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H-infinity Optimal Distributed Control in Discrete Time

Carolina Lidström, Richard Pates and Anders Rantzer.

Abstract— We give closed-form expressions for H-infinity
optimal state feedback laws applicable to linear time-invariant
discrete time systems with symmetric and Schur state matrix.
This class includes networked systems with local dynamics in
each node and control action along each edge. Furthermore, the
structure of the controllers mimics that of the system, which
makes them suitable for distributed control purposes.

I. INTRODUCTION

We study structured H∞ control and give a class of
linear time-invariant (LTI) discrete time systems for which
distributed controllers are optimal. To give a flavour of our
results, consider the subsystems

xi(t+ 1) = aix(t) + b
∑

(i,j)∈E

uij(t) + di(t).

Here i ∈ (1, . . . , N), 0 < ai < 1, b > 0, uij = −uji and E
is the edge set of a network with N nodes. This system is
naturally associated with a graph, such as that in Figure 1.
Each subsystem is depicted by a node, and the edges describe
the couplings between subsystems through the control signals
uij . We show that the static state feedback law

uij(t) =
b

ai − 1
xi(t)−

b

aj − 1
xj(t)

minimizes the H∞ norm of the closed-loop system from
the disturbance d to the state x and control input u when
a2i + 2b2ki < ai, where ki is the degree of node i. This
constraint is related to the speed of information propagation
through the network as well as its connectivity. Note that
each control input uij is only comprised of the states it
directly affects, with a proportional term related to these
subsystems. Therefore not only is this control optimal, it
is also easy to apply, even when the number of subsystems
N is incredibly large.

Control of large-scale and complex systems is most often
performed in a distributed manner. This is due to the practical
impossibility of having access to information about the
overall system when deciding the control actions. However,
it is not straightforward to translate the conventional control
synthesis methods to synthesis of controllers suitable in a
large-scale setting. In fact, the optimal distributed control
problem can often be intractable.
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Fig. 1. Part of a network of N nodes. The dashed lines illustrates where
the connections are to the rest of the network. Node i depicts subsystem i
while edge (i, j) is related to the control input uij for which uij = −uji.

Imagine the system described previously to be written
compactly as x(t+ 1) = Ax+Bu+ d. The optimal control
law can then be written as u = BT (I − A)−1x. In fact,
this control law is optimal as long as A is symmetric and
Schur and A2 + BBT ≺ A. Also, it is on closed-form
which is a rarity in the case of H∞ control. Furthermore, our
theory naturally suggests a controller with a structure related
to the structure of the considered system, which makes it
a candidate for distributed control. This link between the
structure of the system and that of the controller is similar
to what is described for spatially invariant systems [1],
[2]. However, the systems we consider are not restricted
to be spatially invariant, though our results are only valid
for H∞ norm performance requirements. Further, synthesis
of structured controllers is simplified when the closed-loop
system is required to be positive [3], [4]. Although, as we do
not include this requirement, it is hard to compare it with our
approach. In [5], [6], [7], they instead consider a localized
approach to the design of distributed controllers. Of course,
this can be conservative. In our case, a local information
pattern is optimal whenever the dynamics can be divided
into subsystems that only share control inputs.
H∞ control, let alone distributed H∞ control, has mainly

been treated in the continuous time setting since these
questions were first brought up half a century ago. See [8]
for the first state space based solution to the centralized
non-structured H∞ control problem. In fact, in order to
solve the centralized H∞ control problem in discrete time
an additional criterion on the system needs to be fulfilled
[9], [10], [11]. However, it is of great importance to study
the problem of distributed H∞ control in discrete time, as
controllers are almost always implemented digitally.

The work presented covers the non-trivial translation of
the continuous time problems studied by the authors in [12]
and [13]. Besides the static state feedback law described
previously, we give a closed-form expression for a state feed-
back controller with integral action which requires minimum



control effort and guarantees a specified level of disturbance
attenuation. It has similar structure preserving properties to
the static state feedback controller as well as track references.

