the standard MMSE filter, compensated by the receiver trellis pro-
cessing represented by {λg

n}. Inserting (5.37) back into (5.35) gives

ILB = lim
N→∞

1

N

∑

n

log(λg
n + 1)− λg

n + |λn|2
λg

n + 1

|λn|2 + N0
. (5.38)

Asymptotically as N → ∞, Szegö’s Theorem [140] guarantees that ILB con-
verges to

ILB =
1

2π

∫ π

−π

log(Gr(ω) + 1)−Gr(ω) + |H(ω)|2 Gr(ω) + 1

|H(ω)|2 + N0
dω

=
1

2π

∫ π

−π

log(Gr(ω) + 1) +
|H(ω)|2 −N0 Gr(ω)

|H(ω)|2 + N0
dω. (5.39)

which concludes the proof.
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In order to derive the optimal Gr(ω) we can make use of Proposition 2
directly. The matrix B is a Toeplitz matrix that is characterized through the
transform (easiest seen from the expression in the proof of Proposition 2)

B(ω) =
N0

|H(ω)|2 + N0
.

As N →∞, the matrix B̃
ν

n is the same for all subindices n and the dimension
is always ν × ν. The vector bν

n is always a 1× ν vector and is the same for all

n. The elements of B̃
ν

and bν , where the subindex n has been left out since it
is irrelevant for ISI channels, are formed from

∫

B(ω) exp(iωk)dω, |k| ≤ ν.

The achievable information rate becomes

ILB = log

(
1

c

)

,

where

c =

∫

B(ω)dω − bν(B̃
ν
)−1(bν)†.

5.3 Numerical Results on Achievable Informa-

tion Rates

5.3.1 ISI Channels

In this section numerical results for the achievable information rates of the
proposed channel shortening detector are presented. First consider the EPR4
channel from Chapter 4

h = [1, 1, −1, −1] /2 (5.40)

with 2-PAM inputs in Figure 5.5. According to Chapter 4, the EPR4 channel
has d2

min = 2, i.e., it corresponds to a relatively mild ISI. The information rates
ILB, in bits per channel use, for the mutual information optimized detector



Chapter 5. Optimal Channel Shortening for MIMO
and ISI Channels 163

−6 −4 −2 0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

In
fo

rm
at

io
n 

ra
te

 (
bi

ts
/c

h.
us

e)

 

 

data1
data2
data3
data1data1data1data1data1
data5
data6

IR

ILB, ν =2

MMSE, ILB, ν =2
ILB, ν =1

MMSE, ILB, ν =1
ILB, ν =0, both models

||h||2/N0 (dB)

Figure 5.5: Achievable rates of the EPR4 ISI channel with ν = 0, . . . , 3 for the
mutual information and the MMSE optimized detectors. The legend shows the
curves from top to bottom at the right hand side of the figure.

as well as the MMSE optimized detector from [123] are plotted. The legend
shows the curves from top to bottom at the right hand side of the figure. The
top bold line shows IR, the information rate corresponding to a full complexity
detector for h, i.e., a detector with ν = 3. The two solid lines marked with
x-es show ILB for the mutual information optimized detector with ν = 1 and
2 respectively. The two solid lines show the same curves but for an MMSE
optimized detector according to [123]; the mismatched noise density was in
this case set to the MMSE value. The dotted line corresponds to ν = 0 for
both the mutual information rate and the MMSE optimized detectors. Note
that with the MMSE cost function in (5.9), ν = 0 yields higher ILB than ν = 2
and ν = 3 in the low SNR regime. The reason is that the target ISI responses
for ν = 1 and 2 are very weak in terms of mutual information. The MMSE
values are monotonically decreasing with increasing ν since the domain of the
optimization is larger. Further, with ν = 3, the MMSE optimized detector does
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Figure 5.6: Achievable rates of the 5-tap uniform power ISI channel in (5.41)
with ν = 0, 2 and 4 for the mutual information and the MMSE optimized
detectors. The legend shows the curves from top to bottom at the right hand
side of the figure.

not converge to the full complexity detector, thus there will be a gap to the
full complexity curve even for ν = 3. The gaps between the MMSE optimized
detectors and the mutual information optimized detectors are largest in the
low SNR regime.

Next we study the 5-tap uniform power ISI channel

h = [1, 1, 1, 1, 1]/
√

5 (5.41)

with 2-PAM inputs in Figure 5.6. The ISI channel in (5.41) has d2
min = 0.8

which is a 3.98 dB loss compared to orthogonal 2-PAM signaling. The informa-
tion rates ILB, in bits per channel use, for the mutual information optimized
detector as well as the MMSE optimized detector from [123] are plotted. The
legend shows the curves from top to bottom at the right hand side of the figure.
The top bold line shows the information rate IR corresponding to a full com-
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Figure 5.7: Information rates with Gaussian inputs for 5× 5 and 8× 8 MIMO.
Within each set of curves, the upper curve shows the information rate achieved
by a full complexity detector, the bottom curve shows the ensuing information
rate from an MMSE detector, and the intermediate curves show achievable
information rates for the reduced detector with ν = 1, 2, 3 . . . , N − 2. (Note
that ν = N − 1 corresponds to full complexity.)

plexity detector, i.e., ν = 4. In order to illuminate the suboptimal performance
in terms of mutual information of conventional channel shortening based on
MMSE optimizations, ILB for ν = 4 with the method from [123] is plotted;
this curve is the uppermost thin solid line. According to the figure, there is a
10 dB gap to IR at low SNR. Clearly, such detector is of no practical value,
but it highlights the fact that MMSE cost functions do not yield good mutual
information performance. The solid line marked with x-es shows ILB for the
mutual information optimized detector with ν = 2 while the corresponding
curve for the MMSE method from [123] is the bottom solid line (right hand
side of the figure). With ν = 0, the achievable information rate is the same for
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Figure 5.8: A system model of the transmitter. After LDPC encoding and
mapping, the information carrying signal is formed by (5.1) and transmitted
over the AWGN channel.

both methods, which is shown by the dotted curve. Again, this curve outper-
forms both ν = 2 and 4 for MMSE optimizations, since weak ISI responses are
obtained from a mutual information point of view.

5.3.2 MIMO Channels

Consider now 5×5 and 8×8 MIMO channels with independent and identically
distributed complex Gaussian entries {hi,j}. Figure 5.7 plots the achievable
information rates, in bits per channel use, with Gaussian inputs and against
a measure of the SNR which we take as 1/N0. The bottom curve within each
set of curves is the information rate corresponding to an MMSE detector while
the upper curve is the information rate IR corresponding to a full complexity
detector. The intermediate curves show information rates for memory ν =
1, 2, 3, . . .. Importantly, it can be seen that there is a significant gain when
going from ν = 0 (MMSE detector) to ν = 1. In fact, ν = 1 achieves a
considerable share of the full complexity information rate. In the MIMO case,
the channel matrix H has been permuted prior to optimization of Hr and
Gr. The permutation has been made by simply rearranging the columns in
an increasing order with respect to the energy of the columns. This will in
general benefit the channel shortening detector since the elements around the
main diagonal of Gr will have larger absolute values. Other, more advanced
permutations have also been tested, but virtually no improvements over the
energy-permutation were observed.

5.4 Practical Coded Modulation Systems

In this section receiver tests of LDPC encoded transmission systems over ISI
and MIMO channels are performed. The system model of the transmitter is
shown in Figure 5.8. A sequence u of uncoded information bits is encoded with
an LDPC code generating v. A mapper takes the encoded sequence as input
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Figure 5.9: Receiver tests of LDPC encoded transmissions over the EPR4 chan-
nel with 2-PAM inputs. The LDPC code is the irregular rate 1/2 (32400,64800)
standardized code in DVB-S.2. The vertical dashed lines mark the achievable
information rates ILB for different values of receiver complexity ν while the
solid lines show the actual BERs. The dotted vertical line and the line marked
with x-es show the performance of a detector optimized according to [123].

and outputs a sequence of symbols from Ω which are then transmitted over
the linear channel in (5.1). The AWGN channel follows before the transmitted
signal is detected at the receiver.