The outline is as follows. In Section II we present general
results on the optimal state feedback controllers, and state
their closed-forms as well as the system requirements needed
for them to be applicable. In Section III, we discuss their
relation to distributed control. Section IV displays how the
results are related to their continuous time counterparts. The
introduction is ended with the notation used.

The set of real numbers is denoted R and the space of
n-by-m real-valued matrices is denoted Rn×m. The identity
matrix is written as I . Given a matrix M , the spectral
norm of M is denoted ‖M‖ and the Moore-Penrose pseudo-
inverse of M is denoted M†. A square matrix M ∈ Rn×n
is said to be Hurwitz if all eigenvalues have negative real
part. It is said to be Schur if all eigenvalues are strictly
inside the unit circle. Furthermore, for a square symmetric
matrix M , M ≺ 0 (M � 0) means that M is negative
(semi)definite while M � 0 (M � 0) means M is positive
(semi)definite. The H∞ norm of a proper and real rational
stable transfer function T (z) is written as ‖T‖∞ and given
by ‖T‖∞ = supω∈R ‖T (ejω)‖.

II. CLOSED-FORM H∞ OPTIMAL STATE FEEDBACK
IN DISCRETE TIME

The first part of this section treats H∞ optimal static state
feedback when the performance requirement is to minimize
the impact from process disturbance on the state and control
input. In the second part, we require the controller to track a
reference in addition to a disturbance rejection requirement,
with minimum control effort. Naturally, the latter controller
has integral action. Further, we specify a class of systems
for which the optimal controllers can be stated on closed-
form. This class includes a broad range of linear networked
systems. We will show how these results can be used for
distributed control in Section III.

A. Optimal static state feedback

Consider the discrete time LTI system

x(t+ 1) = Ax+Bu+Hd (1)

where the state x ∈ Rn, control input u ∈ Rm, disturbance
d ∈ Rl and the matrices A, B and H are of appropriate
dimensions. Furthermore, consider the regulated output

ζ =

[
x
u

]
. (2)

The objective is to find a stabilizing static state feedback
law u = Kx, K ∈ Rm×n, that minimizes the H∞ norm of
the closed-loop system from d to ζ. We denote the transfer
function of the closed-loop system with (1)-(2) and K by
Td→ζ [K]. It is given by

Td→ζ [K](z) =

[
I
K

]
(zI −A−BK)−1H. (3)

The following theorem gives a closed-form optimal control
law, with respect to the objective described above, that is

applicable to (1) with symmetric and Schur stable matrix
A and for which A2 + BBT ≺ A. The latter constraint is
related to the sample time used in the time discretization of
the equivalent continuous time system. This is discussed in
more detail in Section IV.

Theorem 1: Consider (3) with A symmetric and Schur
and A2 + BBT ≺ A. Then, ‖Td→ζ [K]‖∞ is minimized by
Kopt = BT (A− I)−1 and the minimal value of the norm is
‖HT

(
(A− I)2 +BBT

)−1
H‖ 1

2 .
The proof of Theorem 1 is given in the Appendix.

Remark 1: Note that the control law is independent of
how the disturbance enters the system, i.e, H in (1).

B. Optimal PI control

Consider the discrete time LTI system

x(t+ 1) = Ax+Bu+Bd

q(t+ 1) = q + x
(4)

where the state x ∈ Rn, integral of the state x, i.e.,
q ∈ Rn, control input u ∈ Rm, disturbance d ∈ Rm and
the matrices A and B are of appropriate dimensions. The
objective is to find a stabilizing state feedback controller
K, which maps r − x to u, where r ∈ Rn is a reference
signal. Furthermore, it should track r with minimum control
effort and also guarantees a certain level of disturbance
attenuation. The closed-loop transfer functions from r to u
and d to q are denoted Tr→u[K] and Td→q[K], respectively.
The following theorem states a closed-form optimal control
law, with respect to the objective described above, that is
applicable to (4) with A symmetric and 0 ≺ A ≺ I .