An iterative scheme, employing the channel shortening detector for soft-
input soft-output detection of the channel and belief propagation for the LDPC
code, is adopted. The particular LDPC code used is the irregular rate 1/2
(32400,64800) code from the Digital Video Broadcasting standard (DVB-S.2)
[117].4 In all setups, 50 internal iterations were performed within the LDPC
decoder and 4 global iterations within the iterative loop. The ISI channel
used in the tests is the EPR4 channel in (5.40). The entries {hi,j} of the

4This is the default code in Matlab’s LDPC package.
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channel matrix H representing a MIMO channel are assumed to be IID complex
Gaussian random variables.

Tests of the detector with ν = 0, 1, 2 and 3 are performed. Note that ν = 0
corresponds to an MMSE detector while ν = 3 is full complexity. The results
are shown by the solid curves in Figure 5.9. The four vertical dashed lines
mark the ultimate limit for rate 1/2 encoded systems with 2-PAM inputs for
the different values of ν. This limit is the needed ‖h‖2/N0 to obtain ILB = 1/2.
As a benchmark comparison, also plotted are the BER and information rate
performance of the conventional channel shortening technique from [123] with
ν = 2; the BER performance is marked with x-es while the information rate is
shown by a dotted line. According to the figure, all BER curves are about 1
dB away from their ultimate limits. Further, the rate ILB is closely related to
the BER performance since the gap in ILB between two different values of ν
corresponds very well to the gap between the corresponding BER curves. As
an example, the gap in ILB between ν = 2 and 3 is .3 dB while the gap between
the corresponding BER curves is .29 dB.

According to Figure 5.9 the method from [123], optimal with respect to
a certain MMSE criteria, performs more than 1 dB worse than the proposed
method in this chapter. As a conclusion, by optimizing the achievable informa-
tion rate of the detector, modern transmission systems which employ powerful
codes can operate closer to the ultimate Shannon limit of the underlying chan-
nel when only limited trellis processing can be afforded.

Consider next 4×4 MIMO channels with QPSK inputs and the same LDPC
code. The average energy of the QPSK symbols is 2. One codeword v corre-
sponds to 64800/8=8100 MIMO input vectors a. A rapid fading case (different
channel realization for each channel use) is assumed where each of these 8100
channel matrices is independently drawn and comprises independent and iden-
tically distributed circularly symmetric complex Gaussian random variables
with zero mean and unit variance. The BER performance is shown in Figure
5.10. In all cases, 50 internal iterations within the LDPC decoder and 4 global
ones were carried out. The receiver is tested with ν = 0 (MMSE) in which case
a single global iteration is sufficient, ν = 1, 2 and ν = 3 (full complexity). The
vertical dashed lines mark the ergodic5 ultimate limit for systems with QPSK
inputs and a rate 1/2 outer code and it correspond to E[ILB] = 1. Depending
on the memory ν, the BER curves lie 0.85 − 1.15 dB away from the ultimate
limits.

5The ergodic information rate is the mean rate averaged over the channel realizations.
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Figure 5.10: Receiver tests of LDPC encoded transmissions over a rapid fading
4 × 4 MIMO channel with QPSK inputs. The LDPC code is the irregular
(32400,64800) standardized code in DVB-S.2. The vertical dashed lines mark
the ergodic achievable information rates E[ILB] for different values of receiver
complexity ν while the solid lines show the actual BERs. Each BER curve lies
.85 - 1.15 dB away from its corresponding information rate threshold.

5.5 Results on FTN

This section presents a few examples of practical coded FTN systems that
employ the mutual information optimized channel shortening detector. At
the transmitter, a sequence of 4000 information bits is encoded using the rate
1/2 (7,5) convolutional code. The encoded sequence feeds a size 8000 random
interleaver whose output is mapped to symbols from the 2-PAM alphabet. The
transmitted signal is formed using (5.1) where H takes the form in (2.130).
This transmitter setup and the corresponding iterative receiver structure are
illustrated in Figure 5.11.

For the ISI channel both strong and extreme ISI are investigated. This
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Figure 5.11: A system model of the transmitter and the corresponding iterative
receiver structure. In the tests, the (7,5) convolutional code is used for encod-
ing. The symbols are drawn from a 2-PAM alphabet before being transmitted
over the ISI channel.

is achieved by using the FTN framework which provides a structured way of
measuring the “severeness” of the ISI channel; τ = .9 is not as difficult to
detect as τ = .5 etc. In the tests h(t) is taken as a 30% root raised cosine pulse
while τ = 0.35 and τ = 1/4. The framework of super minimum phase has been
used, resulting in the 17 tap long ISI sequence from Chapter 3, which is

h = [.025 ,.012 ,−.024 ,.008 ,.191,.464,.623,.506,.176,−.123,

−.196,−.075,.060,.080,.013,−.035,−.022] (5.42)

for τ = 0.35 while the case τ = 1/4 yields

h = [−.010 ,−.013 ,−.007 ,.005 ,.011 ,.004 ,−.008 ,.001 ,.060,

.181,.339,.473,.520,.443,.262,.047,−.120,−.182,−.138,

−.037,.055,.092,.070,.018,−.025,−.037,−.021,.003,

.016,.012,.0004,−.008].

Let us begin with an example that shows how the proposed channel short-
ening detector processes the received noisy signal y. The assumptions are the
τ = 0.35 FTN channel in (5.42), N0/2 is set to 1 and the memory constraint in
(5.7) is ν = 2. Figure 5.12 plots the true autocorrelation sequence g (obtained
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Figure 5.12: Examples of Ungerboeck ISI model taps when employing the
mutual information optimized front-end filter hr and a standard matched filter.
The figure shows ISI responses for the τ = 0.35 FTN channel with N0/2 = 1
and ν = 2.

when the standard matched filter is employed as the receiver front-end filter)
as a dotted line, the filtered response gout = hr ⋆ h as a dashed line and the
shortened discrete-time ISI channel model gr as a solid line. Note that Figure
5.12 only shows half of the ISI taps, i.e., [g0, g1, . . .] and similarly for gout and
gr. By comparing the filtered response gout with the sequence g we observe
that the outer ISI taps in gout which are not accounted for by the channel
shortening detector are much smaller than the corresponding taps in g.

Figure 5.13 shows the error probability of the underlying (7,5) convolutional
code along with turbo equalization results for the (7,5)-encoded τ = 0.35 ISI
channel. Throughout this section, we have used 20 iterations in the iterative
loop. Convergence is usually reached much earlier but we do not report any
numerical results on the mean number of iterations needed to reach conver-
gence. The outer decoder (see Figure 5.11) in all the performed tests is imple-
mented as a BCJR (4 states). The inner decoder of the turbo equalization is
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Figure 5.13: Turbo equalization results for τ = 0.35 when using the the pro-
posed channel shortening detector as inner decoder. Results are shown for
memories ν = 2, 3, 4. The left-most curve shows the performance of the (7,5)
code on an ISI-free channel.

the proposed channel shortening detector, also implemented as a BCJR, with
memories ν = 2, 3, 4, i.e. 4, 8, and 16 trellis states (as opposed to 65536 states
of a BCJR that operates on the full channel model). The curve marked with
νtr = 7 corresponds to a receiver in which the BCJR-based inner decoder ap-
proximates h with the νtr strongest taps (ignoring precursors) and regards the
neglected ISI taps as Gaussian noise. This inner decoder is commonly referred
to as a truncated BCJR. Hence, the curve corresponds to 27 = 128 states.

As can be seen, the proposed detector converges to the ISI-free channel
performance rapidly while the truncated detector is strongly inferior to the
proposed channel shortening detector. However, at high SNRs there are gaps
to the (7,5) code. With ν = 2, i.e. 4 states, the gap is around 1 dB at high
SNR. These gaps are the results of the capacity-optimization instead of a BER-
optimization. The problem is that the receive filter hr does not maximize the
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SNR. This SNR-loss can be clearly seen in Figure 5.12; it is the gap between
g0 and gout

0 and it is around 0.45 dB for the presented case.
In order to maximize the SNR, a matched filter should be used as the re-

ceiver front-end filter, i.e., hr = h[−k] where h[−k] denotes the time reversed
version of h. However, a matched filter is far from capacity optimal for small
values of ν, which implies that convergence is not obtained in the early itera-
tions of the turbo equalization. This problem can be resolved by shifting from
the capacity optimal front-end filter into a matched filter in the final iteration.
Note that the length of g, the autocorrelation of h, is larger than allowed by the
memory constraint in (5.7). Therefore, the Ungerboeck based inner decoder
uses only the middle 2ν + 1 taps (memory ν) of g, denoted gtrunc, when calcu-
lating the branch labels in the last iteration. In addition to the SNR increase in
the final iteration, soft-interference cancellation is also employed. The residual
ISI gres is obtained as

gres = g − gtrunc. (5.43)