Theorem 2: Consider (4) with A symmetric and
0 ≺ A ≺ I . Define γ = ‖

(
(I −A)−1B

)† ‖ and assume that
τ > 0 fulfills

τ
(
τI − γBT (I −A)−2B

)
� BT (I −A)−4AB.

Then, the problem

minimize ‖Tr→u[K]‖∞
subject to ‖Td→q[K]‖∞ ≤ τ

over stabilizing K, is solved by

K̂opt(z) = k

(
BT (I −A)−2 + 1

z − 1
BT (I −A)−1

)
,

where k = γ/τ . The optimal value is γ.
The proof of Theorem 2 is given in the Appendix.

Remark 2: The parameter τ determines the bandwidth of
the control loop where a smaller τ corresponds to disturbance
rejection over a wider frequency range.

Remark 3: Note that K enters as an ordinary negative
feedback as compared to the previous subsection, where the
negative feedback sign was incorporated in the control law.



III. DISTRIBUTED IMPLEMENTATION

This section concerns structured control and describes
a particular type of systems for which Theorem 1 and 2
result in distributed controllers. The considered systems are
comprised of subsystems with local dynamics, that only
share control inputs. Furthermore, each control input only
affects two subsystems. Depicting the subsystems as nodes
and the control inputs as edges between the nodes they affect,
the overall system can be illustrated by a network graph.

It is evident from the results given in the previous section
that the open-loop system need to be structured itself in order
for the optimal control laws to be structured. This is natural
from a large-scale system point of view as the dynamics
of such systems most definitely would be highly localized.
For the networked systems considered in this section, the
control signals drive the interaction among the subsystems.
In a transportation network this is related to routing of the
flow of commodities. Furthermore, the dynamics in each
subsystem is diffusive, so they act as buffers. The dynamics
could also describe a linear approximation of the behaviour
of more involved dynamics around an operating point.

A. Static state feedback case
Consider a network with N nodes or subsystems,

xi(t+ 1) = aixi + b
∑

(i,j)∈E

uij + di (5)

where i ∈ (1, ..., N), b ∈ R, b > 0 and E is edge set.
The overall system can be written on the form (1) with A
diagonal and B with columns of one element equal to 1 and
one equal to -1, scaled by b, while the remaining elements
are zero. See Figure 1 for an illustration of the system.
Each node in the system’s graph represents a subsystem i
while an edge (i, j) illustrates how control signal uij enters
the system. Furthermore, uij = −uji, i.e., what is drawn
from system j is added to system i. This class of systems
includes linear models of transportation and buffer networks.
The Corollary below follows from Theorem 1 and gives a
closed-form expression for an optimal distributed static state
feedback law for (5).

Corollary 1: Consider a graph with a set of nodes V and
edges E . Let the dynamics in each node i ∈ V be given by
(5) with 0 < ai < 1, b > 0 and uij = −uji. Furthermore,
consider the N subsystems to be written on the form (1)-(2),
where x = {xi}i∈V , u = {uij}(i,j)∈E and d = {di}i∈V and
assume that A2 +BBT ≺ A. Then, the control law

uij =
b

ai − 1
xi −

b

aj − 1
xj

minimizes the H∞ norm of the transfer function from the
disturbance d to the regulated output ζ.

Proof: The overall system is given by
x(t+ 1) = Ax+Bu+ d, where A is diagonal and
0 ≺ A ≺ I with A2 + BBT ≺ A. The controller structure
then follows from Theorem 1.

Remark 4: In the distributed case, the constraint
A2 +BBT ≺ A can be approximated by a local constraint.
See Section IV for more details.

u1

1 2 n

n+ 1 i i+ 1

ui,i+1

u12

n+ n1

n+ n1 + 1

N = n+ n1 + n2

Fig. 2. Buffer network with N buffers. Buffer 1 has inputs u1 and u12. A
general buffer i has inputs ui,k , where k is the number of its neighbours.
The network has a fork structure where, from the left, the first part has n
buffers. The upper branch has n1 buffers while the lower branch has n2

buffers.