Soft estimates of the 2-PAM symbols are used in the cancellation process. Since
the probability of ak = +1 at trellis depth k is given by

Pr(ak = +1) =
eL(ak)

1− eL(ak)
(5.44)

where L(ak) is the log likelihood ratio in (2.133), the soft symbol estimates are
taken as the expected values

âk = E[ak] = 2Pr(ak = +1)− 1. (5.45)

The input to the component ISI decoder in the last iteration are the apriori
extrinsic L-values from previous iteration and the sequence

x̃ = x− â ⋆ gres (5.46)

where x = hr ⋆ y = h[−k] ⋆ y is the filtered channel output in Figure 5.1. This
modification of the detector yields the results shown in Figure 5.14. According
to the figure, even the 4-state (ν = 2) trellis decoder is now powerful enough
so that it provides the (7,5) code performance already at Eb/N0 = 5 dB. A
comparison to the performance of the backup M-BCJR from Chapter 3 can be
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Figure 5.14: Turbo equalization results for τ = 0.35 when using the modified
detector as inner decoder and with a matched filter in the last turbo iteration.
Results are shown for memories ν = 2, 3, 4. The left-most curve shows the
performance of the (7,5) code on an ISI-free channel.

made. Figure 3.14 shows that the backup M-BCJR reaches the (7,5) code per-
formance at Eb/N0 ≈ 6 dB with M = 8 for the same FTN ISI channel. These
results indicate that, if properly modified, the proposed channel shortening
detector, optimized for Gaussian inputs, can have impressive performance for
discrete symbol alphabets.

The mutual information optimized gr in the simulations are usually not
valid autocorrelation sequences, i.e., the corresponding matrices Gr are not
positive semi-definite. This implies that the conventional shortening algorithms
[123]–[131], which are all constrained to operate with a positive definite Gr in
(5.6), are in fact bounded away from the optimal solution by definition. As an
example, for τ = 0.35, ν = 1, and N0/2 = 1, the optimal vector gr is
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Figure 5.15: Turbo equalization results for τ = 1/4 when using the modified
low-complexity decoder as inner decoder and with a matched filter in the last
iteration. Results are shown for memories ν = 4, 5 and ν = 6, 7, 8, 9, 10.

gr = [0.4691, 0.68320, 0.4691]

which does not have a strictly positive Fourier transform. Note that gr is
the shortened discrete-time ISI channel model used by the Ungerboeck-based
BCJR to calculate the branch labels in (4.15). The channel observations are
obtained by filtering the received signal with the mutual information optimal
front-end filter hr, provided by the channel shortening detector.

In Figure 5.15 turbo equalization results for the case τ = 1/4 are shown.
In the last turbo iteration, the matched filter has been used as the receiver
front-end filter. Its sampled outputs are fed to the inner decoder as channel
observations. In order to satisfy the memory constraint, the inner decoder uses
only the middle 2ν + 1 taps of the true autocorrelation g when calculating the
branch labels in the last iteration. The performance of the channel shortening
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detector is virtually the same for ν = 6, 7, 8, 9, 10. Hence the curve marked by
asterixes appears to be the ultimate limit of an iterative detector (i.e., the curve
that would result from a MAP component decoder). According to the figure,
ν = 5 (32 states) results in about .2 dB loss, while ν = 4 (16 states) shows a
significant loss. The corresponding turbo equalization results for the backup M-
BCJR algorithm and the τ = 1/4 FTN ISI channel are shown in Figure 3.16.
The figure shows that for this extreme ISI there are no major differences in
BER performance between the two methods. However for small ν and M with
comparable complexity, the mutual information optimized detector performs
slightly better.

5.6 Conclusions

In this chapter channel shortening detectors for linear channels are optimized
from an information theoretical perspective. Gaussian inputs are assumed, and
the optimal front-end filter and branch labels of the trellis processing can be
given in closed form. The framework used in this chapter is more general than
what has been previously used within the area. Practical coded modulation
systems based on LDPC codes were tested and it was shown that the result-
ing BER performance is connected to the achievable information rate of the
detector. If the detector is to be used within an iterative detection loop (for
FTN), it must be slightly modified so that the SNR loss of the front-end filter
is eliminated.