B. Distributed optimal PI control

Consider a slight variation to the subsystems in (5) with
an extra state for each subsystem i as the integral of xi,
denoted qi,

xi(t+ 1) = aixi + bi(ui + di) +
∑

(i,j)∈E

(uij + dij) ,

qi(t+ 1) = qi + xi.

(6)

In this system, the disturbances enter in the same way as the
control inputs and again uij = −uji as well as dij = −dji.
The corollary given next follows from Theorem 2.

Corollary 2: Consider a graph with a set of nodes V and
edges E . Let the dynamics in each node i ∈ V be given
by (6) with 0 < ai < 1, bi 6= 0 for at least one i,
uij = −uji, dij = −dji and qi(0) = 0. Denote ei = ri−xi,
where ri is the reference signal for subsystem i. Furthermore,
consider the overall system written on the form (4). Define
γ = ‖((I −A)−1B)+‖/τ and assume that

τ(τ − γBT (I −A)−2B) � BT (I −A)−4AB.

Then, the controller

pi(t+ 1) = pi(t) + ei(t),

uij(t) = k (pi/(1− ai)− pj/(1− aj))
+ k

(
ei/(1− ai)2 − ej/(1− aj)2

)
,

ui(t) = k
(
pibi/(1− ai) + eibi/(1− ai)2

)
,

with k = γ/τ , minimizes the H∞ norm of the transfer
function from r to u while keeping the L2-gain from d to q
bounded by τ .

Proof: The overall system is given by
x(t+ 1) = Ax+Bu+Bd, where A is diagonal and
0 ≺ A ≺ I . Furthermore, the assumptions in Theorem 2
hold, and the controller structure thus follows from
Theorem 2.

C. Numerical example

Consider the buffer network depicted in Figure 2, where
N is the total number of buffers. The network has a fork
structure where the leftmost part, the root, has n buffers
while the upper and lower branch has n1 and n2 buffers,
respectively. The dynamics of the content in the buffers,



around some operating point, is

x1(t+ 1) = a1x1 + b1(u1 + d1) + u12 + d12,

xi(t+ 1) = aixi +
∑

(i,j)∈E

uij + dij , ∀ i ∈ 2, . . . , N.

The disturbance dij enters on edge (i, j). The control inputs
and disturbances satisfy uij = −uji and dij = −dji,
respectively. Each 0 < ai < 1, so given a non-zero initial
state the buffers will eventually be empty if no control is
used and after any disturbance has abated. The content in
the buffers dissipates faster through the lower branch than
through the upper.

The system described is part of the class of systems treated
in the previous subsections. We will now show the closed-
loop behaviour of the system with the distributed static
state feedback and distributed PI controller, respectively.
As we consider the number of buffers N to be large, a
localized control approach is the only practical design for
implementation. Our results suggest control inputs uij that
only require local information regardless of the size of the
system N .

Figure 3 shows the levels in some of the buffers in the
network, over time. At time t = 20 a constant disturbance
enters in node 1. The disturbance is then processed through
the network via the edges. The two upper plots and the
lower right plot show the time trajectories of the three first
buffers in the head, the upper branch and the lower branch,
respectively. The dotted lines show the references, while the
dashed and solid lines show the trajectories given the static
and PI controller, respectively. The bottom left plot shows
the time trajectory of the disturbance. Note that with the
distributed PI controller the impact of the disturbance is
larger in the lower branch than in the upper branch, even
though it has faster dynamics. Also, you can see how the
process is evolved through the network, starting at the head
and following the branches by comparing the peaks of the
time trajectories. It is evident that the PI controller is able
to track the reference while the static controller leaves a
stationary error under the duration of the disturbance.

IV. DISCUSSION

A. Comparison to continuous time results

We will now compare Theorem 1 with its continuous time
counterpart stated by the authors in [12]. For clarity, we
include that result next.

Theorem 3 ([12]): Consider

Gd→ζ [K](s) =

[
I
K

]
(sI −Ac −BK)−1H,

with Ac symmetric and Hurwitz. Then ‖Gd→z[K]‖∞ is
minimized by Kopt = BTA−1c and the minimal value of the
norm is given by ‖HT (A2

c +BBT )−1H‖ 1
2 .

The statements in Theorem 1 and 3 are very similar, how-
ever, with one main difference. That is, the extra requirement
on the matrices of the system’s state space representation that
is required in the discrete time case, i.e., A2+BBT ≺ A. If

Root Upper branch

0 500 1,000

time

Disturbance

0 500 1,000

time

Lower branch

Fig. 3. Numerical example with buffer network of N buffers. The two
upper plots and the lower right plot show the time trajectories of the three
first buffers in the root, upper branch and lower branch, respectively. For
instance the upper left plot show the time trajectories of node 1 in the top,
node 2 in the middle and node 3 at the bottom. The plots for the branches
are constructed in the same manner. The dotted lines show the references,
while the dashed and solid lines show the trajectories given the static and
PI controllers, respectively. The bottom left plot shows the disturbance that
enters in node 1. Note that in the PI control case, the effect of the disturbance
is larger in the lower branch than in the upper branch, even though it has
faster dynamics. Also, it is evident that the PI controller is able to track the
reference while the static controller leaves a stationary error.

we consider the discretization of the open-loop continuous
time system with time period h, we get

x(t+ 1) = eAchx(t) +

∫ h

0

eAcτBu(τ)dτ.

For small h and given the assumption that u(t) is constant
during each time period, we can use the approximation

x(t+ 1) ≈ (I +Ach)x(t) + hBu(t).

The constraint then becomes

(I +Ach)
2 + h2BBT ≺ I +Ach,

which is equivalent to h < ‖A
1
2
c (A2

c + BBT )−1A
1
2
c ‖. Thus,

for small enough h, it is always fulfilled. Similarly to
the discussion above, one can compare Theorem 2 to its
continuous time equivalent stated in [13].

The constraint A2 + BBT ≺ A reveals that A � 0
in the discrete time case. Thus, the class of discrete time
systems that can be considered for both Theorem 1 and
Theorem 2 are non-oscillatory. This also maps to the class
of continuous time systems considered in Theorem 3, as
symmetric matrices do not have imaginary eigenvalues.

The optimal controller given by Theorem 3 is clearly
related to the controller resulting from bisecting over the
continuous time algebraic Riccati equation (CARE). That
is, if we denote the solution to the CARE by P , the
controller is given by K = −BTP [14]. In the discrete
time setting, they are not as clearly related. The controller



given by bisection over the discrete time ARE (DARE) is
K = −(I + BTPB)−1BTPA where P is the solution to
the DARE [14]. The expression for the DARE controller is
more involved than the expression we give for the controller
proposed in Theorem 1.

B. Local condition for A2 +BBT ≺ A
Consider the systems described in Section III. They are

of the form (1) with A diagonal and B sparse. In fact,
given the network description of these systems, the matrix
B relates the nodes and edges. B/b is generally called the
node-link incidence matrix of the network graph. From this,
it is possible to approximate the constraint A2 +BBT ≺ A
by a local constraint. Denote the i:th diagonal element of A
by ai. Furthermore, write BBT = b2L. The inequality can
then be written as

A2 −A+ b2L ≺ 0.