Chapter 6

Summary and Future Work

In this thesis a somewhat unconventional signaling method is considered. Inter-
symbol interference is intentionally introduced by using a signaling rate which
is faster than that allowed by the Nyquist orthogonality criterion. Although
Shannon showed in 1949 that the capacity can be achieved using orthogonal
ISI-free sinc pulses and long symbol sequences, this memoryless assumption in
the modulator can in practical applications lead to significant capacity losses.
Faster-than-Nyquist signaling exploits the excess bandwidth of practical T -
orthogonal pulses and in that way it can theoretically achieve capacity with
discrete symbol alphabets. In FTN the power spectral density is fixed but the
bit density in bits/Hz-s is considerably higher than for ordinary orthogonal
signaling. FTN methods are important in future satellite and mobile systems,
since they are one of the best ways to pack more bits into a given radio band-
width without increasing the transmission energy.

There is always a tradeoff and in the case of FTN signaling the tradeoff
is between increased spectral efficiency and receiver complexity. A main is-
sue in this thesis is how to reduce this complexity while at the same time not
degrading the error performance noticeably. Since FTN-induced intersymbol
interference can be well-approximated with a finite state machine it thereby
admits trellis representation. We have considered several approaches for com-
plexity reduction. The proposed receivers can with practical complexity levels
achieve near-optimal performance under severe ISI generated by the higher
transmission rate in FTN. These contributions will make this bandwidth effi-
cient signaling method more useful.

In order to better visualize the systems investigated in this thesis, Figure 6.1
plots their transmission rates against their energy efficiency. The basic modu-
lation pulse is the 30% rRC T -orthogonal pulse, and all systems are operating
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Figure 6.1: Transmission rates in bits/T seconds versus Eb/N0 in dB of com-
munication systems investigated in this thesis.

at a BER of 10−5. Note that they all have the same PSD shape, namely the
30% RC shape. The plotted transmission rates in Figure 6.1 are given in bits/T
seconds. The uppermost curve shows the ultimate PSD limit CFTN as given in
(2.121). The second curve from above is the corresponding limit for ordinary
orthogonal transmission, i.e., CN from (2.122). We plot the operating points
of five different FTN systems: encoded systems using the (7,5) convolutional
code with τ = 1/2, 0.35 and 1/4, as well as two uncoded FTN system with
τ = 0.35 and 1/4. These operating points can be read off from the receiver tests
in Figures 3.13, 3.14, 5.15 and 3.10 in Chapters 3 and 5. For comparison, the
figure also shows the operation points of uncoded 2-PAM, 4-PAM, and 8-PAM
as well as an encoded 2-PAM system using the (7,5) convolutional code. By
comparing the uncoded 2-PAM system with the encoded τ = 0.35 FTN system,
we observe that FTN simultaneously offers about 4 dB coding gain and 43%
rate increase.

After the introduction, the thesis consists of three main chapters. In the first
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main chapter, Chapter 3, several new M-BCJR reduced-search algorithms are
proposed and compared to reduced-trellis VA and BCJR benchmarks based on
the offset label and other trellis truncation ideas. The proposed M-BCJRs have
been applied to simple ISI detection as well as to turbo equalization of coded
FTN signals. In a heavily reduced search, there is often no overlap between the
decided paths in the forward recursion and the decided paths in the backward
recursion for one of the symbols. The decoder is then unable to produce reliable
soft information about some of the detected symbols. Additionally, the mag-
nitude of the numerator and the denominator in the log likelihood ratio may
erroneously differ too much compared with a full-complexity receiver, resulting
in over-estimated LLRs. The sign of the LLR can be determined easily but
if iterative detection is to be employed, reliable absolute values are essential.
The backup M-BCJR, proposed in Chapter 3, adds a third low-complexity re-
cursion and uses a modified method for retaining backward recursion values,
which together considerably improve the LLR quality for practical values of
the search size M .

In addition to this, an improvement of the minimum phase idea which con-
centrates the ISI model energy better than the mathematically correct mini-
mum phase model is proposed. Due to spectral zero regions in practical FTN
signaling the standard WMF receiver may be prohibited. However, Chapter
3 gives a solution to this modeling problem which also leads to white noise
at the receiver. The proposed modeling, denoted super minimum phase mod-
eling, introduces small precursors. Using a delayed and slightly mismatched
receiver which ignores the precursors leads to major BER improvements in
turbo equalization at a given complexity. For the offset label based benchmark
BCJR algorithm various offset label strategies have been considered. At each
forward extension in the benchmark BCJR a decision about which symbol be-
comes the so-called tentative path must be made. This decision is made using
the different offset label strategies and the best performing one, denoted single
soft offset BCJR algorithm serves as a benchmark to the proposed M-BCJRs.
Since low-quality LLRs affect the stability and convergence of the iterative de-
tector it is also beneficial to scale the extrinsic LLRs exchanged in the turbo
loop by a scaling gain g ≤ 1 before each component decoder. By choosing an
appropriate g the convergence to the performance of the underlying code occurs
at a considerably lower SNR while the overall complexity remains unaltered.

Future work should consider a number of improvements. A more sophisti-
cated method is needed for scaling the extrinsic LLRs in the turbo loop. Early
tests indicate that the value of M should vary with the iterations in order to
reduce the overall computation effort. The scaling gains should also vary since
a larger M will in general produce high-quality LLRs which do not have a
negative effect on the convergence of the iterative scheme. All the results from
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Chapter 3 may be extended to other outer codes and larger symbol alphabets.
Chapter 4 investigates the effect of the internal metric calculations on per-

formance of detectors based on the Ungerboeck and the Forney observation
models. Coded and uncoded transmission over both ISI and MIMO channels
are considered. Optimum detectors based on the two observation models gen-
erate the same final output but the internal metric calculations differ. In the
Forney observation model, the channel observations only depend on the current
and past data symbols while observations in the Ungerboeck model contain con-
tributions from both past and future symbols. Chapter 4 demonstrates that
this fundamental difference has a significant effect on suboptimum reduced-
complexity techniques based on the M-algorithm. Forney based detection is in
general preferable in the high SNR region while the situation is reversed for
low SNR values. A simple SNR-aware scheme for choosing the best (in terms
of BER) observation model among the two is proposed and evaluated. The
gains reported in Chapter 4 come with no additional cost since the detection
complexity of the underlying algorithm remains unaltered for a given value of
M .

A future direction is to find a more sophisticated, possibly adaptive, method
which combines the strength of Forney based detection in the high SNR regime
with the strength of Ungerboeck based detection at low SNRs. In Chapter 4
it is also shown that there exist other models, denoted middle models, which
operate in between the two standard models. Although it is demonstrated that
middle models are the optimal choice for some channel realizations, future work
needs to focus on how to efficiently exploit their full potential in suboptimum
detection.

The chapter also reflects on the asymptotic behavior of the two standard
observation models. Practical receiver test and mutual information results con-
firm the conclusion predicted by the asymptotic analysis. Genie-aided reduced-
trellis detectors were considered in order to better understand the poor perfor-
mance of Ungerboeck detection in the high SNR regime. Even though one of
the genie-aided detectors succeeds in reaching the performance of the Forney-
based detector, no method which can exploit the promised gains in practice
have been found. Hence future work should focus on this subject. A final area
for research is the extension to non-binary alphabets for all setups.

In Chapter 5 channel shortening detectors for general linear channels are
considered. All conventional channel shortening detectors are optimized from
a minimum mean-square-error perspective which is suboptimum since it does
not directly optimize the transmission rate. In contrast to conventional channel
shortening detectors, the ones proposed in this thesis are optimized from an
information theoretical perspective. By assuming Gaussian inputs, the optimal
front-end filter and the corresponding branch labels of Ungerboeck based trellis
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processing are derived and given in closed form. Practical tests show that even
though the proposed detector is optimized for Gaussian inputs, when employed
with simple discrete symbol alphabets it shows excellent performance. More-
over, the framework used in this thesis is more general than what has previously
been used within channel shortening. Practical LDPC encoded modulation sys-
tems employing the proposed detector are tested and evaluated. In the case
of coded FTN signaling, the mutual information optimized detector is unable
to reach the performance of the underlying convolutional code. In order to
eliminate the SNR loss of the front-end filter a modification of the detector is
proposed. The modified detector shows impressive performance over narrow-
band ISI introduced by FTN signaling.