Further, define the diagonal matrix D by Dii := Lii. Then
the inequality becomes

D
1
2

(
D−1(A2 −A) + b2D−

1
2LD−

1
2

)
D

1
2 ≺ 0,

D−1(A2 −A) + b2Lsym ≺ 0,

where Lsym is the symmetric normalized Laplacian of the
network’s graph. It is well-known that λmax(Lsym) ≤ 2.
Therefore, satisfying the local condition

a2i − ai + 2b2Dii < 0.

is sufficient to guarantee that A2+BBT ≺ A. The entry Dii

is the degree of node i, i.e., the number of nodes it is directly
connected to, and often denoted ki. Thus, the constraint A2+
BBT ≺ A is related to the speed of information propagation
through the network and its connectivity, via ai, b, the bound
on the maximum eigenvalue of the symmetric normalized
Laplacian and the node degree. Note that a similar analysis
can be made for the inequality constraint on τ in Corollary 2,
where it is necessary that τI − γBT (I −A)−2B � 0.

V. CONCLUSIONS AND FUTURE WORKS

We define a class of systems and performance objectives
for which the optimal H∞ controller is structured. It includes
networked systems with local dynamics in each node and
control action along each edge. Some assumptions on this
class of systems are only sufficient. It is left as future work
to characterize the both sufficient and necessary systems
properties. Furthermore, combining the discrete time results
presented with their continuous time counterparts could bring
some further intuition into the case of sampled data control
for networked systems.

APPENDIX

To prove Theorem 1, we need the following lemma.
Lemma 1: Assume A ∈ Rn×n symmetric and Schur, and

B ∈ Rn×m. Then, the following statements are equivalent
(i) A2 +BBT ≺ A,

(ii) (A− I)
(
(A− I)2 +BBT

)−1
(A− I) +A− I � 0.

Proof: Note that A − I ≺ 0 as A is symmetric and
Schur. Then,

(ii) ⇐⇒
(
(A− I)2 +BBT

)−1
+ (A− I)−1 � 0

⇐⇒ −A+ I � (A− I)2 +BBT ⇐⇒ (i),

where in the first step we have multiplied (ii) with (A−I)−1
from both left and right.
Next, we give the proof of Theorem 1.

Proof of Theorem 1: The proof is divided into two parts.
The first part considers a lower bound on the minimal norm-
value. In the second part, we show stabilizability of Kopt

and that the lower bound is achieved for Kopt.
The minimal norm-value can be lower bounded as follows

inf
K
‖Td→ζ [K]‖∞ = inf

K
sup
ω
‖Td→ζ [K](ejω)‖

≥ inf
K
‖Td→ζ [K](1)‖. (7)

The latter minimization problem is equivalent to the follow-
ing least-squares problem

minimize ‖ζ‖2
subject to

[
I −A −B

]
ζ = Hd, ‖d‖2 ≤ 1,

which has the optimal solution

ζ∗ =

[
I −AT
−BT

] (
(A− I)(A− I)T +BBT

)−1
Hd∗.

Thus, given (7) and symmetry of A we have that

inf
K
‖Td→ζ [K]‖∞ ≥ ‖HT ((A− I)2 +BBT )−1H‖ 1

2 .

We will now prove that Kopt = BT (A − I)−1 is op-
timal by showing that it is stabilizing and achieves the
lower bound given above. For Kopt to be stabilizing,
Acl := A+BBT (A− I)−1 has to be Schur. It is equivalent
to existence of a matrix P � 0 such that AclPATcl −P ≺ 0.
One such P is P = (A−I)2, which is valid as A ≺ I . Note
that, given the assumptions on A and B, AclPATcl − P ≺ 0
with P = (A − I)2 is equivalent to (A − I)2 + BBT � 0,
which is true as A ≺ I .