Future work should consider efficient suboptimal solutions which further
reduce the computational effort. A possible direction is the use of the backup
M-BCJR from Chapter 3 on the shortened channel model. The mutual infor-
mation optimal front-end filter could be applied to the noisy channel output
and followed by a reduced search using the backup M-BCJR. Other modifica-
tions of the shortening detector should be considered, which adaptively (rather
than in the final iteration) eliminate the SNR loss of the front-end filter.
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[126] N. Sundstrom, O. Edfors, P. Ödling, H. Eriksson, T. Koski and P. O.
Börjesson, “Combined linear-Viterbi equalizers - a comparative study
and a minimax design,” in Proc. IEEE Vehicular Technology Conference
(VTC), pp. 1263–1267 vol. 2, Stockholm, Sweden, June 1994.

[127] N. Al-Dhahir and J. M. Cioffi, “Efficiently computed reduced-parameter
input-aided MMSE equalizers for ML detection: A unified approach,”
IEEE Trans. Inform. Theory, vol. 42, pp. 903–915, April 1996.

[128] M. A. Lagunas, A. I. Perez-Neia and J. Vidal, “Joint beamforming
and Viterbi equalizer in wireless communications,” in Proc. Thirty-First
Asilomar Conference on Signals, Systems & Computers, pp. 915–919,
vol. 1, Pacific Grove, Ca., Nov. 1997.

[129] S. A. Aldosari, S. A. Alshebeili and A. M. Al-Sanie, “A new MSE ap-
proach for combined linear-Viterbi equalizers,” in Proc. IEEE Vehicular
Technology Conference (VTC), pp. 1707–1711, vol. 3, Tokyo, Japan, May
2000.

[130] R. Venkataramani and M. F. Erden, “A posteriori equivalence: A
new perspective for design of optimal channel shortening equalizers,”
arXiv:0710.3802v1.

[131] A. Shaheem, Iterative detection for wireless communications, Ph.D. the-
sis, School of Electrical, Electronic and Computer Engineering, University
of Western Australia, 2008.

[132] U. L. Dang, W. H. Gerstacker and S. T. M. Slock, “Maximum SINR
prefiltering for reduced-state trellis-based equalization,” IEEE Int. Conf.
Commun. (ICC), Kyoto, June 2011.

[133] N. Merhav, G. Kaplan, A. Lapidoth and S. Shamai, “On information
rates for mismatched decoders,” IEEE Trans. Inform. Theory, Nov. 1994.

[134] A. Ganti, A. Lapidoth and I. E. Telatar, “Mismatched decoding revisited:
General alphabets, channels with memory, and the wide-band limit,”
IEEE Trans. Inform. Theory, vol. 46, no. 7, pp. 2315–2328, Nov. 2000.

[135] J. Boutros, N. Gressety, L. Brunel and M. Fossorier, “Soft-input soft-
output lattice sphere decoder for linear channels,” in Proc. IEEE Global
Telecomm. Conf. (GLOBECOM), San Francisco, Dec. 2003.



References 195

[136] D. M. Arnold, H. A. Loeliger, P. O. Vontobel, A. Kavcic and W. Zeng,
“Simulation-based computation of information rates for channels with
memory,” IEEE Trans. Inform. Theory, vol. 52, no. 8, pp. 3498–3508,
Aug., 2006.

[137] H. D. Pfister, J. B. Soriaga and P. H. Siegel, “On the achievable informa-
tion rates of finite state ISI channels,” in Proc. IEEE Global Communica-
tions Conference (GLOBECOM), pp. 2992–2996, Washington DC, Dec.
2007.

[138] N. Al-Dhahir, “FIR channel-shortening equalizers for MIMO ISI chan-
nels,” IEEE Trans. Commun., vol. 49, no. 2, pp. 213–218, Feb. 2001.

[139] K. B. Petersen and M. S. Pedersen, The matrix cookbook, Technical Uni-
versity of Denmark, Nov. 2008.

[140] R. M. Gray, Toeplitz and circulant matrices: A review, Foundations and
Trends in Communication and Information Theory, NOW Publishers,
vol. 2, no. 3.