To show that Kopt achieves the lower bound, rewrite

Td→ζ [Kopt](e
jω)∗Td→ζ [Kopt](e

jω) = HTG−1(jω)H

where

G(jω) = (ejω − I)(A− I)M−1(A− I)(e−jω − I)
− (ejω + e−jω − 2I)(A− I) +M

= (2− 2 cos(ω))
(
(A− I)M−1(A− I) +A− I

)︸ ︷︷ ︸
=:N

+M,

and M := (A − I)2 + BBT . It follows from Lemma 1
that N � 0 as A2 +BBT ≺ A by assumption. Therefore, it
holds that G(jω) �M and moreover that G(jω)−1 �M−1
for ω ∈ [0, 2π). Hence,

Td→ζ [Kopt](e
jω)∗Td→ζ [Kopt](e

jω) = HTG−1(jω)H

� HTM−1H = HT ((A− I)2 +BBT )−1H =

Td→ζ [Kopt](1)
∗Td→ζ [Kopt](1)



from which it follows that

‖Td→ζ [Kopt]‖∞ = ‖HT ((A− I)2 +BBT )−1H‖ 1
2

and the proof is complete. �
To prove Theorem 2 we need the following lemma.

Lemma 2 ([13]): Let A ∈ Cn×m. Then,

min
X∈Cq×n

‖X‖ s.t. AXA = A

has the minimal value ‖A†‖, attained by X̂ = A†.
Proof of Theorem 2: Define P (z) := (zI −A)−1B. Then,

Tr→u[K] = (I +KP )−1K. Now, define

M := I − kBT (I −A)−2B

and note that the given assumption on τ together with A � 0
yields M � 0. Firstly, we will show that K̂opt is stabilizing.
Factorize B as B = GFT , where G and F have full column
rank. Then,

Tr→u[K̂opt](z) = k
(
(z − 1)I + kBT (I −A)−2B

)−1 ·
BT (I −A)−2(zI −A)

= kH
(
(z − 1)I + kGT (I −A)−2GFTF

)−1 ·
GT (I −A)−2(zI −A),

so the poles of Tr→u[K̂opt] are the eigenvalues of

I − kGT (I −A)−2GFTF,

i.e., the eigenvalues of M that are not equal to 1. Clearly, as
0 ≺M � I , Tr→u[K̂opt] is stable. Thus, K̂opt is stabilizing.

Now, we will show that ‖Td→q[K̂opt]‖∞ ≤ τ . From the
definition of k we have that I � k2τ2BT (I−A)−2B which
is equivalent to

BT (2(1− cos(ω))A+ (I −A)2)−1B
� τ2

[
2(1− cos(ω))M + k2(BT (I −A)−2B)2

]
and further to∥∥∥∥ 1

ejω−1P (e
jω)
(
I + K̂opt(e

jω)P (ejω)
)−1∥∥∥∥ ≤ τ.

The latter inequality is precisely ‖Td→q[K̂opt](e
jω)‖ ≤ τ and

thus K̂opt fulfills the constraint.
Finally, we will show that K̂opt is in fact optimal. Again,

consider the constraint with τ . In general PTr→u[K]P =
P − P (I +KP )−1 so the constraint demands

P (1)Tr→u[K](1)P (1) = P (1).

Now, consider the minimization of ‖Tr→u[K](1)‖
subject to the equality above. Then, by Lemma 2,

Tr→u[K](1) = P (1)† with optimal value ‖P (1)†‖. Now, as
Tr→u[K̂opt](1) = P (1)†, it follows that K̂opt is a feasible
solution to the static problem at ω = 0. Furthermore, to
show that K̂opt is optimal for the non static problem we need
to show that ‖Tr→u[K̂opt]‖∞ is achieved at ω = 0. Consider
Tr→u[K̂opt]Tr→u[K̂opt]

∗ � γ2I which is equivalent to

k2BT (I −A)−2(2(1− cos(ω))A+(I −A)2)(I −A)−2B
� γ2

[
2(1− cos(ω))M + k2(BT (I −A)−2B)2

]
.

This inequality holds trivially for ω = 0. It holds for all other
other ω ∈ R provided that

k2BT (I −A)−4AB � γ2
[
I − kBT (I −A)−2B

]
which is equivalent to the assumption on τ . Thus,
‖Tr→u[K̂opt]‖∞ takes the minimal value γ and the proof is
complete. �
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